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Abstract: Nowadays, more and more high-stakes decisions are made using neural networks in
order to make predictions. Specifically, meteorologists and hedge funds apply these techniques
to time series data. When it comes to prediction, there are certain limitations for machine learn-
ing models (such as lack of expressiveness, vulnerability of domain shifts and overconfidence)
which can be solved using uncertainty estimation. There is a set of expectations regarding how
uncertainty should “behave”. For instance, a wider prediction horizon should lead to more uncer-
tainty or the model’s confidence should be proportional to its accuracy. In this paper, different
uncertainty estimation methods are used in order to forecast meteorological time series data and
justify these expectations. The results show how each uncertainty estimation method performs
on the forecasting task and confirm the expectations of uncertainty.

1 Introduction

In our modern civilization, neural networks are of-
ten used to tackle complex tasks. Many fields, such
as robotics, computer vision, stock market/weather
prediction, etc., use algorithms based on neural
networks. Specifically, time series data with high
volatility, rely heavily on neural networks when
it comes to predicting future values. Nowadays, a
great number of hedge funds and meteorologists use
Al for different predictions. However, there are still
plenty of limitations that need to be taken into ac-
count even when such a powerful tool is used. The
most prominent issues described by Jakob et al.
(2021) are the following;:

e Neural networks are often called “black boxes”
which suggests the lack of expressiveness and
interpretability of the algorithm. In other
words, it is hard to really understand every
step that leads to the output, making it unre-
liable in some cases.

e Neural networks are vulnerable to domain
shifts and struggle with identifying in-domain
and out-of-domain data. This means that, for
example, if an image classification model is
trained to distinguish between cars and bikes,
but during the testing a plane is given, the

model will predict something instead of notic-
ing the out-of-domain data.

e The output of a neural network does not pro-
vide uncertainty with it (how sure the given
output is) and is often overconfident with its
results.

e Neural networks are prone to adversarial at-
tacks, which could cause them to malfunction.

The aforementioned limitations can be remedied
(or at least improved upon) by estimating uncer-
tainty for the outputs. Given these estimates, a hu-
man supervisor could decide whether to use the re-
sults of the network (at least parts of the results)
or disregard them.

1.1 Uncertainty

There are two types of uncertainty which can be
distinguished: aleatoric and epistemic. The former
refers to uncertainty derived from the data itself
(for instance, sensor noise) and the latter is uncer-
tainty in the model, which can happen if the net-
work is poorly designed or if there is a lack of data.
Abdar et al. (2020) further discuss the introduced
categories. Aleatoric uncertainty can have two fur-
ther types: homoscedatic and heteroscedatic. The
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Figure 1.1: Example of a time series (Wikipedia,
2022).

aforementioned two terms indicate the o2 (vari-
ance) of the noise in a model. Homoscedatic means
that o2 is constant and heteroscedatic means that
02 is a function of the input (thus varying for each
different variable).

For the estimation of uncertainty, several tech-
niques have been developed lately. In my research,
I use Bayesian inference based and Ensemble based
estimation techniques (Method section introduces

them in detail).

1.2 Time-series data

Time-series data is a row of data points indexed
by time. It is mainly used to track the change over
time. Figure 1.1 presents and example.

Neural networks for time-series are usually used
in order to predict future values (meteorologi-
cal/stock prediction). Uncertainty can give validity
to these predictions. For instance, a wider predic-
tion horizon should have more uncertainty. Never-
theless, a standard point-wise-based network’s pre-
diction could be as confident for a narrow predic-
tion horizon as for a wider one (Valdenegro-Toro,
2022).

1.3 State of art

The number of published papers on this topic has
skyrocketed in the past few years. In this section I
summarize the ones closely related to mine. Ab-
dar et al. (2020) and Jakob et al. (2021) gave

an overview of uncertainty in neural networks.
Both papers described the mathematical /statistical
backgrounds for the different approaches. Further-
more, they presented the state of the art on this
topic. As stated earlier, both Bayesian and Ensem-
ble methods are included in this paper. Gal (2016)
issued a paper more specifically on Bayesian meth-
ods such as Monte Carlo Dropout, whereas Bal-
aji et al. (2017) provided a paper on Ensemble
methods, which is an easier alternative to Bayesian
methods.

Siddique & Connor (2022) used Bayesian Neural
Networks to classify auroral images into predefined
labels and to predict the horizontal component of
the perturbed magnetic field. These results were
then compared to the results of a Gaussian Process
Regression. The prediction experiment in this pa-
per is fairly close to my research, which is described
in the following section.

1.4 Proposed approach

This paper focuses on prediction for time series us-
ing different uncertainty methods. The papers men-
tioned above have given a theoretical overview of
the different uncertainty methods and/or applied
one or two of them to real-world data sets. This re-
search focuses on applying several estimation tech-
niques to two real world data sets. Comparing their
results and analyzing uncertainty is the main aim
of this paper.

There is a set of expectations for how uncertainty
should behave when it comes to prediction for time
series data.

1. A wider prediction horizon should result in
higher uncertainty.

2. Larger errors (for instance, mean squared er-
ror) should yield higher uncertainty.

3. The estimation of calibration error (whether
the model is over or under-confident). This
suggests that the standard deviation (in other
words, the uncertainty) should be proportional
to the accuracy of the model.

I examine whether the aforementioned expectations
are satisfied for time-series data using neural net-
works and the models described in section 2. More-
over, the results of different uncertainty quantifica-
tion methods are compared.



175 4

150

1251

— pm2.5
T

~10 4

—15 A DEWP

—— TEMP

-5
=6 T T T T T
[} 5 10 15 20

hour

Figure 2.1: Example time series from the data
set (PM2.5). It shows different values with a 24
hour range.

2 Methods

2.1 Data

Throughout the experiment, I used two meteorol-
ogy data sets to test the different uncertainty mod-
els. The first is about PM2.5 concentration (it is
referred to as PM2.5 data set) and it can be
found here: https://archive.ics.uci.edu/ml/
datasets/Beijing+PM2 .5+Data. The data con-
sists of 43825 time series with 8 features measured
for each time frame (year, month, day and hour).
The 8 features are the following: PM2.5 concentra-
tion, Dew Point, Temperature, Pressure, Combined
wind direction, Cumulated wind speed, Cumulated
hours of snow, and Cumulated hours of rain. The
figure 2.1 above shows an example of 24 hours of
data from PM2.5 concentration, Dew Point, and
Temperature time series.

