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Abstract

This thesis aims to re-evaluate the connection between the presence of bars and AGN activity.
We make use of machine learning to identify the galaxy morphology of HSC galaxies with
redshift 0.1 ≤ z ≤ 0.55. We made use of a model with an accuracy of 86.9% to identify our
most confident bars and a model with an accuracy of 81.8% to identify our most confident
non-bars. We make use of a mid-infrared WISE colour criterion and SDSS optical line
emission to identify AGNs in our sample. We found an overall AGN fraction of 1% ± 0.1%
and 1.2% ± 0.1% for bars and non bars, respectively for the WISE data and 13.2% ± 1.8% in
bars and 14.0%± 1.0% in non-bars for the SDSS data. We also evaluated fAGN as functions
of redshift and r-band magnitude. These plots did not show any evidence that bars are a
prominent mechanism in triggering AGNs.
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Marloes van Asselt 1. Introduction

1 Introduction

Galactic bars are some of the most striking features in astronomy. They provide some beautiful
images of galaxies, showing an interesting large-scale feature, as shown in Figure 1. Aside from
looking pretty, bars also play an important role in galaxy evolution. For example, they can aid
in the creation of spiral arms (Mo, Bosch, and White 2010). They have also been speculated to
be one of the mechanisms that trigger Active Galactic Nuclei (AGNs) (Laurikainen, Salo, and
Buta 2004; Goulding et al. 2017) However, this is still a very controversial topic. There is a lot
of disagreement between studies that have previously looked at this bar-AGN connection. Some
found that there was a connection between the two (Silva-Lima et al. 2022; S. Oh, K. Oh, and Yi
2011; Alonso, Coldwell, and Lambas 2013), while other did not find such a connection (Cisternas
et al. 2015; Lee et al. 2012).

(a) Barred spiral Messier 83, or NGC 5236, in the
hydra constellation. ESO

(b) The barred spiral NCG 1365 in the Fornax con-
stellation. ESO/IDA/Danish 1.5 m/ R. Gendler,
J-E. Ovaldsen, C. Thöne, and C. Feron.

Figure 1: Examples of bars in spiral galaxies. Both images are from ESO.

Most of these studies were done in the low-redshift (z ≤ 0.1) and were done using the Sloan Dig-
ital Sky survey (SDSS). Due to the resolution of SDSS the morphological classification is limited
to a lower redshift sample (Hart et al. 2016). However, a newer survey, the Hyper Suprime-Cam
SSP Survey (HSC), has a better resolution and is deeper than SDSS (Aihara et al. 2017). This
improved resolution allows for large-scale details, such as bars, to remain identifiable at higher
redshifts. In this thesis we will thus attempt to identify bars at a higher redshift than previous
studies have done in order to re-evaluate the bar-AGN connection.

In this thesis, we will be training a machine learning algorithm to identify barred galaxies from
HSC images. This will be done using the morphological classification of galaxies done by Galaxy
Zoo 2 (GZ2). The algorithm will then be used to classify the galaxies in an HSC sample, con-
structed with redshift limit 0.1 ≤ z ≤ 0.55, as barred or non-barred galaxies.
We will then evaluate the AGN fraction (fAGN ) in both barred and non-barred galaxies using
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1. Introduction Marloes van Asselt

a mid-infrared catalog (Stern et al. 2005) and optical line-emission catalog (Brinchmann et al.
2004). The AGN fraction will be evaluated as a function of redshift and as a function of magni-
tude.

In section 1, we will be explaining the theory behind AGNs, bars and their suspected connection
in more detail. We will also be expanding on some of the previous studies done about this topic.
Section 2 describes the different surveys that this thesis uses. The machine learning algorithm
will be explained in section 3.1. The training of the model and its application will be discussed in
section 3.2 and 3.3, respectively. In section 4 the results will be presented. These results will be
discussed in section 5. Finally, we will give a brief summary and our final conclusions in section 6.
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Marloes van Asselt 1.1 AGN activity

1.1 AGN activity

There are several types of galaxies where unusual activity is observed, such as Seyfert galaxies,
quasars and radio galaxies. While it used to be believed that these activities originated some-
where else, it is now known that all this activity takes place in the nucleus of the galaxy or is
fueled by activity in the nucleus (Kutner 2003). We say that these galaxies have Active Galactic
Nuclei (AGNs). AGNs are dense central regions that emit light that is not produced by the
stars in that region or by the heated gas. Active nuclei can emit radiation throughout the entire
electromagnetic spectrum (Sparke and Gallagher 2007).

One example of AGN host-galaxies are Seyfert galaxies. These are spiral galaxies with a small,
bright nucleus. Seyfert galaxies are characterized by radiation that does not seem to originate
from the stars, but rather from the nucleus. The nucleus shows strong and broad absorption
lines coming from high excitation (Mo, Bosch, and White 2010). We can divide these galaxies
up into two categories, Seyfert 1 and Seyfert 2. Seyfert 1 galaxies have very broad (permitted)
lines and Seyfert 2 galaxy have lines (permitted and forbidden) with much narrower velocity
widths. Seyfert galaxies are very bright at the IR, UV, X-ray and visual wavelengths (Sparke
and Gallagher 2007). Seyferts are thought to make up 2 to 5% of all spiral galaxies (Kutner 2003).

Quasars (also referred to as quasi-stellar objects, or QSOs) are another example of AGNs. They
have a similar optical spectra to Seyfert 1 galaxies, as they also have broad emission lines. The
difference is that quasars are the brighter objects, as they have nuclei much brighter than their
host galaxies. An AGN is considered to be a quasar if LV ≥ 1011L⊙, and a Seyfert 1 otherwise
(Sparke and Gallagher 2007).

As mentioned before, AGNs such as Seyferts emit brightly at the IR, UV, X-ray and visual
wavelengths. There are thus many ways to identify AGNs. We will be focusing on the mid-
infrared (MIR) and the visual wavelengths.

The first way to identify AGN activity is through optical line analysis. For instance, there
is the classification system developed by Baldwin, Phillips, and Terlevich 1981, where they show
that most emission-line spectra of extra-galactic objects can easily be classified using line inten-
sity ratios. They classified the objects by dominating excitation process (normal HII regions,
power-law photo-ionisation or shock-wave heating) or as a planetary nebula. This was done
using plots of the relative intensities of the strongest lines [OII]λ3727, Hβλ4861, [OIII]λ5007,
[OI]λ6300, Hαλ6563 and [NII]λ6584, avoiding lines that could provide difficulties due to the
blending together with other emission or absorption lines. They tried to use lines that were
as close together in wavelength as possible to avoid unnecessary error in the redshift correc-
tion. They found that the classification could be done using the following plots:(λ6584)/(λ6563)
vs (λ5007)/(λ4861) and the plot of (λ3727)/(λ5007) vs (λ5007)/(λ4861), (λ6584)/(λ6563) or
(λ6300)/(λ6563). Figure 2 shows an example of how Brinchmann et al. 2004 used the BPT
line ratio diagram to identify star-forming galaxies, AGN host galaxies and composite galaxies.
Where composite galaxies are galaxies that show star formation and AGN activity.
The optical identification method yields more AGN candidates than other wavelengths but also

comes with some shortcomings. For example, it strongly favours bright and unobscured sources
and will therefore not be able to identify most of the obscured AGNs that we might find at other
wavelengths.(Padovani et al. 2017)

