
Dynamic Vertical Serverless
Function Deployment on the Edge

Master Thesis

Author:
Job Heersink

Supervisors:
Viktoriya Degeler
Mostafa Hadadian
David Bor

University of Groningen
The Netherlands
August 16, 2022

Abstract

Internet of Things (IoT) devices are becoming more and more common
in our environment, yet the process of developing programs for these de-
vices remains a challenge. To ease this experience, many research papers
have focused on introducing Function as a Service (FaaS), also known as
serverless functions, on these edge devices. With FaaS, the developers only
need to concern themselves with the core functionality. Everything related
to scalability, orchestration and the operating system is taken care of by
the FaaS platform. A common issue with FaaS platforms on the edge is
the Quality of Service. Services on the cloud can be scaled according to
demand, but the edge does not have this flexibility due to limited resources.
In this paper, we explore function offloading as a solution to this problem
and develop a vertical dynamic serverless function scheduler that will move
function execution from the edge to the cloud based on available resources,
price and user-defined constraints. By testing the scheduler on a real-world
deployment and comparing the results to the static or random placement
of functions on the edge and the cloud, we measured a reduction in latency
between 13%-20% or a reduction in cost up to 28%.

Contents

1 Introduction 3

2 Approach 6
2.1 Scheduler . 6
2.2 Automated deployment . 7
2.3 Usecase . 7

3 Related work 9
3.1 Challenges in serverless edge computing . 9
3.2 Serverless function offloading techniques 10
3.3 Serverless edge deployment platforms . 13
3.4 AWS Greengrass . 15

4 System Design 17
4.1 Inside the scheduler . 18
4.2 Outside the scheduler . 21
4.3 Papertronics deployment . 22
4.4 Configuration . 24

4.4.1 Lambda configuration . 24
4.4.2 Resource intensive configuration . 25

5 Methodology 26
5.1 Data . 26

5.1.1 price . 28
5.2 Machine learning ensemble . 29

5.2.1 Random Forest . 30
5.2.2 Extra Trees . 30
5.2.3 Gradient Boosting . 30
5.2.4 The best regression method . 33

5.3 Automatic function deployment infrastructure 34

6 Results 35
6.1 Pipeline data . 35

6.1.1 Original Pipeline . 37
6.1.2 Resource intensive pipeline . 42

6.2 Machine learning ensemble comparison . 48
6.3 Gradient Boosting method metrics . 52

6.3.1 Overall Performance . 52

1

Contents

6.3.2 Residuals vs fit plot . 53
6.3.3 Feature importance . 54

6.4 Scheduler performance . 57
6.4.1 Original pipeline . 57
6.4.2 Resource intensive pipeline . 58

6.5 Scheduler overhead . 60
6.6 Automated deployment script . 61

7 Discussion 63
7.1 Pipeline . 63
7.2 Machine learning model . 64
7.3 Scheduler . 65
7.4 Automated deployment script . 68

8 Future work 70

9 Conclusion 72

Appendices 77

A deployment configuration 78
A.1 Configuration grammar . 78
A.2 Example configuration . 80
A.3 Finalizer and scheduler configuration . 82

B Machine learning methods performances 84
B.1 Residuals vs fit plot . 84

B.1.1 Original pipeline . 84
B.1.2 Resource intensive pipeline . 86

C Pipeline data visualized 89
C.1 Original pipeline . 89

C.1.1 resources and message size vs duration 89
C.1.2 network bandwidth, available resources and message size vs transfer

times . 91
C.1.3 input features vs total pipeline duration 93

C.2 Resource intensive pipeline . 94
C.2.1 resources and message size vs duration 94
C.2.2 network bandwidth and message size vs transfer times 96
C.2.3 input features vs total pipeline duration 98

2

Chapter 1

Introduction

The arrival of cloud computing proved to be fruitful for a great number of industries. It
has introduced the concept of ”anything” as a service (XaaS) [1], which is an abstraction
that allows users to think of computation hardware, infrastructure and software as a
utility that can be employed with a subscription. Platform as a Service is still one of the
most popular products for developers, which allows them to effortlessly host and publish
their applications. However, there are still some nuisances with this product. Namely,
not all aspects related to the infrastructure are abstracted to a satisfactory extent and
developers still need to provide the entire software package.

To solve this problem, the Function as a Service (FaaS) product, also called serverless
functions, was introduced. With FaaS, developers do not need to worry about server
management. They do not have to manage underlying operating systems, software and
scalability, as this is the responsibility of the FaaS platform. FaaS ensures that these
functions automatically scale to zero when they are no longer needed, thus avoiding
wasted resources.

With the increasing number of services running in data centers and an increase in the
number of devices communicating with these services, an enormous strain is put on the
boundary of communication networks, making it more challenging to provide low latency
communication to central cloud computing systems [2]. This issue is even more underlined
by the fact that many services are latency sensitive, and require results to be processed
near real-time.

To address these challenges, the concept of edge computing was brought to light. Edge
computing tries to minimize data processing latency by leveraging available computational
power close to where the data are generated, sometimes at the source itself [3]. These edge
devices can, for example, be used to preprocess or aggregate the data, before the data
are sent to the cloud. In some cases, edge computing also offers the benefit of cheaper
execution compared to the cloud [4]. With new services like AWS Greengrass [5], it is now
already possible for developers to migrate a part of their cloud based serverless functions
to the edge. This new technology makes edge computing a viable option to potentially
decrease latency or reduce cost for most serverless applications, where latency is measured
in terms of the time from the ingestion of the input to the storage of the results in the
cloud [6].

3

Chapter 1. Introduction

To realize this latency reduction, edge devices should be able to process the data in real-
time. However, for some applications and workloads, this is not completely possible due
to the resource constrained nature of these edge devices. Depending on the situation
and available resources, the duration of execution might be shorter when some tasks
are dynamically offloaded to the cloud. So the problem is; How do we determine
what tasks should be offloaded to the cloud and what should remain on the
edge?

Another advantage of edge computing is that the execution can be cheaper than on the
cloud. For example, AWS Greengrass only charges its users per device, rather than per
service invocation. The cost is fixed, no matter how many processes are running. However,
in the decision to offload applications to the cloud, the potential increase in cost should
also be taken into account. To be able to make the right decisions based on the user’s
preference, the user should be able to set a constraint on either cost or latency, for which
the scheduler will then try to optimize the opposed value. For example, if a user defines
a cost constraint, then the scheduler will try to optimize latency and if the user defines
a deadline constraint, then the scheduler will try to optimize cost. Therefore we can
reformulate our research question as: How do we determine what tasks should be
offloaded to the cloud and what should remain on the edge based on a cost or
deadline constraint?

One disadvantage of edge cloud computing is the fact that setting up a cloud edge in-
frastructure can be a time-consuming tasks, since a lot of manual work is still required in
order to configure and run serverless functions on the edge [7, 8, 9, 10]. With the addition
of dynamic function offloading, the time needed to configure a deployment may increase
even further. We therefore also try to answer the question: How do we minimize the
time-consuming process of configuring and deploying serverless functions to
the cloud and to the edge?

In summary, in this paper we try to answer the following research questions:

1. How do we determine what tasks should be offloaded to the cloud and what should
remain on the edge based on a cost or deadline constraint?

2. How do we minimize the time-consuming process of configuring and deploying
serverless functions to the cloud and to the edge?

To answer these research questions, we propose a dynamic vertical serverless edge sched-
uler that will schedule tasks to be executed on the edge or in the cloud based on predefined
user constraints for either duration or cost. In addition to that, we provide a serverless
edge-cloud configuration program that will automatically create and update serverless
functions with minimal intervention from the developer. Our scheduler is dynamic in the
sense that scheduling choices are made as messages come in, instead of when the pipeline
is created. In addition to that, our scheduler is vertical in the sense that we only focus on
edge to cloud function offloading [7]. Horizontal offloading, or in other words offloading
from one edge device to other edge devices, is not discussed in this paper.

We implement our scheduler and automatic function deployer on Amazon Web Ser-
vices [11] (AWS). More specifically, we create the scheduler as an AWS Greengrass [5]
component and run our computing services as AWS Lambda [12] instances. AWS Lambda
is Amazon’s implementation of a Function as a Service infrastructure and allows develop-
ers to easily deploy computing services without great amounts of necessary configuration.

4

Chapter 1. Introduction

AWS Greengrass on the other hand is an Amazon service that can be installed and run
on a range of IoT devices, like a raspberry pi [13], and provides an environment for
AWS Lambda functions to be executed. It also provides the ability to securely commu-
nicate with other lambda functions running on the edge or other services running in the
cloud.

We evaluate and test our scheduler on a deployment for a real-world use case: the Beer-
O-Meter [14]. This is a device, created by the company SG Papertronics [15], which is
capable of retrieving the properties and characteristics of beer by capturing and analyzing
an image of a colorimetric sample of the beer. They can potentially have a great number
of these devices scattered over several locations and all the images from these devices need
to be analyzed and eventually stored in the cloud. A serverless edge implementation with
dynamic function placement is advantageous in this use case.

The remainder of this paper is structured as follows: In Chapter 2 we dive deeper into the
problem, the proposed solution and the approach. In chapter 3, we describe the related
work of this research, including their findings and open issues. In chapter 4, the system
design of our scheduler and Beer-O-Meter deployment is described. In Chapter 5, we
describe the methodology of our research. In Chapter 6, the results of our experiments
are described. In Chapter 7, these results are discussed and evaluated. In chapter 8, we
mention some remaining challenges in the fields and some problems our solution was not
able to solve. Finally, in chapter 9, we conclude this paper.

5

Chapter 2

Approach

We propose to create a vertical dynamic serverless function scheduling system that de-
creases the cost or latency of cloud/edge based systems by scheduling tasks based on
user-defined cost or deadline constraints.

2.1 Scheduler

The proposed scheduler consists of an ensemble machine learning method that predicts
the individual lambda functions duration, transfer time to the lambda function and total
remaining pipeline duration for both the edge and the cloud. This machine learning
implementation is trained on incoming message size, available resources like CPU and
memory, and current network bandwidth.

Based on these predicted values, the scheduler will decide where to execute the function
based on a deadline or cost constraint. If a deadline constraint is set, the scheduler will try
to minimize cost while keeping execution duration under the deadline. If a cost constraint
is set, the scheduler will try to minimize latency while keeping the cost under the specified
constraint.

The machine learning model needs to train itself on a number of data points before it
can provide accurate results. In order to do so, we utilize an exploration vs exploitation
strategy [16]: When the machine learning model is untrained or performs poorly, more
exploration moves are made by randomly scheduling tasks and analyzing the performance.
The machine learning model will then be retrained on this data. When the machine
learning model is trained and is performing relatively accurately, the exploitation move
is made and tasks are scheduled according to the output of the model.

To evaluate the model itself, we gather around 500 data points of performance statistics
of the scheduler and the pipeline it is applied to. We train the model on 75% of this data
and evaluate the score of the model on the remaining 25%.

To improve fault tolerance and improve the QoS, function execution will automatically
be scheduled on the cloud if not enough resources, like CPU and ram, are present on the
device. In addition to that, If no or limited internet is available, the function execution will
automatically be scheduled on the device itself, regardless of the output of the machine
learning model.

6

Chapter 2. Approach

Our implementation of the scheduler is written on top of AWS Greengrass [5] and there-
fore, the deployment used for evaluating the scheduler is created in the Amazon Web
Services environment [11].

2.2 Automated deployment

This scheduler comes with a program that should be able to automatically create and
update functions on both the cloud and the edge with minimal intervention from the
developer. When developing an application or when porting an existing application to
work on the edge, the developer will only need to take care of the following:

First of all, the developer should put the existing function in our predefined python
wrapper, by adding the line @serverless decorator above their serverless function as
can be seen in the following code snippet:

@serverless decorator
def handle(event, context):

print(f"incoming message {event}")
return "message received"

This wrapper will take care of the differences in communication channels in the cloud
and the edge and use the corresponding message channel relative to the placement of
the serverless function. This way, the developer does not need to care about where the
function is going to be deployed when writing the code. The wrapper also facilitates direct
communication with the scheduler if the function is run on the edge, so the developer will
not have to configure this communication manually.

Second of all, the developer should provide a configuration of the entire pipeline and the
individual lambda functions to create the functions correctly and to inform the scheduler
about the structure of the pipeline. We provide a .yaml configuration file for the developer
where the configuration can be easily defined and imported by the deployment program.
An example of this .yaml file can be seen in Appendix A. Some of the mandatory re-
quirements that need to be set are: The correct AWS credentials, the id of the group of
devices to deploy to, a bucket to store the code in, a region to deploy to and a lambda
role. In addition to that, the cost or deadline constraint for the scheduler will need to be
set.

Each individual lambda function must have one or multiple ”destinations” defined if the
lambda function is expected to communicate with other services. When the lambda
function has finished its task then it will send the result to the defined destination. Fur-
thermore, the developer can constrain the lambda function on its place of execution by
inserting a ”placement” field in the lambda configuration. For example, a lambda function
can be deployed on only the edge by setting the placement field to ”edge only”.

2.3 Usecase

We created a deployment for a real-world use case scenario in the chemistry sector. This
deployment is used to test and evaluate the scheduler. It was created for the company
SG Papertronics [15] and is tied to their product the Beer-O-Meter [14].

7

Chapter 2. Approach

This company is a small startup consisting of about 6-8 people. It was founded in July
2016 and its first product, the Beer-O-Meter, has recently hit the shelves. This device is
an encased Raspberrypi 3B [13] with 1 Gigabyte of memory equipped with a camera and
LED’s, along with some other additional hardware. An illustration of the current state
of the device can be seen in figure 2.1a. It has an opening at the top of the case, where a
user can insert a ”pod” containing their sample of the beer on a piece of specialized paper
made for colorimetric tests. The station will proceed to take pictures of this colorimetric
sample over time and see how the colors have transposed. An example of such an image
taken by the station can be seen in figure 2.1b. After the images have been taken, they will
be analyzed and the resulting data will be sent back to the user. Using this approach, the
device is able to measure, among other things, the pH, bitterness, calcium, magnesium,
chlorium and alcohol percentage in beer.

The main purpose of the Beer-O-Meter is to provide small beer brewers the ability to
test their beer on the spot and get their test results back in minutes time. Without the
Beer-O-Meter, small brewers would have to send their beer samples to a lab, potentially
somewhere across the country, and wait days for the result to come back.

The device in its current state takes pictures of beer samples and sends them to the cloud
for processing. Our deployment moves this processing stage to the device itself and only
offload this stage to the cloud if it is beneficial for latency or cost. To adhere to the FaaS
infrastructure of AWS and keep the deployment consistent, all the functionality of the
deployment is implemented as serverless functions.

(a) The Beer-O-Meter (b) a colorimetry sample

Figure 2.1

8

Chapter 3

Related work

In this chapter, we list some relevant works related to serverless edge scheduling and
some technologies and platforms used to implement and test the scheduling algorithms.
For each related work, we provide a short description of their paper, what they tried
to solve, what insights they have made and what challenges still remain to be solved.
We also provide an explanation of how each work influenced our research and how we
incorporated or improved on their research.

A great number of papers have been published concerning the area of serverless (edge)
computing in the past years and it still continues to be an active area of research. Many
research papers have been trying to solve existing challenges in the area of serverless
computing, like the cold-start problem, maintaining the quality of service and lack of
debugging tools [17]. Others concerned themselves with creating new frameworks and
architectures to optimize the serverless edge platform for certain use cases [7].

3.1 Challenges in serverless edge computing

This section describes some of the open challenges within serverless edge computing,
how relevant research tried to solve them and how we plan to tackle or note these chal-
lenges.

One of the most prominent challenges in the area of serverless computing is the warm/cold
start problem [17]. A warm start of a serverless function implies that the function was
already loaded into memory and the environment was already set up, likely due to a recent
previous invocation, resulting in relatively low latency. A cold start of a serverless function
implies that a new instance of the function needs to be created and this can result in a
higher startup time and thus higher latency. A number of researchers have tried to analyze
the cold startup problem and proposed solutions to minimize the startup time by reducing
the size of the function and its resources or by trying to predict when a function might
be invoked so that the cloud provider can start them up beforehand [17, 18, 19, 20].

In addition to that, some papers on serverless edge offloading techniques tried to predict
warm and cold starts by analyzing the frequency and interval between requests from a
single edge device, and then using this information in the decision of whether or not
to offload the function [6]. This technique works well when only one edge device is

9

Chapter 3. Related work

operating in the deployment, but when multiple devices operate in the same deployment,
the accuracy goes down. This happens because the edge device can only see its own
requests made to the cloud. Although some papers show promising results, this matter is
still considered an open challenge [17, 7].

Another challenge is maintaining the quality of service of serverless functions on cloud
edge deployments [7]. This challenge aims to ensure the proper execution and stability
of serverless functions under the most diverse scenarios and mission-critical applications.
This challenge is also deeply intertwined with the cold/warm start problem mentioned
before. Serverless functions in the cloud try to tackle this challenge by allocating enough
resources according to the demand. This helps with handling all requests and prevents
system slowdown. However, this is not possible on edge devices, since there are often not
enough resources available to scale to. A solution to this would be to offload the serverless
functions to the cloud when demand gets too high. In this paper, we try to overcome
this QoS challenge by moving the execution of serverless functions to the cloud when the
load gets too high or when function offloading is beneficial for latency, according to some
predefined user constraint.

Some research papers mentioned a lack of debugging and development tools, as a current
challenge of serverless edge computing. As stated by Gustavo Cassel et al. [7]: ”It may
be tedious or impractical to manually deploy a new version of a function on every single
device, depending on the total amount of devices. Simplifying the deployment process is
crucial to popularize serverless IoT applications.”. In our research, we try to overcome
this challenge by automating the deployment process as much as possible for the scheduler
as well as the individual serverless functions.

3.2 Serverless function offloading techniques

In this section, we list some relevant papers that also try to implement vertical serverless
function offloading techniques. We point out the general techniques used in scheduling
the serverless functions, several shortcomings and future work. We also describe how
our solution may circumvent the currently existing shortcomings in the implementations
presented by the recent literature. To give the most relevant view of the latest research,
we only included articles that are not older than 3 years.

Anirban et al. [6] developed a solution for dynamic task placement on the edge. They
propose a technique that automatically determines whether to execute the serverless func-
tion on the edge device or on the cloud by predicting the execution time of both scenarios
on the edge device itself. They propose a scheduler that is located on the edge and takes
execution time as well as cost into account. Their implementation is created in AWS [11],
but could theoretically be applied to any cloud provider. Although this research has some
promising elements, their deployment only works with one single serverless function. In
its current state, it does not work with complex chained function deployments, since their
scheduling method is implemented inside the single serverless function. This is a problem
for several reasons in a deployment with multiple serverless functions:

First of all, each function would have to carry about 200 Mb of additional libraries due to
the needed scikit-learn python package, leaving almost no room for additional packages
due to the serverless function size limit of 250Mb AWS puts on the entire ZIP archive.
Second of all, this method of scheduling can be a strain on memory and storage, since each

10

Chapter 3. Related work

function would need to store all the additional libraries for each function as well as load
them into memory each time the function is invoked on a cold-start. This can also increase
cold-startup times. Last of all, since the code for the scheduler is inside the function
codebase, this would mean the scheduling code is also present in the lambda function on
the cloud, including the large libraries. This would mean that lambdas running in the
cloud could have the same problems with storage and memory as lambda functions running
on the edge. A way to solve this would be to create a ”cloud” version and an ”edge” version
of the lambda function, but this would put unnecessary strain on the developer to create
two different versions of what is essentially the same functionality.

Another limitation of this research is their proposed scheduling method. They utilize a
pre-trained machine learning approach that they create by training on a custom-made data
set for every single deployment. This can be rather impractical in a production environ-
ment, since the scheduler cannot always be retrained every time the deployment changes.
The authors mention improvements to this scheduling method as future work

In this paper, we take the underlying idea of using a random forest-like machine learning
algorithm to schedule serverless functions either on the cloud or on the edge, but we
propose to detach the scheduling element away from the serverless functions so that the
individual functions stay lightweight and maintainable. Instead, we propose to create
a separate component for the scheduling functionality. Because of this change, we also
change the features and output of the model to be able to predict the total remaining
duration as well as single execution time, since predicting only a single lambda duration
will not give enough information for scheduling a multi-stage pipeline. To solve the
machine learning implementation shortcomings, we retrain the network after a certain
amount of messages have passed through the network or if an accuracy lower threshold
has been reached, to ensure that the machine learning algorithm stays accurate, even
when the deployment or functions changes.

Tarek Elgamal et al. [21] focuses on reducing execution cost by function offloading and
function fusion, where they researched the performance increase of placing the function
either in the cloud or on the edge as well as combining two functions together. Combining
two functions together implies that two functions are deployed as one, and therefore
the communication overhead between two functions no longer exist. Just as with many
other research papers listed here, this implementation was created for AWS as well, but
could theoretically be applied in any cloud environment. Function fusion showed a great
reduction in cost: They were able to decrease cost by 37% to 57%, however, the latency
also slightly increased by 5%. Although these are promising results, the authors stated
that the current implementation is not at all maintainable, since functions need to be
manually combined and this can put a strain on the development process. We therefore
chose not to pursue function fusion in this research, since we are looking for a maintainable,
developer-friendly solution that is able to handle a changing deployment.

István Pelle et al. [10] provides another scheduling technique implemented in AWS and is
tested for hybrid cloud as well. The tactic proposed in this paper is not to predict where
to place the serverless functions, but to run the deployment first and then evaluate what
the most optimal placement would be. If the deployment is not satisfying the specific
requirements made by the developer, the deployment is automatically reconfigured.

The authors mentioned the following shortcomings however: The technique uses Amazon
cloudwatch to retrieve information about the performance data of edge devices. This can

11

Chapter 3. Related work

hinder the proper management of applications requiring low latency, since communication
with the cloud is required. A decentralized alternative to this cloudwatch solution would
be able to solve this problem. As future work, they mention that replacing CloudWatch
with a different option and placing it closer to the edge resource can significantly speed
up the process of component offloading.

Duarte Pinto et al. [16] also proposes a function offloading technique as a decentralized
solution implemented in AWS. It uses a Bayesian Upper Confidence Bounds algorithm
to find the most optimal placement of serverless functions. However, in the placement of
these serverless functions, they only consider execution time. Parameters like cost, CPU
power, available memory and network bandwidth are completely ignored. They mention
in their future work that other parameters, apart from time, may improve the accuracy
in the decision process of placing the functions and result in better performance.

