groningen

university of

faculty of science
and engineering

SCALABLE DISTRIBUTED LEARNING WITH
PPG-IMPALA FOR PHYSICS-BASED
MUSCULOSKELETAL MODELS

Bachelor’s Project Thesis

Andrei Voinea, s3754243, c.a.voinea@student.rug.nl
Supervisors: Prof. Dr. R. (Raffaella) Carloni

Abstract: The use of Deep Reinforcement Learning (DRL) algorithms has surged in previous
years due to their ability to adapt to a variety of tasks. However, training these algorithms
sometimes requires long periods of time, and the resource efficiency can be low. To this end,
the current study evaluates the use of an off-policy DRL algorithm, which can efficiently use
a large number of resources, during a bipedal motion control task. The proposed algorithm
is used to generate a gait pattern during the simulation of a physics-based musculoskeletal
model of a healthy subject. As the goal was to achieve normal speed level-ground walking, the
training process was assisted using imitation data provided by a public dataset where participants
performed such movements. Although the trained policy could not generate a stable gait pattern,
the results indicate that the proposed architecture can increase the speed of training, when

compared with an on-policy architecture.

Keywords— Deep Reinforcement Learning, Bipedal Motion Control, Scalable Machine Learning

1 Introduction

Human motion is influenced by a variety of ele-
ments, such as injury, bone architecture, muscle
conditions, habits, and fatigue. Altering one such
factor can lead to large differences in the overall
motion, which creates a unique movement pattern
for an individual. To achieve this, numerous mus-
cles actuate the bones and joints found in the hu-
man body through contraction and relaxation, trig-
gered by signals received from the central nervous
system (Lee et al., [2019)). However, the neural cir-
cuitry involved in generating the signals required
to achieve locomotion behaviour is not clear, mak-
ing it difficult to correctly simulate the kinematic
control of walking (Song and Geyer}, 2015)).

To better understand the biomechanics of gait
patterns and to achieve motion control, previous
studies have attempted to use computer simula-
tions. As described by [Park et al.[(2022), the design
of such controllers ranged from using feedback con-
trol laws, data-driven control, non-linear/stochastic

optimization, and reinforcement learning. Although
the latter form of control was more erratic com-
pared to the others, advances in the field of Deep
Reinforcement Learning (DRL) have made its use
more attractive for bipedal control. More specifi-
cally, combining the use of DRL controllers with
imitation data improved the quality of learned be-
haviours, while also reducing the training time re-
quired (Peng et al., [2018).

De Vree and Carloni (2021) successfully applied
DRL methods alongside imitation data to study
the control of healthy and impaired physics-based
musculoskeletal models. The results of this work
showed that policy optimization methods are suc-
cessful in obtaining a gait pattern when prosthetic
attachments are used, which increase the complex-
ity of a model. Although the optimization method
used by [De Vree and Carloni| provided good re-
sults for the given task, the learning curve of the
DRL models indicate that Proximal Policy Opti-
mization (PPO) tends not to use samples efficiently
for complex bipedal motion control. Similarly, the

solutions proposed by Kidzinski et al.| (2019)) for a
more simplistic musculoskeletal model showed sim-
ilar behaviour in the later stages of training, when
using DRL methods. More specifically, the explo-
ration variation is limited in the initial phases of
the algorithm, and appears to increase irregularly
near the end of the training period.

Previous work attempted to improve upon this
point by changing how the policy variance is up-
dated. As such, Proximal Policy Optimization with
Covariance Matrix Adaptation (PPO-CMA) uses
an evolutionary optimization method to increase
the robustness of the DRL model during training
(Hamalainen et al., [2020). Although the results of
the study suggested that PPO-CMA slightly im-
proves the efficiency of training in a bipedal motion
control task, the algorithm still behaves in an on-
policy manner. This can lead to resource efficiency
issues when trying to scale up a parallelized version
of PPO-CMA.

On-policy algorithms learn by using actions
taken from the current policy, while off-policy algo-
rithms can learn by using any set of actions. PPO
and PPO-CMA are on-policy algorithms that can
run multiple environments in parallel, but have to
wait for a set of episodes to finish before performing
a step of gradient descent for the Multilayer Percep-
tron (MLP). This approach can be favourable, as
updates are more stable, and the policy can parse
a larger set of actions at once during an update.
However, the training process is as slow as the slow-
est parallelized worker, which wastes valuable re-
sources that can be used for further exploration.

On the other hand, off-policy algorithms can
perform a policy update with any actions that
are available, without requiring synchronization be-
tween workers. However, this method can lead to
numerical instabilities during training, as the ac-
tions used for training can be very different from
the current policy. Strategies similar to the clipping
of PPO can be used to minimize this issue, allowing
gradual updates to a policy over time. Therefore,
when compared with on-policy methods, off-policy
algorithms can potentially manage resources more
effectively, allowing for better scalability at a very
low performance cost.

Therefore, in this study, the use of an off-policy
method is evaluated to allow many workers to per-
form rollouts in a resource demanding task. The
proposed DRL algorithm is based on Phasic Policy

Gradient (PPG; |Cobbe et al.l [2020), a variant of
PPO, and Importance Weighted Actor-Learner Ar-
chitectures (IMPALA; [Espeholt et al.l 2018), both
of which are described in Section [2l By combin-
ing these two architectures, an off-policy algorithm
is created, PPG-IMPALA, which incorporates the
benefits of policy optimization methods and the
scalability of IMPALA.

