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Abstract: As Deep Learning is used in an increasing number of (sensitive) scientific fields and
real-world applications, Transfer Learning is being used in those areas where acquiring data is
expensive and/or difficult. Although Transfer Learning is a useful technique to counter scarcity
of data, it carries DL problems such as over- or under-confidence and uncalibrated predictions
in general. In standard settings, Uncertainty Quantification methods can be used to achieve safe
and reliable models with calibrated confidence scores (Leibig et al., 2017). This research aims at
using different UQ methods to extract uncertain features (with mean and variance) instead of
point features (only mean) in order to carry the advantages of UQ to Transfer Learning. This
is explored by building and comparing feature extractors in three different setups: different UQ
methods applied to different architectures; models with only some of the layers implementing
uncertainty quantification; uncertain features are sampled to generate new data points. The
quality of the features is evaluated by feeding them to an SVM (Ho & Kim, 2021). The results of
the experiments did not show any improvement in performance when using uncertain rather than
point features, neither in terms of accuracy nor expected calibration error. However, generating
new data through sampling uncertain features could be suggested as a valid Data Augmentation
technique

1 Introduction

The field of Deep Learning (DL) is becoming more
and more important in Machine Learning and is
making its way into almost any other field of tech-
nology (Leibig et al., 2017; Gawlikowski et al.,
2022). This is due to the astounding results a
State of the Art technique can deliver in tasks such
as classification, regression and prediction given
enough data, no matter its origin. As a consequence
of this huge interest and advancement, Neural Net-
works are now employed as a standard for plenty of
tasks in a plethora of different scientific fields and
real-world applications. Some of these can be very
critical in terms of importance and safety (Dong et
al., 2021).

A fitting example is Computer Vision. This is one
of the fields where Deep Neural Networks thrived
the most. Because of their efficiency, DNNs are also
being used for critical applications such as medi-
cal imaging and diagnosis (Leibig et al., 2017). As
Deep Learning is increasingly involved in such ap-
plications a new concern arises. This concern is the

one of reliability and confidence. As Leibig et al.
(2017) point out, these techniques have been ap-
plied without any risk management. In fact, the
predictions of a regular DNN do not give any in-
sight on how confident the DNN is about them. It
follows that a particularly difficult case might end
up being classified wrongly but with a high confi-
dence (Valdenegro-Toro, 2021; Abdar et al., 2021).
This is very different from how a human examiner
would behave. Confronted with an edge case, a hu-
man examiner would refuse to give a prediction and
suggest further analysis. In order to make Neu-
ral Networks more reliable and transparent, they
should be able to do the same. This is the aim of
Uncertainty Quantification methods.

However important reliability is, it is not the only
reason why Uncertainty Quantification is a topic on
which research should focus more. In fact, model-
ing uncertainty in a Neural Network can help with
over- and under-confidence of DNNs. Furthermore,
modeling uncertainty better reflects the real world,
where data is unbalanced, noisy and might shift
(Abdar et al., 2021; Gawlikowski et al., 2022). As
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Gawlikowski et al. (2022) suggest, this can be useful
in tasks where data is scarce as well.

The current trend in situations where a model
needs to be trained on scarce data is to use Trans-
fer Learning (Tan et al., 2018). This technique con-
sists in pre-training a model on a rich and general
dataset to extract features that may benefit subse-
quent training on the target dataset.

The aim of this research is to introduce Un-
certainty Quantification in the Transfer Learning
setting. Generally, models that implement Uncer-
tainty Quantification assume their weights to be
probability distributions instead of point features
(Abdar et al., 2021; Mobiny et al., 2019; Gaw-
likowski et al., 2022). This would enable feature ex-
tractors to output probability distributions which
are more informative than point values. Uncertain
features might give a better insight on the true dis-
tribution of the features and could be sampled to
obtain new data points under the assumed distri-
bution. It is the objective of the research to assess
whether these advantages can be carried to a target
domain through feature extraction and (positively)
affect performance.

Formally, this research will answer this question:
Does extracting Uncertain instead of Point inter-
mediate features of a CNN lead to better results
in a Transfer Learning Image Classification Task in
terms of Accuracy and Calibration?

Given the lack of previous research on this spe-
cific challenge, the present research is purely ex-
ploratory. It is trying to give initial insights on
the results that could be obtained by using Uncer-
tain features in Transfer Learning tasks. For this
purpose, different Neural Network models with dif-
ferent Uncertainty Quantification methods will be
built and used as feature extractors. Said features
will be fed to a non-parametric Machine Learning
model to evaluate Transfer Learning performance
(Ho & Kim, 2021). Calibration will be the main
ground of comparison as reliability is the main mo-
tivation of this research. Furthermore, also accu-
racy will be measured and compared, in order to
establish whether producing uncertainty in the fea-
tures might lead to a performance improvement in
Transfer Learning Tasks.