George et al. [22] presents an optimized FaaS platform that can be deployed on extremely
resourced constrained hardware like embedded systems. They also use storage systems
like AWS Simple Storage Service or Google Cloud Storage in an interesting way. They
store the binary code of the serverless functions inside a bucket in the cloud, that is
dynamically downloaded on the edge device when functions are triggered. This is great
for embedded devices that have little to no persistent storage for functions like this,
but it can also be a bottleneck to have to download the bytecode of the function every
time the function is called. For this reason, we decide to store the latest function on
the device and only download the bytecode when the function is updated, rather than
pull it from the cloud every function invocation. We assume that the device has enough
storage to store the serverless functions, since a serverless function is only a couple of
hundred megabytes large and a few gigabytes of storage on persistent storage is relatively
inexpensive. This method of function deployment is however a good option for extremely
small and resource-constrained IoT devices.

Because of their design for very small IoT devices, they used a relatively simple execu-
tion scheduler. This scheduler does not take into account device capability, energy use,
battery life, networking or cost. Taking these parameters into account could potentially
improve performance. The function code on the edge also had its problems. Some of
the python scripts did not work, since a selection of the libraries were written in C and
compiled on different hardware. The code and necessary libraries were recompiled and
directly retrieved from cloud storage, which means that some libraries would not work
on the edge device. A solution would be to either upload multiple versions of the code
for different hardware specs or compile the libraries on the device itself when the pipeline
is instantiated. For our deployment, we use the latter solution to circumvent this prob-
lem.

Chunglae Cho et al. [23] uses reinforcement learning to decide whether to put the function
on the cloud or on the edge. They use a decentralized approach where, after the edge
device has made a decision to place the function on the edge or the cloud and the function
has been executed, a cloud component will evaluate the choice and send feedback back to
the edge device to improve future predictions.

12

Chapter 3. Related work

3.3 Serverless edge deployment platforms

In this section, we list some existing serverless edge deployment platforms, list their
upsides and downsides and elaborate on the decision why AWS Greengrass was selected for
our research. The serverless edge frameworks of the most popular cloud service providers
among relevant research have been included in this list. An overview of all serverless
edge deployment platforms mentioned in this section can be seen in table 3.1. Note that
neither Google Cloud functions nor IBM Cloud functions provide the functionality needed
to execute their functions on edge nodes [10], therefore these cloud service providers are
not included in this list. Also note that, although IBM cloud functions is OpenWhisk
based, it does not provide integration with user-managed OpenWhisk deployments and
therefore its serverless functions can not be deployed on the edge.

AWS Greengrass
AWS IoT Greengrass [5] is a service provided by Amazon Web Services [11]. Greengrass
is by far the most popular option among relevant research, with approximately 7 out of
10 papers utilizing at least AWS Greengrass to test their edge deployments [16, 10, 21, 6,
24, 23, 25]. Greengrass allows the developer to connect their IoT device directly to the
AWS cloud infrastructure with little to no configuration. It will, for example, allow for
the execution of AWS lambda functions directly on the hardware of the device or in a
container without the need for reconfiguration or changes to the code.

Furthermore, since AWS Greengrass version 2.0, the code of the component running on
the edge device has been made completely open source. Amazon even allows developers to
modify and extend this source code to meet the developers specific software and hardware
needs.

There are however still some disadvantages of AWS, as mentioned in the article by Pelle
et al. [10]: “While AWS CloudFormation excels at resource setup, it lacks a high-level in-
terface for specifying application components and their intended setup. While monitoring
data can be collected at the same centralized location in the cloud, monitoring deployed
FaaS code, especially in hybrid edge cloud scenarios is still cumbersome, thus it is also a
weakness of the platform.”

Fogflow
Fogflow [26] is a completely Opensource edge computing framework capable of running on
any Kubernetes-based environment. With the addition of fog functions [27], the platform
is also able to schedule and place serverless functions themselves and only requires the
developer to provide an initial service topology. The main benefit of Fogflow over any
other platform listed here is that is it independent of any service provider like AWS or
Google cloud. Since it is purely kubernetes-based, it could be deployed anywhere.

The fact that Fogflow is not tied to any vendor makes it ideal for a hybrid cloud scenario,
but also makes it less attractive as a serverless edge solution for industry applications.
One of the main advantages of serverless is that little to no configuration should be
required from the developer, and only the code should have to be provided. On the other
hand, fogflow requires the developer to set up its own Kubernetes cluster, configure each
edge component manually and configure the security settings correctly. Furthermore, the
developer is required to create its own container for the serverless function, Something
that AWS Greengrass and Azure IoT edge already do for the developer.

13

Chapter 3. Related work

Amazon
Greengrass

Azure IoT
Edge

FogFlow OpenWisk-
Lite

Availability Made for AWS,
but is Open-
source

Made for Azure,
but is Open-
source

Opensource Opensource

Deployment Easy, using
AWS.

Easy, using
Azure

Difficult, using
helm+kubernetes.

Difficult, using
helm+kubernetes.

Distribute
function
changes au-
tomatically

yes, using a
push model

yes, using a
push model

yes, using a
push model

yes, using a pull
model

popularity +++ + ++ +
cost via vendor via vendor free, but re-

quires kuber-
netes

free, but re-
quires kuber-
netes

access func-
tionality via

CLI or UI UI, CLI or vi-
sual studio

UI or API API or CLI

other max 50 func-
tions per
deployment

has 2 sin-
gle point of
failures [26]:
Discovery and
Orchastrator
component

Still in Beta ver-
sion

Table 3.1: Serverless edge deployment platforms overview

Another shortcoming of fogflow is the discovery and orchestrator component, which acts
as the serverless function scheduler. Currently, these components are not replicated and
placed in the central location, resulting in a single point of failure. The article on fog
functions even lists this issue as a future work: ”The current approach is scalable with
hundreds of fog nodes, but it is necessary to decentralize the discovery and orchestration
for a much larger scale.” [27].

Azure IoT edge
Azure IoT edge [28] is the serverless edge framework provided by Azure. It provides many
of the features that AWS IoT Greengrass does, but is more limited in terms of cloud to
edge data transfer and scalability [10]. For example, azure only allows for the deployment
of a maximum of 60 different functions.

OpenWisk
OpenWisk [29] is originally a serverless platform for cloud-based applications, but with
the new extension of OpenWisk lite, is now also able to be deployed on the edge. Just like
with fogflow, OpenWisk is open-source and can be deployed on any device that supports
Kubernetes. It is still undergoing development and is currently still marked as an early
prototype and not ready for production use.

Note that IBM Cloud function is OpenWisk based, however it is not able to deploy
functions to the edge because the developer is not able to directly modify the openwisk
deployment.

14

Chapter 3. Related work

Because of its frequent use in relevant research, available services and support for edge
execution, AWS Greengrass has been chosen as our serverless framework for the edge.
Although the implementation itself will therefore be tied to only a single cloud provider,
the machine learning algorithm and architecture could theoretically also be applied to
other cloud vendors as well.

3.4 AWS Greengrass

Now that we established why Greengrass is the most suitable serverless edge framework
available at the moment for our use case, we can dive deeper into the architecture of AWS
Greengrass itself and how it works. The relevant architecture of AWS Greengrass can be
seen in figure 3.1.

Edge device

<<Greengrass core>>
Nucleus

<<Greengrass plugin>>
Lambda manager

<<Greengrass component>>
Lambda runtimes

<<Greengrass component>>
Lambda launcher

<<Greengrass component>>
Token exchange service

Cloud

other aws services

Figure 3.1: The architecture of Greengrass

The architecture of Greengrass consists of a collection of individual isolated processes, also
referred to as Greengrass components or simply components, that each has a simple task to
perform. The most important component within Greengrass is the Nucleus. The nucleus
component is a mandatory component of Greengrass and the minimum requirement to
run the AWS IoT Greengrass Core software on a device. This component instantiates
and controls all the other components and handles all the interprocess communication
between them. One of the inter-process communication channels provided by the nucleus
and open to use by any component is a simple publish-subscribe queue. In this paper,
we refer to this queue as the local pub/sub queue. The nucleus also provides a method
for other components to communicate with the cloud via IoT MQTT. Although with the
use of the Token exchange service component, the components themselves are also able
to establish a connection with other services of AWS, Like the simple storage service or
AWS lambda located in the cloud.

Following the nucleus, there are several components and plugins necessary to run lambda
functions on the edge. These are the lambda manager plugin, the lambda runtimes compo-
nent and the lambda launcher component. The fact that the lambda manager is a plugin
and not a component means that this instance runs directly inside the same Java Virtual
Machine (JVM) as the nucleus. When a lambda function is deployed to Greengrass, the

15

Chapter 3. Related work

lambda manager, lambda runtimes and lambda launcher are automatically installed on
the edge device.

The Lambda manager is responsible for porting the interprocess communication and scal-
ing of the Lambda functions to the existing functionality of the nucleus component. It
provides a simple communication layer that is able to invoke or scale lambda functions as
calls come in.

The Lambda runtimes and lambda launcher components are responsible for setting up
the serverless environment. Lambda runtimes provide a set of artifacts to run server-
less functions for different runtimes. Current artifacts available are created for python,
javascript, java, Go, Ruby and C. The lambda launcher is responsible for creating and
maintaining the individual lambda functions as a process and its respective environment
configuration. Together with the lambda manager plugin and the Greengrass nucleus,
they are the only components required to run lambda functions on the edge.

Apart from these mandatory components to run lambda functions, a number of other
optional AWS provided components can also be specified for Greengrass. One such com-
ponent is the Token exchange service, which is also included in this diagram. This compo-
nent provides AWS credentials that the developer can use to interact with AWS services.
If the Token exchange service is added as a dependency to a component, then this compo-
nent becomes authenticated to perform certain tasks on the cloud. For example, storing
an image in AWS Simple Storage Service (S3).

A range of other optional components created by AWS exists as well, like AWS IoT Device
Defender which gives the developer insight into security vulnerabilities of the application,
Docker application manager which enables AWS IoT Greengrass to download Docker
images from Docker Hub or Greengrass CLI which provides a command-line interface
that a developer could use to create deployments on Greengrass and interact with the
components. Moreover, the developer is even able to create its own custom components
and deploy them within Greengrass.

To deploy a lambda function into Greengrass, the developer will have to create a Green-
grass component out of a lambda function. This is not as complicated as it sounds, since
AWS does most of the configuration itself. The developer will only have to specify the
name of the lambda function and if necessary some optional configuration about the event
topics or environment. Once the component is created, it can be attached to a deployment
scheme. Once this deployment is applied to an edge device, the device will automatically
create the component and start it up.

Apart from the functionality explained above, Greengrass also supports device shadows,
a way of managing a devices state through the cloud or the edge, and data streams,
a method of streaming high volume data from local sources to the cloud, among other
things. This functionality is all optional, requires seperate Greengrass components and
is not necessarily part of the core Greengrass functionality. Since we do not utilize these
Greengrass services in this paper, they will not be further elaborated and are therefore
not included in figure 3.1.

16

Chapter 4

System Design

In this chapter, we go more in-depth into the system design of the dynamic serverless
edge scheduler, and the implementation we use to test the scheduler.

Our implementation consists of 2 main custom components: A scheduler running on each
edge device and a finalizer running in the cloud. The scheduler is a custom Greengrass
component created to run alongside the serverless functions on Greengrass and the finalizer
is a custom lambda function running alongside other lambda functions in the cloud. A
diagram of this design can be seen in figure 4.1.

local pub/sub IoT MQTT / S3

IoT MQTT / S3

scheduler

local pub/sub

edge device lambda invoke / SQS

lambda invoke / SQS

IoT MQTT
finalizer

Cloud

Actor

IoT MQTT

device metrics

Figure 4.1: Scheduler system design

The main purpose of the scheduler is to receive all incoming and internal messages and
decide where to send and handle these messages. For example, when a message is sent to
an edge device or an internally running Lamba function publishes a message, the scheduler
will have to decide to handle this incoming message internally or send it to the cloud so
that it can be handled there. If it chooses to handle it internally, the message will be
published to an internal Greengrass pub/sub queue and one of the lambda functions
running on the edge device will start working on it. If the scheduler decides on a cloud
execution, the message is sent to one of the lambda functions running in the cloud via

17

Chapter 4. System Design

the AWS IoT MQTT queue. From there on all further executions are performed without
interaction with the scheduler in the cloud.

The main purpose of the finalizer is simply to receive the last message in the pipeline,
extract the execution statistics embedded in the message and store these in a database.
When needed, the finalizer has the option to retrieve the statistics back from the database
and train a new machine learning model on this data. This newly trained model will be
stored in AWS S3 and the edge devices can retrieve the new models at their earliest
convenience.

We decided to implement the scheduler as a separate component, rather than implement-
ing it inside the individual serverless functions themselves, like what has been done in
relevant research [6]. The main advantage of this is: lower startup times for serverless
functions and less memory consumption, since each serverless function does not have to
load in unnecessary libraries used for the scheduler. In addition to that, this method
doesn’t clutter the limited lambda size. lambdas can only be 250 MB in size and the
required packages for the scheduler will take up 75% of that space, leaving no space for
other packages.

There is however one downside to this separation: The scheduler will need to be invoked
via an internal queue for each message going from one lambda function to another on the
edge, which can result in communication overhead between the functions. After running
some experiments, we see that the communication overhead is about 0.2 seconds for
messages smaller than 250KB and 0.7-3 seconds for messages between 2 and 10 MB. In
most cases, this means that the communication overhead is increased by 10%, compared
to if no scheduler would be present. Although this difference is not negligible, it will still
perform better and use fewer resources than the previously mentioned alternative [6].

Note that in this design, all lambda functions are present on both the cloud and on each
edge device. However, since these are serverless functions, not all of them are running at
the same time, the code and configuration of each lambda function simply exist on the
device itself, ready to be executed. An alternative solution exists where lambda functions
are retrieved from the cloud only when they are needed, but this has a negative impact on
performance and is only a viable solution for edge devices with extremely limited storage
capabilities [8].

4.1 Inside the scheduler

The scheduler is the main contribution of this research paper, in this section, we therefore
look a bit deeper into the inner workings of the scheduler. A diagram of the design of the
scheduler can be seen in figure 4.2.

18

Chapter 4. System Design

scheduler

schedule
incoming message

handler

decision engine

send
message

feature retriever

outgoing message
handler

retrieve features

get decision

scheduler core

Figure 4.2: Inside the scheduler

The design of the scheduler can be divided into 5 separate ”handlers”. First of all,
we have the incoming message handler. This handler is responsible for receiving and
reformatting incoming messages. This handler subscribes to a number of AWS IoT MQTT
and local pub/sub topics and directs the message to the scheduler core. A full list of the
topics the scheduler subscribes to and their purpose can be seen in table 4.1.

topic type description
{s id}/+ IoT

MQTT
Used to invoke any lambda function on the device
from the outside. In our case, we only use this
endpoint in the form {s id}/station lambda, since
this is the starting point in our pipeline

scheduler/{s id}/+ IoT
MQTT

Used for specific scheduler commands. The ’+’
sign can be replaced with any of the following
options: type and get model, used for setting a
scheduling method and retrieving the updated
models from the cloud respectively.

out/+ Local pub-
/sub

Is an internal topic used by the scheduler to re-
ceive messages from the internally running lambda
functions. The ’+’ sign can be replaced with any
lambda function’s name present on the device.

Table 4.1: Scheduler IoT MQTT and local pub/sub topics, where {s id} is the identifica-
tion tag of an edge device.

Second of all, we have the scheduler core, which acts as an intermediary between the
feature retriever and the decision engine. When a message comes into the scheduler, the
incoming message handler calls the scheduler core. This component in turn calls the
feature retriever first, to retrieve the performance statistics and message characteristics,
and then calls the decision engine with the retrieved features to generate an offloading

19

Chapter 4. System Design

decision. The incoming message and the offloading decision are then passed onto the
outgoing message handler.

Third of all, we have the feature retriever. After a message has been received, the
scheduler core calls this handler first. The feature retriever fetches up-to-date device
metrics like CPU usage, memory usage and network speed. The feature retriever also
fetches the size of the incoming message. After the features have been retrieved, they are
returned back to the scheduler core.

Fourth of all, the decision engine is called given the retrieved features. It applies a
machine learning model on the given features and predicts the individual lambda duration
for the edge de and the cloud dc, transfer time from the scheduler to the lambda function
running on the edge te or running in the cloud tc and total remaining pipeline duration
for both the edge re and cloud rc. The input features and output labels of the model
are described in detail in section 5.2. Using these predicted values, this handler then
calculates the expected price p of executing the remainder of the pipeline in the cloud
using equation (5.4). Now the decision engine has the required information to make a
scheduling decision based on some user-defined constraint c. The decision engine supports
2 scheduling methods: latency optimization under cost constraint and cost optimization
under deadline constraint.

The formula for determining the offload decision for latency optimization according to
cost constraint ($) can be seen in equation (4.1). This equation can be interpreted as
follows: We offload the lambda function to the cloud if the calculated price is less or equal
to the constraint c and either the individual lambdas execution is slower on the edge or
the total remaining pipelines duration is slower on the edge. This formula works under
the assumption that if the individual lambdas cloud execution + transfer time is faster
than edge execution, than the entire pipeline duration on the cloud will be faster as well.
Namely, more resources are available on the cloud and large messages will no longer have
to be transferred over the internet.

offload ⇐= p ≤ c ∧ (de + te ≥ dc + tc ∨ re + te ≥ rc + tc) (4.1)

The formula for determining the offload decision for cost optimization according to dead-
line constraint (sec) can be seen in equation (4.2). Here s is the elapsed time since the
start of the request. This equation can be interpreted as follows: We offload the lambda
function to the cloud if edge execution no longer satisfies the deadline constraint and the
cloud does or individual cloud duration is shorter than edge.

offload ⇐= re + te ≥ c− s ∧ (rc + tc ≤ c− s ∨ de + te ≥ dc + tc) (4.2)

The decision engine determines the offloading decision based on one of these formulas,
depending on what optimization the user has defined beforehand, and returns this decision
back to the scheduler core handler. The scheduler core then calls the outgoing message
handler and gives it the message and the offloading decision.

Last of all, the outgoing message handler is called and sends the messages to ei-
ther internal lambda functions or lambda functions running in the cloud based on the
given offloading decision. The outgoing message handler can do this by either publishing

20

Chapter 4. System Design

the message to an internal topic ”in/{lambda function name}” or an IoT MQTT topic
”cloud/{lambda function name}”. Lambda functions on the edge are listening on the
former topic and cloud lambda functions on the latter.

4.2 Outside the scheduler

Apart from the scheduler component itself, we also use a number of other AWS resources
outside of the scheduler to make it perform as intended. These resources mainly con-
tribute to providing an execution environment for serverless functions on the edge and
the cloud, providing communication channels to lambda functions in different locations
and providing storage capabilities for device metrics. These services and their relations
can be seen in figure 4.1.

The most important service utilized by the scheduler is most likely the AWS Greengrass
service [5]. This service is responsible for providing an execution environment for lambda
functions on the edge and providing inter-process communication channels on the edge
device as well as communication channels to the cloud. It is the host to the scheduler
itself and the lambda functions running on the edge. Greengrass provides interprocess
edge to edge communication via a local pub/sub queue. Note that with edge to edge
communication, we imply the communication of one Greengrass component to another
Greengrass component running on the same device. The scheduler does not support the
communication channels for lambda functions across different edge devices natively. More
details about the architecture and functionality of Greengrass can be found in section
3.4.

To run serverless functions on the cloud, the AWS Lambda [12] service is used. AWS
Lambda is the FaaS implementation of Amazon. AWS Lambda is an event-driven server-
less compute service that lets a developer run code for a wide range of runtimes without
provisioning or managing servers.

For communication from the edge to the cloud, the scheduler can utilize both AWS IoT
MQTT [30] or AWS Simple Storage Service (S3) [11]. AWS IoT MQTT is used in almost
all cases for any communication to or from the edge device. It is comparable to a publish
subscribe queue where a message is published on a certain topic and a subscriber will
receive this message, which can be both a lambda function running on the edge, the
scheduler itself, or a lambda function running in the cloud.

AWS S3 is used only for messages larger than 128Kb, since IoT MQTT does not support
messages larger than that. AWS S3 is a cloud storage solution that allows users to upload
or download byte like objects to or from a ”bucket”. Certain hooks can be configured for
this bucket such that a lambda function is invoked when a new item has been uploaded
to the bucket. Because of this, S3 can be utilized as a message channel for exceedingly
large messages.

For cloud to cloud communication, simple AWS lambda invocations are used. This means
that the lambda functions are directly invoked from other lambda functions without
any other means of communication in between. This is a simple and cheap solution,
but lambda invocations have a limited message buffer. This can be a bottleneck for
large high throughput pipelines. To satisfy these cases, communication via AWS Simple
Queue Service (SQS) is also supported. AWS SQS is a publish subscribe service for

21

Chapter 4. System Design

communication in the cloud and offers more scalability and a bigger buffer than direct
lambda invocation for a higher price.

To store the device metrics in the cloud, so that the machine learning model in the
scheduler can be trained on them, we use AWS Relational Database Service. More specif-
ically, a PostgreSQL instance of AWS RDS, although any SQL flavor could be used for
a database instance. We utilize a db.t3.micro database instance with 1GB of ram and
20GB of storage in order to remain in the free tier.

4.3 Papertronics deployment

To evaluate the scheduler we apply it to a real-world use case in the industry. More
specifically, we create an edge/cloud deployment for the Beer-O-Meter [14]; a beer tester
created by SG Papertronics [15].

As previously mentioned in section 2.3, the Beer-O-Meter is a portable beer testing station
that is able to test the quality of beer by taking pictures of a colorimetric sample with
beer on it. An early render of the device can be seen in figure 2.1a and an example of
a colorimetric sample can be seen in figure 2.1b. In its current state, these images are
sent directly to the cloud for analysis and processing. The station is only responsible for
controlling the hardware and taking the pictures.

We create a new backend for this Beer-O-Meter to test and evaluate the scheduler. We
move the image analyses process to the edge and only offload the processing tasks if the
scheduler deems it more efficient with regard to cost or latency. A diagram of how this
deployment would fit into our proposed design can be seen in figure 4.3. One should
be able to see the resemblance with the scheduler design in figure 4.1. Each outgoing
arrow is marked with a number, indicating the chronological order of interaction between
components. The following enumeration describes the process of a test performed with
the Beer-O-Meter, where each step number corresponds to a step in the diagram in fig-
ure 4.3:

1. The user sends a test request via Bluetooth or via AWS IoT Core to the Beer-O-
Meter station. This request contains all the necessary instructions for the station,
like the test type, amount of images to take and the amount of time to wait in
between the captures of images. The station then proceeds to inform the user
about the necessary steps he or she should take before the station can start taking
pictures, like opening the cap, inserting a beer sample in a pod, inserting the pod
into the station and closing the cap again.