A brief summary of the algorithm can be ob-
served in Figure which shows that PPG-
IMPALA works by having a pool of workers in-
teract with an environment to generate trajecto-
ries. At the start, each worker loads the current
policy from the local storage and begins exploring
the environment. At each step, the environment re-
turns an observation and a reward, which is aggre-
gated by each agent for a number of steps. After a
number of steps is reached, each worker submits its
buffer of trajectories to the centralized learner, and
then restarts the exploration process with the next
available policy. After receiving the buffer of tra-
jectories, the centralized learner performs a policy
update similarly to PPG. Once the policy update
is complete, the centralized learner saves the new
set of policy parameters to local storage, and then
waits for another buffer of trajectories.

Pool of
Workers
Objective
Load Function| |[Learning
Persistent
Storage Agent Reset
Aggregate
g ™~ Ausiliary trajectories
Policy Network Update
: Send
Save | :
; Buffer
Aggregate
Observations Receive
Value Network K times
e} o) Centralized
o o TrulyPPO Learner(s)
Update

-

Learner Reset

Figure 1.1: The proposed DRL algorithm for op-
timizing a policy trained to perform bipedal mo-
tion control on a normal, level-ground setting.

The remainder of the paper will be dedicated to
elaborating the use of PPG-IMPALA alongside Im-
itation Learning (PPG-IMPALA + IL) to achieve
a healthy gait pattern in a bipedal motion con-
trol task. Section [describes the theoretical back-
ground on which PPG-IMPALA is developed, as
well as the software used to perform the muscu-
loskeletal simulations. Section [3] elaborates on the
design choices regarding the simulation, as well as
providing specific details on the implementation of
PPG-IMPALA+IL. Finally, Section [] shows and
discusses the results obtained on the bipedal mo-
tion control task, followed by concluding remarks
in Section

2 Theoretical Background

As described earlier, PPG-IMPALA is an off-policy,
actor-critic optimization algorithm that is capable
of scaling to a large number of machines without
sacrificing resource utilization. To better under-
stand the proposed architecture, this section will
begin by explaining the principles behind PPO and
how it was improved by the TrulyPPO variation.
This information is then used to describe how PPG
works, followed by an explanation of IMPALA and
its proposed V-trace, an algorithm used to calculate
advantages. Finally, the use of OpenSim is justified,
and the mechanism behind Imitation Learning is
detailed.

2.1 Proximal Policy Optimization

In Reinforcement Learning, the objective of an
agent is to maximize a given reward while follow-
ing a parametrized policy my. To achieve this, policy
gradient methods estimate a policy gradient in the
formof g = E, | Vg log g (at|st)/1t} , and update the
policy my using a gradient ascent algorithm. In this
case, the expectation Et represents an empirical av-
erage over a set of samples at time ¢, a; and s; are
the action and state obtained at that time step,
and A, is an estimator of the advantage function
(Schulman et al., 2017)).

To facilitate this process while using auto-
matic differentiation software, [Schulman et al.| use
an objective function in the form of LT%(9) =

E, |log W@(at|8t)/it , which can be used to estimate

g. However, since optimizing using this objective
is unstable due to potential large differences be-
tween the old and new policy, PPO introduces a
new objective function based on clipping (see Equa-
tion [2.1]). This objective incorporates the likelihood

ratio r(0) = %, which denotes the differ-
o1a (Ot ISt

ence between the current and the previous policy,
and can be used to restrict a large policy update.
Therefore, whenever the likelihood ratio surpasses
the clip range, the gradient of LEF/P () with re-
gard to 6 will be 0, thus restricting the policy up-
date.

LOIP () = By [min(re(0) Az, clip(re(6),1— €1+ €)Ar)]
(21)

2.2 Truly Proximal Policy Optimiza-
tion

Although PPO improves training by restricting de-
structive policy updates, [Wang et al. (2020) argue
that it cannot strictly restrict the likelihood ratio,
nor enforce a trust-region constraint. Firstly, the
failure to restrict the likelihood ratio is due to the
ill-defined clipping method, which could push the
ratios even further outside the clipping range in
special cases. Secondly, PPO does not explicitly at-
tempt to enforce a trust region constraint, but the
scale of the clipping mechanism indirectly affects
the scale of the Kullback-Leibler (KL) divergenceﬂ
Since the likelihood ratio r¢(6) is not bounded, its
corresponding KL divergence cannot be bounded
either.

Therefore, to address these issues, [Wang et al.
propose the use of a trust-region based clipping
mechanism, which uses a rollback operation to
lower the ratio once it exceeds the trust-region
range. A new objective function is proposed in
Equation to incorporate these changes, where
« is a parameter that controls the force of the roll-
back, § decides the range of the trust-region, and
Dkr(mg,,,, ™) represents the KL divergence be-
tween the old and the new policies. More precisely,
this new objective discourages the gradient from

1KL divergence is a type of statistical distance function,
which measures how one probability distribution differs from
another.

making a change that exceeds the new trust region
by penalizing it using KL divergence.

Dxr(mg,,,m) > ¢ and
Te(m)Ar > 71(To,4) At
) otherwise

aDky, (7T901d) 7T9)
Frr =

LYY (9) = r(0) Ay — Frr (2.2)

2.3 Phasic Policy Gradient

Architectures similar to PPO found that sharing
parameters between the value and policy MLPs can
be used interchangeably to optimize both objec-
tives. However, |Cobbe et al.| (2020) suggest that
this can be detrimental for learning, since the ob-
jectives of the policy and value function can inter-
fere in more complex scenarios. Furthermore, shar-
ing parameters also requires fine-tuning of hyper-
parameters in order to balance the two objectives,
which could restrict the efficiency during training.

To increase the robustness of policy gradient al-
gorithms and to improve sample efficiency, |[Cobbe
et al.| propose separating the MLPs of the policy
and value functions. More specifically, PPG trains
a policy network that contains a policy head my and
a value head Vj_, and a value network with a value
head Vp,,. The training is performed in two phases,
where the policy phase updates my and Vjp,, , while
the auziliary phase updates Vy_ (and indirectly 7).