In the following section the reader will be intro-
duced to the broader background behind this re-
search.

2 Background

2.1 Transfer Learning

An important problem in Supervised Learning is
that of scarcity of data. This problem plagues many
domains where acquiring data is expensive or just
difficult (Zhuang et al., 2020).

Transfer Learning is one of the techniques em-
ployed to solve this problem. Its aim is defined by
Zhuang et al. (2020) as using the knowledge ac-
quired in a domain to improve or facilitate learning
in a target domain.

A formal definition of the Transfer Learning task
can be found in Tan et al. (2018):

“Given a learning task Tt based on Dt, and we
can get the help from Ds for the learning task Ts.
Transfer learning aims to improve the performance
of predictive function fT (·) for learning task Tt by
discover and transfer latent knowledge from Ds and
Ts, where Ds ̸= Dt and/or Ts ̸= Tt. In addition, in
the most case, the size of Ds is much larger than
the size of Dt, Ns ≫ Nt.”

This same survey gives an overview of how this
task is carried out. There are multiple approaches
to achieve Transfer Learning. The one used in this
project is Network-based deep Transfer Learning.
In this approach a first Network is trained on a gen-
eral and rich dataset to extract useful features. In
a second moment, a partial of this model, the Fea-
ture Extractor, is used as part of a second (usually
smaller) model that will be trained and evaluated
on the scarce dataset from the target domain.

A major example of how Transfer Learning is
used in real-world application is the medical field.
AI-aided Medical Imaging is a useful tool for di-
agnosis. However, medical images are generated by
specialized equipment and labeling is carried out
manually by specialists (Zhuang et al., 2020). For
these reasons, data is usually scarce. Hence, Trans-
fer Learning becomes vital.

Medical Imaging is also a good source of moti-
vation for interest in Transfer Learning by the re-
searchers in Uncertainty Quantification. As a mat-
ter of fact, Transfer Learning is a useful technique
to cope with scarcity of data but still drags the
same concerns of reliability and confidence of stan-
dard Neural Networks (Leibig et al., 2017)
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2.2 Uncertainty Quantification

In order to address the concerns of reliability and
confidence in critical fields, research is being con-
ducted on Uncertainty Quantification methods.

The way these concerns are addressed is by using
techniques to estimate the predictive uncertainty
correctly. A model able to estimate uncertainty can
accompany its predictions with reliable confidence
scores, generally in the form of probabilities (Gaw-
likowski et al., 2022). In classification, the proba-
bilities outputted by the Softmax activation in the
last layer of standard CNNs could be taken as con-
fidence scores. However, these are usually not well
calibrated and thus might lead to overconfidence
in making the wrong prediction (Valdenegro-Toro,
2021; Abdar et al., 2021).

Predictive uncertainty refers to the lack of knowl-
edge about the outcome associated with a partial
observation; that is how much can we say about a
prediction. Estimating this, per instance, is much
more powerful than giving an overall score for preci-
sion and reliability to the whole model (Hüllermeier
& Waegeman, 2021). Predictive Uncertainty con-
ventionally comprises two kinds of uncertainties:
Aleatoric uncertainty, inherent to the data and gen-
erated by the noise or stochastic processes involved
in data acquisition; and Epistemic uncertainty, in-
herent to the model itself, generated by Out-of-
distribution or missing data etc.. (Valdenegro-Toro,
2021).

The objective of a model is to learn the probabil-
ity of some output given the input and the model
weights: P (y|x,w). In training, the model tries to
learn the best weights given the data D: P (w,D).
Standard Neural Networks training employs MLE
(Maximum Likelihood Estimation) which ignores
uncertainty altogether because it just tries to max-
imize the probabilities of the labels to be the same
as in training. To overcome this problem, point-wise
weights are replaced by distributions (often Gaus-
sian) (Abdar et al., 2021; Mobiny et al., 2019).

Bayesian statistics offer a useful framework to
model uncertainty in Neural Networks by refor-
mulating the training objectives and optimizations
in terms of probability distributions. For this rea-
son, many Uncertainty Quantification methods use
this framework and are called Bayesian Neural Net-
works (BNN).

BNNs re-formulate learning the distribution of

the output as computing the predictive posterior
distribution

P (y|x) =
∫
w

P (y|w, x)P (w|x)dw (2.1)

This equation marginalizes over all possible weights
of any model. Obviously this is intractable. More-
over, the posterior distribution of the weights
P (w|x) cannot be computed analytically (Mobiny
et al., 2019).