2. When the user has finished all the necessary steps, the station automatically starts
taking pictures. The number of pictures taken can range from 2 to 10, depending
on the test type. Next, the images should be processed, such that only the relevant
features are extracted. This is done by applying a mask to every image to isolate
the paper and then extracting the average color. The resulting data are then sent
to a specific component corresponding to the test type, which analyzes this data
and returns a value corresponding to the measured pH, alcohol or bitterness level.
Depending on the type of test, these values are calculated using linear regression or
polynomial regression.

22

Chapter 4. System Design

1

1

5front-end

potential future direction

1

3

3

4

experiment results

5

data retriever

scheduler

2

image storage

Cloud

edge device

4 finalizer

Figure 4.3: System design

These steps are split up into several different lambda functions, which can be exe-
cuted on the edge or on the cloud, depending on the decision of the scheduler. An
overview of the lambda function pipeline can be seen in figure 4.4. The pipeline
starts with the station lambda, which is a lambda function that is configured to
only run on the edge device, and is responsible for taking the pictures, setting up
the LED’s and interacting with the other hardware components on the device. Af-
ter that comes the image processor, which is responsible for extracting the relevant
features from the given images. Then we have a collection of lambda components
responsible for different tests. The result of the image processing lambda is sent to
the corresponding lambda depending on the test types set in the message metadata.
Each test may perform a different operation on the data to retrieve the relevant in-
formation. Lastly, each test lambda sends the result to the collector lambda which
stores the result in a database (next step) and sends it to the user.

3. The resulting data are stored in an SQL database and the images are saved in S3
cloud storage [11].

4. The measured statistics of the pipeline stored in the metadata of the final message is
sent to the finalizer lambda component, which retrains the model on this collected
data after a certain amount of messages have passed through or if retraining is
requested. If the model is retrained, the edge device is notified of the update.

5. Finally, the data are retrieved from the database and presented to the user.

23

Chapter 4. System Design

station (device only) image processor

ph

collector (cloud only)alcohol

glucose

Figure 4.4: Lambda deployment

4.4 Configuration

In this section, we explain the configuration and settings we used for our experiments.
Note that the configuration of a lambda function can be different on the edge and on
the cloud, because of the differences in hardware limitations and platform settings. For
example, Greengrass does not provide the ability to set a memory limit for non-dockerized
lambda functions. All the listed parameters can be tweaked to the needs of the developer,
we simply choose the values corresponding to the observed behavior of the individual
lambda functions. For example, the image processing lambda has a longer duration than
the default timeout in the cloud, and we therefore had to increase this value.

4.4.1 Lambda configuration

The settings for the cloud and edge deployment can be seen in table 4.2. Here we list the
allocated memory in Megabytes, temporary storage in MegaBytes and maximum function
duration in seconds in the cloud, as well as the maximum number of allowed instances,
queue size in bytes, idle time before terminating the function in seconds and whether
or not to keep the function running indefinitely. Note that we chose to set the station
lambda to 1 maximum instance which is always running, since it will need sole access
to the hardware (camera and LED’s). If this would not be the case, then one instance
could change the LED while another instance was running an experiment, making the
experiment faulty.

Note that we do not have the option to set a CPU as a resource. That is because, in
AWS, CPU resources are assigned according to the amount of memory assigned to the
function [11]. So if one were to increase the memory resources of a serverless function,
the CPU resources automatically scale with it. This also implies that serverless functions
with more memory might, in the end, be cheaper to run than functions with less memory,
because more CPU power may result in lower execution time and therefore a lower billed
function duration.

24

Chapter 4. System Design

Image
capture

Image
process-
ing

ph glucose alchohol finalizer

cloud
memory
(MB)

- 256 128 128 128 128

ephemeral
storage
(MB)

- 666 512 512 512 512

timeout
(sec)

- 900 20 20 20 20

edge
max in-
stance
count

1 3 3 3 3 -

max
queue size

1000 1000 1000 1000 1000 -

max idle
time (sec)

240 60 60 60 60 -

warm
start

True False False False False -

Table 4.2: lambda function settings

4.4.2 Resource intensive configuration

To gain deeper insight into the performance of the scheduler for a more resource intensive
deployment, we adjust this deployment to be slightly less efficient. To be more precise,
we change one line of code used to filter the image:
filter = np.sum(array, axis=1) > 0
To a slightly less optimized one:
filter = [np.sum(a) > 0 for a in array]

The two lines of code do essentially the exact same, however the former is optimized by the
use of NumPy and can therefore run faster and use fewer resources over time. The latter
uses python list comprehension and can be 10 times slower than its NumPy counterpart.
Numpy arrays are homogeneous and stored in continuous memory while python arrays are
heterogeneous and stores pointers to different data types, this and the fact that NumPy
uses C for its calculations makes NumPy the faster alternative [31].

This change should give us insight into how well the scheduler is able to adapt to a
changing deployment, as well as give us insight into how well the scheduler performs with
resource intensive serverless functions.

25

Chapter 5

Methodology

In this section, we describe the methods we use to create the dynamic serverless scheduler.
In addition to that, we also describe how we tested the implementation.

To host our serverless functions in the cloud, we use the Amazon Web Service [11]. More
specifically, we use AWS Lambda [12] for hosting the serverless functions on the cloud
and AWS Greengrass [5] for hosting the serverless functions and the scheduler on the
devices. We decided to use this platform over other alternatives, like Azure and Google
cloud, since it is considered to be the most versatile and feature-rich service amongst its
competitors in the area of edge/cloud computing [10].

We use AWS Relation Database Service to store the device statistics which the model will
be trained on later. For communication between lambda functions on the edge to lambda
functions on the cloud, we use AWS IoT [30] or AWS Simple Storage Service. AWS IoT
is intended to transfer small messages of a maximum of 128 Kb in size. Any messages
larger than that, like the images generated by SG Papertronics Beer-O-Meter, will have
to be transferred via AWS Simple Storage Service. For communication between lambda
functions within the cloud, we can use either AWS Simple Queue Service or direct lambda
invocation. The scheduler supports both, however, we chose to only use direct lambda
invocation, since no extra costs are tied to this method. For communication within the
edge device itself, the local pub/sub queue of Greengrass is utilized.

All the serverless functions and the scheduler are written in the programming language
Python [32]. Although not the fastest existing programming language, we have chosen this
language in particular because of its maintainability, readability and support for machine
learning applications. In addition to that, python was one of the 3 programs that the
Greengrass software development kit supported, next to Java and C++.

5.1 Data

To train and evaluate the machine learning model inside the scheduler, around 500 mes-
sages were constructed and run through the original version of the pipeline and the
resource-intensive version with a random scheduler in place. Then for each component, we
collected the duration, transfer time, message size, estimated additional cost and device
statistics like CPU usage and temperature, memory usage and network bandwidth.

26

Chapter 5. Methodology

values
nr of images 2, 4, 6
wait time (sec) 0, 30, 120
tasks (pH), (glucose), (alco-

hol), (pH, glucose),
(pH, alcohol), (glucose,
alcohol),
(pH, glucose, alcohol)

internet speed (Kbps) 500, 1000, 5000, 50000

Table 5.1: values used to customize messages for data gathering

To add variety to the data set, both the network bandwidth, experiment settings, task
type and message load are adjusted. The exact parameters used to tweak the variety can
be seen in table 5.1.

The number of images field controls how many images the station should take for a single
experiment. This setting should have a direct impact on the duration of most lambda
components and on the size of the message sent from the first lambda component to the
image processing component. We chose to tweak these values in order to evaluate how
well the scheduler is able to predict the difference in execution time by just looking at the
message size, CPU usage and memory usage, etc. without looking at the content of the
message.

The wait time setting indicates how long to wait before sending the next message. This
indicates the load we put on the station. Note that the actual time between messages
send is calculated as follows: n · 5 +w, where n is the number of images, 5 is the interval
between images captured and w is the wait time. This setting is necessary, since the first
lambda function, also called station lambda, can only process one single experiment at a
time.

The task setting represents the set of tests that are performed in a single experiment. For
example, with the task set (pH), only the Ph lambda function is executed, but with the
task set (pH, glucose, alcohol), all task components are executed in parallel. This setting
is tweaked in order to evaluate how well the scheduler is able to differentiate between
tasks selected, without looking at the content of the message.

The internet speed setting represents the maximum amount of Kb/s that the station is
able to download/upload. The internet speed was tweaked using the wondershaper Unix
tool [33] in order to see if there would be a difference in execution time for different
internet speeds and if so, if the scheduler would be able to distinguish those cases.

The data itself was gathered with a random scheduling method. That means that the
recorded times do not include the duration it would take to apply a machine learning
model to the data and predict the correct scheduling placement. However, the time
the scheduler needs to apply the machine learning model to the data and generate some
results is about 0.0005 seconds, which we consider to be a low enough difference to neglect
it.

27

Chapter 5. Methodology

5.1.1 price

In order for the scheduler to make a decision based on both the price and the execution
time, the price corresponding to the execution needs to be calculated. In order to do that,
we retrieve the latest pricing information for the AWS pricing API and then proceed to
calculate the price given a predefined formula. Note that we only calculate the variable
prices, that is the prices that can be varied by executing a lambda function either on the
cloud or on the edge. We therefore only consider lambda invocation and execution costs,
and MQTT and s3 message transfer costs. The prices are calculated as follows, using the
formulas given by Amazon Web Services[11]:

Ltotal = r · d · Lexecution + Lrequest + s · d · Lstorage (5.1)

Where r is the amount of memory assigned to a lambda function in the cloud in GB/s,
d is the number of seconds the lambda function was running and s is the amount of
ephemeral storage assigned to the lambda function. Lexecution, Lrequest and Lstorage are the
latest prices retrieved from AWS for lambda executions, requests to the lambda function
and ephemeral storage for the lambda function in dollars respectively. Finally, Ltotal is
the total cost of a single lambda execution on the cloud. Note that there is no CPU entry
in this calculation, since AWS automatically assigns more CPU power corresponding to
the amount of memory assigned to the lambda function.

S3total = S3put + S3get (5.2)

Here S3put and S3get are the prices for posting and retrieving a single object from S3.
Note that the storage price is not included in the calculation, since the messages will only
be preserved for a short duration and deleted automatically. S3total denotes the total
price for sending a message via S3.

MQTTtotal = ·(ms/8000) ·MQTTmessage +MQTTrule (5.3)

Here ms is the size of the message in bytes. This value is divided by 8000, since AWS IoT
MQTT messages are sent in blocks of 8KB [5]. MQTTmessage andMQTTrule are the prices
for sending a message via MQTT and redirecting it to a lambda function respectively.
MQTTtotal is the total price for sending a message via MQTT.

Note that for some sub-regions, for example, eu-west-2 or eu-east-1, no pricing information
was available. During calculations, we therefore assumed the pricing within the same
continent to be identical and retrieved the pricing information from the first EU region
found. At the time of writing this article, there is indeed no difference between pricing
within a continent for the selected services, so this method will not result in any problems
during the experiments. However, there is no guarantee that this will also be the case in
the future.

Given these formulates, the price for a single lambda cloud execution is then calculated
as follows:

28

Chapter 5. Methodology

Pcloud =

Ltotal + S3total, if message is sent via S3

Ltotal +MQTTtotal, if message is sent via mqtt

Ltotal, otherwise via direct lambda invoke

(5.4)

If a component is executed on the edge, no additional costs are billed by AWS. The
execution on the edge device and message transfer between components on the same
device is free. AWS only charges users on a per device basis, and since this cost does not
change relative to the amount or location of functions executed, we do not take this cost
into account.

Furthermore, the cost of the consumed energy by the IoT devices is negligible compared to
the cloud execution costs. Edge devices are usually resource constraint small IoT devices,
meaning they have a relatively small energy requirement. For the raspberry pi 3B that
we use, the energy consumption is at 1.4W on idle and 3.7W on full load. Assuming the
IoT device will be turned on indefinitely, the extra wattage consumed by our processes
running on the edge device would be no more than 3.7−1.4 = 2.3W . Say a process would
run for 5 minutes on the edge and the cost for 1 kWh would be $0.331, than a single

execution would cost
2.3W∗(5

60
)

1000
· $0.331 = $0.0000634. A process with similar runtime

executing in the cloud with memory set to 256MB and a computation cost of $0.000013
per GB/s, would cost 0.25GB · 300 seconds · $0.000013 = $0.000975, more than 10 times
the price of edge execution. Because of this large difference in cost and to maintain some
simplicity, we set the edge cost to 0. Anirban et al. [6] proposed the same strategy for
simplicity’s sake.

Pedge = 0 (5.5)

Note that the price for the entire cloud execution is calculated by taking the total cloud
duration and average lambda settings for the remaining lambdas. This may lead to
inaccuracies if the lambdas in the cloud have a very varying memory configuration and
average execution time. However, it is not possible to calculate the price without knowing
the approximate duration beforehand. We need the message size to predict the duration
in the cloud, and since we do not have that, this approximation should suffice.

5.2 Machine learning ensemble

For the scheduler to make accurate predictions based on available resources and message
size, we use a machine learning algorithm. More specifically, we use a random forest
regressor, or another variation of random forest, as our machine learning method. We
choose a random forest like regressor, since they are known to be less likely to overfit and
can work relatively well with a small data set.

The main candidates for our machine learning models are: Random Forest Regressor
(RFR) [34], Extra Trees Regressor (ETR) [35] and Gradient Boosting Regressor [36]
(GBR). In chapter 6 we evaluate the performance of all 3 methods with varying parameters
and chose the optimal one for our scheduler.

29

Chapter 5. Methodology

5.2.1 Random Forest

Random forest [34] is an ensemble learning method that can be used for both regression
and classification. Random forest works by generating a collection of decision trees. These
decision trees are applied to the data to predict a certain value and an average prediction
of these decision trees is returned. Due to the fact that Random forest constructs multiple
decision trees, it is often less vulnerable to overfitting than a single decision tree.

The random forest algorithm uses the ”bagging” principle and it works as follows:

1. k number of random subsamples are taken from the entire data set.

2. for each random subsample, an individual decision tree is constructed.

3. each decision tree generates an output

4. the final output is calculated by averaging the individual outputs of the decision
trees.

5.2.2 Extra Trees

The Extra Trees [35] method is a variation of the Random forest method. They are similar
in the fact that both are an ensemble of individual decision trees, however, they differ in
two ways:

First of all, each decision tree in Extra Trees is trained using the entire data set, instead
of a bootstrap sample. Second of all, Random Forest chooses the optimum split in de-
cision trees while Extra trees chooses it Randomly. However, after the split points are
determined, both methods choose the best one between all the features. Therefore, Extra
Trees still has optimization.

The main argument behind this change is the reduction of both bias and variance. Using
the whole data set instead of a bootstrap sample will reduce bias and determining the split
point randomly will reduce variance. In addition to that, since split points are determined
randomly instead of being calculated, the Extra trees algorithm is generally faster.

5.2.3 Gradient Boosting

Gradient Boosting [36] is also similar to Random Forest. The main difference between
the two lies in how the decision trees are created and combined. In Random forest,
the individual decision trees are created independent of one another, while in Gradient
Boosting, the decision trees are created one after another. The method that Random
Forest utilizes is also referred to as ”bagging”, while Gradient Boosting uses the ”boosting”
method to create and combine the trees.

Instead of creating k independent decision trees and simply taking the average of their
output, we combine each tree sequentially and train each tree on the remaining error of
the former tree to reduce the error of the entire model. More specifically, this algorithm
works as follows:

1. Create a training set {(xi, yi)}ni=1 and determine a loss function L(y, F (x)):

30

Chapter 5. Methodology

2. Initialize the model with a value α for which the sum of the loss function applied
to the training set is minimal:

F0(x) = argαmin
n∑

i=1

L(yi, α)

3. for m = 1 to a given maximum number of iterations M

(a) Compute pseudo-residuals on which the new decision tree should be trained:

ri,m = −
[
∂L(yi, Fm−1(xi))

∂Fm−1(xi)

]
for i = 1, ..., n

(b) Fit a decision tree on the pseudo residuals. In other words, train a decision
tree on the training set {(xi, ri,m)}ni=1

(c) Compute the multiplier αm by solving the following equation:

αm = argαmin
n∑

i=1

L(yi, Fm−1(xi) + αhm(xi))

(d) Update the model by adding the trained decision tree:

Fm(x) = Fm−1(x) + αmhm(x)

4. Return Fm(x)

This method of gradient boosting usually outperforms random forest [37], mainly because
we train the trees to correct each other’s errors. With this method, they are capable
of capturing complex patterns in the data. There is one downside to gradient boosting
however, if the data are too noisy, the boosted trees may overfit and start modeling the
noise.

To find the most optimal machine learning model we evaluate the performance of several
multi-output ensemble regression models with several different configurations and evaluate
their performance against the collected data points.

The model will take the device statistics, like available CPU, memory, upload speed and
message size as input and return the expected duration of cloud execution and edge
execution of a lambda function. The exact features and their description can be seen in
tables 5.2 and 5.3.

We can expect a decent score for the prediction of partial duration and transfer times for
both the cloud and edge models, since the input features may be correlated with these
values. However, the total remaining edge and cloud duration are not or barely influenced
by these factors, since the duration depends on the performance of all next components
in the pipeline as well. In addition to that, the total remaining edge duration is also
influenced by any future scheduling decision.

Although we may expect a relatively high error for these specific output labels, a rough
approximation of the total remaining duration should be sufficient to achieve decent per-
formance from the scheduler. The scheduler will mostly rely on the predicted individual

31

Chapter 5. Methodology

Unit Description
CPU percent (%) The percentage of cpu that is not available

at the start of execution
Memory percent (%) The percentage of memory that is not avail-

able at the start of execution
Network up Megabit/s

(Mb/s)
Network upload speed

Network down Megabit/s
(Mb/s)

Network download speed

Message size Bytes Incoming message size

Table 5.2: input features for the machine learning model

Unit Description
Individual du-
ration edge

seconds The duration of execution of the lambda
function if this function were to be executed
on the edge

Total remain-
ing duration
edge

seconds The approximate remaining duration of the
entire pipeline if this function were to be ex-
ecuted on the edge

Transfer time
edge

seconds The duration of the message transfer be-
tween the scheduler and the lambda function
if this function were to be executed on the
edge

Individual du-
ration cloud

seconds The duration of the lambda function if this
function were to be executed on the cloud

Total remain-
ing duration
cloud

seconds The approximate remaining duration of the
entire pipeline if this function were to be ex-
ecuted on the cloud

Transfer time
cloud

seconds The duration of the message transfer be-
tween the scheduler and the lambda function
if this function were to be executed on the
cloud

Table 5.3: output labels for the machine learning model

32

Chapter 5. Methodology

RFR ETR GBR
loss function n/a n/a squared error
learning rate n/a n/a 0.4,0.1
number of estimates 10,100,1000 10,100,1000 10,100,1000
subsample 0.9, 0.7, 0.5 0.9, 0.7, 0.5 1, 0.7, 0.5
criterion ”absolute error”,

”squared error”,
”poisson”

”absolute error”,
”squared error”

”friedman mse”

max depth 2,3,4,None 2,3,4,None 3
min samples split 2,20 2,20 2,20
min samples leaf 10 1,10 1,10
max features ”auto” ”auto” ”auto”

Table 5.4: parameters for the different ensembles

lambda duration and the predicted transfer time. It will only use the predicted total
remaining duration to calculate the price for a cloud execution and to validate that the
user-defined constraint is still met.

5.2.4 The best regression method

To evaluate the different regression methods, we run all of them multiple times, with
varying parameters, on the generated data set. The exact set of parameters we tested
with can be seen in table 5.4. Note that each entry refers to a parameter that can be
tweaked in the scikit-learn [38] implementation of the model. If there is an entry n/a in
the table for a specific parameter, that means that this parameter could not be tweaked
for this particular regression method.

For each ensemble and each possible combination of parameters, the model is trained
at least once on 75% of the entire data set. The remaining 25% is used to validate the
performance of the ensembles and their configurations. The quality of each model has
been quantified by a coefficient of determination R2. We evaluate each method using this
coefficient, as well as its approximate memory usage and training time. R2 is calculated
by subtracting the residual sum of squares divided by the total sum of squares from 1.
The exact formula of the coefficient of determination R2 can be seen in equation (5.6).
Here R2 is the coefficient of determination, RSS the residual sum of squares, TSS the
total sum of squares, y the true values, y′ the predicted values and N the number of
elements in y.

R2 = 1− RSS

TSS
(5.6)

RSS =
N∑
i

(yi − y′i)
2 (5.7)

TSS =
N∑
i

(yi − ȳ)2 (5.8)

33

Chapter 5. Methodology

5.3 Automatic function deployment infrastructure

To remove some load on the developer when developing and (re-)deploying serverless
functions, we automated the process of deploying serverless functions on the edge and
cloud, as well as automatically instantiating communication infrastructure. The developer
will only have to provide a .yaml file containing the configuration of the pipeline and the
infrastructure will be automatically set up. An example of this .yaml file can be seen in
Appendix A.

In this file, the developer will have to specify the scheduler constraint, like a deadline
constraint or cost constraint, and the complete configuration of all lambda functions.
Developers are able to tweak the resource settings like memory and timeout for both
cloud and edge instances in one single file and are also able to set environment variables
this way, for both the edge and cloud environment.

The developer is also able to orchestrate communication between serverless functions by
setting the ”destinations” key. This key lets the developer specify what lambda functions
the result should go to. The developer is also able to set custom protocols for edge-
edge, edge-cloud and cloud-cloud communication. Current supported communication
channels are lambda invoke and AWS SQS for cloud to cloud communication, AWS IoT
MQTT and AWS S3 for edge cloud communication and Greengrass local pub/sub for
local communication. Most of the time the developer will not need to set these protocols,
since the scheduler will automatically pick the most suited one based on message size. For
example, AWS IoT MQTT is picked when the message is below the maximum allowed
size of 128KB and the slower AWS S3 alternative is picked if the message is over this
maximum threshold.

Do note though that the automatic function deployment program only creates the edge/-
cloud infrastructure. Any other services an application may require, like an SQL Database,
cloud storage or other non-lambda compute instance like AWS EC2, will still need to be
manually created by the developer.

34

Chapter 6

Results

In this chapter, we determine what regression method is most suitable as our machine
learning algorithm for the scheduler. We also show the score of the machine learning
algorithm for different lambda functions and output labels, as well as show the perfor-
mance of the scheduler on the Papertronics deployment for different cost and deadline
constraints. We will also determine possible overhead caused by the scheduler and gather
some metrics on the automated deployment script. Then, in chapter 7, we discuss these
results.