To achieve this, PPG uses the same objective
as PPO in the policy phase to update the pol-
icy network. The value head Vjp, is also updated
during this phase using the objective LV2Iue
Br |5 (Voy (s1) = V™8)2 |,
function targets calculated using the Generalized
Advantage Estimation algorithm (Schulman et al.)
2018).

During the auxiliary phase, the policy net-
work is optimized using the joint objective
described in Equation [2:33] where L™

ik, [(ng(st) - Vttarg)ﬂ is similar to the previous

ot
where V,*'® are value

value function loss. Furthermore, to restrict the up-
date of the original policy, [Cobbe et al.|implement
the hyperparameter S¢jone to control the difference
between the new and the old policy using KL di-
vergence.

LjOint = [¥ + BclonefEt [DKL (ﬂ-t%ld 3 770)] (23)

2.4 Importance Weighted Actor-
Learner Architectures

As described in Section [1} one challenge in explor-
ing with a large number of agents is scalability.
IMPALA proposes a way to decouple exploration
from training to improve communication efficiency
between workers and learners, which is achieved by
transmitting trajectories instead of gradients with
respect to the parameters of the policy. However,
since the policy used to generate these trajectories
can be outdated by several updates compared to
the latest one, Espeholt et al. (2018) propose the
V-trace off-policy actor-critic algorithm to correct
the difference between the two policies.

Given a trajectory (s:, az, Rt)ilﬁ" generated by
a policy u, where Ry is the reward at time ¢, the V-
trace algorithm calculates a value approximation at
state s, using Equation [2.4] In this case, 7 is a dis-
count factor that reduces the value of future states,
and 6V = p (R +vV (st41) — V(st)) is a temporal
difference for V. Furthermore, [Espeholt et al.| use
the truncated importance sampling weights p; =
ZEZZIZ;) and ¢; = min(c, :gz:::;), where pt
defines a fixed point of the update rule and ¢; mea-
sures the impact of 4;V on the update of the value
function at a previous time b. Additionally, ¢ and
p are truncation levels which limit the difference
between the two policies.

min(p,

b+n—1

vy = V(sp) + Z AP

t=b

<ﬁ Ci> 5tV (24)
i=b

Therefore, given a policy 7, and a value function
Vo, IMPALA performs a step of policy update using
a set of trajectories generated by a policy p. At
training time b, IMPALA performs gradient descent
on the L2 loss to the target vy, which updates the
value function Vy using Equation[2.5 and the policy
7, using Equation 2.6

(v — V(1)) AoV (sp) (2.5)

PoAy log my, (ap|sp)(Rs + yupr1 — Vo(sp)) (2.6)

2.5 OpenSim and Imitation Learn-
ing

OpenSim is an open-source software capable of
simulating the dynamics of musculoskeletal model
structures (Delp et al., 2007). De Vree and Carloni
have previously used OpenSim to study the per-
formance of policy gradient algorithms on bipedal
motion control tasks, thus achieving a gait pattern
for healthy and impaired musculoskeletal models.
This was aided by applying Imitation Learning dur-
ing the training process, which sped up learning by
providing an example gait pattern.

Imitation Learning encourages a character to
match a reference motion by incorporating kine-
matic information in the goal function. For exam-
ple, a policy will receive a higher reward if the mo-
tion resulting at the current time step matches cer-
tain characteristics of the reference, such as joint
orientation and velocities (Peng et al., 2018]). At
the start of training, the model is initialized to a
pre-determined state of the training data and acts
according to the policy until the simulation is ter-
minated. For locomotion tasks, [Peng et al|suggest
that early termination can occur when the charac-
ter’s torso makes contact with the ground, or when
certain body parts fall below a given height thresh-
old. In the case of [De Vree and Carloni, the ter-
mination condition was met when the pelvis height
fell below 0.7 m in height.

3 Methods

Given the theoretical background, this section elab-
orates on the technicalities of PPG-IMPALA and
of the bipedal motion task. In the following sub-
sections, the environment used in the simulations
is presented along with the characteristics of the
musculoskeletal model. Following this, an in-depth
description of the PPG-IMPALA algorithm is pre-
sented.

3.1 Environment
3.1.1 Musculoskeletal Model

OpenSim provides a realistic simulation of a given
musculoskeletal model, which is built using rigid
body segments that represent the bones. In the

Pelvis ‘

4—‘ Femur
J
\‘-J |95

‘\f’)M—M

Calcaneus
(Heel) /{ Talus
4———{ Toes

Figure 3.1: Overview of the significant body
parts found in the observation space. For the
lower extremity, only one of the two sides is in-
dicated to improve clarity. The coloured box in-
dicates that the coordinate observations related
to that body part are in the global space.

scope of this study, these body segments are con-
nected by joints, which are actuated by Hill-type
muscles (Thelen) 2003)) realistically. The chosen
musculoskeletal model is a reduced 3-dimensional
gait model with 22 muscles, 14 Degrees of Free-
dom (DoF) and a weight of approximately 74.78
kg, based on the model proposed by |[Pandy and
Anderson| (2000)).