If an object has a line-of-sight neutral hydrogen column density of NH ≃ 1.5 · 1024 cm−2, it
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1.1 AGN activity Marloes van Asselt

Figure 2: The BPT line ratio diagram can, for example, be used to identify star-forming, com-
posite and AGN host galaxies (Brinchmann et al. 2004)

is considered to have Compton-thick obscuration. Compton-thick AGNs have been show to
make up 20+9

−6% of the AGN population (Burlon et al. 2011). As discussed before, optical line
analysis will not be able to identify most of these obscured sources. Even the deepest X-ray
surveys seem to miss a lot of these object (Mateos et al. 2013). However, mid-infrared light
(MIR) has been shown to still be visible even if it is from an obscured source (Lacy et al. 2004).
This is because the light itself goes relatively unabsorbed (re-phrase this) but the MIR emission
from dust also traces the absorption in other wavelengths (Donley et al. 2012). This makes MIR
selection an excellent method for the identification of heavily obscured AGNs.

Stern et al. 2012 used a simple criterion using WISE data to reliably identify AGNs with MIR
colour selection. They used the two bluest, most sensitive passbands, W1 [3.4µm] and W2
[4.6µm], to put a constraint on the resulting relative Vega magnitude. The Infrared Array Cam-
era (IRAC) on the Spritzer Telescope also offered a colour selection for AGNs (Insert citation).
However, in order to distinguish between AGNs and high-redshift galaxies (z ≥ 1.3), they typ-
ically required all four colour bands (Stern et al. 2012). WISE is a much shallower survey so
it does not suffer from this kind of contamination, hence why we can use a much simpler two
band colour selection. Figure 3 depicts the completeness and reliability of different thresholds
that can be put on the W1-W2 colour. These values were determined using the IRAC colour
candidates of Stern et al. 2005 as the truth sample. Stern et al. 2012 has shown that the criterion
W1 −W2 ≥ 0.8 identifies 61.9 ± 5.4 AGN candidates per deg2, identifies 78% of Spitzer-IRAC
candidates and has a 95% reliability, which is determined by how many galaxies are correctly
identified in the truth sample.
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Marloes van Asselt 1.2 Bar activity

Figure 3: Reliability (solid line) and completeness (dotted line) of WISE AGN selection as a
function of W1-W2 colour selection. The completeness is the percentage of Spitzer infrared
candidates found by Stern et al. 2005. (Stern et al. 2012)

1.2 Bar activity

Different kinds of galaxies are usually classified according to Hubble’s classification scheme. In
Figure 4 we can see the scheme, with all the different classification: elliptical types (E0 to E7),
lenticulars (S0) and spirals. Spirals are subdivided into "normal" (Sa, Sb, Sc) and barred-spirals
(SBa, SBc, SBc). This split is why Hubble’s Classification Scheme is also referred to as Hubble’s
Tuning Fork.

We often refer to elliptical and lenticular (S0) galaxies as "early-type" galaxies and to spirals
as "late-type" galaxies. We also refer to late- and early-type spirals depending on whether they
are on the right or left side of the scheme. However it is important to note that the Hubble
diagram is not an evolutionary diagram. The naming convention does not have a correlation to
the evolution stage of the galaxy.

While not present in all spiral galaxies, bar can help with the evolution of spiral arms. Simu-
lations have show that a rigidly rotating bar in disk galaxy can create spiral arms without any
other external triggers. In these models, the gas in the disk would eventually reach a steady-state
with a trailing spiral structure (Mo, Bosch, and White 2010).
As for the formation of the bar itself, there are two main theories: formation due to gravitational
instabilities in the disk or through tidal galaxy encounters which serve as an external trigger
(Noguchi 1996).

Bars do not only serve as triggers for spiral arm formation, as they are also theorised to help
trigger AGN activity. Super Massive Blackholes (SMBHs), the ones we find at the centre of most
galaxies, are likely formed soon after bulge formation and are left-over from past quasar activity.
In order to see any new nuclear activity from here there needs to be an inflow of new matter into
the SMBH. We thus need a mechanism to remove the angular momentum from the gas in the ex-
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1.3 Bar and AGN connection Marloes van Asselt

Figure 4: The Hubble sequence or Hubble tuning fork depicts a classification of galaxy morphol-
ogy. We first have the elliptical galaxies and then the spiral galaxies split off into barred spirals
and "normal" spirals.

ternal regions so that it can flow inwards. The presence of bars in a galaxy can cause an angular
momentum exchange that can transport kpc-scale gas down to merely parsec scales, close to the
galactic nucleus (Laurikainen, Salo, and Buta 2004; Goulding et al. 2017; Silva-Lima et al. 2022).

1.3 Bar and AGN connection

As mentioned before, the relation between bars and AGN is not well understood, with studies
showing contradictory results. Some studies find that bars help trigger AGN activity, while other
studies do not find a connection between the two.

For example, Lee et al. 2012 looked at a volume-limited sample of ∼9000 galaxies from the
SDSS 7th data release at low redshift (0.02 ≤ z ≤ 0.055). At first glance they found that the bar
fraction in AGN type galaxies was ∼ 2.5 times higher than in non-AGN galaxies. Additionally
they saw that the AGN fraction in galaxies with strong bars was roughly twice as high as the
fraction in non-barred galaxies. However, they explained this trend through the fact that the
fraction of strong bars increases with (u-r) colour and for more massive galaxies (related to a
higher velocity dispersion σ) and that AGN host galaxies are on average more massive and redder
than non-AGN galaxies. When these fractions were studied at a fixed (u-r) and σ, no correlation
was found (see fig 5).

Cisternas et al. 2015 looked at a sample of 95 AGNs over a redshift range of 0.15 < z < 0.84.
They found that the bar fraction of AGN host galaxies decreases from 71 ± 10% at z ∼ 0.3 to
35± 7 at z ∼ 0.8, which is a similar evolution as in inactive galaxies. They also found that the
strength of the AGN activity is not related to the presence of a bar. They finally conclude that
AGN activity is independent of bars in both their occurrence and strength.
Both Lee et al. 2012 and Cisternas et al. 2015 acknowledge that bars may indeed play a role
in funneling gas into the central regions but it is not the driving mechanism behind AGN activity.