In this model, the prediction is made with re-
gard to PM2.5 concentration. This is also called
fine particulate matter, which has a harmful effect
on human health (Pope & Dockery, 2006). For the
predictions, the other values in the data set (fea-
tures) are used as well (see the next section for
more detail).

The second data set is a weather time series
data (it is referred to as Air pressure data set).
This data set can be downloaded here: https://
www .bgc-jena.mpg.de/wetter/. In this data set,
14 different features were included: Air pressure,

Figure 2.2: Example time series from the data
set (Air pressure). It shows different values with
a 24 hour range.

Air temperature, Potential temperature, Dew point
temperature, Relative humidity, Saturation water
vapor pressure, Actual water vapor pressure, Wa-
ter vapor pressure, Deficit specific humidity, Wa-
ter vapor concentration, Air density, Wind veloc-
ity, Maximum wind velocity and Wind direction.
The data points are measured in every 10 minutes
from 2009-2016. Since prediction regarding mete-
orological data is usually done by hours and the
previous data set was also measured in each hour,
the data set was converted from minute represen-
tation to hour representation by taking every 6"
data point only. Figure 2.2 shows some examples
from the data set.

The prediction is done with respect to air pres-
sure (in milibar). As mentioned before, regarding
the features, a more comprehensive overview is
given in the next section.

2.2 Preprocessing of the data

2.2.1 Cleaning and selecting the features
which are used

After the data is imported, then the NaN (un-
defined or unrepresentable values) values are dis-
carded since that could cause the neural network to
break. Then a heat-map was used to decide which
features are worth feeding to the model (Figure 2.3
shows the heat-map of the PM2.5 data).

Looking at figure 2.3, it is clear that there are
no features which should not be included. Hence,
the features which are used are Dew Point (the
temperature needed to reach a relative humidity



1.00
Feature Correlation Heatmap

No 0.75
year
mogth 0.50
ay
hour 0.25
pm2.5
DEWP
TEMP 0.00
PRES
cbwd —0.25
lws
s -0.50
|r T L\ T T T T T n\- T T T T
o >=no nNoT wvuwkt -
232833z uUss 0.75
oL EREES

Figure 2.3: Heat-map of the PM2.5 data.

of 100%), Temperature, Pressure, Cumulated wind
speed, Cumulated hours of snow and Cumulated
hours of rain. (Note that I do not include the Com-
bined wind direction as it has a string data type).
As a time-key, hours were used since weather re-
lated data can change rapidly. Thus, using the
smallest unit available in the data set was the most
applicable.

The heat-map for the second data set (Air pres-
sure) is presented in figure 2.4. Here, it is clear
that there are correlations amongst certain features
consequently, the following were chosen for train-
ing: Air pressure, Air temperature, Saturation wa-
ter vapor pressure, Specific humidity, Water vapor
concentration, Wind velocity and Maximum wind
velocity.

The further parts are identical for both data sets.

2.2.2 Normalization

Then one needs to normalize the training data (only
the training data, the validation data remains un-
touched), since scaling is crucial for the network to
work. This is done by subtracting the mean from
each data point and then it is divided by its stan-
dard deviation. D = (d; — p)/o where D is the
normalized data, d; are the data points, p is the
mean and o is the standard deviation.
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Figure 2.4: Heat-map of the Air pressure data.
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Figure 2.5: Data windowing.

2.2.3 Making samples

Once the data is cleaned and the features are cho-
sen, the data is split into training and validation
sets. For that, a 0.715 splitting ratio was used. The
next step is to create “x” and “y” values for both
the validation and training data. These are the in-
put (x), output (y) pairs.

Creating the samples was done by data window-
ing. The basic idea of this is that it divides both the
training and validation data into input and label
data (output). The input data are the “x” values
and the label are the “y” values. It can either make
the data for a single step prediction or a multiple-
step prediction. The single step prediction is de-
scribed in Figure 2.5.

The historical data is the input data and the tar-



get size shows how many hours ahead the algorithm
predicts. The label data is used as a target (the y
values). In this research, I use 120 data points are
used as history, which is then sampled in a way that
every 6" data point is taken as an input. This sug-
gests that the input contains 20 data points. The
target size is 12 therefore, the 12t" value is used as
an output (which the model will learn on). Hence,
the model predicts a single value 12 hours ahead.
In order to check the uncertainty for a wider hori-
zon, multi-step prediction is needed. This differs
from the previous case in that not only the 12t%
value is being predicted but every value up until
the 12" (so 12 predictions are made in total).

2.3 Models

The following sections describe all the models that
were used for estimating uncertainty for predic-
tions. For all methods, the representation of un-
certainty is based on the estimated mean and vari-
ance. So, U = [p—o0, p+0] where u is the predicted
mean, o is the predicted standard deviation, and U
is the uncertainty presented with a confidence in-
terval. The degree of uncertainty can be measured
with the predicted standard deviation (o).

2.3.1 Bayesian Neural Networks

As general neural network models cannot provide
reliability for their predictions (as they only provide
a point-wise prediction using, for instance, Maxi-
mum Likelihood Estimation) another method needs
to be used. One method is called Bayesian Neural
network where the main idea is to output a proba-
bility distribution instead of the point-wise weights.
It deduces the probability distribution for the pa-
rameters in the network (A = (wi,ws,...,wk)).
This is done by applying the Bayes theorem on
A, given the training input/output pairs (z,y).
The posterior distribution of the parameter space
(p(AM|z,y)) is the actual learning algorithm, this
makes the predictions. The assumed prior distri-
bution on the weights is p(\) (Abdar et al., 2020).
Then the bayesian equation is the following:

p(ylz, N)p(N)

p(Az,y) = P lo)

(2.1)

Since p(y|x) is the probability which needs to
be learned (the probability of some input/output

pair), bayesian predictive posterior distribution can
be calculated. Therefore, for a random test sample
x* the prediction can be modelled as follows:

p(y*lz*my):/p(y*lx*k)p(Alfc,y)d/\ (2.2)

This is called the Bayesian Model Averaging, which
is the marginalisation of the likelihood with the
posterior distribution (Jakob et al., 2021). This
equation gives predictions for y* with different
parameters A and weighs them by the probabil-
ity of those parameters given the input z*. The
first part of the integral is called forward pass
(p(y*|z* X)) which calculates the probability distri-
bution based on the weights and inputs. The second
part (p(A|z,y)) is called posterior of weights which
is learned in the network using the Bayes rule pre-
sented above (Jakob et al., 2021). In general, this
integral is hard to compute since the computation
of p(A|lz,y) (posterior distribution) cannot be done
just by estimation. The reason for this is that neu-
ral networks rely on millions of weights/parameters
which would mean the produced probability distri-
butions have extremely high dimensions, hence it
would be computationally expensive. The follow-
ing models use different techniques to estimate the
integral in 2.2.