For the purpose of this study, the observation
space contains 104 values that represent the loca-
tion of certain body parts of the musculoskeletal
model. The global space, which is relative to the
ground of the simulation, contains the pelvis posi-
tion and orientation on the X, Y and Z axes. The
local space, which is relative to the pelvis, contains
the linear and angular velocities of the pelvis, the
position, and velocity of the head, torso, and of
the femur, tibia, talus, heel, and toes of each leg.
Finally, a simplified view of the observation space
can be seen in Figure

Regarding the action space, each leg contains 11
muscles that are activated using values between 0
and 1. When provided with a value of 0, a mus-
cle is completely relaxed, while a value of 1 will
completely contract the muscle. The simulated Hill-

g
i

Gluteus | 52 ¥
k4 v Alliopsoas

LA

Maximus

A7 A E A

Adductor
Magnus

Gluteus
Medius

Rectus

Biarticular

Femoris Hamstring
Vastus
Lateralis : “’(‘f/\ Biceps
I ‘ Femoris
| e
Soleus J Tibialis
Anterior

Figure 3.2: Overview of the 22 muscles used in
the healthy musculoskeletal model. Only one of
the two sides is indicated to improve clarity.

type muscles achieve a force by incorporating three
factors: the length of the muscle, the velocity and
the previously described activation level (De Vree
and Carloni, |2021)). As such, when a model receives
a vector of muscle excitations, OpenSim calculates
the changes in muscle positions and updates the
current observation to match the new position of
the model. A simplified view of the muscles used in
the experiment can be seen in Figure [3.2

3.1.2 Imitation Data

To implement the imitation reward function, data
of a person walking normally on a level-ground sur-
face is used. This was obtained from participant
ABO06 in the open-source motion capture dataset
provided by |Camargo et al.| (2021)), where partic-
ipants with various body types had to perform a
range of motion tasks. Participant ABO6 is a 20
years old male with a height of 1.80 m and a mass
of 74.8 kg, which closely matches the characteris-
tics of the musculoskeletal model. This is supported
by a low root-mean-square marker (RMS) error of
approximately 0.024 4+ 0.003 metres, which was ob-
tained during the built-in OpenSim inverse kine-
matics conversion process. This process was used
to convert the marker data of |[Camargo et al|to
coordinate values that can be used by the mus-

culoskeletal model. In this case, the marker error
represents the distance between an experimental
marker, which was placed alongside others on body
parts of participants in the study, and the corre-
sponding marker on the model. As such, the in-
verse kinematics process computes a pose that best
matches the experimental markers at each frame of
the movement, by attempting to minimize the RMS
error of all markers. The resulting data represents
a series of best match poses of a person walking in
a circuit for approximately 20 seconds, at a pace of
approximately 1.17 + 0.21 m/s.

The participant data was further transformed
such that the model is in the middle of a gait
pattern at the origin, and that the model contin-
ues walking in the positive X direction. This was
achieved by translating the original data by -575
mm on the X-axis and 1400 mm on the Z-axis, and
rotating it by —90° around the Y-axis. The result-
ing data places the model in the origin at time 14.2s
of the original imitation data, which serves as a
starting pose for the musculoskeletal model.

Finally, the imitation data was reconstructed as
a comma-separated values (CSV) file, and all an-
gles were converted to radians to allow the data to
be used by the OpenSim module in Python. The
resulting file contains the time of each pose frame,
along with 17 kinematic measurements: pelvis angle
and position in the X, Y and Z axes, joint angle and
angular velocity of both hip flexion and adduction,
and joint angle and angular velocity of the knees
and ankles.

3.1.3 Reward

To facilitate the process of learning a healthy gait
pattern, this study uses a shaped reward that in-
corporates the imitation data and information from
the musculoskeletal body. As such, the environment
provides a greater reward if the policy produces ac-
tions that make the musculoskeletal model follow
the imitation data (joint positions and velocity), as
well as keeping the pelvis above a certain height
and moving forward at a desired pace.

This is achieved by first calculating a penalty for
deviating from the desired behaviour, and convert-
ing it to a reward using a logarithmic function (see
Equation . In this case, the reward increases
inversely proportional to the penalty, where a indi-
cates how much the reward should scale, b indicates

the threshold after which the reward is significantly
reduced, and ¢ represents the size of the transition
period, after which the reward approaches 0.

Riy,,(prya,b,0) = Tlog(1+¢t07) (3.1)

To reward the policy for following the imitation
data, Py ... 18 obtained by summing all Mean
Squared Errors (MSE) of the positions © and O;;,
for each component of the DoF of the model. Sim-
ilarly, pi,.; o 18 obtained by summing all MSE of
the velocities v and vjn; of all DoF components. As
it can be observed in Equations and the
imitation penalties are converted to a reward us-
ing the previously described logarithmic function,
where the a, b and ¢ parameters were chosen to pro-
mote imitating the positions of the imitation data.
The velocity imitation reward Ry, ; .., has a smaller
impact on the total reward, as it is desirable to al-
low the policy to adapt to different environmental
conditions.

Ptimi, pos — Z (etj - ®tirxli7j)2

jE€DoF (3.2)
Rtimi, pos = Rlog(ptimi, pos? 067 3) 04)
Plimi, vel — Z (Utj - Utinmj)2

jEDOF (3.3)

Rt = Rlog(ptimiy vel? 025, 10, 2)

imi, vel

As a healthy gait pattern allows the body to
move forward, another part of the total reward is
represented by a positional penalty of the pelvis. As
it can be observed in Equation this is achieved
by calculating the difference between the current
and previous X-axis coordinate of the pelvis. To
convert this penalty into a reward, the obtained
value is multiplied by 10 to increase the influence
of this metric. Since the value can be negative, R;
can penalize the policy for not moving forward.

pos

= (xtpelvis - xt—lpclvis)
=10 p

ptpos
Ry

Since the previous penalty only incentivizes the
policy to produce actions that move the pelvis for-
ward, a secondary penalty is introduced to ensure
that this movement is gradual. The policy can learn

(3.4)

pos pos

to jump forward to increase the received reward,
which destabilizes a healthy gait. Therefore, p;,
penalizes large changes of the pelvis X and Z coor-
dinates by comparing the resulting velocity against
a pace of 1.17 m/s. This value was chosen to match
the pace of the imitation data.