Like Lee et al. 2012, Silva-Lima et al. 2022 also used SDSS data to evaluate the connection
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Marloes van Asselt 1.3 Bar and AGN connection

Figure 5: Dependence of fraction of AGNs on the bar fraction for fixed ranges of (u-r) colours
and the velocity dispersion (σ) or the mass. (Lee et al. 2012)

between the presence of bars and AGN activity over a redshift range of 0.02 ≤ z ≤ 0.07. They
look at a sample with the same distribution of a number of parameters, amongst which the
stellar mass of the galaxy M, the stellar mass of its bulge M∗,bulge and (g-r) colour. In their work
they found that the AGN fraction in barred galaxies is higher than that in non-barred galaxies.
They also found that the accretion parameter tends to be higher in barred galaxies than in those
without a bar, which is what we expect to see if bars are indeed a driving mechanism for gas
transport to the central regions. However, no connection was found between bar-strength and
AGN activity level. This could mean that bars are responsible for bringing gas to the center
of the galaxies, building a gas reservoir but a different mechanism would be responsible for the
feeding process on parsec scales.

S. Oh, K. Oh, and Yi 2011 evaluated the connection for nearby, bright galaxies (0.01 ≤ z ≤ 0.05)
(Mr < −19). They inspected the effect of bars for fixed galaxy properties such as stellar mass,
black hole mass, gas contents, etc. In addition to a clear connection between bars and AGN ac-
tivity, they also found evidence that the bar strength also affects the formation of AGNs. They
found a higher AGN fraction in galaxies with a longer bar. The effect of bars also seemed to
increase in bluer and less massive galaxies.
Alonso, Coldwell, and Lambas 2013 got results that agree with the findings by S. Oh, K. Oh,
and Yi 2011. They used a selection of AGNs from the SDSS Data Release 7 to inspect the bar
fraction. They found a bar fraction of 28.5%. Like Silva-Lima et al. 2022, they also found that
the effect of bars seems to increase in bluer, less massive galaxies. Finally, they also found that
barred galaxies show a higher accretion rate onto the central black holes than there non-barred
counterparts.

As mentioned before, some of these results are very contradicting. All of these studies ex-
cept Cisternas et al. 2015 use galaxies from the Sloan Digital Sky Survey and look at a similar
redshift range. Lee et al. 2012 found that once they fixed the colour and mass of the galaxies,
the AGN fraction in barred and non-barred galaxies became very similar. However, Silva-Lima
et al. 2022 and S. Oh, K. Oh, and Yi 2011 also fixed galaxy properties such as the stellar mass
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and the colour but still found a connection between bars and non-bars.
Silva-Lima et al. 2022 and Cisternas et al. 2015 also mentioned that they did not find a correla-
tion between bar-strength and the central black hole accretion rate, while Alonso, Coldwell, and
Lambas 2013 did find that stronger bars show a higher accretion rate.

One thing that all of the previously mentioned studies agree on is that fagn in bars seems
to decrease for redder galaxies. Cisternas et al. 2015 is the only one of these studies to look at a
redshift beyond z = 0.1. The other studies made use of SDSS, which is not a deep enough survey
for identifying galaxy mythologies or AGN hosts at higher redshift. The Hyper Suprime-Cam
SSP Survey is a much deeper survey that is able to provide higher resolution images of galaxies
at higher redshifts. In this study we will thus be using HSC images to explore the AGN-bar
connection at higher redshifts.
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2 Databases

This thesis uses data from the Hyper Suprime-Cam SSP Survey. We use two separate data set,
one for training the machine learning algorithm and one for evaluating the AGN-bar connection.

For the training sample we want to construct a data set of galaxies for which we can obtain
their morphological classification. For the morphological classification we use a Galaxy Zoo 2
catalogue. The final training set comes from HSC sources that match with the Galaxy Zoo 2
sources.
The other HSC sample has to consist of galaxies for which we can obtain an AGN classification.
For this we create two separate samples. The first sample consists of matches with an SDSS
catalogue which has classifications for optical AGNs. The second sample is matched with the
WISE all-sky survey for which we use mid-infrared colour selection to classify AGN host galaxies.

In the following sections we will expand upon the SDSS, HSC and WISE surveys, as well as
the Galaxy Zoo 2 project.

2.1 SDSS and Galaxy Zoo 2

The Sloan Digital Sky Survey (SDSS) is a spectroscopic and imaging survey that covers a third
of the celestial sky (Stoughton et al. 2002). This survey uses a 2.5 meter telescope with a large-
format mosaic CCD camera that does imaging in five broad bands (ugriz ) and has two digital
spectrographs to obtain the spectra of a million galaxies and 100 000 quasars (York et al. 2000).
The five filters have design effective wavelengths of 3550Å, 4770Å, 6230Å, 7620Åand 9130Åre-
spectively. The detection limit for point sources in 1" seeing was estimated to be reached at
magnitudes 22.3, 23.3, 23.1, 22.3, and 20.8 in the respective u’,g’,r’,i’,z’ filters (York et al. 2000).

Brinchmann et al. 2004 uses the 8th data release of SDSS to study the physical properties of
the low-redshift universe. This was done using the classification system developed by Baldwin,
Phillips, and Terlevich 1981 (BPT) that was discussed in this paper earlier on in Section 2.1.
This study uses a subset of Blanton et al. 2003 Sample 10, which consists of 149 660 galaxies
with spectroscopic observations, 14.5 < r < 17.77 and 0.005 < z < 0.22. The redshift limit leads
to a mass limit of M∗ > M⊙. All objects were classified according to 6 categories: Star-forming
galaxies (SF), Composite galaxies (C), AGN’s, Low Signal-to-Noise AGN’s (Low S/N LINER),
Low Signal-to-Noise star-forming galaxies (Low S/N SF) and Unclassifiable objects (UnClass).
This last class mostly consists of galaxies with very weak or no emission lines. The amount of
galaxies in each class is shown in Table 1. For this research we will consider the composite, AGN
and the Low S/N AGN classes as AGNs. These make up a total of 23.8 % of the sample. The
match of this sample with our HSC sample gave us a subset consisting of 2024 galaxies.

Galaxy Zoo 2 (GZ2) (Willett et al. 2013) was released as a follow up of the first data release
of Galaxy Zoo. This project provides morphological classifications of galaxies from SDSS. GZ2
classified the morphology of over 300 000 of the brightest and the largest galaxies of SDSS Data
Release 7 2009ApJS..182..543A. A known issue from GZ2 is that galaxies at a higher redshift
(and thus further away) are scaled up to have a bigger angular size than they appear to have.
This results in a lower resolution, which can make detailed features, such as bars, less distin-
guishable. This leads to biases in the classification of the galaxies (Hart et al. 2016).

The classification made by Galaxy Zoo is determined through a question tree to which vol-
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Subsample Number Percent

All 146994 100
SF 39141 26.6
C 14372 9.8

AGN 8836 6.0
Low S/N LINER 11752 8.0

Low S/N SF 29115 19.8
UnClass 43778 29.8

Table 1

unteer citizen answer after visual inspection of the images. The question tree consists of 11
different questions about the morphology of the galaxies and has a total of 39 possible responses
(Willett et al. 2013). For our purposes the most relevant question was T02: "Is there a sign of
a bar feature through the centre of the galaxy". Figure 6 depicts what path of the decision tree
leads to this question.