2.3.2 Monte Carlo DropConnect/Dropout

As mentioned earlier, the integral in equation 2.2
cannot be calculated hence, it needs to be approxi-
mated, and for that, MC dropout is a powerful tool.
The approximation is done by sampling, which,
combined with Monte Carlo, produces a different
sample from the posterior distribution after each
forward pass. It overcomes the issue of slow com-
putational time, which general Monte Carlo models
suffer from. During training, it assigns random bi-
nary variables to certain units of the network, and
if the value of a unit is 0, then the algorithm drops
it. This prevents the layers from “co-tuning” too
much (Abdar et al., 2020). Mathematically, the es-
timation is done as follows:

p(y*|z*, x,y) 12]) 2 N)p(Az,y) (2.3)



Then, the calculation of the mean and standard
deviation is the following:

1 M
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(Note that f; represent the different samples
and M is the number of forward passes.) From
equation 2.4 and 2.5, the confidence interval is
easily calculable. If the dropout is applied on
weight instead of layers, then the method is called
Monte Carlo DropConnect.

2.3.3 Bayes by Backprop (BBB)

Here, the computation of p(\|x,y) (posterior distri-
bution) is done by estimation of a variational pa-
rameters, to get ¢(A\) (a parametric distribution)
closer to the posterior distribution, for that, one
needs to use the Kullback-Leiber (KL) divergence
(as a distance between p(A|z,y) and g(A)) (Jakob
et al., 2021):

dA

(2.6)
One needs to minimise the divergence in order to
get the predictive distribution however, since the
posterior is unknown, the evidence lower bound

(ELBO) needs to be maximised:

KLl = [ a3 1og 42

ELBO = / 4(V) log PYIZ: A

ey (2.7)

Then 2.7 can be rewritten as:
KL(gM|[p(Alz,y)) = —ELBO + log p(y|z) (2.8)

This means the if ELBO is maximized then KL
is minimised hence, the ¢(\) will be closer to the
true posterior distribution (Abdar et al., 2020). The
previous procedure is called variational approxima-
tion to the posterior distribution of the weights pro-
posed by Hinton & Camp (1993). In practice, this
means that each weight have a Gaussian distribu-
tion instead of a fixed number. Hence, the weights’

parameters are N (i, o) (which are updated by Gra-
dient decent). (Note that since the weights are dis-
tributions, a stochastic gradient is needed; there-
fore, a Monte Carlo gradient is used). This can be
achieved by minimizing the earlier mentioned KL
divergence. This resulted in a variation free energy
cost function (Charles et al., 2015):

F(Az,y) = KL[q(z,y, A)|lp(A)]

2.9)
- ]Eq()\\z,y[lng(xayv/\)] (

Here the KL term is for the divergence be-
tween the approximated posterior of the weights
(¢(x,y,\)) and the prior (p(A)). The term
—Ey\lz,yllogp(z,y,\)] is the loss of the model
(Charles et al., 2015).

2.3.4 Flipout

The Flipout model is closely related to the afore-
mentioned Bayes by Backrop (BBB) model. As pre-
viously described, BBB uses a Gaussian distribu-
tion for the weights hence the sampling process
can be interpreted as a perturbation over the mean:
w = p+ oz where z = N(0,1) and w = N (u,0).
Therefore, oz is an additive permutation to the
mean, which causes randomness (Wen et al., 2018).
This is improved upon by Flipout by reducing vari-
ance for the predicted distributions. Instead of a
perturbation over the mean, a per-sample pertur-
bation is used:

AW, = AWr,s? (2.10)

Here AW, is the standard deviation, AW = oz
which is in this case the per-sample perturba-
tion and r,, s, are independent samples from the
Rademacher distribution (binary values, either -1
or 1). This method makes sure that each sample
in a batch receives a different bias sample com-
pared to BBB, where the samples vary only within
each batch. This makes Flipout less noisy and faster
(Wen et al., 2018).

2.3.5 Ensemble method

Ensemble methods are based on the “knowledge of
the crowd” principle. This method is an easier alter-
native to Bayesian Neural Networks. The so-called
ensemble members (different models) are making
predictions, and the final prediction is the aver-
age of the ensemble members’ outputs (Jakob et



al., 2021). This method deals with estimating the
posterior distribution differently than the previous
methods. Ensemble methods, as the name suggests,
take the average of the results of the different mod-
els with different parameter settings. Similarly, un-
certainty can be measured directly by taking the
standard deviation of the ensembles’ outputs. In
mathematical terms:

1 M
= > i) (2.11)
M
0@) = \[ 757 SUile) —p@)?  (212)
i=1

Where f(7) is the output of each ensemble member
and M is the number of ensemble members. Then
using the mean and the standard deviation, the
confidence interval for the uncertainty is straight-
forwardly calculable.

2.3.6 Loss function

In all models (except the Baseline model, see sec-
tion 2.4.1), the Mean Squared Error (MSE) was
used as a loss function. It is a popular choice when
it comes to regression. It punishes poor predictions
sharply, which means that the outliers are vanished.
This can be calculated as the following:

“yEn-

Where y is the true value and y* is the predicted
value. In general, the lower MSE refers to a better
result. A low MSE would indicate that the true
mean is closer to the predicted mean therefore, the
prediction is accurate.

MSE(y,y (2.13)

2.4 Experiment design

This section describes the actual implementations
and hyperparameters of each model. Moreover, the
metrics are described for evaluation. Note that
the whole experiment is done with both data set
(PM2.5 and Air pressure).
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Figure 2.6: Model with two output heads
(Valdenegro-Toro, 2022).

2.4.1 Baseline model

This model estimates uncertainty using a second
output head of a neural network. This head pro-
duces the variance of the model. Since in this case,
a direct, fairly simple, method was used to mea-
sure uncertainty, this model is used as a baseline
for comparison.