Ptye = |(Utpe1vis - ,Utimi, pelvis)2 - 117|

(3.5)
Ry, = Riog(pt,..,0.3,0.15,0.02)

vel

Furthermore, to discourage the policy from gen-
erating actions that lead to the musculoskeletal
model falling, the penalty p;, increases when the
Y coordinate of the pelvis falls below a height of
0.8 meters (see Equation .

ytpelvis > 0.8

. (3.6)
otherwise

1

pin L+m%m—w

Finally, the previously described rewards and
penalties are used to obtain a total reward, given
by Equation [3.7] This sum of rewards ensures that
the policy is rewarded for following the constraints
described above, and penalizes it for falling. Fur-
thermore, the simulation stops if the pelvis height
Ytperis drOps below 0.6 meters.

Ry + Rtimi, v T Rtpos + Rtvel

Pty

imi, pos

Rt:

(3.7)

3.2 PPG-IMPALA with TrulyPPO

Given that the action space is continuous, the PPG-
IMPALA algorithm uses an actor-critic setup to
learn a policy 7y, which represents the mean action
taken when presented with state sy, and two value
functions, Vp, and Vj, . Following the methodol-
ogy of PPG, the MLP used to represent the policy
shares parameters between mg and Vp_, while the
value function Vp,, uses a different MLP (see Figure
. Since the action space of the musculoskeletal
model is between 0 and 1, the policy head my uses
a Sigmoid activation at the end to constrain the
result in this range. Additionally, the logarithmic
standard deviation of each action is learned dur-
ing training as a set of 22 parameters, which are
initialized to a desired value oyt .

22
—m(-[s)
tH = —'VGV(S)
- Vg (s) !
1
104 104 I
128 128
256 256
M Input [Fully Connected M Output [| Tanh Sigmoid

Figure 3.3: The two MLPs used to learn the pol-
icy and the value functions.

Multiple actors are initialized at the beginning
of the simulation, which collect sets of trajecto-
ries that are sent to a centralized learner. While
the workers continue exploring, the learner uses
these trajectories to perform training similarly to
PPG, in two alternating phases. During the pol-
icy phase, the objective of TrulyPPO is optimized
alongside an entropy bonus. As it can be observed
in Equation this is achieved by adding the en-
tropy of the current policy mg to the current ob-
jective, which is controlled by the entropy coeffi-
cient Bg. Following this, the value function net-
work is updated according to PPG, using the LValue
objective that returns the mean square error be-
tween the current value Vp, (s;) and the value tar-
gets f/ttarg. A value function coefficient Sy r and
a value clip range ey are further applied to bet-
ter control the importance of the objective Lvalue,
as seen in Equation [3.9] In this case, A Voq =
Vv (st) +clip(Vay, (st) — Voav (st), —€v, €v) rep-
resents a clipped difference between the old value
function and the new one.

Ltruly+5(9) _]Et [Ltruly + BSS[’T['@]] (38)

n 1 Crtar
DV — iy | e (Vi () = V%02, A,V

(3.9)

Given a worker policy g, , the V-trace targets
are obtained by first calculating §;V using p; =
min(p, %) Following this, the advantages

are recursively calculated using the method pro-

posed by |[Espeholt et al as seen in Equation [3.10}

moy, (at]st)
) ! > mo(atlse)
tional discount parameter.

where ¢; = Amin(¢) contains an addi-

Vp = V(Sb) + 0V + ey (Ub-i-l — V(Sb+1)) (3.10)

After finishing the policy phase, the learner
stores the states s; and the V-trace targets V>
(which are equal to vp) for a number of epochs. Dur-
ing the auxiliary phase, the joint objective Li°nt,
seen in Equation 23] is used to update the pol-
icy network for a number of iterations. Finally, a
summarized version of the algorithm is presented
in Algorithms and and a list of hyperpa-

rameters used during the experiments is shown in

Table B

Algorithm 3.1 PPG-IMPALA Worker

Load policy my from disk

Initialize empty trajectory buffer T’

for step =1,2,..., Ng do
Perform rollouts under current policy my
Append set (st,as, Ry, S¢41) to T

Send trajectory buffer T' to Learner

Algorithm 3.2 PPG-IMPALA Learner

Initialize empty buffer B
for epoch = 1,2, ... do
Receive set of trajectories T from Worker
for iteration = 1,2, ..., N; do
Perform rollouts under current policy my
Compute V-trace targets V'€ for Vp,,
and advantages At, given each state s;
for iteration = 1,2, ..., E; do
Optimize LY +5(9) wr.t. 0,
for iteration = 1,2, ..., By do
Optimize LY (0) w.r.t. 0y
Append <st, f/ttarg> to buffer B

if epoch mod N,,x == 0 then
for iteration = 1,2, ..., Eyx do
Optimize LI°" () w.r.t. ., given B
Empty buffer B
Store new policy my on disk

Name Symbol | Value
Number of steps Ng 1024
Number of workers - 50
TrulyPPO epochs N, 4
TrulyPPO batch size - 256
TrulyPPO KL range) 0.05
TrulyPPO rollback force « 5
Initial log stdev Cinit -0.5
Value clip range €y 0.2
Value function coefficient Bvr 1.0
Entropy coefficient Bs 0.0
Auxiliary cycle size Naux 32
Auxiliary epochs Foux 4
Auxiliary batch size - 256
Clone factor Belone 1.0
6;V discount factor A 0.999
Advantage discount factor ~ 0.9
Policy learning rate - 3e-5

Table 3.1: A list of hyperparameters used during
training.