Feature or disk Star or artifactSmooth

T00: Is the galaxy simply smooth and rounded,

with no sign of a disk?

T01: Could this be a disk viewed edge-on?

Yes No

T02: Is there a sign of a bar feature through 

The centre of the galaxy?

Bar No bar

Figure 6: Question tree used in Galaxy Zoo 2. This figure only includes the questions that follow
up to T02: "Is there a sign of a bar feature through the centre of the galaxy. The full question
tree can be found in Dieleman, Willett, and Dambre 2015.

The catalog from Hart et al. 2016 provides a morphological classification of all the galaxies.
However, it also provides a debiased fraction of the given answers for each galaxy, which aims
to make the votes distribute themselves as consistently as possible. This catalog allows us to
only focus on the questions that are relevant for a specific morphology query and to implement
different thresholds. For this research we are only interested in whether a galaxies has a bar
feature or not. As mentioned before, this corresponds to question T02. We used the responses to
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this question to determine which of the galaxies were barred galaxies and which were non-barred
galaxies.
The catalog provides a vote fraction for question T02, and therefore, we need to choose a threshold
for the vote fraction, f, to classify them into bars or non-bars. Table 2 shows the number of
galaxies classified in each class for different thresholds. Only galaxies that have a counterpart in
the HSC survey are included. The threshold labeled as "standard" in this table, is considered as
the morphological classification assigned by Hart et al. 2016.
We also checked the numbers for a threshold of f=0.5. If more than 50% of the votes answered
"no" to the question, we classified it as a non-barred galaxy and if more than 50% answered
"yes", it was classified as a barred galaxy. The unclassified objects for this threshold are likely
a result of the debiasing.
A threshold of f=0.8 was also set. The galaxy was considered a non-barred galaxy if more than
80% of the votes answered "no" to the question and if more than 80% answered "yes", it was
classified as a barred galaxy.
The threshold of 0.8 filters out the uncertain classifications much stricter than the 0.5 threshold

Classification standard 0.5 0.8

Bars 1525 1413 637
Non-bars 5241 4387 3500

Unclassified 0 966 2629

Table 2: Number of galaxies in each category for different thresholds on the question: "Is there
a sign of a bar feature through the centre of the galaxy?". This was done using the debiased
votes from Hart et al. 2016.

but as a result it also loses a lot of galaxies. If a galaxy is not classified it can also not be
used for the training data. However, in the case of machine learning it is important to have
as little contamination as possible to make the model more accurate. We judged the data set
with threshold 0.8 to be large enough to offer sufficient training data. We will thus use the Hart
et al. 2016 debiased table with a threshold of f>0.8 on the question T02:"Is there a sign of a bar
feature through the centre of the galaxy?" as our method of classification for our training set.

2.2 HSC

The Hyper Suprime-Cam SSP Survey uses a wide field imaging camera, the Hyper Suprime-Cam
(HSC), mounted on the 8.2-meter Subaru telescope in Hawaii (Aihara et al. 2017). It uses a total
of 9 filters. The range of each filter is shown in Figure 7. There are 5 broad-band filters (g, r, i,
z, y) and an additional 4 narrow-band filters. The survey has three different survey depths, for
our purposes we will only be looking at the HSC Wide layer. This layer covers 3 target fields
with a total coverage of ≃ 1400 deg2 and has a depth of around i ∼ 26 mag and 26.1 mag in
the r-band (Aihara et al. 2017). In the second public data release the depth improved from 25.9
mag to 26.2 mag (Aihara et al. 2019).

Figure 8 shows a comparison in resolution between SDSS and HSC. The left column shows the
SDSS images. This image is obtained as a combination of the the g, r and i filters of the SDSS
survey. The right column shows the HSC images in the I-band. These objects were selected on
the basis of the vote fraction on question T02 from GZ2:"Is there a sign of a bar feature through
the centre of the galaxy?". These galaxies had vote fractions around the 0.5 and would thus
not be included in our training set due to uncertainty. The HSC images clearly show a higher
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Figure 7: Aihara et al. 2017

resolution and make the galaxy features more identifiable compared to the SDSS images. This
higher resolution also allows us to run our model on higher redshift galaxies because the galaxy
features should still be distinguishable.

A catalog was constructed from DR2 of the HSC SSP survey consisting of 18 280 galaxies. For
this work, we use the GAMA09 field, taken in the wide layer of HSC. The coverage of this field
is shown in Figure 9. GAMA09 covers a sky area of ∼ 62 degree2. The catalog has a limiting
spectroscopic redshift of 0.1 ≤ z ≤ 0.55 and a r-band magnitude between 15 ≤ r ≤ 24.5. Figure
10 shows the distribution of the full sample over the redshift and r-band magnitude.

Figure 9: The catalog used for the results consists of galaxies in the GAMA09 field. This field
covers an area of ∼ 62 deg2. (Aihara et al. 2019)
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Figure 8: The same objects, shown as an SDSS image and HSC image. On the left shows the
SDSS using the g,r and i and on the right the HSC image in the i band.
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Figure 10: The r-band magnitude vs the spectroscopic redshift for the full catalog.

2.3 WISE

The Wide-field Infrared Survey (WISE) completed it’s first All-Sky survey in July of 2010. It
covered 95% of the sky with a minimum coverage of 5 exposures per positions over 4 passbands,
W1 (3.5 µm), W2 (4.6 µm), W3 (12 µm) and W4 (22 µm) (Wright et al. 2010). Figure 11 shows
a colour-colour diagram of some interesting WISE sources.
As mentioned before Stern et al. 2012 developed a colour criterion for WISE to identify mid-

infrared AGNs. We created a HSC sample for MIR AGNs consisting of 17 080 galaxies that have
a counterpart in the WISE All-Sky survey. The matching of these objects was done based on
their positions (RA and Dec) using a 3" cone radius.
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Figure 11: Some of the main sources detected by WISE shown in a colour-colour diagram (Wright
et al. 2010).

3 Methodology

Machine learning is a branch of artificial intelligence and computer science to automate the
analysing of data. It uses a set of training data to teach a model or algorithm to recognise
patterns so that it can learn to make predictions for new data. When training a machine learn-
ing algorithm, in addition to a training set, a validation set and a test set is also used. The
validation set is used to check the performance of the model and to determine the best set of
hyper-parameters for the model. The test set is a set that should only get fed to the model once.
This is done when we are satisfied with the training, to evaluate the true performance of the
model. It is thus very important that the model has not seen the test set before because we want
to know how well the model can predict new data.

There are 4 main types of machine learning: supervised, unsupervised, reinforcement and semi-
supervised learning. Here we will be focusing on supervised learning.
Supervised machine learning, as the name suggests, requires some form of guidance. This comes
in the form of a annotated data. This can be used for classification or regression problems.
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In a regression problem, the algorithm learns to predict a continuous value, for example, the
expected sales or for the expected population growth. In a classification problem,on the other
hand, the algorithm learn to classify data into a discrete numbers of labels. For example, if the
goal is to train a model to be able identify bananas from apples, if you provide the model with a
training set of images of these two categories with the corresponding label attached, the model
will learn to classify objects under one of these two classes.
This is also the machine learning method used in this research, as we want our images to be
classified as a barred or a non-barred galaxy.