Figure 2.6 shows the idea behind the two headed
model. One head outputs the predicted mean and
the other, the predicted variance. In order to esti-
mate uncertainty, a special loss function is used,
which is called Gaussian negative log likelihood
(Note that all the other models use MSE as a loss
since their uncertainty quantification is done within
the neural network using special layers). This loss
function increases the variance if the prediction is
poor, which makes sure that poor performance pro-
duces large uncertainty.

—logL(y, p, 0 Zloga + ul) (2.14)

If the prediction is poor (y; — ;)? is large hence
02 needs to be large as well in order to minimise
the loss.

The baseline model consists of two hidden Dense
layers with 32 neurons using the relu activation
function (which is based on maz(x,0)). Since
the data set is large, the “Adam” optimiser was
used for the model. A learning rate of 0.001 was
used. The number of epochs for training was 100.
Figure 2.7 below shows the basic architecture of
the network. The input layers have the shape of
the training data. Then, as mentioned above, two
Dense layers follow in the hidden layers and finally
one Dense layer for the output.

This model was the basis for all the other different
models mentioned before. In the following sections,
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Figure 2.7: Architecture of the Baseline model.
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Figure 2.8: Architecture of the Dropout model.

each model is described in terms of how they
differ from the Baseline model (other than the loss
function).

2.4.2 Dropout

The Dropout model consists of the same layers
as the Baseline model however, a dropout with
probability of 0.2 is applied on the hidden lay-
ers (using the StochasticDropout function from
Valdenegro-Toro (2021)). This ensures that the
units are dropped with the probability given above.
Figure 2.8 below illustrates the network.

Then I used the StochasticRegressor function
(Valdenegro-Toro, 2021) which give the predicted
mean and standard deviation for the described
model.

2.4.3 Dropconnect

Similarly as before, this model has the same archi-
tecture, however now the dense layers are switched

Input Layer

Hidden Layers Output Layer

Figure 2.9: Architecture of the Dropconnect
model.

Hidden Layers Output Layer

Figure 2.10: Architecture of the BBB model.

to DropConnectDense (Valdenegro-Toro, 2021)
which implements the dropping of the weights
between the neurons. They take a parameter for
the probability of dropping a weight. Figure 2.9
depicts the design of the model.

The dropping probability was 0.05. The other
hyperparameters were the same as before.
Then, again, the StochasticRegressor function
(Valdenegro-Toro, 2021) was used to calculate the
predicted mean and standard deviation.

2.4.4 Bayes by Backprop

Here, the dense layers are switched to Variation-
alDense (Valdenegro-Toro, 2021) which takes the
parameters for the prior distributions. I used 5.0
and 2.0 for o which is the variance of the Gaussian
distribution. For 7 I used 0.5, which is for the
Gaussian mixture distribution. The architecture
can be seen in figure 2.10.

The number of epochs is 2500 since Bayes by
Backprop requires several runs to converge.
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2.4.5 Flipout

Flipout is a variation of the Bayes by Backprop
model. Hence, the majority of the implementation
is the same. However, FlipoutDense (Valdenegro-
Toro, 2021) layer is used, which takes an additional
argument (compared to BBB) which is bias distri-
bution. It means that the biases are distributions
and not scalars (Valdenegro-Toro & Saromo, 2022).
Since it is a better version of BBB, fewer epochs are
needed needed to converge; hence, 700 was used in
this experiment.

2.4.6 Ensemble method

The architecture of the Ensemble model can be seen
in figure 2.11. As explained above, this method av-
erages the outputs of several models. The model
consists of the same layers as the Baseline model.
Then, to acquire the mean and the standard de-
viation, the SimpleEnsemble function was used
(Valdenegro-Toro, 2021). It defines the number of
models whose outputs then need to be averaged. In
this experiment, it was 10.

2.5 Recurrent model

I have implemented each model, which was men-
tioned before, with an additional Long Short-Term
Memory layer (LSTM) introduced by Hochreiter
& Schmidhuber (1997). The architectures are the
same as before just as a first layer, an LSTM is
added. LSTM differs from regular layers in that it
contains feedback connections, which makes it more
powerful. Also, a gate is built in, through which the
model “forgets” the irrelevant information, which
makes it more memory efficient. Moreover, the rel-
evant features can be stored for longer. Figure 2.12

Input Layer

Hidden Layers. Output Layer

Figure 2.12: Architecture of the recurrent

model.

shows the basic idea.

2.6 Metrics used for evaluation

2.6.1 Mean Absolute
(MAPE)

percentage error

MAPE is a metric that calculates the difference be-
tween the true value and the predicted value for
each prediction, which is then divided by the true
value. Then the differences are averaged. Note that
the absolute value is crucial to prevent the positive
and negative errors from canceling out.

T, - E;

1 n
MAPE:EZ| T

i=1

| (2.15)

Here n is the number of data points, T; is the true
value, and F; is the prediction.

2.6.2 Mean squared error (MSE)

Equation 2.13 shows the calculation of the mean
squared error. It can also be used as a metric to
evaluate the performance of the model. In general,
a lower MSE score is better.

2.6.3 R? score

R? score gives an insight into the difference between
the true data and the predicted means. A large
value suggests that the difference between them is
small, hence the model fits well. Usually, R? is be-
tween 0 and 1, but a negative value is also possible.
This suggests that the model is a poor fit for the



data. The calculation of R? is the following:

N *
i (i —yi)?
N —
> iz (Y — 9)?
Here, y* is the predicted value, y is the true value,

N is the number of data and ¥ is the mean of the
true value.

R (y,y*) =1- (2.16)

2.6.4 Calibration error

Calibration error is a measure between the confi-
dence of the model and the accuracy of the model.

CE = Z lace(B;) — conf(B;)| (2.17)

Here the confidence (probability between 0 and 1)
is divided into equal parts, called bins B;. For each
bin, the accuracy is calculated (between 0 and 1 as
well). Ideally, the model is as confident as accurate.
So an error closer to zero is better (Valdenegro-
Toro, 2022).

2.6.5 Negative log likelihood

The negative log likelihood evaluation method is
popular for predictions with uncertainty. It is a
proper scoring rule and can be applied for regres-
sion and classification as well (Lakshminarayanan
et al., 2017). In this paper, a Gaussian assumption
was used:

N

1 (yi —y})?
NLL == 1 2 ACANS LY
n;<og(oz+e)+ e

(2.18)
In equation 2.18, o2 is the predicted variance, y
is the true mean, y* is the predicted mean and e
is a constant. Furthermore, a lower score implies a
better fit (Valdenegro-Toro, 2021).