6.1 Pipeline data

In this section, we present the characteristics and overall performance of the created
pipeline. We mainly look at the performance of the pipeline and the relation between the
output labels and the input features of the model in the gathered training data. The input
features and output labels of the model can be found in tables 5.2 and 5.3. We created 2
versions of the pipeline, one which we refer to as the ”original” and one we refer to as the
”resource intensive”. The two versions only differ in one line of code, which is explained
in section 4.4.2. We gathered around 500 data points of the pipeline performance for
both cases with random scheduling and we try to find some relation between the input
features of the model and the output labels by plotting this data. An overview of what
experiment number corresponds to what experiment configuration can be seen in figure
6.1. The features adjusted correspond to the values listed in table 5.1.

35

Chapter 6. Results

0 100 200 300 400 500
experiments

0.0

0.5

1.0
network up and download speed

500 Kbps
1000 Kbps
5000 Kbps
50000 Kbps

0 100 200 300 400 500
experiments

0.0

0.5

1.0
number of images

2
4
6

0 100 200 300 400 500
experiments

0.0

0.5

1.0
task type

ph
alcohol
glucose

0 100 200 300 400 500
experiments

0.0

0.5

1.0
wait time

0 sec
30 sec
180 sec

experiment configurations distribution

Figure 6.1: The distribution of settings over the experiments.

Each colored rectangle in this figure corresponds to a value that has been set for the
experiments. For example, it can be seen from this figure that the network up and
download speed has been set to 500 Kbps in the first 125 experiments and 1000 Kbps
in experiment number 125 to 250. Some settings can overlap as well, like the task type
setting. The task type can be set to ph, glucose and alcohol, but also to a multiple
like (ph, glucose), (glucose, alcohol) or (glucose, alcohol, ph). The combination of these
settings have been visualized in the figure as overlapping rectangles.

Note that the wait time setting changes every 2 experiments, which makes the exact
wait time per experiment hard to see. In figure 6.2 a better readable cutout of the wait
time setting per experiment number can be seen, which makes the mentioned pattern
distinguishable.

This figure is not particularly useful on its own, but it can be used to identify and classify
patterns in later figures presented in this chapter. For example, this figure can be paired
with figure 6.3 to help identify what changes to the experiment configuration result in
peaks in the duration.

0 10 20 30 40 50
experiments

0.0

0.5

1.0
wait time (zoomed in)

0 sec
30 sec
180 sec

Figure 6.2: The distribution of wait time setting over the experiments zoomed in.

36

Chapter 6. Results

6.1.1 Original Pipeline

The individual duration and transfer time of each individual lambda function in the
original pipeline over several experiments with varying internet speed and experiment
settings can be seen in figure 6.3. Note that the station lambda and collector lambda are
not included in these results. These functions are not included, since their placement is
fixed and they cannot be scheduled. In figure 6.3 we can see that the individual duration
of lambda functions on the edge and on the cloud seem to be relatively stable, apart from
the image processing lambda. The image processing lambda processes and filters the
images belonging to an experiment, and the duration of the lambda function is therefore
dependent on how many images were taken by the station. The more images were taken,
the longer the duration of the image processing lambda. At each peak, the experiment
contained around 6 images and at each valley, the experiment contained only around 2
images, as can be seen if we cross-reference the peaks with figure 6.1. These constant and
dependent processing times are a good indication that the machine learning model is able
to predict the individual lambda duration.

0 100 200 300 400 500
experiments

0

50

100

du
ra

tio
n

(s
)

image processing in the cloud
single duration
transfer time

0 100 200 300 400 500
experiments

0

1

2

3

du
ra

tio
n

(s
)

image processing on the edge
single duration
transfer time

0 100 200 300 400 500
experiments

0

1

2

du
ra

tio
n

(s
)

ph in the cloud

single duration
transfer time

0 100 200 300 400 500
experiments

0.0

0.1

0.2

0.3

0.4

du
ra

tio
n

(s
)

ph on the edge

single duration
transfer time

0 100 200 300 400 500
experiments

0

1

2

du
ra

tio
n

(s
)

alcohol in the cloud

single duration
transfer time

0 100 200 300 400 500
experiments

0.0

0.1

0.2

0.3

0.4

du
ra

tio
n

(s
)

alcohol on the edge
single duration
transfer time

0 100 200 300 400 500
experiments

0

1

2

du
ra

tio
n

(s
)

glucose in the cloud

single duration
transfer time

0 100 200 300 400 500
experiments

0

1

2

3

4

du
ra

tio
n

(s
)

glucose on the edge
single duration
transfer time

duration and transfer time of lambda functions

Figure 6.3: duration and transfer time of lambda functions over experiments

37

Chapter 6. Results

The transfer time on the other hand seems to vary a bit more per experiment. For the
image processing lambda, once again a pattern can be observed. Just as with the duration,
transfer time is also related to the incoming images, and therefore the incoming message
size. In addition to that, for the cloud execution, the transfer time is also related to the
network speed. Namely, for the first 125 experiments or so, the network speed has been
set to a max of 500 Kb per second and increased after that, as can be seen from figure
6.1. This explains the peaks at the beginning for the image processing lambda.

The variation in transfer times for the other lambdas is not as easily explained. So far,
no real pattern can be seen in the figure. The variation can be a number of things:
The infamous cold/warm start problem [17] explained in section 3.1, a byproduct of
sending messages over the internet for the cloud execution or available resources for edge
execution.

In this figure, we can see that for the original pipeline implementation, edge execution is
almost always the optimal one. Compared to the cloud, the overall execution and transfer
times are much lower. Although this characteristic of the pipeline will not give us much
information on how well the scheduler is able to adapt its decision based on parameter
settings, it could provide us with some information on how well the scheduler is able to
perform knowing the optimal scheduling decision beforehand. Now that we know that
edge scheduling is always optimal, we can determine the error of the scheduler based on
the number of tasks that were not scheduled on the edge. To still be able to evaluate the
ability of the scheduler to adapt its decision to the changing environment, we also train
the scheduler on a more resource-intensive version of the pipeline.

resources and message size vs duration

The relation between the available resources and individual lambda duration for the image
processing lambda can be seen in figures 6.4 and 6.5. More detailed plots of the generated
data can be seen in Appendix C. More specifically, the relation between the available
resources and individual lambda duration for all lambdas can be seen in figures C.1 and
C.2.

2 3 4 5
incoming message size 1e6

0.5

1.0

1.5

2.0

2.5

du
ra

tio
n

image processing

input vs duration
(in the cloud)

 for image processing

Figure 6.4: Incoming message size versus the duration of the image processing lambda if
this lambda is executed in the cloud.

38

Chapter 6. Results

0 10 20 30
cpu %

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

du
ra

tio
n

60 70 80 90
memory %

image processing

2 3 4 5
incoming message size 1e6

resources and input vs duration (on the edge) for image processing

Figure 6.5: Available resources and incoming message size versus the duration of the
image processing lambda if this lambda is executed on the edge.

In figures 6.4 and 6.5 we can see a relation between the duration of the image processing
lambda function and the size of the incoming message for both a cloud and an edge
deployment. This relation most likely exists because this particular lambda needs to scan
and filter each incoming image and its duration is therefore directly related to how many
images come in. In turn, the message size is a strong indication of how many images it
contains.

Other factors that influence the duration of the image processing lambda are the number
of tests (ph, glucose or alcohol) to perform next. This explains the variation still present
in the incoming message size vs duration plot for the image processing lambda. In the case
that multiple tests are selected for one invocation, the colorimetry paper will be divided
into multiple sections and the image processing lambda will need to retrieve features for
each section, therefore increasing the duration. The scheduler does not have direct access
to the number of tests that need to be performed, since this is hidden within the context
of the message. This characteristic may make it difficult for the scheduler to predict the
total duration.

A slight pattern can also be observed in the CPU vs duration and memory vs duration
plot for the image processing lambda in figure 6.5. At a low CPU and memory percentage,
implying a higher availability of CPU and ram resources, the duration seems to be evenly
distributed. However, when the available resources become more scares, the minimal
duration also seems to increase. This relation should help the scheduler in predicting the
individual duration of this lambda function.

For the other short-running lambda functions, like pH, alcohol and glucose visible in
figures C.1 and C.2, these relations seem less obvious. This is because these lambda
functions only run for about 0.05 to 0.2 seconds, and because of this, there is an increase
in variance within the duration caused by decisions made by the operating system. This
should not be a problem however, if the scheduler is able to predict the average duration
of these lambda functions over the data set. the scheduler should still be able to make an
accurate offloading decision based on that.

39

Chapter 6. Results

network bandwidth and message size vs transfer times

Now that we have discussed the relation between the available resources, message size and
individual lambda duration, we can look into the relation between network bandwidth,
available resources, message size and transfer times between lambda functions. The rela-
tion between the available resources on the device, the network speed, the message size
and the transfer time to the image processing lambda can be seen in figure 6.6. The
relations between these values for all lambda functions for both cloud and edge execution
can be seen in figures C.3 and C.4 in the Appendix.

Looking at both figure 6.6, we can see that for image processing lambda the transfer time
is also strongly related to message size. For the edge, this relation is clearly visible. The
bigger a message is, the more load is put on the station and the longer it will take to send
it to the next process. For sending to cloud, this relation is visible, but sometimes for big
messages, the transfer time can also be low. This is because cloud transfer times of the
image processing lambda are not only dependent on message size, but also on network
speed. Compared to the cloud, the transfer duration on the edge itself is around 40x
faster than sending the message to the cloud.

This relation between network speed and transfer time does not exist in internal edge
communication, since no network bandwidth is required there. Messages are only com-
municated between processes running on the station itself. What does seem to influence
this duration are the CPU and memory resources of the station. For image processing
lambda the minimal transfer time seems to increase with a higher CPU and memory oc-
cupancy, meaning fewer resources available, and even for the other lambdas the transfer
times lasting longer than 0.2 seem to be influenced by memory and CPU usage.

Looking at figures C.3 and C.4, we can see that message size and network bandwidth
do not seem to have any influence on the other lambda functions, most likely since the
message size for these functions is rather small.

input features vs total remaining pipeline duration

The final output label we discuss is the total pipeline duration. We do not expect to find
many relations here, since the total remaining pipeline duration should be influenced by
more factors than just the available resources at some point in the pipeline. We therefore
only look at the message itself and its size. The plot visualizing this relation for the image
processing lambda can be seen in figure 6.7. The plot visualizing this relation for all the
lambda functions can be seen in figure C.5 in the appendix.

As expected, no direct relation can be observed for the image processing lambda, or any
other lambda for that matter. We do not expect the model to perform well on this output
label, however we want an R2 score of 0 such that the model is at least able to return the
average duration over the data set. This should be enough for the scheduler to perform
decent, since the total duration is mostly used for calculating the price and checking if
the user-defined constraints are met.

40

Chapter 6. Results

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
message size 1e6

0.5

1.0

1.5

2.0

2.5

3.0

tra
ns

fe
r t

im
e

edge only

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
message size 1e6

0

20

40

60

80

100

120

140

tra
ns

fe
r t

im
e

cloud only

0 5 10 15 20 25 30 35
cpu (%)

0.5

1.0

1.5

2.0

2.5

3.0

tra
ns

fe
r t

im
e

0 5 10 15 20 25 30
cpu (%)

0

20

40

60

80

100

120

140

tra
ns

fe
r t

im
e

60 65 70 75 80 85 90
memory (%)

0.5

1.0

1.5

2.0

2.5

3.0

tra
ns

fe
r t

im
e

60 65 70 75 80 85 90
memory (%)

0

20

40

60

80

100

120

140

tra
ns

fe
r t

im
e

0 2500 5000 7500 10000 12500 15000 17500 20000
upload speed (Kb/s)

0.5

1.0

1.5

2.0

2.5

3.0

tra
ns

fe
r t

im
e

0 2500 5000 7500 10000 12500 15000 17500 20000
upload speed (Kb/s)

0

20

40

60

80

100

120

140

tra
ns

fe
r t

im
e

0 2000 4000 6000 8000 10000 12000 14000 16000
download speed (Kb/s)

0.5

1.0

1.5

2.0

2.5

3.0

tra
ns

fe
r t

im
e

0 2000 4000 6000 8000 10000 12000 14000 16000
download speed (Kb/s)

0

20

40

60

80

100

120

140

tra
ns

fe
r t

im
e

transfer times to image processing lambda

Figure 6.6: Incoming message size versus the transfer time to the image processing lambda

41

Chapter 6. Results

2 3 4 5
incoming message size 1e6

1

2

3

4

5

6

7

8

to
ta

l r
em

ai
ni

ng
 d

ur
at

io
n

image processing in the cloud

2 3 4 5
incoming message size 1e6

image processing on the edge

input vs total remaining duration for image processing

Figure 6.7: Incoming message size versus the total remaining pipeline duration of the
image processing lambda and all following lambdas.

6.1.2 Resource intensive pipeline

Many of the same patterns observed for the original pipeline can be seen in the resource-
intensive pipeline as well, as can be seen in figure 6.8. We can now see however that the
duration of each lambda function on both the edge and the cloud has increased drastically
for the image processing lambda. The duration of all the other lambda functions seem to
be relatively unaffected by the change.

Another notable change is the increase in transfer time variation for image processing
on the edge. Since only the optimization has been changed, the content and the size of
the message being transferred to the image processing lambda have not changed, so the
message size cannot be a factor in this new behavior. The increase in variation of the
transfer time is likely caused by the increase in used resources on the edge. Since the
image processing lambda needs about 100x more time to process the images, it is more
likely that multiple image processing lambdas are being executed at the same time. If
the station does not have enough resources, then the station will have trouble starting up
another image processing instance or relaying the message to an idle one.

This characteristic of the pipeline might be beneficial for evaluating the effectiveness of
the scheduler. In reality, we would not want a message to be stuck in a queue for around
400 seconds before the edge device has enough resources to process it. We would more
likely prefer a cloud execution in this case. In the following sections, we can evaluate the
scheduler on how well it is able to predict these spikes in transfer time and avoid edge
execution in those cases.

42

Chapter 6. Results

0 100 200 300 400 500
experiments

0

50

100

150

200

du
ra

tio
n

(s
)

image processing in the cloud
single duration
transfer time

0 100 200 300 400 500
experiments

0

200

400

du
ra

tio
n

(s
)

image processing on the edge
single duration
transfer time

0 100 200 300 400 500
experiments

0

1

2

du
ra

tio
n

(s
)

ph in the cloud

single duration
transfer time

0 100 200 300 400 500
experiments

0.0

0.2

0.4

du
ra

tio
n

(s
)

ph on the edge

single duration
transfer time

0 100 200 300 400 500
experiments

0

1

2

3

du
ra

tio
n

(s
)

alcohol in the cloud
single duration
transfer time

0 100 200 300 400 500
experiments

0.0

0.2

0.4
du

ra
tio

n
(s

)

alcohol on the edge

single duration
transfer time

0 100 200 300 400 500
experiments

0

1

2

3

du
ra

tio
n

(s
)

glucose in the cloud

single duration
transfer time

0 100 200 300 400 500
experiments

0.0

0.2

0.4

du
ra

tio
n

(s
)

glucose on the edge

single duration
transfer time

duration and transfer time of lambda functions for cpu intensive pipeline

Figure 6.8: duration and transfer time of lambda functions over experiments for resource-
intensive pipeline

43

Chapter 6. Results

resources and message size vs duration

The relation between the available resources and individual lambda duration for the image
processing lambda for a resource-intensive pipeline can be seen in figures 6.9 and 6.10.
More detailed plots of the generated data can be seen in Appendix C. More specifically, the
relation between the available resources and individual lambda duration for all lambdas
can be seen in figures C.6 and C.7.

2 3 4 5
incoming message size 1e6

50

100

150

200

du
ra

tio
n

image processing

input vs duration
in a cpu intensive pipeline

(in the cloud)
 for image processing

Figure 6.9: Incoming message size versus the duration of the image processing lambda if
this lambda is executed in the cloud for a resource-intensive pipeline.

0 20 40 60
cpu %

50

100

150

200

250

du
ra

tio
n

60 70 80 90
memory %

image processing

2 3 4 5
incoming message size 1e6

resources and input vs duration in a cpu intensive pipeline (on the edge) for image processing

Figure 6.10: Available resources and incoming message size versus the duration of the
image processing lambda if this lambda is executed on the edge for a resource-intensive
pipeline.

As you can see, most of the relations that were present for the original pipeline still
remain for the resource-intensive pipeline. The duration of the image processing lambda
still heavily relies on the incoming message size for both an edge and cloud execution,
CPU and memory availability still influences the minimal possible duration and the data
of the other lambda functions remains completely unchanged.

There are two notable differences for the image processing lambda however. First of all,
there seems to be a clear gap between durations. The reason for this gap is not deducible

44

Chapter 6. Results

from the plots, but as explained earlier, the image processing lambda duration not only
relies on incoming message size, CPU and memory, but also on the number of tests (pH,
glucose or alcohol) that need to be performed. Now that the lambda is less optimized,
the difference between processing the image only once, twice or thrice is more notable in
the duration of the lambda function. Thus causing the gaps in duration.

Second of all, the duration of the image processing lambda is now 100 times slower. This
characteristic was to be expected from the changes made to the pipeline. We can use
this characteristic to evaluate the performance of the scheduler on longer running, more
resource-intensive, tasks.

network bandwidth and message size vs transfer times

Next, we look into the relation between the available resources, network bandwidth mes-
sage size and transfer time. These relations can be seen in figure 6.11 for the image
processing lambda. The relations for all lambda functions can be seen in figures C.8 and
C.9 in Appendix C.

An interesting development can be seen in figure 6.11. The transfer time has increased
50 times on the edge compared to the original pipeline. This is not a direct cause of
our change to the pipeline. The messages being produced by the lambda functions are
still exactly the same, and can therefore not influence the transfer time. Rather, this
behavior is the result of a longer running image processing lambda instance. It is now
more likely that multiple messages come in when the station is still processing previous
images. The resources on the station are limited, meaning that if the station is busy
processing multiple other requests, it will have more trouble starting up a new lambda
instance and running it. This causes messages to be stuck in a queue for a while, therefore
increasing the transfer time.

This explanation is underlined by the CPU and memory plot in figure 6.11. For low
CPU and memory usage, the transfer time seems to be low, since in this case, the station
can process the messages immediately. However when the station seems to be busy, and
the CPU usage is up, the transfer times go way up. This implies that if the station is
already processing something, it will take longer to transfer and invoke the next lambda
function.

The other lambda functions are not as much influenced by this fact. This is likely due to
a combination of a much smaller message size that needs to be transferred and the fact
that fewer new instances need to be created because some are already running, which is
the case for image processing lambda.

There is not much difference between the original pipeline and this resource-intensive one
for the transfer time to the cloud, as can be seen in figures 6.11 and C.8. The transfer
time for image processing lambda still seems to be highly influenced by incoming message
size and network bandwidth. The transfer times of the other lambda functions still seem
to be rather unaffected by the variations in resources and incoming message size.

45

Chapter 6. Results

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
message size 1e6

0

100

200

300

400

500

tra
ns

fe
r t

im
e

edge only

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
message size 1e6

0

50

100

150

200

tra
ns

fe
r t

im
e

cloud only

0 10 20 30 40 50 60
cpu (%)

0

100

200

300

400

500

tra
ns

fe
r t

im
e

0 10 20 30 40 50
cpu (%)

0

50

100

150

200

tra
ns

fe
r t

im
e

60 65 70 75 80 85 90
memory (%)

0

100

200

300

400

500

tra
ns

fe
r t

im
e

60 65 70 75 80 85 90 95
memory (%)

0

50

100

150

200

tra
ns

fe
r t

im
e

0 2500 5000 7500 10000 12500 15000 17500 20000
upload speed (Kb/s)

0

100

200

300

400

500

tra
ns

fe
r t

im
e

0 2500 5000 7500 10000 12500 15000 17500 20000
upload speed (Kb/s)

0

50

100

150

200

tra
ns

fe
r t

im
e

0 2000 4000 6000 8000 10000 12000 14000
download speed (Kb/s)

0

100

200

300

400

500

tra
ns

fe
r t

im
e

0 2000 4000 6000 8000 10000 12000 14000 16000
download speed (Kb/s)

0

50

100

150

200

tra
ns

fe
r t

im
e

transfer times to image processing lambda for a resource intensive pipeline

Figure 6.11: Incoming message size versus the transfer time to the image processing
lambda for a resource-intensive pipeline

46

Chapter 6. Results

2 3 4 5
incoming message size 1e6

50

100

150

200

250

to
ta

l r
em

ai
ni

ng
 d

ur
at

io
n

image processing in the cloud

2 3 4 5
incoming message size 1e6

image processing on the edge

input vs total remaining duration for a resource intensive pipeline for image processing

Figure 6.12: Incoming message size versus the total remaining pipeline duration of the
image processing lambda and all following lambdas for a resource-intensive pipeline.

input features vs total remaining pipeline duration

Just as with the original pipeline, the final output label we discuss is the total pipeline
duration. The plot visualizing this relation for the image processing lambda can be seen
in figure 6.12. The plot visualizing this relation for all the lambda functions can be seen
in figure C.10 in the appendix.

Contrary to figure 6.7 of the original pipeline, figure 6.12 does show some relation between
the incoming message size and the total remaining pipeline duration. This is likely the
case due to the fact that the duration of the image processing lambda overshadows all the
other ones. The duration of the image processing lambda is somewhere between 50 and
200 seconds for large message sizes and the other lambda functions only have a duration
of a few seconds. This is good news for the model, since it should now be much easier to
predict the remaining pipeline duration.

47

Chapter 6. Results

6.2 Machine learning ensemble comparison

To find the most suitable machine learning algorithm for the scheduler, we train and test
the Random Forest method, Extra Trees Method and Gradient Boosting method with a
number of different configurations on the previously mentioned data set. We then quantify
the performance of each model according to the R2 measurement in equation (5.6).

The performances and model size in memory of each method for different parameter
configurations can be seen in figures 6.13, 6.14 and 6.15. From this data, we then pick the
configuration of parameters for each model for which the R2 score is overall the highest
for each label and lambda function and for which the memory size of the model is the
lowest. The best configuration that was picked is marked by a vertical black line in the
respective figures. These picked configurations can be found in table 6.1.