3.1 CNN’s

Neural Networks are machine learning algorithms that make use of different nodes that are inter-
connected to predict the desired output from an input. The name comes from the fact that these
nodes can be viewed as analogous the the neurons in the brain that interact with each other.
The nodes can be arranged in different patterns and layers, this is what we call the architecture
of the network.There are three different types of layers: the input layer (which received the input
data), the output layer (the output from the network) and, in between those two layers, the
hidden layers. These hidden layers consist of mathematical functions with weights attached to
them that connect nodes with different layers (Figure 12).

Figure 12: Neural networks have hidden layers connecting the input layer with the output layer.
The nodes are interconnected with different weights attached to each connection. Image taken
from: https://www.ibm.com/cloud/learn/neural-networks
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Figure 13: Filters scan sections of the input array to map onto a feature map. It works its way
from left to right and top to bottom. Image from: https://machinelearningmastery.com/
convolutional-layers-for-deep-learning-neural-networks/

These weights are learned during training, using an optimization algorithm, to minimize the
error in the outputs. The error is determined by the loss function. The loss function is also a
mathematical function that can take different forms depending on the problem. For example,
the cross-entropy loss (used for classification problems) calculates the cross-entropy between the
predicted and true labels, or the mean squared error and mean absolute error (used for regres-
sion problems), which compute the mean of squares of errors or the mean of the absolute errors,
respectively, between labels and predictions.
In order to quantify the performance of the model, we need to define and use a metric. The met-
ric function can be similar in form to the loss function, except that the metric function does not
get used during the training, while the loss function does. One commonly used metric function
is the accuracy, which calculates how often the predictions match the true labels.

If a network has many more hidden layers than a traditional neural network we consider it
to be deep neural network. Convolutional Neural Networks (CNNs) are a type of deep learning
architectures commonly used for image classification. It gets its name from the use of convolu-
tions layers.
Convolutional layers are composed of several filter. These filters perform the convolutional oper-
ation over the input of the layer, and are able to detect certain patters (depending on the filter),
that is why convolutional layer are said to be feature extractors. The filters are smaller than
the input data so that it can "scan" sections of the input array multiple times. It works its way
over the input data from left to right and from top to bottom (see Figure 13). The filter itself
consists of different weights that will map the input data to the output data. The value of these
weights is to be determined by the optimization algorithm.

A convolutional layer with a single filter will map a 2D array to another 2D array. However, it
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is common that each convolutional layer has several filter, each of them detecting a particular
feature in the input map. The outputs of the filters will then be stacked together to create a 3D
array, with as many layers as there were filters.
A filter also does not have to move over the array 1 pixel at a time. Depending on the "stride"
of the filter can take bigger steps. A bigger stride will result in a smaller output array.

In order to reduce our array to one single value (the final result), we can also make use of
flattening and dense layers. Flattening will arrange all the data points as a 1D array. Dense
layers change the dimensions of the array. This is done through matrix multiplication, if we
multiply an array with dimensions m x n and a dense layer with dimensions n x k, the resulting
array will have the dimensions m x k. Dense layers are the classification part of the CNN. We
thus use these as final layers to obtain a prediction.

Training a CNN from scratch can be a very resource intensive process and requires a lot of
training data. If a training set is too small or the different categories are not balanced, it is
possible to make use of data augmentation to increase the amount of data. Data augmentation
is the process of performing transformations on the existing data in order to increase the data set
without needing new data. For images this can for example be image rotation, flipping vertically
and horizontally.

CNNs have shown to be very useful in the field of astronomy. For example, Davies, Serjeant,
and Bromley 2019 used CNNs to identify gravitational lenses in images with a completeness of
77%. Cavanagh, Bekki, and Groves 2021 used them to classify galaxy morphology of elliptical,
lenticular, spiral and irregular galaxies. They constructed 3- and 4-way architectures to obtain
83% and 81% accuracy respectively. But most interestingly, they also used binary classification
between the different galaxies to obtain a best result of 98% accuracy between ellipticals and
spirals, and a lowest accuracy of 78% between irregulars and spirals.

3.2 Training

In this work we use a CNN architecture for a supervised classification problem. The goal is for
the model to learn to classify galaxy images as "barred" or as "non-barred". For this kind of
binary classification the model will return any value between 0 and 1, with 0 and 1 correspond-
ing to the different classes. Because we have a supervised problem, we will need already labeled
training data. We obtained these labels from the debiased table from Galaxy Zoo 2 created
by Hart et al. 2016. This table was matched with HSC objects, resulting in 6766 matches.The
matching was done using Topcat, where we matched the table on their RA and Dec coordinates
with a maximum error of 1 arcsec.
In order to then clean up the data we used a threshold of 0.8 on T02 (see fig 6) to find our most
confident barred galaxies (where ≥ 80% answered "Yes" to T02) and our most confident non-bars
(where ≥ 80% answered "No" to T02). This threshold gives us 637 barred-galaxy samples, 3500
non-barred galaxy samples and thus 2629 galaxies that do not fit either of these classes, these
will be labeled "other". This split of the labels can also be seen in Table 3.

In order to classify galaxies into three classes using a binary classification model, we use the ap-
proach of "one vs all", in which three separate models are trained. Each model learns to classify
each class vs all the rest. For that reason, we create 3 training sets: bars vs all, non-bars vs all
and other vs all. These 3 different models allow us to identify the most confident bars, the most
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Classification Number Percent

All 6766 100
Bars 637 9.4

Non-Bars 3500 51.7
Other 2629 43.3

Table 3: Division of the full data set used. The second column shows the total amount of images
found for each label and the third column shows the percentage with respect to the full set. The
bars and non-bars where determined using the Hart et al. 2016 table with a threshold of 0.8 on
the question "Is there a sign of a bar feature through the centre of the galaxy".

confident non-bars and the galaxies that are not certain. All three models will then return a
value between 0 and 1, with 0 corresponding to "bar","non-bar" or "other" and 1 corresponding
to the complementary sample ("all"). The final classification can then be obtained by taking the
lowest of the three values, which gives us the most confident classification.

The training, validation and testing set are split as 81%, 10% and 9% respectively. This was
done in python by taking a random set of indices using the build in python function "ran-
dom.sample()".

To prepare our training data for the model, we first normalise the images so that all pixels
have a value between 0 and 1. Any possible dead pixels are also replaced by the median value of
the image. We also make sure that all the images have the same size. They are all cut to have
the dimensions 176x176x1.
Lastly, we use data augmentation to even out the classes. Table 3 shows that the class for "bars"
is much smaller than "non-bars" and "other". Especially in our "bars vs all" training set this
would give a ∼ 1 : 10 ratio. To increase the size of the bars set we use rotations of 90, 180 and
270 degrees and horizontal and vertical flips on our images until we have set that is roughly the
same size as the "all" set. The same is done for the "non vs all" and "other vs all" data sets.