Variational Inference is generally used to approx-
imate BNNs. The goal is to find a Variational dis-
tribution on the weights qθ(w) which minimizes the
Kullback-Leibler Divergence KL(qθ(w)||p(w|D)).
KL Divergence measures the relative distance
between two distributions. However, p(w|D) is
still unknown such that another approximation is
needed. As Mobiny et al. (2019) explain, minimiz-
ing KL divergence is equivalent to minimizing the
negative evidence lower bound (ELBO).

Among the methods used in this research,
Monte-Carlo Dropout and DropConnect use sam-
pling to approximate Equation 2.1. In the Monte-
Carlo approximation of the predictive posterior dis-
tribution, the number of samples, obviously, di-
rectly impacts the quality of the approximation. On
the other hand, Deep Ensembles take the Frequen-
tist approach.

In the case of classification tasks, the output
of BNNs are categorical probabilities that can be
taken as confidence scores. The quality of these
confidences can be evaluated using calibration. The
essential concept of calibration is that a prediction
made with, say, 90% confidence should be correct
90% of the times, and incorrect 10% of the times. In
other words: “A predictor is called well-calibrated if
the derived predictive confidence represents a good
approximation of the actual probability of correct-
ness” as Gawlikowski et al. (2022) state.

2.2.1 Uncertainty quantification methods

Monte-Carlo Dropout Monte-Carlo (MC)
Dropout is part of the sampling methods for
estimating uncertainty. These methods can be
computationally very expensive, but generally give
good approximates of uncertainty as long as a
large number of forward passes is executed. On
a practical level, MC-Dropout is implemented by
enabling dropout at inference time. Dropout is a

3



common layer added to networks as a regulariza-
tion technique in order to avoid over-fitting. It
works by multiplying a mask drawn by a Bernoulli
distribution with the input activations of the layer,
effectively making some of them 0.
Gal & Ghahramani (2016) proved that using

dropout at inference time means that a prediction
from a different model is taken at each forward
pass, which in turn approximates to taking sam-
ples of the predictive posterior distribution. This is
achieved by using the Monte-Carlo version of the
predictive posterior distribution (see Equation 2.2
where M is the number of forward passes).

p(y|x) ∼ M−1
M∑
i

p(y|x, θi) where θi ∼ Θ (2.2)

Monte-Carlo DropConnect DropConnect is a
method proposed by Mobiny et al. (2019). It is very
similar to MC-Dropout, but the mask is applied to
the weights of a layer instead of its input activa-
tions.
Being another sampling method, DropConnect

presents similar advantages and disadvantages as
MC-Dropout.

Deep-Ensemble Lakshminarayanan et al.
(2017) proposed to use Deep Ensembles to es-
timate uncertainty. Practically this is done by
training independently multiple instances of the
same architecture initialized randomly in a differ-
ent way. The predictions made by the estimators
are then averaged to obtain the model prediction.
According to the reference paper, this method

has nothing to envy to BNNs in terms of perfor-
mance. On the other hand, it brings the advantages
of being computationally less expensive and readily
parallelizable and scalable.

2.3 Evaluation of Transfer Learning

Putting it all together, when applying Network-
based Deep Transfer Learning technique on a stan-
dard CNN point features are obtained. When ap-
plying this technique on a model that estimates
uncertainty, uncertain features, which can be in-
terpreted as probability distributions are obtained.
Since the goal of this research is to compare

which of the two types of features would be more

informative and lead to better performance, a
methodology to assess the quality of the features
would be needed. Ho & Kim (2021) gives such
methodology that is being followed in this research
to evaluate this. All the models were used as fea-
ture extractors to produce “off-the-shelf” features
from the input images. The features, which are the
output of an intermediate layer are then fed as in-
put to a neutral classifier, in this case a Support-
Vector-Machine (SVM). The quality of the classi-
fier’s predictions can be interpreted as the quality
of the features produced.

A Support-Vector-Machine is a supervised ma-
chine learning model that tries to find a hyper-
plane in a N-dimensional space that best separates
the data points, where N is the dimensionality of
a feature. Such model was chosen for this purpose
because, being a non-parametric model, it needs no
assumption on the data making it a neutral option,
fit to assess the quality of the features.

3 Methods

As mentioned in the last section, the core idea of
this research project is to have different models
complete a Transfer Learning image classification
task. However, it was already pointed out that the
focus of the research is not on the model completing
the task but on the features it is provided with.

For this reason, different experimental setups
were devised to produce these features. This would
allow to carry out different analyses and explore
different aspects of what uncertain features could
achieve.

In the following subsection the general task and
the different experimental setups are described.

3.1 Procedure

The task consists in classifying samples from the
fashion MNIST dataset using a SVM. However, the
focus is on what is fed to the SVM, rather than the
classifier itself.