0 200 400 600 800
model configurations

0.5

0.0

0.5

1.0

R^
2

sc
or

e

image processing

0 200 400 600 800
model configurations

0.5

0.0

0.5

1.0

R^
2

sc
or

e

ph

0 200 400 600 800
model configurations

0.5

0.0

0.5

1.0

R^
2

sc
or

e

alcohol

0 200 400 600 800
model configurations

0.5

0.0

0.5

1.0

R^
2

sc
or

e

glucose
cloud single
cloud total
cloud transfer
edge single
edge total
edge transfer

0 200 400 600 800
model configurations

0.0

0.5

1.0

1.5

2.0

m
em

or
y

(M
B)

1e6 image processing

0 200 400 600 800
model configurations

0.0

0.5

1.0

1.5

2.0

m
em

or
y

(M
B)

1e6 ph

0 200 400 600 800
model configurations

0.0

0.5

1.0

1.5

2.0

m
em

or
y

(M
B)

1e6 alcohol

0 200 400 600 800
model configurations

0.0

0.5

1.0

1.5

2.0

m
em

or
y

(M
B)

1e6 glucose
memory

Random Forest Regressor

Figure 6.13: This figure indicates the performance measured by the R2 metric in equation
(5.6) and the model memory size of the Random forest method for different parameter
configurations. The yellow line indicates the parameter configuration chosen as the best
based on overall performance and size of the model in memory.

0 200 400 600
model configurations

0.5

0.0

0.5

1.0

R^
2

sc
or

e

image processing

0 200 400 600
model configurations

0.5

0.0

0.5

1.0

R^
2

sc
or

e

ph

0 200 400 600
model configurations

0.5

0.0

0.5

1.0

R^
2

sc
or

e

alcohol

0 200 400 600
model configurations

0.5

0.0

0.5

1.0

R^
2

sc
or

e

glucose
cloud single
cloud total
cloud transfer
edge single
edge total
edge transfer

0 200 400 600
model configurations

0.0

0.5

1.0

1.5

2.0

m
em

or
y

(M
B)

1e6 image processing

0 200 400 600
model configurations

0.0

0.5

1.0

1.5

2.0

m
em

or
y

(M
B)

1e6 ph

0 200 400 600
model configurations

0.0

0.5

1.0

1.5

2.0

m
em

or
y

(M
B)

1e6 alcohol

0 200 400 600
model configurations

0.0

0.5

1.0

1.5

2.0

m
em

or
y

(M
B)

1e6 glucose
memory

Extra Trees Regressor

Figure 6.14: This figure indicates the performance measured by the R2 metric in equa-
tion (5.6) and the model memory size of the Extra trees method for different parameter
configurations. The yellow line indicates the parameter configuration chosen as the best
based on overall performance and size of the model in memory.

48

Chapter 6. Results

0 100 200 300 400
model configurations

0.5

0.0

0.5

1.0

R^
2

sc
or

e
image processing

0 100 200 300 400
model configurations

0.5

0.0

0.5

1.0

R^
2

sc
or

e

ph

0 100 200 300 400
model configurations

0.5

0.0

0.5

1.0

R^
2

sc
or

e

alcohol

0 100 200 300 400
model configurations

0.5

0.0

0.5

1.0

R^
2

sc
or

e

glucose
cloud single
cloud total
cloud transfer
edge single
edge total
edge transfer

0 100 200 300 400
model configurations

0.0

0.5

1.0

1.5

2.0

m
em

or
y

(M
B)

1e6 image processing

0 100 200 300 400
model configurations

0.0

0.5

1.0

1.5

2.0

m
em

or
y

(M
B)

1e6 ph

0 100 200 300 400
model configurations

0.0

0.5

1.0

1.5

2.0

m
em

or
y

(M
B)

1e6 alcohol

0 100 200 300 400
model configurations

0.0

0.5

1.0

1.5

2.0

m
em

or
y

(M
B)

1e6 glucose
memory

Gradient Boosting Regressor

Figure 6.15: This figure indicates the performance measured by the R2 metric in equation
(5.6) and the model memory size of the Gradient boosting method for different parameter
configurations. The yellow line indicates the parameter configuration chosen as the best
based on overall performance and size of the model in memory.

Parameter GB ET RF

loss function squared error n/a n/a
learning rate 0.4 n/a n/a
n estimators 50 10 10
subsample 1 0.9 0.9
criterion friedman mse squared error squared error

max depth 2 4 None
min samples split 20 2 20
min samples leaf 10 10 10
max features auto auto auto

Table 6.1: Parameter values for scikit-learns Gradient Boosting (GB), Extra Trees (ET)
and Random Forest (RF)

The R2 scores of the best parameter configuration of the 3 models can be seen in figure
6.16, 6.17 and 6.18. Since the model is placed on a resource constraint IoT device, the size
of the model in memory is also of importance. The size of the chosen models in memory
can be seen in table 6.2.

RFR ETR GBR

size of the model in memory (KB) 98.9 69.8 789.59

Table 6.2: The size of the chosen models in memory.

To evaluate the models, we calculated the average scores (weighted by the duration of each
lambda function). These calculated scores can be seen in table 6.3. Although the scores
are rather similar, the approximate best performing ensemble was Gradient Boosting.
We therefore pick Gradient Boosting as our machine learning algorithm for the scheduler.
The configuration corresponding to the picked machine learning model can be seen in
table 6.4.

Apart from the performance score, we also care about the memory footprint. Since we
use this model on a resource-constrained device, running in the background, we want a

49

Chapter 6. Results

im
ag

e
pr

oc
es

sin
g

 [c
lo

ud
]

im
ag

e
pr

oc
es

sin
g

 [e
dg

e]

ph
 [

clo
ud

]

ph
 [

ed
ge

]

al
co

ho
l

[c
lo

ud
]

al
co

ho
l

[e
dg

e]

gl
uc

os
e

 [c
lo

ud
]

gl
uc

os
e

 [e
dg

e]

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

R^
2

sc
or

e

Random Forest Regressor

single
total
transfer

Figure 6.16: Random Forest score with best measured configuration

im
ag

e
pr

oc
es

sin
g

 [c
lo

ud
]

im
ag

e
pr

oc
es

sin
g

 [e
dg

e]

ph
 [

clo
ud

]

ph
 [

ed
ge

]

al
co

ho
l

[c
lo

ud
]

al
co

ho
l

[e
dg

e]

gl
uc

os
e

 [c
lo

ud
]

gl
uc

os
e

 [e
dg

e]

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

R^
2

sc
or

e

Extra Trees Regressor

single
total
transfer

Figure 6.17: Extra Trees score with best measured configuration

50

Chapter 6. Results

im
ag

e
pr

oc
es

sin
g

 [c
lo

ud
]

im
ag

e
pr

oc
es

sin
g

 [e
dg

e]

ph
 [

clo
ud

]

ph
 [

ed
ge

]

al
co

ho
l

[c
lo

ud
]

al
co

ho
l

[e
dg

e]

gl
uc

os
e

 [c
lo

ud
]

gl
uc

os
e

 [e
dg

e]

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0
R^

2
sc

or
e

Gradient Boosting Regressor

single
total
transfer

Figure 6.18: Gradient Boosting score with best measured configuration

RFR ETR GBR

average R2 scores 0.627 0.635 0.638

Table 6.3: The average score of each machine learning method over all lambda functions,
placement (edge or cloud) and output labels

lightweight model with decent prediction power. Although the selected Gradient Boosting
configuration needs a bit more memory than the other 2 chosen configurations for Random
forest and Extra trees, we choose a slightly higher memory footprint to get a slightly higher
score.

For this scheduler, we choose Gradient Boosting because of its overall performance over
the other alternatives. Although the memory requirements are a bit higher than the
alternatives, it should still be within the capabilities of most IoT devices. Future research
may look into the performance of a regression method like Random Forest or Extra Trees
with a lower memory footprint on extremely resource constraint IoT devices.

Parameter value

loss function squared error
learning rate 0.4
n estimators 50
subsample 1
criterion friedman mse

max depth 2
min samples split 20
min samples leaf 10
max features auto

Table 6.4: Parameter values for scikit-learns Gradient Boosting Regressor

51

Chapter 6. Results

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0
m

ea
n

R^
2

sc
or

e

single
total
transfer

im
ag

e
pr

oc
es

sin
g

 [c
lo

ud
]

im
ag

e
pr

oc
es

sin
g

 [e
dg

e]

ph
 [

clo
ud

]

ph
 [

ed
ge

]

al
co

ho
l

[c
lo

ud
]

al
co

ho
l

[e
dg

e]

gl
uc

os
e

 [c
lo

ud
]

gl
uc

os
e

 [e
dg

e]

0

2

4

6

8

10

st
d

R^
2

sc
or

e

single
total
transfer

10 fold cross validation for Gradient Boosting Regressor

Figure 6.19: 10-fold cross-validation for the Gradient Boosting Regressor

6.3 Gradient Boosting method metrics

In this section, we analyze the chosen machine learning method, the gradient boosting
regressor, in more detail. Among other things, we look into the overall performance, the
importance of the features and the residual vs fit plot.

6.3.1 Overall Performance

To more accurately evaluate the overall performance of the model, we apply 10-fold cross-
validation to the model and evaluate how well it performs on different subsets of the data
set. With 10-fold cross-validation, we shuffle the sample data, split it into 10 groups and
then for each unique group we: Take one group as our test set, use the remaining groups
as our training data and fit the model using this training data. We then evaluate the
model on the remaining test data. In the end, we should have 10 performance statistics
for each ”fold” of the data set. The mean and standard deviation of the scores from the
10-fold cross-validation test for the original and resource-intensive pipeline can be seen in
figures 6.19 and 6.20 respectively.

The first thing we can see from both figures 6.19 and 6.20 is that the individual lambda
duration can be accurately predicted for all lambda functions. This is likely due to the
lack of variation in the duration for ph, glucose and alcohol and the fact that the duration
for image processing is influenced directly by message size.

The second score we can see is the total duration. The total duration scores much better
than anticipated for image processing lambda. Previously we were not able to identify any
relation between the features and the total transfer time for the image processing lambda

52

Chapter 6. Results

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0
m

ea
n

R^
2

sc
or

e

single
total
transfer

im
ag

e
pr

oc
es

sin
g

 [c
lo

ud
]

im
ag

e
pr

oc
es

sin
g

 [e
dg

e]

ph
 [

clo
ud

]

ph
 [

ed
ge

]

al
co

ho
l

[c
lo

ud
]

al
co

ho
l

[e
dg

e]

gl
uc

os
e

 [c
lo

ud
]

gl
uc

os
e

 [e
dg

e]

0

2

4

6

8

10

st
d

R^
2

sc
or

e

single
total
transfer

10 fold cross validation for Gradient Boosting Regressor for a resource intensive pipeline

Figure 6.20: 10-fold cross-validation for the Gradient Boosting Regressor for a resource-
intensive pipeline

in figures 6.7 and 6.12. Especially for the original pipeline. It seems that the model is
able to identify some relation between the total duration and the input features. This
score does unfortunately not reappear in the other lambda functions. The model is not
able to predict the total remaining duration for those lambda functions well. However,
the total remaining duration for those lambda functions is rather small, so it shouldn’t
influence the performance of the scheduler too much.

The last score visible is from the transfer time label. The score for the transfer time to
the image processing lambda on the edge is relatively decent, with an R2 score between
0.4 and 0.9. The transfer time to the cloud is slightly less, with an R2 score between 0
and 0.3 for the original and resource-intensive pipeline. The transfer time for the other
lambda functions does not seem to score as well. Edge transfer time is relatively good,
but the transfer time to the cloud contains too much variation that cannot be explained.
This is likely due to the smaller size of the message being transferred.

6.3.2 Residuals vs fit plot

To evaluate the chosen model, one of the characteristics we can look at is the residuals.
Residuals are the difference between true values and predicted values. We can visualize
these residuals using a residual vs fit plot, which can be seen in figures B.1, B.2, B.3
and B.4 in section B.1.1 in the Appendix. The residuals versus fit plot of the resource-
intensive pipeline can be seen in figures B.5, B.6, B.7 and B.8 in section B.1.2 in the
Appendix.

A residuals versus fit plot is a scatter plot of residuals on the vertical axis and estimations

53

Chapter 6. Results

of the model on the horizontal axis. This visualization can be used to detect non-linearity,
outliers or unequal error variances. If the points are evenly distributed around the hori-
zontal 0 line, then this implies that the model is a good fit. If not, then the model might
have some problems.

For the original pipeline, we can see that for the individual lambda duration and transfer
time, the mean of the dots are roughly centered around 0 and there is there is no non-
lineariy visible. For the total duration in the cloud, this is also roughly the case. however,
for the edge, the points are not evenly distributed around the 0 axis. This might indicate
Heteroskedasticity, where the variance of the residuals is unequal over a range of measured
values.

For the other lambda functions, there are little to no problems predicting the individual
lambda duration. However, a slanted relation can be observed for the transfer time and
total duration. This implies that the model not doing a particularly good job of predicting
those values for these lambda functions. However, what can also be observed is that the
difference in residuals is nearly always less than a second. So the problems with the
model to predict small variations in short running tasks should not be a big problem in
the overall performance of the scheduler.

For the resource-intensive pipeline, we can roughly see the same statistic. For image
processing, everything seems to be evenly distributed around the horizontal 0 line, but
for the other short running lambdas the same issue can be observed.

6.3.3 Feature importance

In this section, we look into the importance of each input feature for the machine learning
model. An overview of the features and labels of this model can be found in tables 5.2
and 5.3 in section 5.2. The importance of each input feature relative to each output
label for each lambda function can be seen in figures 6.21 and 6.22. Here edge single,
edge total and edge transfer are the individual lambda duration, total remaining pipeline
duration and transfer time to the lambda function for an edge execution respectively.
Cloud single, cloud total and cloud transfer imply the single duration, total pipeline
duration and transfer time to the lambda function if the respective lambda function were
to be executed on the cloud.

The feature importance is equal to the probability of reaching a node weighted by the
decrease in the node’s impurity for each feature [38]. The probability of a node is cal-
culated by counting the number of samples that reach the node and dividing it by the
total number of samples. The node impurity is calculated using mean absolute error. The
higher the value the more important the feature.

54

Chapter 6. Results

sin
gl

e
[e

dg
e]

to
ta

l [
ed

ge
]

tra
ns

fe
r [

ed
ge

]

sin
gl

e
[c

lo
ud

]

to
ta

l [
clo

ud
]

tra
ns

fe
r [

clo
ud

]0.0

0.2

0.4

0.6

0.8

1.0
im

po
rta

nc
e

image processing

sin
gl

e
[e

dg
e]

to
ta

l [
ed

ge
]

tra
ns

fe
r [

ed
ge

]

sin
gl

e
[c

lo
ud

]

to
ta

l [
clo

ud
]

tra
ns

fe
r [

clo
ud

]

alcohol
cpu
memory
network up
network down
incoming message size

sin
gl

e
[e

dg
e]

to
ta

l [
ed

ge
]

tra
ns

fe
r [

ed
ge

]

sin
gl

e
[c

lo
ud

]

to
ta

l [
clo

ud
]

tra
ns

fe
r [

clo
ud

]0.0

0.2

0.4

0.6

0.8

1.0

im
po

rta
nc

e

ph

sin
gl

e
[e

dg
e]

to
ta

l [
ed

ge
]

tra
ns

fe
r [

ed
ge

]

sin
gl

e
[c

lo
ud

]

to
ta

l [
clo

ud
]

tra
ns

fe
r [

clo
ud

]

glucose

important features

Figure 6.21: Importance of features for each output label per lambda function

55

Chapter 6. Results

sin
gl

e
[e

dg
e]

to
ta

l [
ed

ge
]

tra
ns

fe
r [

ed
ge

]

sin
gl

e
[c

lo
ud

]

to
ta

l [
clo

ud
]

tra
ns

fe
r [

clo
ud

]0.0

0.2

0.4

0.6

0.8

1.0
im

po
rta

nc
e

image processing

sin
gl

e
[e

dg
e]

to
ta

l [
ed

ge
]

tra
ns

fe
r [

ed
ge

]

sin
gl

e
[c

lo
ud

]

to
ta

l [
clo

ud
]

tra
ns

fe
r [

clo
ud

]

alcohol
cpu
memory
network up
network down
incoming message size

sin
gl

e
[e

dg
e]

to
ta

l [
ed

ge
]

tra
ns

fe
r [

ed
ge

]

sin
gl

e
[c

lo
ud

]

to
ta

l [
clo

ud
]

tra
ns

fe
r [

clo
ud

]0.0

0.2

0.4

0.6

0.8

1.0

im
po

rta
nc

e

ph

sin
gl

e
[e

dg
e]

to
ta

l [
ed

ge
]

tra
ns

fe
r [

ed
ge

]

sin
gl

e
[c

lo
ud

]

to
ta

l [
clo

ud
]

tra
ns

fe
r [

clo
ud

]

glucose

important features for a resource intensive pipeline

Figure 6.22: Importance of features for each output label per lambda function for a
resource-intensive pipeline

From figure 6.21 we can see that the duration of the image processing lambda and the
transfer time on the edge is directly influenced by the incoming message size. This relation
was to be expected, since the messages being sent to the image processing lambda are
rather big, ranging from 1 to 10MB in size, and the duration of the image processing
lambda is directly tied to how many images the message contains. For the transfer time
to the cloud, the network bandwidth also seems to play a role. This behavior falls in line
with what we expected to happen in section 6.1.1.

We can see the same patterns in 6.22 for image processing lambda in a resource-intensive
pipeline. However, in this case, CPU is an important metric in the prediction of transfer
time within the edge device. This is in line with the observed patterns in figure 6.11
described in section 6.1.2. Namely, if the edge device is not processing anything, than the
transfer time is next to nothing, however when the edge device is already busy, then it
has trouble starting up another instance of the lambda function to process the data and
the transfer time increases.

For the other lambda functions in this figure we can see that memory is overall relatively
important for predicting the input features. However, distinct relations are less visible for
these other lambda functions.

56

Chapter 6. Results

6.4 Scheduler performance

To evaluate the performance of the scheduler, we created 9 different configurations for the
scheduler and measured the duration and cost of around 500 invocations. The internet
speed, experiment type and number of images taken within those 500 invocations are
altered the same way as with random scheduling, which can be seen in table 5.1. The
different values chosen as constraints can be seen in table 6.5. These values are based
on the maximum and minimum measured duration and cost for the pipeline. For ex-
ample, in the original pipeline, the maximum total duration measured was 178 seconds
and the minimum 12.8 seconds. We chose the constraint values for that pipeline to be
approximately in that range, but never lower than the minimum duration.

Scheduling type value type original resource
intensive

cost optimization under
deadline constraint

deadline (sec) 250 1000

cost optimization under
deadline constraint

deadline (sec) 125 600

cost optimization under
deadline constraint

deadline (sec) 60 200

cost optimization under
deadline constraint

deadline (sec) 30 50

latency optimization under
cost constraint

max cost ($) 0.012 1

latency optimization under
cost constraint

max cost ($) 0.007 0.6

latency optimization under
cost constraint

max cost ($) 0.002 0.2

latency optimization under
cost constraint

max cost ($) 0.0002 0.01

random - -

Table 6.5: configurations for the scheduler experiment

6.4.1 Original pipeline

We first test the performance of the scheduler on the original pipeline. The mean duration
and cost over the 500 invocations for each constraint value can be seen in figure 6.23. The
frequencies of a specific lambda function being offloaded to the cloud for each constraint
value can be seen in figure 6.24.

A peculiar pattern can be observed in the scheduler performance graph for both latency
and cost optimization. The determined optimal duration and cost seem to be unchanging
and unrelated to the constraint value. This apparently happens, because there is one
scheduling choice for this pipeline that is both the fastest and cheapest compared to the
other alternatives: edge only scheduling.

Knowing that edge only is always the fastest and cheapest option, as previously deter-
mined in section 6.1.1, we can use this figure to evaluate the error of the model. From

57

Chapter 6. Results

figure 6.24 we can see that cost optimization perfectly scheduled everything on the edge,
but scheduling with latency optimization brings with it some errors. We can see that
latency optimization made the correct choice of keeping the image processing lambda on
the edge, but it still chooses to place the ph, alcohol and glucose lambdas in the cloud for
around 200 occurrences. Most likely the scheduler incorrectly predicted the duration of
the lambda functions by a few hundred milliseconds. This error is not disastrous however,
since the scheduler with latency optimization is only about 2% slower than the optimal
alternative.

0.000 0.002 0.004 0.006 0.008 0.010 0.012
constraint value (max cost)

0.00034

0.00036

0.00038

0.00040

0.00042

co
st

 ($
)

latency optimization

50 100 150 200 250
constraint value (max total duration)

0.00034

0.00036

0.00038

0.00040

co
st

 ($
)

cost optimization

25

26

27

28

29

30

du
ra

tio
n

(s
)

25

26

27

28

29

du
ra

tio
n

(s
)

scheduler performance

Figure 6.23: Performance of the scheduler.

0.000 0.002 0.004 0.006 0.008 0.010 0.012
cost constraint ($)

0

200

400

600

800

sc
he

du
lin

g
fre

qu
en

cie
s

latency optimization
edge only
ph/alcohol/glucose to cloud
image processing and ph/alcohol/glucose to cloud

50 100 150 200 250
deadline constraint (s)

cost optimization

edge only
ph/alcohol/glucose to cloud
image processing and ph/alcohol/glucose to cloud

scheduling frequencies

Figure 6.24: Frequencies of lambdas offloaded to the cloud.

6.4.2 Resource intensive pipeline

Following the original pipeline, we also test the performance of the scheduler on a resource-
intensive pipeline. The differences between the two pipelines have been described in

58

Chapter 6. Results

section 4.4.2. The mean duration and cost over the 500 invocations for each constraint
value can be seen in figure 6.25 and table 6.6. The frequencies of a specific lambda function
being offloaded to the cloud for each constraint value can be seen in figure 6.26.

We can see that for this resource-intensive pipeline, the scheduler performs much better.
For latency optimization, the scheduler is able to correctly decrease latency with a higher
constraint value and for cost optimization, the scheduler is able to correctly decrease cost
for a higher constraint value.

From figure 6.26 we can see that not one single offloading decision is picked for all con-
straints, but the decisions depend approximately on the given constraint value. This
indicates that the scheduling decisions do depend on the available resources on the sta-
tion and message size.

For example, for latency optimization with a cost constraint of $1, we can see that some-
times cloud only scheduling is chosen and sometimes edge only scheduling is chosen,
which results in an average duration of 137.3 seconds. For latency optimization with a
cost constraint of $0.01, we can see that if we were to schedule everything on the edge,
the duration would be much higher: Around 196.2 seconds.

As a reference, cloud only scheduling for a resource-intensive pipeline would take ap-
proximately 152.7 seconds and random scheduling 178.3 seconds. This implies that this
scheduler is able to increase performance by approximately 10,1% compared to cloud
only scheduling, 30,0% compared to edge only scheduling and 23% compared to random
scheduling by dynamically scheduling the lambda functions.