The architecture of the model used is depicted in figure 14. As mentioned before, we start
with our input data formatted as a (176,176,1) array. The first convolutional layers consists of
32 filters with a filter size (11,11) and a stride of (2,2). This maps our input to a (88,88,32)
array. The second layer has 64 filters of size (9,9). The third layers has 128 filters with size
(5,5) and the fourth layer has 256 filter of size (3,3). All the layers have a stride of (2,2), use
a "LeakyReLu" activation function and a dropout of 0.5 to prevent over-fitting to the training
data. After these 4 convolutions the data gets flattened to a one dimensional array. We then
have two dense layers to condense our data to first 64 and then 32 pixels. Both of these dense
layers use the activation function "relu". Lastly we obtain the output by compressing the data
to a single value using a "sigmoid" activation function.

As mentioned before, the weights of the different layers are determined using an optimization
algorithm that minimizes the error in our outputs. In our model we use the optimizer known
as Adam. This name comes from Adaptive Moment Estimation. It’s a stochastic optimization
method that only uses first-order gradients, which makes for a computationally efficient opti-
mization that has little memory requirements (Kingma and Ba 2014).
The optimizer also needs a loss function to compute the performance of the model. The loss
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Figure 14: Architecture of the network. We use four different convolutional layers before flat-
tening the array and then using two dense layers to obtain the output

function that is used in this model is the binary cross entropy. This loss function needs the
true label (y_true) and the predicted label (y_pred) as inputs. Because we are using binary
classification the true label will have a value of either 0 or 1 and the predicted label will take any
value between 0 and 1. The cross entropy loss is then calculated using the following equation 1.
Where N is the amount of images.

Loss =
1

N

N∑
i=1

y_true · log(y_pred) + (1− y_true) · log(1− y_pred) (1)

The training for the three models was done using the same architecture, shown in figure 14.
The training was done over 500 epochs. The epoch with the best validation accuracy was kept.
Figure 15 shows the training of each of the model over all the epochs. For the "bars vs all", the
model reached a validation accuracy of 0.87990, the "non vs all" best epoch had an accuracy of
0.77214 and for "other vs all" the maximum accuracy was 0.66643.

Figure 16 shows the confusion matrices for all three models. The main diagonal shows how
many images were identified correctly. The accuracy given for each model tells us the fraction
of correctly identified images, whereas the precision tells us how many of the "positives" where
actually correct. So in case of the "bars vs all" model we have:

Accuracy =
True bars

True bars + False bars

Where "True bars" are bar images correctly classified by the model and "False bars" are bar
images that the model classify as non-bars.
When the classes are not balanced, the precision tends to give a better idea of the performance
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(a) Bars vs all (b) non-bars vs all (c) Other vs all

Figure 15: Training graph for each of the models. All models were trained for 500 epochs and
the best epoch was chosen as final model.

than the accuracy. All these values were obtained on the testing set.
Table 4 summarises the accuracy and precision for each model.

Model Accuracy Precision

Bars vs All 0.869 0.855
Non vs All 0.778 0.818

Other vs All 0.629 0.637

Table 4: Final accuracy and precision for the three models

23



3.3 Application Marloes van Asselt

(a) Bars vs all confusion matrix (b) non-bars vs all confusion matrix

(c) Other vs all confusion matrix

Figure 16: Confusion matrices for the three different binary classifications

3.3 Application

The final models were applied to HSC data. The data set that was used is comprised of galaxies
from the GAMA09 field, and are in the redshift range 0.1 ≥ z ≥ 0.55. The images were prepared
in the same manner as the training data set. First the images were normalised to have values
between 0 and 1 and then they were cut to the dimensions (176,176,1).

The classification can be obtained after running all three models for each image, and then se-
lecting the model that gives the closest value to 0, which is the most confident result. However,
as shown in figure 16c, the "other vs all" model only has an accuracy of 0.629. For this reason
we have decided to not use this model. The classification will thus only be done using the "bars
vs all" and the "non vs all" models. The predictions returned by the model are values between
0 and 1. The 0 value denotes the prediction of barred or non-barred galaxy, depending on the
model, and 1 is the "all" classification.
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If the "bars vs all" returns a prediction <0.5, we classify the galaxy as a barred galaxies and if
the "non vs all" returns a prediction <0.5, the galaxy gets classified as a non-barred galaxies. If
both models return a prediction <0.5, we take the class that returns the lowest of the two values.
After running the models and analysing the predictions, we find 4224 bars and 13106 non bars.
We also matched the data points with the used SDSS and WISE catalogs. Table 5 shows how
many barred and non-barred galaxies we find in each survey. Figure 17 shows a random set of
galaxies that were identified as bars.

Classification HSC WISE SDSS

Bars 4224 3945 454
Non-Bars 13106 12247 1463

Table 5: Amount of bars and non-bars the CNN model found in the HSC images. The WISE
and SDSS columns show the amount of matches found with HSC for each of the classifications.
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Figure 17: Examples of galaxies that were classified as bars

Figure 18 shows how the classified galaxies are distributed over redshift and r-band magnitude.
Most of the galaxies are at the lower end of our redshift range and we see a slight "dip’ around
z ∼ 0.4. The magnitude peaks around r ∼ 19 and we see that there are hardly any data points
in the tails of the r-band distribution. The training set data has a limiting magnitude of r ≤ 18,
so there are not many overlapping data points.
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Figure 18: Distribution of the HSC barred and non-barred galaxies plotted over the redshift and
the r-band magnitude.

The bar fraction found in the HSC data is shown in figure 19. This fraction was calculated using
equation 2. To calculate this fraction we only use the number of most confident bars and most
confident non-bats to avoid any contamination with unidentified barred galaxies.

fbar =
Nbar

Nbar +Nnon
(2)

We notice a very clear downwards trend as we go to brighter magnitudes. Since the model was
trained for lower magnitudes it is expected that it has trouble identifying bars in fainter galaxies.
While less apparent, we can also identify a similar downwards trend for decreasing redshift. This
could be due to the fact that the training set had a limiting redshift of z ≤ 0.25, thus for higher
redshift the models reliability goes down due to the difference in the redshift

Figure 19: The fraction of bars plotted over the redshift and the r-band magnitude. The fraction
of bars is defined by Nbar

Ngalaxies
.

27



4. Results Marloes van Asselt

4 Results

Here we will evaluate if we can identify any link between the presence of a bar in a galaxy and
AGN activity. We will look at the AGN fraction in the most confident bars and the most con-
fident non-bars that our model found. We only compare our most confident sub-classes rather
than for the whole catalog to minimize any contamination.

AGN fractions are obtain using two methods for AGN selection. The first one (optical selection)
selects AGN using the BPT diagram on SDSS data, and the second (mid-infrared selection),
identifies AGNs from the colour criterion W1 − W2 ≥ 0.8 applied to WISE data. The optical
and mid-infrared AGNs will be evaluated separately.