Much of what is done in this research happens
in the pre-training phase. Here, all the models are
created by combining the base architectures and
UQ methods that will be described in section 3.2.
All these models are trained on MNIST, in order
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to obtain the weights that will output meaningful
features when given the input.
The trained models are then truncated to obtain

the feature extractors. The feature extractors are
the trunk models whose output layer was discarded.
By running these truncated networks in inference
mode, the features are obtained. In this research,
the second-to-last layer was taken to output the in-
termediate features. In the case of models with un-
certainty, we obtain the means and variances that
describe each of the weights in the layer.
Input images for both training and testing are

ran through the feature extractors and become fea-
tures that are the input to the SVM.
Before feeding the features to the SVM, these

are passed through Principal Component Analysis
(PCA). This is a technique which applies a linear
transformation to the features in order to obtain
lower-dimensional features that can still explain
part of the variance of the original data. In this re-
search, 90% of the variance must be explained when
applying PCA. This means that the dimensionality
of the features varied at each run. PCA was used
because, although it causes some information to be
lost, it eases much of the computational complexity
of the procedure.
In Appendix A the reader can find visual repre-

sentations of the features extracted by all the mod-
els. These are the data-points the SVM needs to
separate. Figure 3.1 shows a diagram that summa-
rizes the procedure.

3.1.1 Experimental setups

The task is carried out similarly for all the experi-
ments, with only slight changes. These can be noted
also in figure 3.1 and will be explained in detail in
the following paragraphs.

UQ comparison The first experiment explores
the performance of the different methods applied to
the different base architectures. For this, only the
mean of the uncertain features is used. That means
that the data points that the SVM will classify are
the mean values of the features. In this experiment,
1000 samples from fashion MNIST are classified.

Partial UQ application In the second experi-
ment, only those methods that can be applied par-
tially are taken into exam. Applying a UQ method

partially means that only a number of layers imple-
ment custom functions that estimate uncertainty.
This condition aims at showing the gradual impact
of Uncertainty Quantification on the quality of the
features.

Similarly to the previous condition, a 1000 sam-
ples from fashion MNIST are classified.

Sampling new features The last experiment is
somewhat different from the previous two. The aim
of this condition is to realize the potential of having
uncertain features over point features. That is, us-
ing both the mean and the variance of the uncertain
features.

Using the variance directly as data points to feed
into the SVM (as is done with the mean) does not
lead to any results. In this case, the classifier would
not perform better than chance. The reason why
this happens is that the value of variance does not
have a proper sense when not in the context of a
mean value it refers to.

Uncertain features, yielding mean and variance
can be used to sample new data from the assumed
distribution, a Gaussian. By doing so, we obtain N
new data points from the distribution which sup-
posedly approximate the true distribution of the
features.

A classifier such as an SVM generally works bet-
ter if it has more data to fit during training. In these
terms, sampling uncertain features can be seen as
a Data Augmentation technique (Perez & Wang,
2017). Therefore, it can be expected that the SVM
will perform better when fitted on more data as
long as the new data is informative. This can be
traced back to the quality of the features.

Since in this experiment, the goal is to augment
the data, a much smaller subset of the fashion
MNIST dataset is going to be used. Namely, only 90
samples will be taken for the SVM to fit. However,
the sampling process will be repeated 10 times, for
each sample, yielding a final batch that will be used
for training which will be 10 times bigger than the
initial subset.

3.1.2 Evaluation protocol

As described in section 2.3, the quality of the fea-
tures is assessed by measuring the performance of
the SVM to which they are fed. The SVM predic-
tions are compared on the grounds of two different
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Figure 3.1: Diagram of the experiments procedure

measures that give insight on the predictive quality
and reliability of the predictions.

Accuracy The first metric is the simple accuracy
score. It is the ratio of correct predictions over the
total. While it is not a proper scoring rule and is
seldom used alone, it can give a general idea of
whether the model is working correctly, especially
when working with small datasets that are known
to be balanced and well-annotated.

Expected Calibration Error This metric was
briefly presented in section 2.2 and is discussed
in detail in Gawlikowski et al. (2022). Calibration
is computed by dividing the confidence score out-
comes in bins and computing the accuracy of each
bin. The error is obtained by summing all the dif-
ferences between the accuracy of the bin and the
confidence score represented by the bin.
This metric is based on the observation that the

confidence scores should be a good approximation
of the accuracy of the predictions. Thus, by com-
puting the error we get an idea of how reliable the
predictions are.
The expected calibration error (ECE) differs

from the calibration error in that the error of each
bin is weighted by the number of predictions in the
bin, so to obtain a normalized score.