0.0 0.2 0.4 0.6 0.8 1.0
constraint value (max cost)

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

co
st

 ($
)

latency optimization

200 400 600 800 1000
constraint value (max total duration)

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

co
st

 ($
)

cost optimization

140

160

180

200

220

du
ra

tio
n

(s
)

140

160

180

200

220

du
ra

tio
n

(s
)

scheduler performance for a resource intensive pipeline

Figure 6.25: Performance of the scheduler in a resource-intensive pipeline

59

Chapter 6. Results

0.0 0.2 0.4 0.6 0.8 1.0
cost constraint ($)

0

200

400

600

800

sc
he

du
lin

g
fre

qu
en

cie
s

latency optimization
edge only
ph/alcohol/glucose to cloud
image processing and ph/alcohol/glucose to cloud

200 400 600 800 1000
deadline constraint (s)

cost optimization

edge only
ph/alcohol/glucose to cloud
image processing and ph/alcohol/glucose to cloud

scheduling frequencies for a resource intensive pipeline

Figure 6.26: Frequencies of lambdas offloaded to the cloud in a resource-intensive pipeline.

scheduling type constraint duration cost
random 178.3 sec $0.0748
edge only 196.2 sec $0.0004
cloud only 152.7 sec $0.2767

latency optimization $1 137.3 sec $0.1986
$0.6 169.5 sec $0.0773
$0.2 196.6 sec $0.0082
$0.01 205.1 sec $0.0004

cost optimization 1000 sec 201.5 sec $0.0004
600 sec 190.4 sec $0.0511
200 sec 141.9 sec $0.1559
50 sec 139.2 sec $0.1987

Table 6.6: Results overview for a resource intensive pipeline

6.5 Scheduler overhead

In this section we look into the overhead the scheduler adds to the deployment that is not
directly visible in the results. We mainly look into the latency overhead of passing mes-
sages through the scheduler and cost overhead due to the existence of the finalizer lambda
in the cloud, which collects the device performance data and retrains the models.

The added latency for sending messages to the scheduler first for each lambda function in
the original pipeline can be seen in table 6.7. This table contains the average scheduling
overhead caused by the duration of sending a message to the scheduler and the scheduling
process itself of each lambda function, as well as the standard deviation of this measured
average value, the average total transfer time to this function and the fraction size of
the overhead compared to the total transfer time. From this table, we can see that the
scheduling overhead is between 10% and 20% for each lambda function, and about 10.6%
for the entire pipeline. This means that the scheduler should improve the average latency

60

Chapter 6. Results

mean over-
head

std overhead mean total
transfer time

fraction of
mean total
transfer time

to image pro-
cessing

1.484 sec 0.699 sec 13.828 sec 10.7 %

to ph 0.109 sec 0.033 sec 0.476 sec 22.9 %
to glucose 0.115 sec 0.037 sec 0.553 sec 19.3 %
to alcohol 0.117 sec 0.037 sec 0.596 sec 21.1 %
to collector 0.054 sec 0.035 sec 0.459 sec 11.8 %
total duration 1.573 sec 0.720 sec 14.851 sec 10.6 %

Table 6.7: scheduling overhead versus total transfer time for lambda function in the
original pipeline

by more than 10.6% over any static lambda placement strategy before it can be classified
as more efficient.

The finalizer lambda is a required component for the scheduler to operate. It is responsible
for collecting the device metrics and storing them in a database, as well as retraining
the model when necessary. The finalizer has an average duration of 0.016 seconds, which
according to equation (5.4) with a memory configuration of 128Mb and ephemeral storage
of 512Mb is roughly equal to $ 0.00011 per request.

The cost of writing data to storage should also be accounted for. Per request about 1Kb
worth of data are stored in an SQL server. According to AWS RDS pricing model [11],
storing 1Kb of data in the database would increase the monthly cost by $ 0.133 · 10−6. If
only the last thousand data points were to be kept for training the model, then storage
would cost around $0.000133 a month. This is around the price of a single pipeline
invocation, and we can therefore disregard the storage price if old data is occasionally
purged from the database.

This means that the scheduler has to optimize the price such that it saves more than
approximately $ 0.00011 per request. if not, then the scheduler is not able to optimize
the price sufficiently.

Apart from these costs, there is also the cost of retraining the model. This is however an
operation that only occurs periodically, if at all. Moreover, if the deployment does not
change, the model doesn’t have to be retrained at all. We therefore disregard the cost
associated with this operation.

6.6 Automated deployment script

To quantify the optimization of the development process that the automated develop-
ment script offers, we conducted two experiments where we measured the approximate
time necessary to deploy the original pipeline for the first time or update the functions of
an existing pipeline using the automated deployment script or AWS provided alternatives.
Without the automated deployment script, these alternatives would likely be the AWS
User Interface (UI) or the AWS Command Line Interface (CLI). For these experiments
we assumed that the (updated) code for the lambda functions is already written, a rela-

61

Chapter 6. Results

tion database instance already exists and all the security credentials have already been
configured. An overview of these results can be seen in table 6.8.

initiating deployment updating existing deployment
AWS UI 51 min 15 min
AWS CLI 32 min 10 min

Automated script 22 min 8 min

Table 6.8: The approximate duration of each lambda function deployment method for
initiating a new deployment or updating an existing one.

The duration for initiating the deployment for the first time was measured by creating 5
serverless functions, identical to the image processing, pH, glucose, alcohol and collector
lambda, deploying them on the cloud and edge and configuring their communication
channels. The duration of updating lambda code was measured by updating the code of
only the image processing and pH lambda and deploying them to the cloud and edge. The
experiments were undertaken with knowledge of the necessary steps beforehand and for
AWS CLI a portion of the needed commands was available for a copy-paste action.

From table 6.8 we can see that the automated script always beats the other two deploy-
ment strategies in duration. Note however, that the values in this table are the duration
of the initiation or update process from start to finish. Meaning that a large portion of
this duration for the automated script requires no developer to be present and essentially
happens in the background. For initiating the deployment with the automated script,
only the initial configuration needs to be written, which in this case took approximately
10 minutes and for updating an existing deployment, the script only needs to be started,
which takes roughly 3 seconds at most. For the two other alternatives, constant developer
interaction is required over the entire duration.

What is more, the duration of AWS UI and CLI might in reality be even higher, since these
alternatives are more prone to human error. This increases the odds of the deployment
process needing to be restarted again. These alternative deployment methods also have a
higher learning curve for deploying together with the scheduler, since the developer needs
to know what steps to perform and how to configure the scheduler. This might make the
initial development time significantly longer using AWS UI and AWS CLI.

62

Chapter 7

Discussion

7.1 Pipeline

Before we analyze the performance of the scheduler, it is important to understand the
characteristics of the pipeline it is measured on. Certain characteristics of a pipeline
might make it easier for the scheduler to schedule lambda functions and display good
performance, while the absence of these characteristics might make the scheduler perform
poorly. In section 6.1 we describe the relations of lambda functions and the characteristics
of the pipeline with respect to the input features and output labels of the model for both
the original and resource-intensive pipeline.

The first important characteristic of our pipeline is the fact that our longest running
lambda function duration is dependent on message size. This resulted in the machine
learning model being able to predict the image processing lambda duration relatively well
and will therefore increase the performance of the scheduler. Other pipelines, however,
with lambdas not depending on message size, but rather some value hidden within the
context of the message, may not perform as well in combination with the scheduler.

second of all, our longest running lambda function is first in the pipeline. This means
that the total remaining duration can be predicted with a relatively decent score and even
if the scheduler predicts it incorrectly, it will have little impact on the final scheduling
decision.

However, if the longest running lambda function were to be in the middle or the end of
the pipeline, the machine learning model will likely have much more trouble predicting
the total remaining duration. In this case, the total remaining duration will be highly
influenced by one lambda function somewhere in the pipeline, for which we do not know
the available CPU, memory or network bandwidth nor the incoming message size. So the
model may not have enough information to make an accurate prediction. Future research
may focus on testing the scheduler on a pipeline with this characteristic to determine if
the scheduler can also optimize such a pipeline.

Last of all, for the resource-intensive pipeline specifically, the difference in duration for
our lambda functions is rather significant. The duration of the image processing lambda
is about 100 times longer than that of the ph, glucose or alcohol lambda. This means that
the scheduling of image processing lambda will have significantly more influence on the

63

Chapter 7. Discussion

final performance optimization of the scheduler than ph, glucose or alcohol. Moreover,
if ph, alcohol or glucose is incorrectly scheduled, it will likely not be noticeable, since
this will only influence the total duration by a few hundred microseconds at most. This
implies that our results may not indicate similar results for a more balanced multi-stage
pipeline.

Because of these characteristics, the measured performance of the scheduler may not apply
to all pipelines. The scheduler may completely fail to optimize a pipeline if the input
features do not imply the individual function duration, transfer time or total remaining
duration of a pipeline. To increase the confidence in the performance of the scheduler, it
will need to be tested on other pipelines with other characteristics in future work.

7.2 Machine learning model

In this section, the performance of the machine learning model for both the original and
resource-intensive pipeline is discussed. We look at the quality of the model and discuss
if it is a good fit. We can see the 10-fold cross-validation scores for the gradient boosting
models per lambda function in figures 6.19 and 6.20.

One thing we can see is that, for both figures, the individual lambda duration can be
accurately predicted for all lambda functions. The reason for this is a lack of variation in
the duration for ph, glucose and alcohol and the fact that the duration for image processing
is directly influenced by message size. The transfer time on the other hand seems to be
a bit harder to predict. The score for the transfer time to the image processing lambda
on the edge is relatively decent, with an R2 score between 0.4 and 0.9, while the transfer
time to the cloud is slightly less, with an R2 score between 0 and 0.3, for the original and
resource intensive pipeline. Note that a low R2 score value doesn’t necessarily mean that
the model is bad. Any R2 score higher than 0 indicates that the model is better than
taking the average from the data set. A score lower than 0 implies you might as well just
take the average of the data set. So with the given scores the scheduler should roughly
still be able to make correct decisions, although some error can be expected.

The transfer time for the other lambda functions does not seem to score as well. Edge
transfer time is overall relatively good, but the transfer time to the cloud contains to much
variation that cannot be explained. This is likely due to the smaller size of the message
being transferred compared to the messages coming into the image processing lambda.
In any case, this will likely not be a problem for the scheduler, since the transfer time to
these lambda functions only varies by a few seconds.

The total duration scores much better than anticipated for image processing lambda.
This is likely due to the fact that the longest running lambda function is first in the
pipeline. The image processing lambda’s total remaining duration is including its own
duration, meaning that the few seconds in difference in total duration caused by the ph,
glucose or alcohol lambda is negligible in the end result. This is even more visible for
the resource-intensive pipeline, where image processing lambda is 100x slower than ph,
glucose or alcohol. The total duration for the other lambda functions does not score well
at all, likely due to the variation added by transfer time from ph to the collector lambda
and the cold/warm start problem.

We can see that the model is not perfect, but considering the characteristics of the lambda

64

Chapter 7. Discussion

functions and the corresponding scores. The scheduler should be able to make decent de-
cisions based on the predictions made by the model. Future research could look into the
performance of the machine learning model on other pipelines, with different characteris-
tics.

7.3 Scheduler

In this section, the performance of the scheduler for both pipeline versions is discussed.
For the main part, we try to answer the research question stated in chapter 1: How do
we determine what tasks should be offloaded to the cloud and what should remain on the
edge based on a cost or deadline constraint?

In this paper, we try to answer this research question by constructing a machine learning
model that predicts the individual lambda duration, total remaining pipeline duration
and transfer time to the lambda function based on available resources and message size
and we either pick the option with the lowest duration or cost based on an optimization
strategy and a specified constraint. To determine whether or not this solution answers the
research question, we have to evaluate whether or not the tasks are offloaded to the cloud
or the edge based on the given constraint and whether this decision improves either cost
or latency relative to the optimization strategy for an increasing constraint value.

For the original pipeline, we can see that this is simply not the case. In figure 6.23
and figure 6.24 we can see that the scheduling decision does not change according to the
constraint value, nor do the average cost and duration change over constraint values. This
is because this pipeline has only one optimal scheduling decision: edge only. Both the
cost and latency are optimal for the placement of all functions on the edge. The affinity
with the edge is likely due to the short running nature of the pipeline. The current device
has enough resources available to accommodate for edge only execution.

Furthermore, one could argue that the scheduler may even increase latency and cost. The
added overhead of the scheduler counts as roughly 10% of the total duration and the
finalizer lambda costs about $0.00011 per invocation. Since the scheduler is not able to
optimize performance or cost, the extra overhead and finalizer cost will only make the
pipeline slower and costlier than it needs to be.

This does not mean that the scheduler is performing poorly however, this simply means
that there is no need for a dynamic scheduler in this pipeline. The scheduler could
still be used for this pipeline as an analysis tool. Developers could test their pipeline
using the scheduler, and evaluate what static placement is most optimal in their use
case. When that has been determined, the developer can remove the scheduler from the
pipeline and implement the static placement manually. The scheduler could still improve
the performance of the pipeline this way, even though the functions are not dynamically
scheduled.

To evaluate the scheduler on a pipeline that does not only have an affinity with the
edge, we slightly increase the resources required to run the pipeline by removing some
optimization in the code. The exact changes can be seen in section 4.4.2. For this
resource-intensive pipeline, we see more promising results. In figure 6.25 and figure 6.26
we can at least see that the cost and latency are much more dependent on the constraint
value, as is the placement of the lambda functions. Furthermore, for latency optimization

65

Chapter 7. Discussion

we can see that the duration is correctly decreasing for an increasing constraint value of
maximum invocation cost and for cost optimization we can see that the cost is correctly
decreasing for an increasing constraint value of maximum total duration. This implies
that the scheduler is able to correctly schedule functions for latency and cost optimization
under some predefined constraint.

This is a good indication of the performance of the scheduler, but we still need to determine
whether the scheduling decisions are approximately optimal. To determine this, we can
compare the result of scheduling with latency optimization and cost optimization with
random, edge only and cloud only scheduling. The improvement per optimization strategy
and constraint value can be seen in tables 7.1 and 7.2. In these tables a positive value
represents an overall improvement and a negative value represents that the optimization
strategy is performing worse in that respect.

The performance of cost optimization is easily checked: If the scheduler is scheduling
every lambda function on the edge then cost should be minimal. From the figures we can
indeed see that for a constraint value of 1000 seconds for cost optimization, which is much
higher than any recorded pipeline duration and thus implies that the cost is optimized
regardless of pipeline duration, the scheduling decision is indeed edge only, and therefore
the cost is minimal and thus optimized.

In addition to that, the latency should improve with a decreasing constraint value. From
table 7.1 we can indeed see that this is the case. The scheduler is even able to slightly
optimize latency given a very small constraint value.

To evaluate the optimization of latency, we need to compare the results to edge only,
cloud only and random scheduling. For latency optimization with a constraint value of
$1 , which is higher than any recorded invocation cost and will therefore optimize latency
regardless of cost, we measure a duration of 137.3 seconds. Edge only scheduling has an
average duration of 196.2, cloud only scheduling an average duration of 152.7 and random
an average duration of 178.3. This implies that this scheduler is able to decrease latency
with approximately 10,1% compared to cloud only scheduling, 30,0% compared to edge
only scheduling and 23% compared to random scheduling by dynamically scheduling the
lambda functions, as can be seen in table 7.2.

improvement on latency improvement on cost
constraint random edge

only
cloud
only

random edge only cloud
only

1000 sec -13.0% -2.7% -31.9% 99.5% 0.0% 99.9%
600 sec -6.8% 3.0% -24.7% 31.7% -1.3·104% 81.5%
200 sec 20.4% 27.7% 7.1% -108.4% -3.9·104% 43.7%
50 sec 21.9% 29.1% 8.9% -165.6% -5.0·104% 28.2%

Table 7.1: Improvements with cost optimization

66

Chapter 7. Discussion

improvement on latency improvement on cost
constraint random edge

only
cloud
only

random edge only cloud
only

$1 23.0% 30.0% 10.1% -165.5% -5.0·104% 28.2%
$0.6 4.9% 13.6% -11.0% -3.3% -1.9·104% 72.1%
$0.2 -10.3% -0.2% -28.7% 89.0% -2.0·102% 97.0%
$0.01 -15.0% -4.5% -34.3% 99.5% 0.0% 99.9%

Table 7.2: Improvements with latency optimization

These numbers are an excellent indication that the scheduler is able to improve perfor-
mance over statically placed functions, however we need to evaluate if the scheduler is
able to improve performance regardless of the scheduling overhead. Since the measured
duration for latency optimization is faster than edge only and random scheduling by more
than 10%, we can say that the scheduler is able to optimize the performance even with
the scheduling overhead taken into account compared to those static scheduling methods.
Compared to cloud only scheduling, the optimization is roughly equal to the overhead
caused by the scheduler. However, cloud-only scheduling has an average cost of $0.2767
and latency optimization with high constraint a cost of $0.1986. So the scheduler is able
to optimize cost by 28% with regard to cloud only placement, even with the finalizer
lambda cost overhead taken into account. So this means that:

• Compared to cloud only scheduling, the scheduler with latency optimization, highest
constraint and scheduling overhead taken into account, is able to keep the same
latency and optimize cost with 28%.

• Compared to edge only scheduling, the scheduler with latency optimization, high-
est constraint and scheduling overhead taken into account, is able to optimize the
latency by 20%. account.

• Compared to random scheduling, the scheduler with latency optimization, high-
est constraint and scheduling overhead taken into account, is able to optimize the
latency by 13%.

• Compared to cloud only scheduling, the scheduler with cost optimization, highest
constraint and cost overhead taken into account, is able to reduce cost by 99.9%.

• Compared to edge only scheduling, the scheduler with cost optimization, highest
constraint and cost overhead taken into account, is able to roughly maintain the
same cost and latency.

• Compared to random scheduling, the scheduler with cost optimization, highest con-
straint and cost overhead taken into account, is able to optimize the cost by 99.5%.

So the scheduler is able to optimize latency with 13%-20% or reduce cost with 28%,
with the scheduling overhead taken into account.

We can conclude from these results that the scheduler does not work on every pipeline. If
a static placement of function is both optimal in cost and latency, then using a scheduler
will only decrease performance. This is often the case for short running and lightweight
applications where the edge device has enough resources to run them. Or when there is

67

Chapter 7. Discussion

a unschedulable lambda function, like our station lambda function, that bottlenecks the
deployment such that it is unlikely for the edge device to be overloaded with requests.

However, for longer running resource-intensive pipelines, the scheduler is able to schedule
the lambda functions correctly according to the chosen optimization strategy and given
cost or deadline constraints. It is even able to optimize the latency and cost with the
scheduling overhead taken into account.

7.4 Automated deployment script

In this section, our implementation of an automated deployment script for the scheduler
and lambda functions is discussed. We shortly reiterate how we refined the development
process and argue why it is an improvement over the alternative. We also discuss some
shortcomings which may be able to be fixed in the future. Mainly, we try to answer the
research question: How do we minimize the time consuming process of configuring and
deploying serverless functions to the cloud and to the edge?

To minimize the time consuming development process, we implemented an automatic
deployment script that configures the scheduler, the lambda function and the communi-
cation channels according to the specifications given by the developer in a .yaml file. The
grammar and an example of the configuration file can be found in Appendix A. The only
thing the developer will have to define is the scheduling optimization strategy and con-
straint, assigned resources, environment and message channels for the lambda functions
and security credentials. All the deployment steps are automatically performed by the
script.

The first difference between the creation of lambda functions via the AWS CLI or UI and
the .yaml configuration lies in the first time setup of the entire pipeline. In both cases,
quite some initial configuration is required to set up the pipeline. The only difference is
that via the AWS CLI or UI, the lambda function first has to manually be configured for
the cloud and then on a separate interface, it needs to be configured for the edge. This
means manually running through commands or pages to complete a task that could be
completed at once. Our deployment script provides one central file in which everything
can be defined.

The second difference is where the deployment script really shines. That is the automatic
updating of serverless functions. If certain code changes in the pipeline, the developer
normally will have to manually identify what lambda functions are influenced, upload the
code to AWS manually and configure the lambda functions in the cloud and on the edge
separately. Depending on the changes to the pipeline, the developer will have to perform
these actions for every single lambda function. On the other hand, for our deployment
script, none of these steps are necessary. The only thing the developer will need to do
is specify the names of the lambda functions to update and run the script. Uploading
the code, configuring the cloud, configuring the edge and updating the scheduler is all
performed automatically.

From the comparison with AWS CLI and the AWS UI in section 6.6 we noticed that the
automated development script is always faster for creating an edge cloud deployment.
The data of this comparison can be seen in table 6.8. Furthermore, the data gathered
here is the total duration from start to finish. Meaning that a large portion of the

68

Chapter 7. Discussion

automated script duration requires no developer to be present and essentially happens in
the background. For the two other alternatives, constant developer interaction is required
over the entire duration. In addition to that, AWS CLI and AWS UI have a greater
learning curve for creating an edge cloud deployment, since knowledge of all the manual
steps required is necessary. This fact can slow down the initial development process and
introduce more room for human error.

There are however some shortcomings to our implementation. First of all, the creation of
the relational database for the finalizer is not created automatically. We made the choice
to not include this in the automated deployment script, since a lot of customization can
go into creating a database and it is likely to be used for other ends as well, not just for
storing the pipeline metrics. Rather, we let the user create the database via the AWS
portal and let them insert the database connection info as a secret.json file. Furthermore,
creating a database via .yaml configuration instead of an interactive frontend would likely
not have been beneficial for the development process.

Second of all, the current automated deployment script only supports a subsample of
the services that AWS offers. The automated deployment script could be extended to
support communication channels like: AWS SNS, AWS IoT Greengrass stream manager
and HTTPS. It could also be extended to include the configuration of non-lambda compute
instances in the cloud or on the edge, although this would require substantial modification
of the deployment script, the scheduler and possibly Greengrass itself.

Third of all, AWS stepfunctions or another graph-based interface could be utilized to
visualize the relation between lambda components. Currently, the developer is only able
to configure the deployment via a configuration lambda file. A friendly user interface can
be utilized to optimize the development experience by making it faster and possibly more
pleasant.

69

Chapter 8

Future work

In this section we list some of the challenges and open questions that still remain within
the research area of serverless edge computing. We describe how our implementation tries
to tackle them and what future research may focus on to solve these issues.