4 Results and Discussion

This section presents the results of PPG-
IMPALA+IL on the bipedal motion task, and be-
gins with an analysis of the algorithm’s perfor-
mance. Following this, the kinematic results of the
best episode are compared against the imitation
data provided by |(Camargo et al., and a compar-
ison to PPO-CMA+IL is made. Finally, the limi-
tations of the study are discussed, and suggestions
for improvements are provided.

4.1 Performance of PPG-IMPALA
4.1.1 Algorithm Performance

To assess the increase in performance given a vari-
able number of workers, the simulations report the
metrics by averaging the metrics of all agents per
epoch. More specifically, after the main node has
received the mean total reward and mean episode
time for all episodes explored by the workers, it
sums each metric and divides it by the number of
workers. In this case, the episodes represent trajec-
tories that have been completed, and their number
varies on each epoch. The number of episodes can
be determined by dividing the number of steps Ng
by the average episode time for each epoch.

Mean Value of Metrics per Worker

e o =
o © o

Episode time (seconds)

<
IS

100

80

Reward

60

40

800 1000

o

200 400 600

Epoch

PPG-IMPALA 20 workers ~ —— PPG-IMPALA 50 workers
Figure 4.1: The mean episode time and mean
total episode rewards of two different runs.
The data was smoothed using an exponentially
weighted mean, given a span of 50.

Therefore, Figure (top) shows the mean
episode time per epoch of PPG-IMPALA trained
using 20 workers, along with a simulation using
50 workers. As it can be observed, episode time
surges earlier when training with more workers.
Similarly, Figure (bottom) shows the mean re-
ward per epoch of the two runs. The increase in
reward is more stable when using a larger num-
ber of workers, and converges to a higher reward
value for the 50 workers experiment. In this case,
the large difference between both metrics occurs
due to the greater number of workers that create
approximately 3 times more trajectories. Further-
more, almost no performance reduction could be
observed during training, suggesting that the cen-
tralized learner can efficiently use the resources pro-
vided.

4.1.2 Kinematics

To identify whether PPG-IMPALA can be used to
obtain a healthy gait pattern, a comparison is made
between the best episode obtained during training
(given by total reward and episode time) and the

7 Hip Left Hip Right
(0]
5 25 25
S 0
; 0 \\/_\/
=) —25
£-25
0 50 100 O 50 100
= Knee Left Knee Right
9 0
o 0
(o)}
(9]
z
k) -50 —50
(@]
C
< 0 50 100 0 50 100
= Ankle Left Ankle Right
1] 20
I
o 0 _\'va——
§ 0
o —20
=) -20
C
< 0 50 100 0 50 100

Gait cycle (%)
Imitation data

Gait cycle (%)
—— Generated motion

Figure 4.2: Angle difference of hip, knee, and
ankle between the imitation data and the best
generated motion, during a gait cycle. The imi-
tation data is plotted with a standard deviation
of 10°.

imitation data. As such, Figure[£.2]shows the differ-
ence between the angles of the hip, knee, and ankle
generated by PPG-IMPALA and the ones provided
by the imitation data.

As it can be observed, the generated motion
shows some similarities with the provided healthy
gait. The emerging gait seems to have a similar
shape early for both hips and the left knee, but de-
viates later in the cycle from the imitation values.
For the right knee and both ankles, the resulting
shapes do not match the imitation data. This dis-
crepancy results in the model failing to generate a
healthy gait pattern, which leads to falling after 2
steps.

Figure [£.3] shows the fibre forces of the Vastus
Lateralis and the Biceps Femoris muscles, exerted
by both legs of the musculoskeletal model during
the gait cycle (approximately 0.6 seconds). As it
can be observed, only the forces generated by the
left leg follow the shape of the imitation data, while
the right leg values diverge soon after the start of
the gait pattern. For both legs, the mean values of
the fibre forces are lower for the generated motion,

Bifemsh Left Bifemsh Right

g 560 560

()

=4 J

(o)

' 540 540

S

[

520 520
0 50 100 0 50 100
Vasti Left Vasti Right

10000 10000
< 9500
o 9000
S 9000
'8 =
Q
5 8500 8000
[T

8000

7
0 50 100 000 0 50 100

Gait cycle (%) Gait cycle (%)

Imitation data =~ —— Generated motion
Figure 4.3: Fibre forces of the Biceps Femoris
(Bifemsh) and the Vastus Lateralis (Vasti) mus-
cles for both legs, during the gait cycle. The
gray area represents the imitation data, given
the standard deviation of that gait segment for
the respective muscle. The dotted lines repre-
sent the mean fibre force of the generated mo-
tion (red) and the imitation data (gray).

with a larger difference from the imitation data in
the case of the right leg. However, the forces gener-
ated for the left leg appear stable, indicating that a
policy trained by PPG-IMPALA+IL could be used
to generate forces that can potentially drive other
types of actuators.

4.2 Comparison to PPO-CMA

To identify whether PPG-IMPALA performs bet-
ter than other DRL architectures, a comparison
was made with the PPO-CMA algorithm described
in Section [after it was trained in similar condi-
tions. The PPO-CMA model contained two hidden
layers of 256 units each for the policy, used 2048
batches during the policy update, and performed
20000 steps for each worker before an update. Fur-
thermore, the A\ discount factor was set to 0.95,
and the « discount factor was set to 0.99, while the
value clip range € was set to 0.2. Finally, the pol-

10

Mean Value of Metrics per Worker

Iy
o

o
o

Episode time (seconds)
o o
> o

o
N

80

100 150
Epoch

250

PPG-IMPALA 20 workers —— PPO-CMA 20 workers

Figure 4.4: The mean episode time and reward
of PPG-IMPALA and PPO-CMA, smoothed us-
ing an exponential moving average, given a span
of 50. The two sets of results were aligned to
match the total number of trajectories achieved.

icy used Leaky ReLU as an activation function for
each layer, and was trained using a learning rate of
0.001.