3.2 Implementation details

The experiments were implemented using the Keras
framework (Chollet et al., 2015) for the datasets

and the baseline architectures. In order to im-
plement the custom layers and models needed
for uncertainty quantification methods, the li-
brary keras uncertainty (Valdenegro-Toro, 2018)
was used. Both these libraries are open-source and
publicly available.

3.2.1 Datasets and pre-processing

For all the experiments the same two datasets were
used: MNIST and fashion-MNIST. The former was
used as the informative dataset on which all the
models were pre-trained while the latter was taken
as the target dataset on which the validation per-
formance was measured.

These two datasets were preferred for their sim-
plicity and availability. Since this research aims at
being an exploration of the subject, there is no in-
terest in correlating the results to a specific dataset
or field.

MNIST and fashion-MNIST come conveniently
packaged as objects in Keras modules. The pre-
processing was therefore simple. All that needed to
be done was scaling and fixing the shape as shown
in the examples on the Keras website.

3.2.2 Baseline architectures

The two baseline architectures used for compari-
son for this experiment are ConvNet, inspired by
the example present on the Keras website, and a
simple implementation of a Multi-layer Perceptron
(MLP). The MNIST data-set, in fact, does not pose
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much of a challenge and thus, such simple archi-
tectures are an easy and a sufficient baseline for
this task. A random search was performed on the
Hyper-parameters using keras tuner, in order to
find the best parameters for the models
The exact configurations used are the following:

• ConvNet Conv2D(64, 3 × 3, ReLU) -
MaxPool(2 × 2) - Conv2D(96, 3 × 3, ReLU) -
MaxPool(2×2) - Flatten() - Dropout(p = 0.3)
- Dense(10, softmax).

• MLP Dense(8, ReLU) - Dropout(p = 0.3) -
Dense(8, ReLU) - Dropout(p = 0.3) - Dense(8,
ReLU) - Dropout(p = 0.3) - Flatten() -
Dense(10, softmax).

• pre-training Number of epochs: 60; batch-
size: 32; optimizer: Adam(lr = 0.001); call-
backs: early stopping.

3.2.3 Uncertainty quantification methods

The ConvNet and MLP architectures were not only
used as baseline for comparison but also served
as the base on which models with uncertainty are
built. That means that models with uncertainty
follow the same architecture as the baselines but
apply slight changes in the structure. The meth-
ods used are MC-Dropout, MC-DropConnect and
Deep-Ensembles as described in section 2.2.1.
For sampling methods, custom layers from

keras uncertainty replaced the standard imple-
mentations of Dense, Dropout and Convolu-
tional layers. For ensembles, on the other hand,
keras uncertainty offers ad-hoc models to imple-
ment them starting from an existing architecture.

3.2.4 Parameters

The parameters of the experiments can be divided
into two groups: those inherent to the models and
those inherent to the procedure.
Some parameters inherent to the models were

already described in section 3.2.2. For the uncer-
tainty quantification methods other important pa-
rameters are the dropout rate and number of for-
ward passes for DropConnect and MC-Dropout.
The dropout rate was set to 0.11. This values was
found by exploring different values and selecting
the one that yield best ECE and accuracy. The

Figure 4.1: Comparison of the accuracy of SVMs
fitted on features extracted by models with dif-
ferent architectures and different UQ methods
applied to them. (UQ comparison experiment
condition)

number of forward passes, as already pointed out,
is a parameter that should only be maximized to
obtain better performance. However, to suit the
hardware capabilities, this was set to 100 for this
research.

The parameters inherent to the procedure com-
prised the number of samples to fit the SVM with
and the amount of variance to be explained when
applying PCA. The former was mentioned in sec-
tion 3.1.1, the latter in section 3.1.

4 Results

This section will walk the reader through the main
results obtained from the experiments described in
the previous section and the analyses carried out.

4.1 UQ methods comparison

The first experimental setup aimed at comparing
the accuracy and expected calibration error ob-
tained by the SVMs trained on the features ob-
tained by different methods applied to different ar-
chitectures as described in Section 3.1.1.

Accuracy The main findings on accuracy are
summarized by Figure 4.1.

Across architectures, the mean accuracy for each
method is shown in Table 4.1.
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Table 4.1: Mean Accuracy of each method in
comparison experiment condition.

Method Accuracy (%)
Baseline 78.57%
Deep-Ensemble 76.69%
MC-DropConnect 78.37%
MC-Dropout 79.13%

Table 4.2: Mean Expected Calibration Error per
Method in comparison experiment condition.

Method ECE
Baseline 0.0303
DeepEnsemble 0.0423
MCDropconnect 0.0283
MCDropout 0.0315

ANOVA test was ran to confirm any statistical
significance among the differences that could be ob-
served in Figure 4.1 and Table 4.1. Since the p-
value is very small (7.98 × 10−7 ) , it follows that
the method used can be a predictor of the resulting
accuracy.