First of all, the scheduler should be tested on more than one pipeline. We tested our
scheduler on one specific pipeline, or to be more precise, a regular and a resource intensive
version of one specific pipeline. This gives us some indication of the performance of the
scheduler, but to get a better picture of the general performance of the scheduler, it will
need to be tested on a wider verity of different pipelines. Future research can focus on
creating multiple deployments and pipelines to test the scheduler. Furthermore, more
focus can be put into making a universal set of deployments and pipelines for which
multiple serverless edge schedulers in the literature can be tested, so that they can be
reliably and accurately compared with one another.

Second of all, future research can focus on improving the machine learning model by
implementing content aware scheduling. For example, our model was able to predict the
individual lambda duration with a near 99% score. This was due to the fact that the
duration was either constant or directly related to message size. However, in most other
systems this does not necessarily have to be the case. If the duration of a lambda function
is not related to message size, or any of the other input features of the model, the model
will presumably not be able to predict the individual lambda duration well. The duration
may not be directly tied to message size, but to the message content, like a parameter
settings or values in a JSON message. One could let the developer define important
parameter values in the message, which the model should pay attention to, to increase
the model score. However, this would increase the strain on the development process
significantly, which reintroduces a problem serverless functions tries to solve. Future
research could focus on implementing a combination of text analysis and machine learning
to retrieve relevant features from the incoming message and predict the individual lambda
durations, transfer times and total remaining execution time. This could potentially
increase the score of predicting the individual lambda durations in those specific pipelines,
and would not put any further strain on the development process of the pipeline.

Third of all, future research could focus on solving the cold/warm start problem. In this
research we did not specifically try to solve this problem, rather we would point out its
existence and evaluate the ability of the scheduler to incorporate warm and cold starts in

70

Chapter 8. Future work

its decision making process. Currently, AWS provides no endpoints to retrieve information
about the running state of a function and whether it is already running or still needs to
start up. In addition to that, AWS does not provide the ability to customize the time
a serverless function can idle in a warm state, apart from an ” always-on” setting. If
AWS were to provide this functionality in the future, then future research could focus
on incorporating the available information into the model and potentially increasing the
ability of the model to predict a cold/warm start in the cloud.

Fourth of all, to alleviate the strain of developing an edge cloud deployment, a graphical
user interface can be used. We created an .yaml configuration file in which the developer
can easily define its entire pipeline and all the other configuration and creation steps will
be completed automatically. Although this feature may help, the development process
could be improved by introducing a graphical interface to create the configuration, like
the AWS stepfunctions [11] service. AWS stepfunctions allows the developer to define
the pipeline as a directional graph, where the nodes are the serverless functions and the
lines represent the communication paths. AWS stepfunctions currently does not support
support the right functionality to be used in edge cloud computing, since the graph
can only be executed from the starting node, meaning we cannot run only half of the
graph if we chose to do the first on the edge. AWS stepfunctions also does not allow for
setting custom configurations necessary for edge execution. Future research can focus on
creating a graphical user interface to alleviate the developing strain even more, or if AWS
stepfunctions becomes more customizable, implement it there.

Last of all, the scheduler can be written in another language to improve overall perfor-
mance. Currently, the scheduler itself is written in Python. Although python is a very
flexible and maintainable programming language, it is not know for its performance. The
memory consumption can be as much as twice as high and the run time 5 to 10 times as
long compared to its C and C++ counterpart [39]. To reduce the scheduling overhead in
a pipeline, future research can focus on rewriting the scheduler in C++.

71

Chapter 9

Conclusion

This paper introduces a dynamic serverless edge scheduler that optimizes either cost or la-
tency according to a predefined deadline or cost constraint. This scheduler is evaluated on
a real word use case; an image processing pipeline for a company called SG Papertronics.
In the next paragraphs, each of the research questions from chapter 1 is discussed.

The first research question we presented was: How do we determine what tasks
should be offloaded to the cloud and what should remain on the edge based on
a cost or deadline constraint? To answer this research question we created a dynamic
scheduler that predicts the total remaining pipeline duration, individual lambda duration
and transfer time using the available resources on the device, the network bandwidth
and the message size, in order to make a decision whether or not to offload a lambda
function to the cloud. We then evaluated this scheduler on two versions, the original and
a resource-intensive version, of an image processing pipeline.

From this evaluation, we noted that the scheduler was able to optimize both cost and
latency for a resource-intensive pipeline. The latency was improved by 10%-30% compared
to the situation if the same lambda functions were to be placed statically on the cloud
or statically on the edge. Considering the scheduling overhead is about 10% of the entire
pipeline, the scheduler is able to improve latency by 0%-20% compared to a pipeline where
no scheduler is present. Compared to cloud only static placement, the scheduler is able
to reduce cost by 28% while maintaining an approximate equal duration.

We also determined that the scheduler is not able to optimize every pipeline. If a static
placement of function is both optimal in cost and latency, then using a scheduler will only
decrease performance. This was the case for our original pipeline, where the placement of
functions on the edge was always optimal in cost and latency. In those cases, the scheduler
could still prove beneficial as an analysis tool, to determine what static placement is most
optimal for the lambda functions. The developer can then manually place them on either
the cloud or the edge, without including the overhead of dynamically scheduling those
functions.

72

Chapter 9. Conclusion

The second research question was: How do we minimize the time-consuming pro-
cess of configuring and deploying serverless functions to the cloud and to the
edge? To answer this research question, we created an automated deployment script for
deploying serverless functions to the edge and cloud. This script is able to optimize the
deployment process by removing a great portion of manual steps necessary in the initial
stage of development and any future stage for updating the deployment. We discussed
that the automated deployment script is able to minimize the time-consuming develop-
ment process compared to other alternatives like AWS CLI and AWS UI. However, we
also noted that our deployment script has a few shortcomings, like the lack of a visual
tool and limited support for a number of services within AWS.

73

Bibliography

[1] Yucong Duan, Qiang Duan, Xiaobing Sun, Guohua Fu, Nanjangud C. Narendra,
Nianjun Zhou, Bo Hu, and Zhangbing Zhou. Everything as a service (xaas) on the
cloud: origins, current and future trends. Services Transactions on Cloud Computing,
4(2), 2016.

[2] Peter Middleton, T Tully, J Hines, Thilo Koslowski, Bettina Tratz-Ryan, K Brant,
Eric Goodness, Angela McIntyre, and Anurag Gupta. Forecast: Internet of things-
endpoints and associated services, worldwide, 2015. Gartner Inc., Stamford, CT,
USA, Tech. Rep. G, 290510:57, 2015.

[3] Mahadev Satyanarayanan. The emergence of edge computing. Computer, 50(1):30–
39, 2017.

[4] Keyan Cao, Yefan Liu, Gongjie Meng, and Qimeng Sun. An overview on edge com-
puting research. IEEE Access, 8:85714–85728, 2020.

[5] Agus Kurniawan. Learning AWS IoT: Effectively manage connected devices on the
AWS cloud using services such as AWS Greengrass, AWS button, predictive analytics
and machine learning. Packt publishing, 2018.

[6] Anirban Das, Shigeru Imai, Mike P. Wittie, and Stacy Patterson. Performance
optimization for edge-cloud serverless platforms via dynamic task placement. CoRR,
abs/2003.01310, 2020.

[7] Gustavo André Setti Cassel, Vinicius Facco Rodrigues, Rodrigo da Rosa Righi,
Marta Rosecler Bez, Andressa Cruz Nepomuceno, and Cristiano André da Costa.
Serverless computing for internet of things: A systematic literature review. Future
Generation Computer Systems, 128:299–316, 2022.

[8] Trang Quang and Yang Peng. Device-driven on-demand deployment of serverless
computing functions. In 2020 IEEE International Conference on Pervasive Comput-
ing and Communications Workshops (PerCom Workshops), pages 1–6, 2020.

[9] Saqib Rasool Chaudhry, Andrei Palade, Aqeel Kazmi, and Siobhán Clarke. Improved
qos at the edge using serverless computing to deploy virtual network functions. IEEE
Internet of Things Journal, 7(10):10673–10683, 2020.

[10] István Pelle, Francesco Paolucci, Balázs Sonkoly, and Filippo Cugini. Latency-
sensitive edge/cloud serverless dynamic deployment over telemetry-based packet-
optical network. IEEE Journal on Selected Areas in Communications, 39(9):2849–
2863, 2021.

74

Bibliography

[11] Andreas Wittig Michael Wittig. Amazon Web Services in Action. Simon and Schus-
ter, 2018.

[12] Danilo Poccia. AWS Lambda in Action: Event-driven serverless applications. Simon
and Schuster, 2016.

[13] Warren Gay. Raspberry Pi Hardware Reference. Apress, USA, 1st edition, 2014.

[14] SG Papertronics. Beer-o-meter, 2021.

[15] SG Papertronics. Sg papertronics, 2021.

[16] Duarte Pinto, João Pedro Dias, and Hugo Sereno Ferreira. Dynamic allocation of
serverless functions in iot environments. CoRR, abs/1807.03755, 2018.

[17] Hassan B. Hassan, Saman A. Barakat, and Qusay I. Sarhan. Survey on serverless
computing. Journal of Cloud Computing, 10(1):39, Jul 2021.

[18] Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Harter, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Sock: Rapid task provisioning with
serverless-optimized containers. In USENIX Annual Technical Conference, 2018.

[19] Kostis Kaffes, Neeraja J. Yadwadkar, and Christos Kozyrakis. Centralized core-
granular scheduling for serverless functions. In Proceedings of the ACM Symposium on
Cloud Computing, SoCC ’19, page 158–164, New York, NY, USA, 2019. Association
for Computing Machinery.

[20] Johannes Manner, Martin Endreß, Tobias Heckel, and Guido Wirtz. Cold start in-
fluencing factors in function as a service. In 2018 IEEE/ACM International Confer-
ence on Utility and Cloud Computing Companion (UCC Companion), pages 181–188,
2018.

[21] Tarek Elgamal. Costless: Optimizing cost of serverless computing through function
fusion and placement. In 2018 IEEE/ACM Symposium on Edge Computing (SEC),
pages 300–312, 2018.

[22] Gareth George, Fatih Bakir, Rich Wolski, and Chandra Krintz. Nanolambda: Im-
plementing functions as a service at all resource scales for the internet of things. In
2020 IEEE/ACM Symposium on Edge Computing (SEC), pages 220–231, 2020.

[23] Chunglae Cho, Seungjae Shin, Hongseok Jeon, and Seunghyun Yoon. Qos-aware
workload distribution in hierarchical edge clouds: A reinforcement learning approach.
IEEE Access, 8:193297–193313, 2020.

[24] István Pelle, János Czentye, János Dóka, András Kern, Balázs P. Gerő, and Balázs
Sonkoly. Operating latency sensitive applications on public serverless edge cloud
platforms. IEEE Internet of Things Journal, 8(10):7954–7972, 2021.

[25] Michael Zhang, Chandra Krintz, and Rich Wolski. Edge-adaptable serverless accel-
eration for machine learning internet of things applications. Software: Practice and
Experience, 51, 12 2020.

[26] Bin Cheng, Gürkan Solmaz, Flavio Cirillo, Ernö Kovacs, Kazuyuki Terasawa, and
Atsushi Kitazawa. Fogflow: Easy programming of iot services over cloud and edges
for smart cities. IEEE Internet of Things Journal, 5(2):696–707, 2018.

75

Bibliography

[27] Bin Cheng, Jonathan Fuerst, Gurkan Solmaz, and Takuya Sanada. Fog function:
Serverless fog computing for data intensive iot services. In 2019 IEEE International
Conference on Services Computing (SCC), pages 28–35, 2019.

[28] David Jensen. Beginning Azure IoT Edge Computing: Extending the Cloud to the
Intelligent Edge. Apress, 1st edition, 2019.

[29] Michele Sciabarrà. Learning Apache OpenWhisk. O’Reilly Media, Inc., 2019.

[30] Agus Kurniawan. Learning AWS IoT. Packt Publishing, 2018.

[31] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers,
Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerk-
wijk, Matthew Brett, Allan Haldane, Jaime Fernández del Ŕıo, Mark Wiebe, Pearu
Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser,
Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array programming with
NumPy. Nature, 585(7825):357–362, September 2020.

[32] Luciano Ramalho. Fluent Python. O’Reilly Media, Inc., 2015.

[33] shorewall tcdevices. wondershaper unix tool, 2012.

[34] Tin Kam Ho. Random decision forests. In Proceedings of 3rd International Confer-
ence on Document Analysis and Recognition, volume 1, pages 278–282 vol.1, 1995.

[35] Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely randomized trees.
Machine learning, 63(1):3–42, 2006.

[36] Jerome H. Friedman. Stochastic gradient boosting. Computational Statistics Data
Analysis, 38(4):367–378, 2002. Nonlinear Methods and Data Mining.

[37] S Madeh Piryonesi and Tamer El-Diraby. Data analytics in asset management: Cost-
effective prediction of the pavement condition. Journal of Infrastructure Systems, 26,
01 2020.

[38] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[39] Lutz Prechelt. An empirical comparison of c, c++, java, perl, python, rexx and tcl.
IEEE Computer, 33(10):23–29, 2000.

76

Appendices

77

Appendix A

deployment configuration

A.1 Configuration grammar

The following scheme depicts the grammar for the configuration .yaml file. This grammar
also includes the default values used for empty fields. The YAML scheme is divided
into 4 sections: First of all, the general section, where the user should specify the AWS
environment, region, the architecture of the edge device (arm or x86) and other AWS
resources. Second of all, a dictionary of lambda functions and their configuration. The
key of this dictionary is the lambda function’s name and the value the configuration.
Third and fourth of all, the optional modifications for the configuration for the scheduler
and finalizer. A default configuration is already set for the scheduler and finalizer, but
the developer could modify this default configuration using these fields.

For each lambda function, a number of configurations can be set:

• no lambda can be set if the lambda function should be deployed as a component,
not as a lambda function. Setting this to true means that the component can only
be executed on the edge and cannot be scheduled.

• component name should be set to as an identification of the lambda for edge
deployment.

• handler should be a path to the code of the function to be executed.

• package type indicates in what format the lambda should be uploaded, via zip
file or docker image. Currently, for edge execution, only zip is supported. However,
lambda functions running in the cloud can be deployed as a docker image.

• package metadata, local event topics and mqtt event topics do not have to
be specified. The automatic deployment script will automatically fill in these values
according to the rest of the configuration. However, they can be set if the developer
wishes to add extra endpoints to the edge functions which circumvent the scheduler.

• In destinations the developer should specify what lambda function the results
should be sent to. The developer could also specify what protocols to use, but
this should not be necessary. The scheduler will be able to automatically pick the
best protocol for the job according to the message size given the default protocol

78

configuration.

• The cloud and edge fields depict the lambda configuration for the cloud and on the
edge respectively. All fields and default values should be a one-to-one representation
of the AWS lambda and AWS Greengrass configurations.

• Via the requirements field, a developer can give a custom test file containing
external python libraries.

• The dependencies field allows the developer to attach custom Greengrass depen-
dencies to the lambda component.

• The placement field allows the developer to specify if the lambda function should
be scheduled, or should only be run on either the edge or in the cloud.

1 general:

2 aws:

3 thing_group_arn: str

4 s3_bucket: str

5 sqs_arn: str

6 architecture: str

7 region: str

8 runtime: str

9 lambda_role: str

10 ecr_uri: Optional[str]

11 scheduling:

12 type: Enum[random,edge_only,cloud_only,deadline,cost]

13 value: Optional[float]

14 lambdas: Dict[

15 str,

16 no_lambda: bool = False

17 component_name: str = None

18 handler: str

19 package_type: Enum[zip,image] = zip

20 package_metadata: Dict = {}

21 local_event_topics: List[str] = []

22 mqtt_event_topics: List[str] = []

23 destinations: List[

24 lambda_name: str

25 protocols:

26 cloud_cloud: Enum[sqs,lambda_invoke] = lambda_invoke

27 local_cloud: Enum[s3,iot_mqtt,scheduled] = scheduled

28 local_local: Enum[local_pub/sub] = local_pub/sub

29]

30 cloud:

31 ephemeral_storage: int = 512

32 memory: int = 128

33 timeout: int = 3

34 environment: Dict[str, str] = {}

35 secret_environment: Optional[str]

36 edge:

79

37 timeout: int = 3

38 max_idle_time: int = 60

39 max_instance_count: int = 100

40 max_queue_size: int = 1000

41 warm_start: bool = True

42 environment: Dict[str, str] = {}

43 requirements: Optional[str]

44 dependencies: Dict[str, Dict[str, str]] = {}

45 placement: Enum[edge_only,cloud_only,scheduled] = scheduled

46] = []

47 scheduler: Optional[Dict] # override scheduler configuration

48 finalizer: Optional[Dict] # override finalizer configuration

A.2 Example configuration

The following is the configuration we used for one of our experiments. More specifically,
the evaluation of the scheduler with latency optimization under cost constraint with a
constraint value of $0.007. Certain values have been replaced with example values to
maintain the security of the Papertronics deployment

1 general:

2 aws:

3 architecture: arm64

4 ecr_uri: 112233445515.dkr.ecr.eu-west-1.amazonaws.com

5 lambda_role: arn:aws:iam::112233445515:role/lambda_role

6 region: eu-west-1

7 runtime: python3.8

8 s3_bucket: experiment-images

9 sqs_arn: arn:aws:sqs:eu-west-2:112233445515:main_lambda_queue

10 thing_group_arn: arn:aws:iot:eu-west-2:112233445515:

11 thinggroup/beer-o-meter_stations

12 scheduling:

13 type: cost

14 value: 0.007

15 lambdas:

16 alcohol_lambda:

17 cloud:

18 timeout: 20

19 component_name: com.alcohol.lambda

20 destinations:

21 - lambda_name: collector_lambda

22 edge:

23 max_idle_time: 30

24 max_instance_count: 3

25 max_queue_size: 100

26 warm_start: false

27 handler: case_lambdas.alcohol_lambda.handle

80

28 requirements: requirements_processing.txt

29

30 collector_lambda:

31 placement: cloud_only

32 cloud:

33 timeout: 60

34 destinations:

35 - lambda_name: finalizer_lambda

36 handler: collector_lambda.handle

37 requirements: requirements_collector.txt

38

39 glucose_lambda:

40 cloud:

41 ephemeral_storage: 512

42 memory: 128

43 timeout: 20

44 component_name: com.glucose.lambda

45 destinations:

46 - lambda_name: collector_lambda

47 edge:

48 max_idle_time: 30

49 max_instance_count: 3

50 max_queue_size: 100

51 warm_start: false

52 handler: case_lambdas.glucose_lambda.handle

53 requirements: requirements_processing.txt

54

55 image_processing_lambda:

56 cloud:

57 environment:

58 SLOW: false

59 ephemeral_storage: 666

60 memory: 256

61 timeout: 900

62 component_name: com.imageprocessing.lambda

63 destinations:

64 - lambda_name: ph_lambda

65 - lambda_name: alcohol_lambda

66 - lambda_name: glucose_lambda

67 edge:

68 max_idle_time: 120

69 max_instance_count: 3

70 max_queue_size: 1000

71 warm_start: false

72 handler: image_processing_lambda.handle

73 requirements: requirements_processing.txt

74

75 ph_lambda:

81

76 cloud:

77 timeout: 20

78 component_name: com.ph.lambda

79 destinations:

80 - lambda_name: collector_lambda

81 edge:

82 max_idle_time: 30

83 max_instance_count: 3

84 max_queue_size: 100

85 warm_start: false

86 handler: case_lambdas.ph_lambda.handle

87 requirements: requirements_processing.txt

88

89 station_lambda:

90 placement: edge_only

91 component_name: com.station.lambda

92 destinations:

93 - lambda_name: image_processing_lambda

94 edge:

95 max_idle_time: 240

96 max_instance_count: 1

97 max_queue_size: 1000

98 warm_start: true

99 handler: station_lambda.handle

100 requirements: requirements_station.txt

A.3 Finalizer and scheduler configuration

This section describes the default configuration of the finalizer and the scheduler used
for the experiments. The configuration grammar for these components is identical to the
grammar of individual lambda functions in section A.1.