As it can be observed in Figure [£.4] PPG-
IMPALA has greater values earlier in the train-
ing process for both the reward and episode time.
Furthermore, PPO-CMA was trained for approx-
imately 67 hours to achieve approximately 60000
trajectories, while PPG-IMPALA was trained for
approximately 5 hours. This suggests that PPG-
IMPALA is approximately 14.6 times faster than
PPO-CMA, and is capable of faster training
by increasing the number of resources available.
More specifically, PPG-IMPALA using 50 workers
achieved the same number of steps performed ap-
proximately 2.5 times faster than PPG-IMPALA
with 20 workers, indicating limited loss of resources
during scaling. As such, greater improvements can
be observed during training when increasing the
number of workers, both in terms of training time
and early performance of the policy on the given
task.

Finally, PPO-CMA did not generate a walking

pattern, but its training resulted in an episode
where three steps were achieved before falling.
The PPG-IMPALA implementation with 20 work-
ers achieved a similar policy after the same number
of trajectories, but the best episode only performed
two steps before falling. This difference could oc-
cur due to more exploration being performed by
the workers in the case of PPO-CMA, where each
agent performs 20000 steps before each update in-
stead of 1024. Moreover, the on-policy behaviour
of PPO-CMA can further benefit the training pro-
cess when more samples are available, which leads
to more stable reward values across trajectories.
Therefore, compared to PPG-IMPALA, PPO-CMA
explored a desirable policy for much longer during
training, leading to an episode where the muscu-
loskeletal model travelled farther. However, such an
episode was not consistent, which suggests that no
clear comparison can be made between the two al-
gorithms in terms of number of steps achieved.

4.3 Limitations and Future Outlook

As discussed previously, PPG-IMPALA was not
successful in generating a stable gait pattern in
the bipedal motion task. However, the results show
that this DRL algorithm can be used to increase
the speed of training a policy, when compared with
previous approaches.

During training, many experiments led to the
policy learning to stand still after the first step, or
falling forward immediately after. The previously
described configuration for the reward provides an
incentive to continue moving forward and follow the
imitation data, but it has no stopping mechanism
for preventing the policy from standing still. This
leads to the policy receiving a large reward by mov-
ing the pelvis back and forth without falling, which
stops it from continuing the gait cycle. Therefore,
future studies could attempt to implement early
stopping if the model has not moved its pelvis for-
ward a certain distance, after a given period of
time. This could promote further exploration of the
gait cycle, while limiting the resources being used
to continue training in the standing still/falling for-
ward scenario.

A second problem that could be observed dur-
ing training was the lack of contact forces between
muscles and bones. The policy could generate mo-
tions where the leg bones intersect one another dur-

11

ing the gait cycle, which is not possible in a real-
istic scenario. Therefore, future work can add an-
other early stopping mechanism when the bones
phase through any body part to promote realistic
behaviour and reduce training time.

Notably, an early increase in total reward could
be observed in the 50 workers experiment due to a
larger number of trajectories being used for train-
ing. Since each worker submits its results to the
centralized worker and continues training without
waiting for the policy to be updated, this can lead
to more exploration being performed when there
is a larger number of workers available. However,
numerous workers can overburden the centralized
learner, leading to a loss of efficiency due to data
being left for too long in the queue. Therefore, fu-
ture studies could improve on the parallelization
aspect of the proposed PPG-IMPALA architecture
to allow multiple learners to communicate informa-
tion for the policy update. This change can allow
a great number of CPUs to be used during train-
ing, which can lead to speeds similar to the ones
proposed by [Espeholt et al.

Finally, to increase the performance when train-
ing a policy to solve bipedal motion tasks, future
implementations of PPG-IMPALA can attempt to
improve the current MLP. For instance, as the gait
cycle alternates between the two legs, a neural
network architecture that splits the parameters of
each leg could improve performance during train-
ing. More specifically, connecting the input nodes
of the body parts closest to one another for each
leg, and limiting the interaction between distant
ones could improve sample efficiency during train-
ing. Furthermore, a second hidden layer can be used
to share information between the two legs, which
can be used to generate a phasic behaviour during
the gait cycle. A variation of this type of limitation
to the search space can increase the speed of train-
ing, and could potentially be used to alternate the
behaviour of the legs during walking.

5 Conclusion

This study explored the use of a highly scalable and
parallelized DRL algorithm on a bipedal motion
control task. The goal was to generate a healthy
gait pattern, given a musculoskeletal model simu-
lated using the OpenSim software. Although the

trained policy was not capable of achieving a sta-
ble and healthy gait pattern, several improvements
could be observed over previous approaches.

Firstly, PPG-IMPALA showed a considerable in-
crease in performance when compared with PPO-
CMA, both in terms of rewards obtained and train-
ing time. These results provide further evidence
that off-policy algorithms can be more efficient than
their on-policy counterparts, as theorized in Sec-
tion [} Secondly, further improvements could be
observed when training with a greater number of
workers. The algorithm was capable of producing
a policy that could consistently receive higher re-
wards early in the training process in the 50 work-
ers experiment. This could be attributed to en-
hanced exploratory capabilities due to obtaining
more samples from slightly outdated policies during
the training process.

Finally, the proposed PPG-IMPALA architec-
ture is limited in its ability to scale up indefinitely
due to it only using a single centralized learner. Fu-
ture studies can attempt to implement communica-
tion between multiple learners, and evaluate differ-
ent reward configurations to achieve a healthy gait
pattern. Furthermore, since the resulting forces ap-
peared to be stable in the 50 workers experiment,
future work can explore the impact of the number
of workers available during training on the overall
stability of fibre forces generated.