In order to find out what groups mostly led to
the previous finding, a Tukey test was ran as well.
The Tukey test, in essence, runs a multiple pair-
wise means comparison among the groups.

For this condition, the Tukey test only high-
lighted one comparison with a small enough p-value
to be significant (1.65×10−4 ). This is the difference
between Deep-Ensemble and Baseline. The differ-
ence is negative (−0.02) since applying this tech-
nique actually hinders performance.

Expected Calibration Error The same anal-
yses were carried out for the expected calibration
error. The box-plot which gives a visual insight into
the difference in ECE is shown in Figure 4.2. The
values of the mean ECE per method are reported
in Table 4.2.

ANOVA, again, shows a significant difference (p-
value is 4.16 × 10−8 ). Upon further investigation
using the Tukey test, it was ascertained that there
is a significant difference (p-value = 6× 10−6 ) be-
tween the Deep-Ensemble models and the baseline
of 0.01. It follows from the definition of ECE that
this is a negative result.

Figure 4.2: Comparison of the ECE of SVMs
fitted on features extracted by models with dif-
ferent architectures and different UQ methods
applied to them. (UQ comparison experiment
condition)

Table 4.3: Mean Accuracy per number of layers
in partial UQ application experiment condition.

N# of layers Accuracy (%)
0 79.99%
1 79.67%
2 78.98%
3 79.38%

4.2 Partial UQ application

The second experimental setup aimed at showing
the gradual impact of (partially) applying more lay-
ers that estimate uncertainty as described in Sec-
tion 3.1.1.

Accuracy The results on accuracy are summa-
rized by Figure 4.3. The mean value of accuracy
across methods per number of uncertain layers is
reported in Table 4.3.

Running ANOVA highlighted a significant differ-
ence (p-value = 1.2× 10−3 ).

Further analysis running the Tukey test, showed
a mean difference of −0.01 (p-value = 7.6× 10−4 )
between models with 2 layers and models with 0
layers (baseline). This and the other pairwise mean
comparisons are plotted in Figure 4.4.

Expected Calibration Error Figure 4.5 shows
the results of this experiment in terms of expected
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Figure 4.3: Comparison of the accuracy of SVMs
fitted on features extracted by models with a
different number of MC-DropConnect or MC-
Dropout layers. (partial UQ application experi-
ment condition)

Table 4.4: Mean ECE per number of layers in
Partial UQ application experiment condition.

N# of layers ECE
0 0.0352
1 0.0343
2 0.0355
3 0.0351

calibration error. The mean values of ECE per
number of uncertain layers is reported in Table 4.4.
Running ANOVA did not show any statistically

significant difference (p-value of n layers as a pre-
dictor is 0.89) which rendered unnecessary to carry
out further analysis with the Tukey test.

4.3 Sampling new features

In the third experiment, the distributions of un-
certain features were sampled to obtain new data-
points, as described in Section 3.1.1.

Accuracy The results on accuracy are summa-
rized by Figure 4.6. The mean value of accuracy
across architectures per uncertainty quantification
method is reported in Table 4.3.
Running ANOVA highlighted a significant differ-

ence (p-value = 9.97× 10−5 ).
The Tukey test confirmed that MC-DropConnect

and MC-Dropout perform better than the baseline.

Figure 4.4: Pairwise mean comparison (perform-
ing Tukey test) in accuracy among different
numbers of uncertain layers in the feature ex-
tractor of the partial UQ application experiment
setup.

Table 4.5: Mean Accuracy per method in sam-
pling experiment condition.

Method Accuracy (%)
Baseline 58.95%
Deep-Ensemble 58.64%
MC-DropConnect 63.17%
MC-Dropout 61.48%

The mean differences with the baseline are respec-
tively 0.04 (p-value = 3.54× 10−3 ) for the former,
and 0.04 (p-value 1.16× 10−2 ) for the latter.

Expected Calibration Error The results of
this experiment in terms of expected calibration
error are shown in Figure 4.7. The mean values of
ECE per method are reported in Table 4.6.

The very small p-value in the ANOVA results
(3.26 × 10−12 ) indicates that there is a statistical
significance in the differences among the groups.
These differences are found by running the Tukey
test. A summary of the pairwise mean differences
are shown in Table 4.7

5 Conclusions

In general, the experiments seem to answer the re-
search question negatively: uncertain features do
not seem to lead to better results. Nonetheless, the
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Figure 4.5: Comparison of the ECE of SVMs
fitted on features extracted by models with a
different number of MC-DropConnect or MC-
Dropout layers. (partial UQ application experi-
ment condition)

Table 4.6: Mean ECE per method in sampling
experiment condition.