1 scheduler:

2 allowed_operations:

3 - '*'

4 cloud:

5 ephemeral_storage: 512

6 memory: 128

7 timeout: 900

8 component_name: com.component.scheduler

9 dependencies:

10 aws.greengrass.TokenExchangeService:

11 dependencyType: HARD

12 versionRequirement: 2.0.3

13 edge:

14 environment:

15 EXCLUDE_LAMBDAS: station_lambda, finalizer_lambda

82

16 MODEL_BUCKET: papertronicsmodels

17 RETRAIN_COUNT: 50

18 max_idle_time: 60

19 max_instance_count: 1

20 max_queue_size: 1100

21 warm_start: true

22 handler: serverless_scheduler/scheduler_component.py

23 local_event_topics:

24 - out/station_lambda

25 - out/ph_lambda

26 - out/image_processing_lambda

27 - out/glucose_lambda

28 - out/alcohol_lambda

29 mqtt_event_topics:

30 - in/+

31 - scheduler/+

32 no_lambda: true

33 requirements: requirements_scheduler.txt

1 finalizer:

2 placement: cloud_only

3 cloud:

4 environment:

5 EXCLUDE_LAMBDAS: station_lambda, finalizer_lambda, collector_lambda

6 MODEL_BUCKET: papertronicsmodels

7 ephemeral_storage: 1024

8 memory: 512

9 secret_environment: data/secret.json

10 timeout: 600

11 component_name: null

12 destinations:

13 - lambda_name: https://sqs.eu-west-2.amazonaws.com/

14 119612254815/results_queue

15 protocols:

16 cloud_cloud: sqs

17 local_cloud: null

18 local_local: null

19 handler: finalizer_lambda.handle

20 package_metadata:

21 DockerContext: .

22 DockerTag: finalizer_lambda

23 Dockerfile: aws/Dockerfile

24 package_type: Image

25 requirements: requirements_finalizer.txt

83

Appendix B

Machine learning methods perfor-
mances

B.1 Residuals vs fit plot

B.1.1 Original pipeline

0.5 1.0 1.5
fit

0.1

0.0

0.1

re
sid

ua
ls

edge

single

0.5 1.0 1.5 2.0 2.5
fit

0.25

0.00

0.25

0.50

0.75

re
sid

ua
ls

edge
transfer

2 4 6
fit

2

0

2

re
sid

ua
ls

edge
total

0.5 1.0 1.5 2.0 2.5
fit

0.2

0.0

0.2

re
sid

ua
ls

cloud
single

0 25 50 75 100 125
fit

0

10

20

re
sid

ua
ls

cloud
transfer

1 2 3 4
fit

1

0

1

2

3

re
sid

ua
ls

cloud
total

residuals vs fit plot for image processing

Figure B.1: Residuals vs fit plot for image processing lambda

84

0.010 0.015 0.020 0.025
fit

0.000

0.005

re
sid

ua
ls

edge
single

0.0 0.1 0.2 0.3 0.4
fit

0.1

0.0

0.1

0.2

re
sid

ua
ls

edge
transfer

0.0 0.5 1.0 1.5 2.0 2.5
fit

1

0

1

re
sid

ua
ls

edge

total

0.00000.00250.00500.00750.01000.0125
fit

0.000

0.005

0.010

0.015

re
sid

ua
ls

cloud
single

0.0 0.5 1.0 1.5 2.0 2.5
fit

1

0

1

re
sid

ua
ls

cloud
transfer

1 2 3
fit

1

0

1

2

3

re
sid

ua
ls

cloud
total

residuals vs fit plot for ph

Figure B.2: Residuals vs fit plot for ph lambda

0.025 0.050 0.075 0.100 0.125
fit

0.05

0.00

0.05

0.10

re
sid

ua
ls

edge
single

0 1 2
fit

0.5

0.0

0.5

1.0

re
sid

ua
ls

edge
transfer

0 1 2 3
fit

1

0

1

2

re
sid

ua
ls

edge
total

0.000 0.005 0.010 0.015
fit

0.010

0.005

0.000

0.005

re
sid

ua
ls

cloud

single

0.0 0.5 1.0 1.5 2.0
fit

1

0

1

re
sid

ua
ls

cloud
transfer

1 2 3
fit

2

0

2

re
sid

ua
ls

cloud
total

residuals vs fit plot for glucose

Figure B.3: Residuals vs fit plot for glucose lambda

85

0.02 0.03 0.04
fit

0.005

0.000

0.005

0.010

re
sid

ua
ls

edge
single

0.0 0.1 0.2 0.3
fit

0.2

0.1

0.0

0.1

0.2

re
sid

ua
ls

edge
transfer

0 1 2 3
fit

1

0

1

re
sid

ua
ls

edge
total

0.000 0.005 0.010
fit

0.005

0.000

0.005

0.010

re
sid

ua
ls

cloud
single

0.0 0.5 1.0 1.5 2.0
fit

1

0

1

re
sid

ua
ls

cloud
transfer

1 2 3
fit

0

1

re
sid

ua
ls

cloud
total

residuals vs fit plot for alcohol

Figure B.4: Residuals vs fit plot for alcohol lambda

B.1.2 Resource intensive pipeline

50 100 150 200 250
fit

0

2

4

6

re
sid

ua
ls

edge
single

0 100 200 300 400
fit

100

0

100

re
sid

ua
ls

edge

transfer

50 100 150 200 250
fit

2.5

0.0

2.5

5.0

7.5

re
sid

ua
ls

edge
total

50 100 150 200
fit

0

2

4

6

re
sid

ua
ls

cloud
single

0 50 100 150 200
fit

20

0

20

re
sid

ua
ls

cloud

transfer

50 100 150 200
fit

2.5

0.0

2.5

5.0

7.5

re
sid

ua
ls

cloud
total

residuals vs fit plot for image processing

Figure B.5: Residuals vs fit plot for image processing lambda for a resource intensive
pipeline

86

0.01 0.02 0.03 0.04
fit

0.005

0.000

0.005

0.010

re
sid

ua
ls

edge
single

0.0 0.1 0.2 0.3 0.4
fit

0.0

0.2

re
sid

ua
ls

edge
transfer

0 1 2 3
fit

2

1

0

1

2

re
sid

ua
ls

edge
total

0.000 0.002 0.004 0.006 0.008
fit

0.000

0.002

re
sid

ua
ls

cloud
single

0.0 0.5 1.0 1.5 2.0 2.5
fit

1

0

1

2

re
sid

ua
ls

cloud
transfer

0 1 2 3
fit

2

0

2

re
sid

ua
ls

cloud
total

residuals vs fit plot for ph

Figure B.6: Residuals vs fit plot for ph lambda for a resource intensive pipeline

0.000 0.025 0.050 0.075 0.100 0.125
fit

0.05

0.00

0.05

0.10

0.15

re
sid

ua
ls

edge
single

0.0 0.1 0.2 0.3 0.4
fit

0.2

0.0

0.2

re
sid

ua
ls

edge
transfer

1 0 1 2 3
fit

1

0

1

2

re
sid

ua
ls

edge
total

0.000 0.002 0.004 0.006 0.008
fit

0.005
0.000
0.005
0.010
0.015

re
sid

ua
ls

cloud
single

0.0 0.5 1.0 1.5 2.0 2.5
fit

1

0

1

2

re
sid

ua
ls

cloud
transfer

0 1 2 3
fit

2

0

2

re
sid

ua
ls

cloud
total

residuals vs fit plot for glucose

Figure B.7: Residuals vs fit plot for glucose lambda for a resource intensive pipeline

87

0.02 0.03 0.04 0.05
fit

0.01

0.00

0.01

0.02

re
sid

ua
ls

edge
single

0.1 0.2 0.3
fit

0.2

0.0

0.2

re
sid

ua
ls

edge

transfer

0.0 0.5 1.0 1.5 2.0 2.5
fit

0

1

2

3

re
sid

ua
ls

edge
total

0.000 0.002 0.004 0.006 0.008
fit

0.0050

0.0025

0.0000

0.0025

re
sid

ua
ls

cloud
single

0 1 2 3
fit

1

0

1

2

re
sid

ua
ls

cloud
transfer

0 1 2 3 4
fit

0

1

2

3

re
sid

ua
ls

cloud
total

residuals vs fit plot for alcohol

Figure B.8: Residuals vs fit plot for alcohol lambda for a resource intensive pipeline

88

Appendix C

Pipeline data visualized

C.1 Original pipeline

C.1.1 resources and message size vs duration

2 3 4 5
incoming message size 1e6

0.5

1.0

1.5

2.0

2.5

du
ra

tio
n

image processing

500 1000 1500 2000
incoming message size

0.000

0.005

0.010

0.015

du
ra

tio
n

ph

500 1000 1500 2000
incoming message size

0.000

0.005

0.010

0.015

0.020

du
ra

tio
n

alcohol

500 1000 1500 2000
incoming message size

0.000

0.005

0.010

0.015

du
ra

tio
n

glucose

input vs duration
(in the cloud)

Figure C.1: incoming message size versus the duration of individual lambda functions in
the cloud.

89

0 10 20 30
cpu %

0.5

1.0

1.5

2.0

du
ra

tio
n

60 70 80 90
memory %

image processing

2 3 4 5
incoming message size 1e6

0 10 20 30
cpu %

0.010

0.015

0.020

0.025

du
ra

tio
n

65 70 75 80 85 90
memory %

ph

500 1000 1500 2000
incoming message size

0 10 20 30 40 50
cpu %

0.01

0.02

0.03

0.04

0.05

du
ra

tio
n

60 70 80 90
memory %

alcohol

500 1000 1500 2000
incoming message size

0 10 20 30 40
cpu %

0.05

0.10

0.15

0.20

du
ra

tio
n

65 70 75 80 85 90 95
memory %

glucose

500 1000 1500 2000
incoming message size

resources and input vs duration (on the edge)

Figure C.2: Available resources and incoming message size versus the duration of indi-
vidual lambda functions on the edge.

90

C.1.2 network bandwidth, available resources and message
size vs transfer times

2 4
message size 1e6

0

20

40

60

80

100

120

140

tra
ns

fe
r t

im
e

image processing

500 1000 1500 2000
message size

0.0

0.5

1.0

1.5

2.0

2.5

tra
ns

fe
r t

im
e

ph

500 1000 1500 2000
message size

0.5

1.0

1.5

2.0

2.5

tra
ns

fe
r t

im
e

alcohol

500 1000 1500 2000
message size

0.5

1.0

1.5

2.0

2.5

tra
ns

fe
r t

im
e

glucose

0 10 20 30
cpu (%)

0

20

40

60

80

100

120

140

tra
ns

fe
r t

im
e

0 20 40
cpu (%)

0.0

0.5

1.0

1.5

2.0

2.5

tra
ns

fe
r t

im
e

0 20 40
cpu (%)

0.5

1.0

1.5

2.0

2.5

tra
ns

fe
r t

im
e

0 20 40
cpu (%)

0.5

1.0

1.5

2.0

2.5

tra
ns

fe
r t

im
e

60 70 80 90
memory (%)

0

20

40

60

80

100

120

140

tra
ns

fe
r t

im
e

60 80
memory (%)

0.0

0.5

1.0

1.5

2.0

2.5

tra
ns

fe
r t

im
e

70 80 90
memory (%)

0.5

1.0

1.5

2.0

2.5

tra
ns

fe
r t

im
e

60 70 80 90
memory (%)

0.5

1.0

1.5

2.0

2.5

tra
ns

fe
r t

im
e

0 10000 20000
upload speed (Kb/s)

0

20

40

60

80

100

120

140

tra
ns

fe
r t

im
e

0 10000 20000
upload speed (Kb/s)

0.0

0.5

1.0

1.5

2.0

2.5

tra
ns

fe
r t

im
e

0 10000 20000
upload speed (Kb/s)

0.5

1.0

1.5

2.0

2.5

tra
ns

fe
r t

im
e

0 10000 20000
upload speed (Kb/s)

0.5

1.0

1.5

2.0

2.5

tra
ns

fe
r t

im
e

0 5000 10000 15000
download speed (Kb/s)

0

20

40

60

80

100

120

140

tra
ns

fe
r t

im
e

0 5000 10000 15000
download speed (Kb/s)

0.0

0.5

1.0

1.5

2.0

2.5

tra
ns

fe
r t

im
e

0 5000 10000 15000
download speed (Kb/s)

0.5

1.0

1.5

2.0

2.5

tra
ns

fe
r t

im
e

0 5000 10000 15000
download speed (Kb/s)

0.5

1.0

1.5

2.0

2.5

tra
ns

fe
r t

im
e

transfer times to each lambda function if executed on the cloud

Figure C.3: Available resources and incoming message size versus the transfer time to
lambda functions in the cloud.

91

2 4
message size 1e6

0.5

1.0

1.5

2.0

2.5

3.0

tra
ns

fe
r t

im
e

image processing

500 1000 1500 2000
message size

0.1

0.2

0.3

0.4

tra
ns

fe
r t

im
e

ph

500 1000 1500 2000
message size

0.1

0.2

0.3

0.4

tra
ns

fe
r t

im
e

alcohol

500 1000 1500 2000
message size

0

1

2

3

4

tra
ns

fe
r t

im
e

glucose

0 20
cpu (%)

0.5

1.0

1.5

2.0

2.5

3.0

tra
ns

fe
r t

im
e

0 10 20 30
cpu (%)

0.1

0.2

0.3

0.4

tra
ns

fe
r t

im
e

0 20 40
cpu (%)

0.1

0.2

0.3

0.4

tra
ns

fe
r t

im
e

0 20 40
cpu (%)

0

1

2

3

4

tra
ns

fe
r t

im
e

60 70 80 90
memory (%)

0.5

1.0

1.5

2.0

2.5

3.0

tra
ns

fe
r t

im
e

70 80 90
memory (%)

0.1

0.2

0.3

0.4

tra
ns

fe
r t

im
e

60 80
memory (%)

0.1

0.2

0.3

0.4

tra
ns

fe
r t

im
e

70 80 90
memory (%)

0

1

2

3

4

tra
ns

fe
r t

im
e

0 10000 20000
upload speed (Kb/s)

0.5

1.0

1.5

2.0

2.5

3.0

tra
ns

fe
r t

im
e

0 10000 20000
upload speed (Kb/s)

0.1

0.2

0.3

0.4

tra
ns

fe
r t

im
e

0 10000 20000
upload speed (Kb/s)

0.1

0.2

0.3

0.4

tra
ns

fe
r t

im
e

0 10000 20000
upload speed (Kb/s)

0

1

2

3

4

tra
ns

fe
r t

im
e

0 5000 10000 15000
download speed (Kb/s)

0.5

1.0

1.5

2.0

2.5

3.0

tra
ns

fe
r t

im
e

0 5000 10000 15000
download speed (Kb/s)

0.1

0.2

0.3

0.4

tra
ns

fe
r t

im
e

0 5000 10000 15000
download speed (Kb/s)

0.1

0.2

0.3

0.4

tra
ns

fe
r t

im
e

0 5000 10000 15000
download speed (Kb/s)

0

1

2

3

4

tra
ns

fe
r t

im
e

transfer times to each lambda function if executed on the edge

Figure C.4: Available resources and incoming message size versus the transfer time to
lambda functions on the edge.

92

C.1.3 input features vs total pipeline duration

2 3 4 5
incoming message size 1e6

2

4

6

8
to

ta
l r

em
ai

ni
ng

 d
ur

at
io

n

image processing in the cloud

2 3 4 5
incoming message size 1e6

image processing on the edge

500 1000 1500 2000
incoming message size

1

2

3

to
ta

l r
em

ai
ni

ng
 d

ur
at

io
n

ph in the cloud

500 1000 1500 2000
incoming message size

ph on the edge

500 1000 1500 2000
incoming message size

1

2

3

to
ta

l r
em

ai
ni

ng
 d

ur
at

io
n

alcohol in the cloud

500 1000 1500 2000
incoming message size

alcohol on the edge

500 1000 1500 2000
incoming message size

1

2

3

to
ta

l r
em

ai
ni

ng
 d

ur
at

io
n

glucose in the cloud

500 1000 1500 2000
incoming message size

glucose on the edge

input vs total remaining duration

Figure C.5: incoming message size versus total remaining duration per function

93

C.2 Resource intensive pipeline

C.2.1 resources and message size vs duration

2 3 4 5
incoming message size 1e6

50

100

150

200
du

ra
tio

n

image processing

500 1000 1500 2000
incoming message size

0.000

0.005

0.010

0.015

du
ra

tio
n

ph

500 1000 1500 2000
incoming message size

0.00

0.01

0.02

0.03

du
ra

tio
n

alcohol

500 1000 1500 2000
incoming message size

0.000

0.005

0.010

0.015

du
ra

tio
n

glucose

input vs duration
in a cpu intensive pipeline

(in the cloud)

Figure C.6: incoming message size versus the duration of individual lambda functions in
the cloud for a resource intensive pipeline.

94

0 20 40 60
cpu %

50

100

150

200

250

du
ra

tio
n

60 70 80 90
memory %

image processing

2 3 4 5
incoming message size 1e6

25 30 35 40 45 50 55
cpu %

0.01

0.02

0.03

0.04

0.05

du
ra

tio
n

70 80 90
memory %

ph

500 1000 1500 2000
incoming message size

25 30 35 40 45 50
cpu %

0.02

0.04

0.06

du
ra

tio
n

70 75 80 85 90 95
memory %

alcohol

500 1000 1500 2000
incoming message size

25 30 35 40 45 50
cpu %

0.05

0.10

0.15

du
ra

tio
n

65 70 75 80 85 90 95
memory %

glucose

500 1000 1500 2000
incoming message size

resources and input vs duration in a cpu intensive pipeline (on the edge)

Figure C.7: Available resources and incoming message size versus the duration of indi-
vidual lambda functions on the edge for a resource intensive pipeline.

95

C.2.2 network bandwidth and message size vs transfer times

2 4
message size 1e6

0

50

100

150

200

tra
ns

fe
r t

im
e

image processing

500 1000 1500 2000
message size

0.5

1.0

1.5

2.0

2.5

tra
ns

fe
r t

im
e

ph

500 1000 1500 2000
message size

0.0

0.5

1.0

1.5

2.0

2.5

3.0

tra
ns

fe
r t

im
e

alcohol

500 1000 1500 2000
message size

0.0

0.5

1.0

1.5

2.0

2.5

3.0

tra
ns

fe
r t

im
e

glucose

0 20 40
cpu (%)

0

50

100

150

200

tra
ns

fe
r t

im
e

30 40 50
cpu (%)

0.5

1.0

1.5

2.0

2.5

tra
ns

fe
r t

im
e

30 40 50
cpu (%)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

tra
ns

fe
r t

im
e

30 40
cpu (%)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

tra
ns

fe
r t

im
e

60 70 80 90
memory (%)

0

50

100

150

200

tra
ns

fe
r t

im
e

70 80 90
memory (%)

0.5

1.0

1.5

2.0

2.5

tra
ns

fe
r t

im
e

70 80 90
memory (%)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

tra
ns

fe
r t

im
e

70 80 90
memory (%)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

tra
ns

fe
r t

im
e

0 10000 20000
upload speed (Kb/s)

0

50

100

150

200

tra
ns

fe
r t

im
e

0 10000 20000
upload speed (Kb/s)

0.5

1.0

1.5

2.0

2.5

tra
ns

fe
r t

im
e

0 10000 20000
upload speed (Kb/s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

tra
ns

fe
r t

im
e

0 10000 20000
upload speed (Kb/s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

tra
ns

fe
r t

im
e

0 5000 10000 15000
download speed (Kb/s)

0

50

100

150

200

tra
ns

fe
r t

im
e

0 5000 10000 15000
download speed (Kb/s)

0.5

1.0

1.5

2.0

2.5

tra
ns

fe
r t

im
e

0 5000 10000 15000
download speed (Kb/s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

tra
ns

fe
r t

im
e

0 5000 10000 15000
download speed (Kb/s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

tra
ns

fe
r t

im
e

transfer times to each lambda function if executed on the cloud for a resource intensive pipeline

Figure C.8: Available resources and incoming message size versus the transfer time to
lambda functions in the cloud for a resource intensive pipeline.

96

2 4
message size 1e6

0

100

200

300

400

500

tra
ns

fe
r t

im
e

image processing

500 1000 1500 2000
message size

0.1

0.2

0.3

0.4

0.5

tra
ns

fe
r t

im
e

ph

500 1000 1500 2000
message size

0.1

0.2

0.3

0.4

tra
ns

fe
r t

im
e

alcohol

500 1000 1500 2000
message size

0.1

0.2

0.3

0.4

tra
ns

fe
r t

im
e

glucose

0 20 40 60
cpu (%)

0

100

200

300

400

500

tra
ns

fe
r t

im
e

30 40 50
cpu (%)

0.1

0.2

0.3

0.4

0.5

tra
ns

fe
r t

im
e

30 40 50
cpu (%)

0.1

0.2

0.3

0.4

tra
ns

fe
r t

im
e

30 40 50
cpu (%)

0.1

0.2

0.3

0.4

tra
ns

fe
r t

im
e

60 70 80 90
memory (%)

0

100

200

300

400

500

tra
ns

fe
r t

im
e

70 80 90
memory (%)

0.1

0.2

0.3

0.4

0.5

tra
ns

fe
r t

im
e

70 80 90
memory (%)

0.1

0.2

0.3

0.4

tra
ns

fe
r t

im
e

70 80 90
memory (%)

0.1

0.2

0.3

0.4

tra
ns

fe
r t

im
e

0 10000 20000
upload speed (Kb/s)

0

100

200

300

400

500

tra
ns

fe
r t

im
e

0 10000 20000
upload speed (Kb/s)

0.1

0.2

0.3

0.4

0.5

tra
ns

fe
r t

im
e

0 10000 20000
upload speed (Kb/s)

0.1

0.2

0.3

0.4

tra
ns

fe
r t

im
e

0 10000 20000
upload speed (Kb/s)

0.1

0.2

0.3

0.4

tra
ns

fe
r t

im
e

0 5000 10000 15000
download speed (Kb/s)

0

100

200

300

400

500

tra
ns

fe
r t

im
e

0 5000 10000 15000
download speed (Kb/s)

0.1

0.2

0.3

0.4

0.5

tra
ns

fe
r t

im
e

0 5000 10000 15000
download speed (Kb/s)

0.1

0.2

0.3

0.4

tra
ns

fe
r t

im
e

0 5000 10000 15000
download speed (Kb/s)

0.1

0.2

0.3

0.4

tra
ns

fe
r t

im
e

transfer times to each lambda function if executed on the edge for a resource intensive pipeline

Figure C.9: Available resources and incoming message size versus the transfer time to
lambda functions on the edge for a resource intensive pipeline.

97

C.2.3 input features vs total pipeline duration

2 3 4 5
incoming message size 1e6

50

100

150

200

250
to

ta
l r

em
ai

ni
ng

 d
ur

at
io

n

image processing in the cloud

2 3 4 5
incoming message size 1e6

image processing on the edge

500 1000 1500 2000
incoming message size

1

2

3

to
ta

l r
em

ai
ni

ng
 d

ur
at

io
n

ph in the cloud

500 1000 1500 2000
incoming message size

ph on the edge

500 1000 1500 2000
incoming message size

1

2

3

4

to
ta

l r
em

ai
ni

ng
 d

ur
at

io
n

alcohol in the cloud

500 1000 1500 2000
incoming message size

alcohol on the edge

500 1000 1500 2000
incoming message size

1

2

3

to
ta

l r
em

ai
ni

ng
 d

ur
at

io
n

glucose in the cloud

500 1000 1500 2000
incoming message size

glucose on the edge

input vs total remaining duration for a resource intensive pipeline

Figure C.10: incoming message size versus total remaining duration per function for a
resource intensive pipeline

98

	Introduction
	Approach
	Scheduler
	Automated deployment
	Usecase

	Related work
	Challenges in serverless edge computing
	Serverless function offloading techniques
	Serverless edge deployment platforms
	AWS Greengrass

	System Design
	Inside the scheduler
	Outside the scheduler
	Papertronics deployment
	Configuration
	Lambda configuration
	Resource intensive configuration

	Methodology
	Data
	price

	Machine learning ensemble
	Random Forest
	Extra Trees
	Gradient Boosting
	The best regression method

	Automatic function deployment infrastructure

	Results
	Pipeline data
	Original Pipeline
	Resource intensive pipeline

	Machine learning ensemble comparison
	Gradient Boosting method metrics
	Overall Performance
	Residuals vs fit plot
	Feature importance

	Scheduler performance
	Original pipeline
	Resource intensive pipeline

	Scheduler overhead
	Automated deployment script

	Discussion
	Pipeline
	Machine learning model
	Scheduler
	Automated deployment script

	Future work
	Conclusion
	Appendices
	deployment configuration
	Configuration grammar
	Example configuration
	Finalizer and scheduler configuration

	Machine learning methods performances
	Residuals vs fit plot
	Original pipeline
	Resource intensive pipeline

	Pipeline data visualized
	Original pipeline
	resources and message size vs duration
	network bandwidth, available resources and message size vs transfer times
	input features vs total pipeline duration

	Resource intensive pipeline
	resources and message size vs duration
	network bandwidth and message size vs transfer times
	input features vs total pipeline duration