3 Results

3.1 Qualitative analysis

The following section contains plots regarding how
each model produced uncertainty and how well they
forecasted the PM2.5 concentration or the Air pres-
sure.

3.1.1 PM2.5

From figure 3.1 (left side) one can observe that poor
predictions indeed produced large uncertainty, for
instance, the fourth sample with the BBB or the
third sample with Dropconnect. Conversely, when
the prediction was closer to the real value, as in the
second sample with the Flipout model, the model
was more certain about its forecast. However, there
are cases when the model is overconfident in its
predictions. The first sample with the BBB model
produced low uncertainty even though, the fore-
cast was unreliable. In general, the Baseline model
seems to perform the best in terms of the accuracy
of the predictions. Consequently, the uncertainties
are also rather low.

Figure 3.1 (right side) shows different samples
which were chosen based on the mean squared error
(see section 2.6.2). Here, the general expectation
would be that the uncertainty is high since the dif-
ference between the actual mean and the predicted
mean is large. However, one can observe that most
models are overconfident in the samples provided in
the graph. The Ensemble model seems to produce
the most uncertainty regarding its predictions.

Figure 3.2 includes two different measures. The
first row shows reliability plots, which indicate the
confidence of the models. The x axis represents con-
fidence whereas the y axis shows accuracy. In gen-
eral, the model should be as accurate as confident
so the perfect model would show a diagonal line. If
the lines are below the diagonal, that means that
the model is overconfident, if it is above, it is un-
derconfident. As it can be seen, the vast majority
of models seem to be overconfident (especially BBB
and Flipout), except for the Baseline model. This
is in line with the conclusions drawn from figure
3.1. Overconfidence can cause harm, as the model
“believes” that its prediction is accurate even when
it is not the case, leading to poor but certain de-
cisions. The second row shows Error against Con-
fidence plots. The idea is that a larger standard
deviation (more uncertainty) should draw a larger
error (in this paper the mean absolute error was
used, a different metric would lead to different out-
put). The plot displays both the testing and train-
ing data results. In most cases, the test data set
seems to produce a desirable output, as a high stan-
dard deviation leads to a high error (except for the
Baseline and Dropout models, where after an ini-
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Figure 3.1: The graph shows predictions for each of the different non-recurrent models for the
PM2.5 data set. The four “hardest” samples (time series) were chosen with respect to standard
deviation, where large standard deviation means large uncertainty (on the left). Moreover, the
four “hardest” samples with respect to mean squared error is presented as well (on the right).
The blue cross shows the true value, the red small horizontal line represents the predicted mean,
and the black vertical line is the confidence interval (uncertainty). Each row is a different sample,

and each column is a different model.

tial rise, the error drops). The output of the train-
ing data seems to vary between methods. In gen-
eral, it should produce a lower error as it has many
more data points than the test data, and during
the learning phase, the model aims to minimize the
loss, so the error will be low. Note the two scores
represented above the Confidence vs Error graphs.
CE stands for calibration error, described in 2.17.
It is analysed further in the next section (see ta-
bles 3.1 and 3.2 for the PM2.5 data and tables 3.3
and 3.4 for the Air pressure data). IS represents
the Gaussian Interval score. It combines the wide-
ness of the confidence interval (where the lower is
better) and the coverage of the confidence interval
which means how well the interval covers the true
value. Hence, in general a lower IS score leads to a
better model. From figure 3.2, it is clear that En-
sembles has the lowest IS scores, closely followed
by the Dropout and Baseline models. Flipout and
BBB models have the largest IS scores, meaning
that their uncertainty prediction is poor.

Figure 3.3 and 3.4 are based on the same idea
as before but the outputs are produced with recur-
rent layers. In figure 3.3 (left side) it is clear how
the Baseline model is underconfident. Most of its
predictions are quite close to the true mean, and
the uncertainty is still large. For instance, sample
one was predicted fairly accurately by all models,
and the most uncertainty was obtained with Base-
line model. Sample four is a great example in the

-
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Figure 3.2: The graph shows the reliability plots
(first row) and the Confidence vs Error plots
(second row) for the PM2.5 data set, without
recurrent layers.
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sense that it shows how the further the true mean is
from the predicted mean (further with Dropconnect
and closest with Flipout) the larger the confidence
interval gets.

Comparing the recurrent models to the standard
ones, it seems that there are fewer cases when the
uncertainty is extremely large using LSTM. Re-
garding the accuracy of the predictions, the re-
current models seems to predict closer to the true
value.

Figure 3.3 (right side) is similar to the results
acquired with the standard models. As seen before,
the Ensemble model produced the largest uncer-
tainty however, all models are still overconfident.
In section 3.2, more details are given regarding the
comparison of the two types of models (recurrent
vs standard).

Comparing figure 3.4 to the results obtained for
the standard model, notice that the Flipout and
BBB models have a bit worse reliability. Further-
more, Dropconnect seems to be almost perfectly
calibrated using LSTM layers. The other models
are similar.

The Confidence vs Error plots for the recurrent
models are much more coherent. Almost all models
produce larger uncertainty with larger error. Only
the Dropout model’s error drops with increasing
uncertainty after a short rise. Dropconnect model’s
error fluctuates a bit as well. BBB, Flipout, En-
semble and the Baseline model produced a bit bet-
ter results than their standard versions. Regarding
the IS scores, Ensembles still has the best perfor-
mance however, Dropconnect model’s score is sig-
nificantly better than before. Moreover, notice how
BBB model produced 7.10 which around twice as
large as before.

In order to check whether wider prediction hori-
zon yields higher uncertainty, multi-step prediction
is needed (as described in the methods section).
This way, the model predicts 12 hours ahead one
by one. Figure 3.5 shows how uncertainty changes
amongst the predictions on the horizon. It is clear
that uncertainty does not increase when the model
predicts further into the future. In many cases, the
uncertainty does get higher for a few steps, but then
it drops (last two samples with Dropout model). In
most cases, it is hard to find a pattern between un-
certainty and the prediction horizon. In the next
section (3.2), different metrics are used as well to
evaluate the this behaviour.