4.1 AGN fraction

The AGN fraction over the full redshift and magnitude range is shown in Table 6. The errors
in the fractions are obtained through basic error propagation and considering the error in the
number of AGNs and the numbers of bars to be

√
N , where N is the corresponding galaxy count.

At first glance these fractions are very close together. They do not indicate that bars influence

AGN classification Barred galaxies non-barred galaxies

WISE 1% ± 0.1% 1.2% ± 0.1%
SDSS 13.2% ± 1.8% 14.1% ± 1.0%

Table 6: AGN fraction found barred galaxies and non-barred galaxies. AGN classification was
done using the WISE colour selection [W1 −W2 ≥ 0.8] and using the BPT diagram on SDSS
emission spectra.

AGN activity, as we then would expected the barred galaxy to show a higher AGN fraction.
However, as discussed in section 1.3, the bar-AGN connection is dependant on many different
variables. We thus would like to evaluate AGN as a function of redshift and magnitude.

We first explore our results as a function of redshift. We show the distribution of our data
set over redshift, depicted in Figure 20, to determine which redshift bins would give an even
distribution of data points, and thus an accurate representation of fagn. The resulting fractions
are plotted in Figure 21.

28



Marloes van Asselt 4.1 AGN fraction

Figure 20: Distribution of data point for WISE and SDSS galaxies over redshift bins

Figure 21: The fraction of AGN activity found in both barred and non-barred galaxies using the
BPT diagram on SDSS data on the left and WISE colour selection on the right. The fraction is
shown in different redshift bins of varying sizes, dependent on the amount of data points per bin

As we can see, fAGN for barred and non-barred galaxies are very similar, we see this in both
SDSS and WISE. However, while the WISE AGNs do not seem to follow a certain trend, for
the SDSS AGNs we can see that the AGN fraction in barred galaxies seems to decrease over
redshift, while fAGN seems to stay fairly constant. This could be a result of the fact that we
are increasing the redshift range compared to our training set but could also be due to different
redshift effects. For z ≥ 0.4 we see this fraction increase again but Figure 20 also shows that
there are very few data points in this bin.

Figure 22 shows the distribution of galaxies over r-band magnitude. The WISE catalog does
cover a larger magnitude range than the SDSS catalog so we have a few matches for r ≥ 22,
however these are too few data points to give us a realistic view of the AGN fraction at this
magnitude range. We have thus elected to only take into account galaxies with r ≤ 22. The
resulting AGN fractions are plotted in Figure 23.

29



4.1 AGN fraction Marloes van Asselt

Figure 22: Distribution of data point for WISE and SDSS galaxies over magnitude bins

Figure 23: The fraction of AGN activity found in both barred and non-barred galaxies using the
BPT diagram on SDSS data on the left and WISE colour selection on the right. The fraction is
shown in different magnitude bins of varying sizes, dependent on the amount of data points per
bin. The bin in WISE for g ≥ 22 was excluded due to a lack of data points.

The SDSS data seems to show a similar trend as in Figure 21. All the fractions lay relatively
close together but we notice that fagn for the barred galaxies decreases for fainter magnitudes.
The WISE selection seems to show an opposite correlation. In this plot the AGN fraction in
non-barred galaxies does not follow any trend but the fraction for barred galaxies increases for
higher magnitudes.

In Table 1 we see that the SDSS catalog has quite a few unclassifiable objects. This class
mostly consists of galaxies with weak or no emission lines. Because we are looking at relatively
high redshifts and magnitudes compared to the SDSS sample, it is very likely that this class dom-
inates in our data set. Hence we also show the AGN fraction of SDSS excluding the unclassifiable
objects in Figure 24. The AGN fraction in this case is calculated by taking the number of identi-
fied AGNs over the sum of the number of AGNs and star-forming galaxies: fAGN = NAGN

NAGN+NSF
.

The composite galaxies are only counted in the number of AGNs to avoid counting them twice.
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Figure 24: fAGN for SDSS data where the unclassifiable options where excluded. The fraction is
calculated as fAGN = NAGN

NAGN+NSF
. The composite galaxies are only included in NAGN here. On

the left fbar is plotted over the redshift and on the right it is plotted over the r-band magnitude

The fraction of AGNs as a function of redshift shown in Figure 24 have similar trends as Figure 21.
The AGN fraction in the non-barred galaxies seems to stay fairly constant around fAGN ∼ 0.38,
whereas the barred galaxies show a lot more variation over the different redshifts. We again
notice a downwards trend with the bin 0.2 ≤ z ≤ 0.3 being a slight outlier, suggesting that
barred galaxies might be more susceptible to redshifts effects.
Figure 24 also shows that the trend shown by fAGN as function of magnitude is fairly consistent
with 23. Here too, we notice that fAGN decreases for fainter magnitudes.

To summarise, we find that the overall fractions of AGN activity in barred galaxies and non-
barred galaxies give no indication that bars trigger AGN activity. This was further confirmed by
evaluating fAGN as a function of redshift and as a function of magnitude. None of these plots
showed that the fraction of AGN was higher for barred galaxies.
SDSS did seem to show that the AGN fraction in bars decreases for higher redshifts, indicating
that barred galaxies might be subject to redshift effects.
The SDSS data also shows fAGN decreasing for fainter magnitudes. However, the WISE data
seems to shows the exact opposite effect. For this data set the AGN fraction increases for fainter
magnitudes.

31



5. Discussion Marloes van Asselt

5 Discussion

After presenting our results, we will now take some time to discuss our findings. First we will
discuss some of the caveats of this research. We’ll discuss the limitations of the databases that
were used and the caveats of our models. We will also discuss the implications of our finding
and compare this with previous studies. Finally, we will talk about the future work to expand
and improve this work.

5.1 Data and model limitations

One of the aims of this research was to improve the depth at which bar identification is done.
While the HSC SSP survey indeed has a better resolution and is deeper than the Sloan Digital
Sky Survey, the identification at higher redshifts has still proven to be difficult.
The model "bars vs all" has the highest accuracy of the three models. Yet it only has an accuracy
of 86.9% and a precision of 85.5%. This means that out of the 4224 identified bars, ∼ 612 are
likely misidentified as bars. Because we compare the predictions with the model "non vs all",
we hopefully will have caught some of these misidentifications. However, this model also only
has a precision of 81.8%. In the extreme case where non of the misindentifications are caught
by the other model, we would be dealing with 14.5% and 18.2% contamination in the bars and
non-bars sample respectively.
Additionally, the model was trained using a sample with a limiting redshift z ≤ 0.25 and magni-
tude mr ≤ 17. However, the HSC data has a limiting redshift z ≤ 0.55 and limiting magnitude
16 ≤ mr ≤ 25. The model is thus run for higher redshifts and fainter magnitudes than it was
trained with. In section 3.3 we discussed that the bar fraction is not consistent over an increasing
redshift. We would expect to see fbar decrease for higher redshifts (Sheth et al. 2008; Melvin
et al. 2014). However, our model shows a slight increase in fbar for higher magnitudes. We thus
note that our model becomes less reliable for higher redshifts and fainter magnitudes.