6 Acknowledgments

This work was founded by the European Com-
mission’s Horizon 2020 Programme as part of the
project MyLeg under grant no. 780871. Further-
more, we thank the Center for Information Tech-
nology of the University of Groningen for their sup-
port, and for providing access to the Peregrine high
performance computing cluster.

Finally, the author would like to thank their su-
pervisor, Raffaella Carloni (Professor, University of
Groningen) for their guidance and supervision, and
Robin Kock (MSc student, University of Gronin-
gen) for the discussions regarding the OpenSim en-
vironment and parallelization techniques.

12

References

Camargo, J., Ramanathan, A., Flanagan, W., and
Young, A. (2021). A comprehensive, open-source
dataset of lower limb biomechanics in multiple
conditions of stairs, ramps, and level-ground am-
bulation and transitions. Journal of Biomechan-
ics, 119:110320.

Cobbe, K., Hilton, J., Klimov, O., and Schulman,
J. (2020). Phasic Policy Gradient.

De Vree, L. and Carloni, R. (2021). Deep Reinforce-
ment Learning for Physics-Based Musculoskele-
tal Simulations of Healthy Subjects and Trans-
femoral Prostheses’ Users During Normal Walk-
ing. IEEFE Transactions on Neural Systems and
Rehabilitation Engineering, 29:607-618.

Delp, S. L., Anderson, F. C., Arnold, A. S., Loan,
P., Habib, A., John, C. T., Guendelman, E., and
Thelen, D. G. (2007). OpenSim: Open-Source
Software to Create and Analyze Dynamic Sim-
ulations of Movement. IFEFE Transactions on
Biomedical Engineering, 54(11):1940-1950.

Espeholt, L., Soyer, H., Munos, R., Simonyan,
K., Mnih, V., Ward, T., Doron, Y., Firoiu,
V., Harley, T., Dunning, I., Legg, S., and
Kavukcuoglu, K. (2018). IMPALA: Scalable
Distributed Deep-RL with Importance Weighted
Actor-Learner Architectures.

Haméldinen, P., Babadi, A., Ma, X., and Lehtinen,
J. (2020). PPO-CMA: Proximal Policy Opti-
mization with Covariance Matrix Adaptation.

Kidzinski, L., Ong, C., Mohanty, S. P., Hicks, J.,
Carroll, S. F., Zhou, B., Zeng, H., Wang, F.,
Lian, R., Tian, H., Jaskowski, W., Andersen,
G., Lykkebg, O. R., Toklu, N. E., Shyam, P.,
Srivastava, R. K., Kolesnikov, S., Hrinchuk, O.,
Pechenko, A., Ljungstrém, M., Wang, Z., Hu, X.,
Hu, Z., Qiu, M., Huang, J., Shpilman, A., Sosin,
I., Svidchenko, O., Malysheva, A., Kudenko, D.,
Rane, L., Bhatt, A., Wang, Z., Qi, P., Yu, Z.,
Peng, P., Yuan, Q., Li, W., Tian, Y., Yang, R.,
Ma, P., Khadka, S., Majumdar, S., Dwiel, Z., Liu,
Y., Tumer, E., Watson, J., Salathé, M., Levine,
S., and Delp, S. (2019). Artificial Intelligence for
Prosthetics - challenge solutions.

Lee, S., Park, M., Lee, K., and Lee, J. (2019). Scal-
able muscle-actuated human simulation and con-
trol. ACM Transactions on Graphics, 38(4):73:1—
73:13.

Pandy, M. and Anderson, F. (2000). Dynamic simu-
lation of human movement using large-scale mod-
els of the body. In Proceedings 2000 ICRA. Mil-
lennium Conference. IEEE International Con-
ference on Robotics and Automation. Symposia
Proceedings (Cat. No.00CH37065), volume 1,
pages 676-681 vol.1.

Park, H., Yu, R., Lee, Y., Lee, K., and Lee, J.
(2022). Understanding the stability of deep con-
trol policies for biped locomotion. The Visual
Computer.

Peng, X. B., Abbeel, P., Levine, S., and van de
Panne, M. (2018). DeepMimic: Example-Guided
Deep Reinforcement Learning of Physics-Based
Character Skills. ACM Transactions on Graph-
ics, 37(4):1-14.

Schulman, J., Moritz, P., Levine, S., Jordan, M.,
and Abbeel, P. (2018). High-Dimensional Con-
tinuous Control Using Generalized Advantage
Estimation.

Schulman, J., Wolski, F., Dhariwal, P., Radford,
A., and Klimov, O. (2017). Proximal Policy Op-
timization Algorithms.

Song, S. and Geyer, H. (2015). A neural cir-
cuitry that emphasizes spinal feedback generates
diverse behaviours of human locomotion. The
Journal of Physiology, 593(16):3493-3511.

Thelen, D. G. (2003). Adjustment of muscle me-
chanics model parameters to simulate dynamic
contractions in older adults. Journal of Biome-
chanical Engineering, 125(1):70-77.

Wang, Y., He, H., Wen, C., and Tan, X. (2020).
Truly Proximal Policy Optimization.

13

	Introduction
	Theoretical Background
	Proximal Policy Optimization
	Truly Proximal Policy Optimization
	Phasic Policy Gradient
	Importance Weighted Actor-Learner Architectures
	OpenSim and Imitation Learning

	Methods
	Environment
	Musculoskeletal Model
	Imitation Data
	Reward

	PPG-IMPALA with TrulyPPO

	Results and Discussion
	Performance of PPG-IMPALA
	Algorithm Performance
	Kinematics

	Comparison to PPO-CMA
	Limitations and Future Outlook

	Conclusion
	Acknowledgments