Figure 3.6 shows the same results as before, just
for the recurrent models. The results seem to jus-
tify the prediction horizon expectation a bit better.
For instance, the Baseline model clearly shows that
the 10*" — 12" predictions have larger uncertainty
compared to the earlier ones. Furthermore, sample
four with the Dropconnect model seems to produce
higher uncertainty with a larger prediction hori-
zon (even though the increment is not gradual). In
many other cases, such as with the Dropout model,
the first few predictions have higher uncertainty,
but then from the 8" prediction till the end, the
uncertainty increases gradually.

3.1.2 Air pressure

In this section, the second data set is evaluated,
similarly as the previous one. Firstly, figure 3.7 (left
side) shows the samples with the highest uncer-
tainty, and how each model predicted the true mean
and the standard deviation. The first sample (first
row) shows perfectly how the closer the prediction
gets to the true value, the smaller the confidence in-
terval gets. However, this is not always the case, for
example, for the third sample (third row) the Bayes
by Backprop model’s prediction was almost identi-
cal to Flipout’s prediction, but it yielded a lower
uncertainty, which suggests that the Bayes model
is overconfident (this was the case with the previous
data set as well). Overall, it seems that the Bayes
by Backprop and the Flipout model produces the
narrowest confidence intervals hence, they seem to
be the most overconfident (again in line with the
previous findings). Moreover, later on with the re-
liability plots and the calibrated error, this is con-
firmed.

Figure 3.7 (right side) shows the samples with the
largest error (MSE). In this example, one can ob-
serve some interesting behaviours. The first sample
(first row) shows some cases when the models are
underconfident. Baseline, Ensemble and Dropout
models produced high uncertainties even though
the prediction was close to the true value. Another
interesting sample can be seen in row three. Here,
despite the previously seen examples, only BBB
predicted large uncertainty spite of the fact that
all other model’s predictions were poor. This some-
how contradicts the previous findings but note that
since this figure only shows a few examples, no con-
clusive conclusion can be drawn directly.
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Figure 3.3: This figure, similarly to 3.1, shows four predictions for different models with large
uncertainties but, using recurrent layers. So the left side takes the largest uncertainties and the

right side takes the highest means squared error.
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Figure 3.4: Reliability (first row) and Confi-
dence vs Error (second row) plots, using recur-
rent layers for PM2.5 data.

The reliability plots (3.8) are similar to the one
obtained before. The Ensemble and Dropout mod-
els seem to produce the best results. Dropconnect
seems to be a bit more overconfident than with the
PM2.5 data set. Regarding the confidence vs er-
ror plots, only Baseline Dropout and BBB mod-
els are behaving as expected. For the other mod-
els the uncertainty does not get higher for larger
error. For instance, for the Flipout model the er-
ror drops gradually. The Ensebmle model produced
large error up until 0.8 standard deviation, but then
it suddenly plummets close to zero. Also note how
for the BBB model, the training data also shows
similar behaviour as the testing data. The reason
behind it, that ideally, if the model learns the data
it should have low error score for all the predictions;
however, if the model does not learn efficiently the

error stays large by the end of the training. Conse-
quently, the BBB model learns poorly thought the
process hence, the training data will have a large
error as well as the uncertainty increases. For the
IS score, very similar results were obtained to the
PM2.5 data set’s scores. The rank of the model is
unchanged.

The following plots (3.9 and 3.10) depict the
same result as before, only with LSTM layers. The
results obtained are fairly similar. In 3.9 (left side)
there is a case, when the model predicts perfectly
(BBB model, second sample). Note how the un-
certainty was almost zero in that case. In figure 3.9
(right side) it is clear that BBB and Flipout are way
too overconfident (except for sample four with BBB
where it predicts a large confidence interval). More-
over, the second sample causes trouble for all mod-
els in a sense that their predictions are off, and the
predicted standard deviations are almost zero. In
figure 3.10, just as with the PM2.5 data set, Drop-
connect seems to be better calibrated. Furthermore,
Dropout and the Baseline model are calibrated sig-
nificantly worse. For the second row, note how the
LSTM layer, with this data set, causes almost all
models to confirm the expectation of higher error
yield higher uncertainty. The only outlier is the
Dropconnnect model where the error drops around
0.8 standard deviation. Another significant differ-
ence is that the largest MAE, in this case, for BBB
is 18 and for Flipout is 60 whereas without LSTM
it was 20 for BBB and one for Flipout. This sug-
gest that in this scenario, BBB may outperform
the Flipout model. For the IS scores, as before, the
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Figure 3.5: Uncertainty for wider horizon for models without recurrent layers. Each row shows
a different sample and each column shows a different method. The results show how uncertainty
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Figure 3.6: Uncertainty for wider horizon with recurrent layers. Each row shows a different sample
and each column shows a different method. In this setting, the Baseline model seems to produce
higher uncertainty for predictions more into the future. (These results are for the PM2.5 data
set.)
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data set. Table 3.1 contains the result of the models
without a recurrent network, and table 3.2 contains
the one with LSTM layers.

Figure 3.8: Reliability (first row) and Confi-
dence vs error (second row) plots for the Air
pressure data.

rank of the model stays unchanged compared to
the PM2.5 data set’s score. In this next section a
quantitative analyses is done to acquire more ro-
bust results.

Figure 3.11 represents the multi-step predictions
for the Air temperature data set. Ensemble and
Dropout models seem to produce perfect results for
the first two samples as, almost step by step, the
uncertainty gets higher. Dropout model performs
the opposite way for the third and fourth sample,
as one would expect. The first few predictions have
the largest uncertainty and the later ones have less.
The Baseline model, although not gradually, but
also seems to produce lower and lower uncertainty
for future predictions. The other three models seem
to have a random pattern.

Similarly as before, the prediction horizons are
checked but with LSTM layer (3.12. In this case,
the results change significantly. Baseline model
seems to predict uncertainty increasingly for all the
steps into the future. The Ensemble model works as
expected for the first, whereas the Dropout model
works starting from the 4** — 5" step. In some
cases, Dropconnect does predict higher uncertainty
for values more into the future, in most cases, it
does not have a pattern. Flipout and BBB is al-
most identical to the previous results.

3.2 Quantitative analysis

In this section, the analysis of the aforementioned
metrics is presented. The following two tables con-
tain the summary of the metrics for the PM2.5

Models/Metrics MAPE | MSE | R?1 Calibration error | NLL |
Baseline 51.85 0.45 0.56  0.21 5.57
Ensemble 45.29 0.36 0.65 0.20 1.86
Dropout 46.99 0.38 0.62 0.26 4.38
Dropconnect 59.14 0.52 0.49 0.25 5.52
BBB 47.00 0.37 0.64 0.37 29.71
Flipout 50.14 0.43 0.57  0.35 17.84
Table 3.1: Metrics scores of each model
(PM2.5).