Figure 17 and the appendix show examples of galaxies that have been identified as bars. These
images show quite a few objects that would not be classified as a barred-galaxy through visual
inspection. It would be possible to filter out some of these contaminations manually by doing
visual inspection of the galaxies. However, for our sample size this would be extremely time
consuming so due to time constraints we were not able to do this. This does mean that the
results should be viewed with this error in mind.

For the MIR-AGN selection the WISE colour criterion [W1 − W2 ≥ 0.8] was used. However,
the WISE colour selection mainly works well to a depth of W2 ∼ 15.0 (Stern et al. 2012). Assef
et al. 2013 shows that the completeness and reliability of this AGN selection reduces for fainter
magnitudes.
Figure 25 shows the distribution of galaxies in the W2. The top figure shows the distribution of
the whole WISE sample. This distribution peaks around W2 ∼ 15 and extends only to a magni-
tude of ∼ 17. The bottom figure shows the distribution of WISE selected AGNs. It shows the full
sample but also the AGNs with barred host-galaxies and the ones with non-barred host-galaxies.
The full AGN sample shows a similar distribution as the full WISE sample. The non-barred set
seems to dominate the lower part of the magnitude range. It still has a significant amount of
data points past the limit of W2 ∼ 15.0, but the majority are below this limit. The barred set,
on the other hand, shows very few galaxies under the limit of W2 ∼ 15.0.
This leads us to conclude that the AGN fraction galaxies in the WISE date is too unreliable to
draw any conclusions from. For non-barred galaxies fAGN can still be an accurate representation
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Figure 25: Distribution of galaxies in WISE over the W2 band magnitude. The top plot shows
the distribution of the whole sample and the bottom plot shows the distribution of the AGNs
that were obtained from the [W1−W2 ≥ 0.8] criterion. Here we also show the difference between
AGNs in barred and non-barred galaxies.

for the magnitudes W2 ≤ 15.0 but the barred-galaxies present too few data points under this
limit to paint an accurate picture.

5.2 Implications

The fraction of AGNs that we find is significantly lower than what we would expect to find
considering the used catalogs and previous research.
Using the same optical selection as we used in this work for the whole SDSS catalog, we find that
the AGNs represent ∼ 24% of the whole sample. However, in our results we find an AGN fraction
of around 15%. This difference could arise from the fact that we are looking at a relatively high
redshift and magnitude. In section 4.1 we explained that this could lead to a higher fraction
of unclassified objects. We thus also plotted the results excluding this class. By excluding this
class the expected AGN fraction would be ∼ 34%. This corresponds fairly well with the fractions
found in Figure 24. The lower AGN fraction is thus indeed likely explained by the fact that we
are looking at objects with a higher redshift.
We still do not find evidence that bars trigger AGN activity. Although this fraction is only the
fraction of AGNs over a sample of AGN and star-forming galaxies rather than the fraction over
a broader sample of galaxies.

We also noticed that fAGN decreases for higher redshifts in the barred galaxies. Bar effects
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playing a more prominent role for bluer redshifts is consistent with previous work (Lee et al.
2012; Cisternas et al. 2015; S. Oh, K. Oh, and Yi 2011; Alonso, Coldwell, and Lambas 2013).
However, this redshift effect could be explained by an unreliability in our model. As mentioned
in the previous section, the model becomes more unreliable for higher redshifts and fainter mag-
nitudes. This could lead to more misidentified bars, which would result in a lower AGN fraction.

5.3 Future prospects

This thesis has shown that machine learning is a promising method to re-evaluate the bar-AGN
connection at higher redshift. However, there are still many caveats that future studies could
improve upon.

One of the main caveats of this thesis is limited obscured AGN classification. Deeper mid-
infrared surveys could help improve this. There are also studies that improve upon the already
existing criteria, such as Assef et al. 2013. They re-evaluated the WISE [W1-W2] colour criterion
to work for magnitudes W2 ≤ 17.

Future bar-catalogues could help improve the training of the model. Currently comprehen-
sive classifications of galaxy morphology for large scale-structures such as bars is fairly limited
to GZ2. Galaxy Zoo:Hubble (Willett et al. 2016) provides morphological classification out to
z ∼ 4. However, the Hubble survey considers deep field rather than wide field and thus only
covers a limited amount of sky area. Future surveys or projects such as Galaxy Zoo could greatly
improve the available bar catalogues and allow for models that are trained with deeper data.
Furthermore, our model only learned to identify barred and non-barred galaxies. A model that
can identify the strength of the bar or can differentiate between elliptical and spiral galaxies
would allow to explore these different properties further. The bar strength in particular could
have a significant effect on the AGN activity (Silva-Lima et al. 2022,S. Oh, K. Oh, and Yi 2011).

Finally, this thesis only evaluated the AGN fraction as a function of redshift and magnitude.
Works such as Lee et al. 2012 or Silva-Lima et al. 2022 also look at galaxy properties such as
the stellar mass and colour. Additionally, Kim and Choi 2020 also found the effect of bars also
depends on the galaxy environment. A stellar mass limited sample that take into consideration
these different properties could tell us much more about the nature of AGNs and bars.

6 Conclusion

In this thesis we used a machine learning algorithm to classify barred and non-barred galaxies.
We constructed an HSC sample with redshift limit 0.1 ≤ z ≤ 0.55 and an r-band magnitude limit
of 15.5 ≤ mr ≤ 25. We used the BPT classification system on an SDSS catalogue to identify
optical AGNs. Additionally, we used the mid-infrared colour criterion [W1−W2] ≥ 0.8 on WISE
data to identify obscured AGNs.
We evaluated the AGN fraction in our most confident barred and non-barred galaxies. Here we
found an overall AGN fraction of 1% ± 0.1% and 1.2% ± 0.1% for bars and non bars, respectively
for the WISE data and 13.2% ± 1.8% in bars and 14.0%± 1.0% in non-bars for the SDSS data.
We also evaluated fAGN as functions of redshift and r-band magnitude but none of the plots
showed evidence that bars trigger AGN activity. The SDSS sample showed a decreasing AGN
fraction in barred galaxies for both an increasing redshift and for fainter magnitudes. The WISE
sample did not show any dependence on redshift but showed an increasing fAGN for barred
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galaxies for fainter magnitudes. However, this effect was deemed unreliable due to the WISE
colour selection not being reliable for fainter magnitudes.
Finally, summarise our conclusions as:
1) We do not see any increase in fAGN in barred galaxies compared to non-barred galaxies.
Leading us to conclude that bars do not play a significant role the triggering of AGN activity.
2) We see a decreasing bar fraction for higher redshift and for fainter magnitude. However, this
effect is likely caused by limitations in our model.
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A Bar examples

Below some plots are shown of HSC images that were identified as bars using the method de-
scribed in section 3.3. Please note that these images were selected randomly so some galaxies
might be shown twice.
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