Method ECE
Baseline 0.1196
DeepEnsemble 0.2059
MCDropconnect 0.1604
MCDropout 0.1616

results in Section 4 shed some light on this topic
and allowed for some interesting observations to be
made.

5.1 Mean of uncertain features

The first two experimental setups used only the
mean of uncertain features. This way what was
tested was the quality of the approximation of the
distribution of the features. This tends to vary
with the number of forward passes executed (Gaw-
likowski et al., 2022). With the parameters used in
this research, the mean of the uncertain features
did not lead to better results in transfer learning.
In fact, no significant results were found. On the
contrary, in some cases, uncertain features seemed
to be performing worse.

As reported in Section 4.1, the Bayesian Neu-
ral Networks performed as good as the baseline
or slightly better, although not significantly. Since
there was no background literature on the extrac-

Figure 4.6: Accuracy of SVMs trained on base-
line data vs SVMs trained on data augmented
by sampling features obtained from different
models. (sampling new features experiment con-
dition)

Table 4.7: Pairwise Mean comparisons (per-
forming Tukey test) of the expected calibration
error between each of the methods and the base-
line (sampling new features experiment condi-
tion). Diff is the mean difference among the
groups

diff p-value
DeepEnsemble-Baseline 0.09 0.00
MCDropConnect-Baseline 0.04 0.01
MCDropout-Baseline 0.04 0.01

tion of uncertain features, finding no improvement
at all was a plausible hypothesis. What came as a
bit of a surprise were the results of uncertain fea-
tures extracted from Deep Ensembles. These fea-
tures performed significantly worse in both accu-
racy and ECE, despite Lakshminarayanan et al.
(2017) proving that probabilistic Ensemble tech-
niques are comparable to Bayesian Neural Net-
works.

Appendix A shows the data-points in a 2-
dimensional space. Although the SVM works in a
higher dimensional space, these plots give a visual
insight on the task the classifier has to perform.
The plots look fairly similar for equal architectures,
across different methods. It is clear from the figures
that the data-points mostly overlap. This would ex-
plain why the performance of the SVMs did not
reach optimal results, as the points are very difficult
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Figure 4.7: ECE of SVMs trained on baseline
data vs SVMs trained on data augmented by
sampling features obtained from different mod-
els. (sampling new features experiment condi-
tion)

to distinctly separate. This is even more obvious
when observing the plots of the features obtained
from the Deep-Ensembles (Figures A.7; A.8), which
explains why these models in particular performed
so poorly.

Applying MC-Dropout and MC-DropConnect
layers partially (see Section 4.2) led to some more
uninspiring results. It seems to be the case that
the more uncertain layers a model implements, the
worse it performs in terms of accuracy. On the
other hand, this is not the case for ECE, such that
modeling uncertainty does not improve nor hinder
reliability. This can also come as a bit of a sur-
prise since this research started from the assump-
tion that modeling uncertainty is needed for im-
proving reliability (Gawlikowski et al., 2022; Leibig
et al., 2017; Abdar et al., 2021).

Given the lack of similar studies, the best expla-
nation that can be produced is that these results
stem from the fact that ML and DL involve a lot
of craft. Transfer Learning techniques in particular
need a lot of trial and error and do not generalize to
every architecture, technique and/or dataset (Tan
et al., 2018). This renders studying such methods
sensitive to design choices and to the range of ar-
chitectures, methods and datasets explored.

Evidence for these conclusions can be also ob-
served in the data collected. Although no signif-
icant results could be drawn, it can be observed
how accuracy is sensitive to design choices. For in-

stance, performance plummets when using Deep-
Ensembles but only when applying this technique
to Convnet, whereas performance is similar to
baseline for MLP Deep-Ensembles. A similar phe-
nomenon happens in the partial UQ application
condition, where the differences can be observed
mainly when using MC-DropConnect rather than
MC-Dropout.

5.2 Sampling features as a data aug-
mentation technique

Using only the mean of uncertain features did not
turn out to be fruitful. However, as mentioned in
the introduction, the main advantage of having un-
certain rather than point features is that uncertain
features can be interpreted as probability distri-
butions, since the weights of uncertain layers can
be seen as probability distributions (Abdar et al.,
2021; Mobiny et al., 2019). When sampling from
uncertain features we obtain new data from the
distribution of the features which, presumably, ap-
proximates on some level the distribution of the
features of real-world data.