Table 3.1 depicts the results of the models with-
out recurrent layers. The Ensemble model per-
formed the best according to all metrics. Flipout
and Baseline models were the worst fit for the data,
but the scores were rather similar, there were no
outliers. It is also worth mentioning how Flipout
and BBB performed worse in uncertainty related
metrics (CE and NLL) compared to other models.
Nevertheless, especially BBB, fitted the data well
in the first three metrics. This suggests that while
BBB is a good model in terms of prediction accu-
racy, regarding uncertainty estimation, it is fairly
poor.

Models/Metrics MAPE| MSE] R?1 Calibration error | NLL |

Baseline (Istm) 50.16 0.46 0.55 0.28 8.04
Ensemble (Istm) 43.13 0.34 0.67 0.17 1.61
Dropout (Istm) 48.21 0.41 0.60  0.29 8.59
Dropconnect (Istm) — 44.78 0.36 0.65 0.17 4.33
BBB (Istm) 92.48 1.15 -0.11  0.42 102.71
Flipout (Istm) 50.14 0.41 0.59 0.34 13.85

Table 3.2: Metrics scores of each model with re-
current layer (PM2.5).

Table 3.2 shows the metrics for the models us-
ing recurrent networks. The results are somewhat
similar as the best algorithm is still the Ensemble
model but Dropconnect with recurrent layers seems
to perform much better (this was supported by the
reliability plots). Furthermore, BBB performed ex-
tremely poorly, with a negative R? score and an
MSE larger than 1. Also, the NLL for BBB is ex-
tremely poor which suggests that it predicts uncer-
tainty poorly. The other models produced similar
and accurate results.

Amongst all the models, Ensemble performed
the best, with a slight margin ahead of Dropout
or Dropconnect depending on the recurrent layers.
Both the standard and recurrent versions of these
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Figure 3.9: Samples with the highest uncertainty
(right) for the Air pressure data set with LSTM.
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Figure 3.10: Reliability (first row) and Confi-
dence vs error (second row) plots for the Air
pressure data with LSTM.

models outperformed the other estimation meth-
ods.

For the Air pressure data set, the following two
tables contains the produced results: 3.3 and 3.4.
The results differ from the PM2.5 data set. In
this setting, the best model was not straight for-
ward as before. Without LSTM, the best model,
in regards with predicting the true mean, was the
Dropout model. As before, Ensemble was the best
in predicting uncertainty, since it produced the low-
est NLL score. Interestingly, the Baseline model
was the best calibrated in a tie with Ensemble,
which means that they were the least overconfi-
dent amongst the models. Note how in this case,
both BBB and Flipout performed a bit worse than
for the PM2.5 data set. With the recurrent layer,
the best model was Ensembles again furthermore,
as seen with the PM2.5 data set, Dropconnect

(left) and with the highest mean squared error

preformed significantly better with LSTM. Both
Flipout and BBB have really low performance both
in predicting the true mean and the standard de-
viation. Note that BBB had really low calibration
error compared to the previous cases.

In general, the models performed worse with the
Air pressure data set than with the PM2.5 data set.
It is also worth mentioning that the Baseline model
performed relatively well in all settings, especially
with CE and NLL scores. Overall the best model for
uncertainty was Ensemble however, in some cases,
Dropout or Dropconnect outperformed it.

Models/Metrics  MAPE | MSE| RZ?1{ Calibration error | NLL |
Baseline 57.19 0.53 0.36 0.18 2.62
Ensemble 51.37 0.42 049 0.18 1.32
Dropout 50.18 0.40 0.51 0.26 3.07
Dropconnect 64.17 0.62 0.25 0.30 18.84
BBB 57.56 0.65 021 0.38 38.70
Flipout 63.25 0.69 0.17  0.40 36.16

Table 3.3: Metrics scores of each model (Air
pressure).

MAPE | MSE| R*1 Calibration error | NLL |

Baseline (Istm) 62.31 0.62 0.25  0.29 6.70
Ensemble (Istm) 53.26 0.46 0.45 0.17 1.56
Dropout (Istm) 59.34 0.57 032 0.34 10.51
Dropconnect (Istm)  54.96 0.48 042 0.25 4.04
BBB (lstm) 10122 218 -1.60 023 196.70
Flipout (Istm) 75.99 2.54 -2.04 043 96.60

Table 3.4: Metrics scores of each model with re-
current layer (Air pressure).

As mentioned earlier, a quantitative analysis was
done for checking the expectations with regard to
the prediction horizons. Figure 3.13 represents dif-
ferent metrics for each time-step on the prediction
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Figure 3.11: Uncertainty for wider horizon without recurrent layers. Each row shows a different
sample and each column shows a different method. In this setting, the Ensemble and Dropout
models seems to work the best. (These results are for the Air pressure data set.)
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Figure 3.12: Uncertainty for wider horizon with recurrent layers. Each row shows a different
sample and each column shows a different method. Here, Ensemble and Baseline models seems to
“behave” the most desirable. (These results are for the Air pressure data set.)
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horizon for the PM2.5 data. MAPE, MSE, CE,
NLL should be larger when the model predicts more
into the future whereas R? should be lower. As seen
previously, this is not always the case. In some cases
the MAPE, MSE scores are increasing but then
there is a sudden drop around the 4" — 7" predic-
tion, then the scores start to rise again. The R? only
seems to drop for the Baseline model for the further
predictions. With the other models, the score either
fluctuates or rise. For the Baseline model, the NLL
seems to be worse and worse but not gradually,
whereas for Ensmeble and Dropout, it decreases in
the beginning and then ascends at the furthest pre-
dictions. The Flipout model also seems to behave as
expected regarding NLL as, more or less gradually,
the score climbs. Regarding the CE score, only the
BBB model seems to produce desired results as the
other models’ CE fluctuates. Figure 3.14 represents
the same results as the aforementioned figure (3.13)
but for the LSTM models. Similarly as before, in
some cases the expectations are fulfilled however,
here in the majority of the cases, it is hard to find
a consistent pattern.

The same results for the Air pressure data set
are presented in figure 3.15 and 3.16. 3.15 shows
the results for the non-recurrent version. Here the
Dropout model seems to produce the expected re-
sults perfectly as all of the scores are increasing as
the model predicts more into the future and the
R? is decreasing with a larger prediction horizon.
The Ensemble model produced larger CE for future
values, which is in line with the previous findings
as with all the data sets, Ensemble performed the
best regrading calibration. The rest of the models
are either performing poorly (BBB and FLipout) or
randomly (Dropconnect). This is again supported
by the results as BBB and FLipout, in general, per-
formed badly. 3.16 represents the same results but
with LSTM layer. Notice that the Dropout model
works a bit worse compared to the non-recurrent
version. The predictions more in the future yield
worse scores. The Baseline model seems to work
the opposite way with the all the metrics, which
makes sense as it has the simplest way predicting
uncertainty, hence it is possible that it causes trou-
ble to it. The Ensemble model performs somewhat
correctly for uncertainty related metrics (NLL and
CE) which is in line with the previous findings (the
reliability plots showed that the Ensemble model
was fairly well calibrated). Dropconnect is expected

to perform better as with LSTM, it produced bet-
ter results in other metrics. However, other than
being less noisy, it does not produce the required
results. The Flipout and BBB model still performs
poorly and noisily.

4 Discussion

In this section, a summary of the paper is given
together with ideas for future research. In order
to summarize the findings of this experiment ta-
ble 4.1 and 4.2 ranks the different models in all the
investigated measures of uncertainty with time se-
ries. Table 4.1 shows all the models for the PM2.5
data set. Firstly, the metrics used for regression
are discussed. In this setting, the Ensemble, En-
semble with LSTM and Dropconnect with LSTM
models are the strongest. The worst models are
Dropconnect and BBB with LSTM. The calibration
of the models produced similar results. The same
three models are found to be the best however, the
BBB models (both with and without LSTM) are
the worst in terms of calibration. For predicting
uncertainty (NLL), as before, Ensemble, Ensemble
with LSTM and Dropconnect with LSTM models
are the most powerful. Moving forwards, in the re-
search question, it was stated that a wider predic-
tion horizon should yield larger uncertainty (and
worse predictions in general). This was measured
with three categorical parameters: Bad, Moderate
and Good.

Bad where there were no conclusive results.

Moderate when there were at least two metrics
from figure 3.13 and 3.14 (3.15 and 3.16 for
the Air pressure data) which satisfied the ex-
pectations.

Good if more than two expectations are satisfied.

For this data set, only the Baseline and Ensem-
ble models produced the desired output. The vast
majority of the models did not have a clear pat-
tern as the amplitude of uncertainty was randomly
changing on the prediction horizon. Regarding the
Confidence vs Error expectation, the LSTM models
performed better in general. In this case:

Bad means that the error does not increase with
larger uncertainty.
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Figure 3.13: Five different metrics (MAPE, MSE, R?, CE, NLL)

to evaluate the prediction horizon

(without recurrent layers for the PM2.5 data set). As seen in the previous section (3.1), the scores

not always follow a gradual rise (or drop in case of R?).
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Figure 3.14: Five different metrics (MAPE, MSE, R?, CE, NLL)

to evaluate the prediction horizon

(with recurrent layers for the PM2.5 data set). Theses results are less conclusive than for the non-

recurrent models.
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Figure 3.15: Five different metrics (MAPE, MSE, R?, CE, NLL)
(without recurrent layers for the Air pressure data set). In this
produce the desired results for all the metrics.

to evaluate the prediction horizon
setting, Dropout models seems to
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Figure 3.16: Five different metrics (MAPE, MSE, R?, CE, NLL) to evaluate the prediction horizon
(with recurrent layers for the Air pressure data set). Similarly as with the non-recurrent setting,
the Dropout model “behaves” the closest to the expectations.

Moderate means that the error of the testing data
increases but only with 15-20% or it fluctu-
ates but with higher uncertainty it gets higher
(or the error of training data gets very high as
well).

Good means that the error increases with more
than 20% and the increment is does not oscil-
late.

The best performance was obtained by the Baseline
with LSTM and Dropout with LSTM models (Note
that figure 3.2 and 3.4 were used for PM2.5 data
and 3.8 and 3.10 for the Air pressure data). The
non-recurrent models’ errors either decreased grad-
ually with more uncertainty or fluctuated heavily.

Table 4.2 represents all the models for the Air
pressure data. For the standard metrics (MAPE,
MSE and R?) the best three models were Ensemble,
Dropout and Ensemble with LSTM. The worst per-
formances were achieved by BBB with LSTM and
Flipout with LSTM. For the calibration error, the
Baseline model outperformed the Dropout model
hence it shares the podium with the two Ensemble
models. In this case, the Flipout models produced
the highest calibration error. For the NLL score, the
best three models are the same as for the previous
case. The BBB and Flipout models (both with and
without LSTM) were poor fit for this task. For the
horizon and the Confidence vs Error expectations,
the same measures were used as for the PM2.5 data
set. First, for the prediction horizon, the Dropout
models seem to perform the best, while the Ensem-
ble models are either inconclusive or partly correct.

Then finally, for the Confidence vs Error expecta-
tion, as for the other data set, the LSTM models
performed better especially, the Baseline, Ensemble
and Dropout models.

To reflect on the research questions, the expec-
tations of uncertainty when it comes to time series
data are fulfilled, but the choice of model is crucial.
In general, Ensemble and Dropout/Dropconnect
models performed the best. However, the selection
of the model is highly dependent on the data set
and the task. The data set and the model also in-
fluence the need for the recurrent layers. For ex-
ample, they outperformed the standard models in
Confidence vs Error expectation but the horizon ex-
pectation worked better for the non-recurrent mod-
els. Hence, for future research, different versions of
Ensemble and Dropout/Dropconnect models could
be experimented with to perfect uncertainty esti-
mation for time series.
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Table 4.1: The table represents the ranking of models regarding the different metrics/tasks for the
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best. For the horizon check, only the Baseline model performed in the desired manner. Regarding
the Confidence vs Error plots, the LSTM Baseline and Ensemble models performed as expected.

Data Air pressure
Models/Metrics MAPE MSE R? Calibration error NLL Horizon Confidence vs Error
Baseline 5 5 5 3 3 Bad Moderate
Ensemble 2 2 2 2 1 Moderate Bad
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the horizon check, the Dropout models significantly outperformed all the other model. Regarding
the Confidence vs Error plots, the LSTM Baseline, Ensemble and Dropout models performed as
expected.
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