Data augmentation is another strategy used to
counter scarcity of data instead or along Transfer
Learning (Perez &Wang, 2017). It is general knowl-
edge that more data should lead to better perfor-
mance of Deep Networks. However, data should
still be in-distribution to avoid the model under-
fitting. Other well-known Data Augmentation tech-
niques such as manipulation or generative adversar-
ial networks (GANs) have this precise goal (Perez &
Wang, 2017). These techniques, in fact aim at cre-
ating new data points by transforming the available
data.

Good Data Augmentation techniques are there-
fore expected to boost a model’s accuracy. As re-
ported in Section 4.3, this seems to apply to sam-
pling new data from uncertain features produced
with MC-DropConnect and MC-Dropout extrac-
tors. Hence, this procedure could be considered as
a Data Augmentation technique for future experi-
ments.

On the other hand, the findings were not as pos-
itive as far as reliability is concerned. Section 4.3
shows that all UQ methods scored a worse ECE.
It could have been expected to have an opposite
result as UQ methods are applied to improve relia-
bility of Deep Learning models (Leibig et al., 2017).
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However, the negative results can be explained by
the way SVMs work. As stated by Pedregosa et al.
(2011), the probabilities outputted by SVMs do not
accurately represent confidence when fitting very
small batches of data, as it happens to be the case
for the sampling experiment (see Section 3.1.1).

5.3 Limitations

In order to have a complete picture of this study it
is very important to discuss its limitations. These
mainly involve computational and time constraints
which limited the design and execution of the ex-
periments.

Deep Learning models can be computationally
very expensive to train. Applying Uncertainty
Quantification methods makes these models many
times more expensive to train and run. This heav-
ily factored into experiment design and the choice
of parameters.

Given the exploratory nature of the research, it
would have been ideal to test most if not all pop-
ular benchmark Networks tested in other, similar
studies. Some candidates would have been Deep
Networks such as VGG-19, ResNet etc. However,
these models contain a number of weights in the
order of millions, rendering it unrealistic to train
Uncertainty Quantification models based on them
with the available hardware and time frames. Using
Convnet and MLP as base architectures was the vi-
able option but, possibly, not the best one in terms
of completeness.

Many compromises had to be made on parameter
choices as well, for the same reasons. A major ex-
ample is the number of forward passes for Bayesian
NNs or the number of instances in the ensembles.
As mentioned before, this has a direct impact on
the quality of the approximation of the distribu-
tion of the weights, but it had to be kept rather
low to keep the procedure feasible.

Using SVMs as target models also posed some
limitations on the experiments. These ML models,
in fact, struggle with larger datasets and too highly-
dimensional data. For this reason the full fashion-
MNIST dataset could not be used and PCA was
needed to be applied on the features, which costed
some loss of information.

5.4 Future research

Although this research did not produce particularly
exciting results and needed to be rather limited, it
could still be considered as a suggestion to inves-
tigate this topic more. Resourceful research could
immediately be conducted by overcoming the lim-
itations just discussed. Given the important impli-
cations of using Uncertainty Quantification in high-
stakes fields where Transfer Learning is employed,
further exploring the methods discussed can poten-
tially lead to game-changing findings.

If uncertain features really do have the potential
to improve Transfer Learning, all it takes to find
out is a more exhaustive research conducted with
powerful hardware.
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A Data Visualization

In this appendix are included the plots showing the
(high-dimensional) features obtained from the fea-
ture extractors mapped to a 2-dimensional space
using Principal Component Analysis (PCA). The
data is obtained from one run of the UQ compari-
son experiment setup.

Figure A.1: Features extracted from the base-
line model ConvNet mapped to a 2-dimensional
space using PCA. The color-scale indicates the
class to which the data-point belongs.

Figure A.2: Features extracted from the baseline
model MLP mapped to a 2-dimensional space
using PCA. The color-scale indicates the class
to which the data-point belongs.

Figure A.3: Features extracted from the Drop-
Connect model ConvNet mapped to a 2-
dimensional space using PCA. The color-scale
indicates the class to which the data-point be-
longs.

Figure A.4: Features extracted from the Drop-
Connect model MLP mapped to a 2-dimensional
space using PCA. The color-scale indicates the
class to which the data-point belongs.

14



Figure A.5: Features extracted from the
Dropout model ConvNet mapped to a 2-
dimensional space using PCA. The color-scale
indicates the class to which the data-point be-
longs.

Figure A.6: Features extracted from the
Dropout model MLP mapped to a 2-
dimensional space using PCA. The color-scale
indicates the class to which the data-point
belongs.

Figure A.7: Features extracted from the Deep-
Ensemble of ConvNet models mapped to a 2-
dimensional space using PCA. The color-scale
indicates the class to which the data-point be-
longs.

Figure A.8: Features extracted from the Deep-
Ensemble of MLP models mapped to a 2-
dimensional space using PCA. The color-scale
indicates the class to which the data-point be-
longs.
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