
Cut the Carp! Using Context to Disambiguate

Similar Signals Using Conceptors

Bachelor’s Project Thesis

Satchit Chatterji, S3889807, s.chatterji.1@student.rug.nl

Supervisors: Guillaume Pourcel & Prof Dr Herbert Jaeger

Abstract: Humans robustly and ubiquitously use symbolic context to distinguish between
noisy or ambiguous percepts. However, no consensus exists on how to properly integrate top-
down/symbolic and bottom-up/sub-symbolic information flow in artificial neural networks. One
approach to this ‘bidirectional information flow’ problem in recurrent neural networks (RNNs) is
the conceptor – a matrix that characterises the linear space of neuronal activations in response
to a signal. These may be abstractly combined using Boolean logical connectives. However, they
may alternatively be interpreted as fuzzy operators, and conceptors themselves corresponding
to fuzzy sets. The current work introduces a bidirectional classification model that allows for
top-down information to affect bottom-up processes in an RNN using conceptors. Building on
conceptor-based classification, three biasing methods are discussed, based on (i) crisp symbols,
(ii) probability-quantified uncertainty, and (iii) fuzzy membership-quantified uncertainty. As a
demonstration, phonemes are transcribed using the TIMIT dataset. With the goal of using con-
textual information to help disambiguate similar percepts, the discriminatory power of these
biasing paradigms are studied with respect to similar-sounding phonemes.

1 Introduction

It is well studied in cognitive psychology that the
human ability to robustly perceive sensory input re-
lies on ‘bottom-up’ processing, from raw signals to
abstract symbolic representations, being influenced
by ‘top-down’ communication of context-relevant
information – abstract symbols influencing the per-
ception of signals (Bermúdez, 2014; Mittal et al.,
2020). Bottom-up processes include functions such
as visual or auditory processing (from neuronal ex-
citations caused by light or sound signals respec-
tively), and top-down influences often arise from
patterns in working memory or past experiences.

As an example of top-down context influencing
bottom-up processing, the title of this thesis be-
gins with the phrase ‘Cut the carp! ’, with the final
word carp referring to several species of freshwater
fish. However, those familiar with idiomatic writ-
ten English would have likely first read the similar
phrase ‘Cut the crap! ’, which is a rude way of asking
someone to ‘get to the point’. For regular users of
colloquial English (apart from, perhaps, fish mon-

gers), the prior sequence of words is unlikely to be
encountered as frequently as the latter. Thus, along
with one’s past experience, the symbolic, top-down
context provided by the first two words ‘cut ’ and
‘the’, and the general resemblance of the shapes of
the words themselves, we are biased to mispercieve
the visual signal ‘carp’ as ‘crap’ instead.

Though many such tasks involving reading,
speech perception, and object recognition rely on
this bidirectional information flow, the importance
of the influence of top-down upon bottom-up sig-
nals (and vice-versa) in humans is still a debated
topic (Rauss & Pourtois, 2013). Additionally, an ef-
fective method of implementing this two-way flow
in artificial decision-making systems is yet un-
known. In the realm of artificial decision-making
agents, bottom-up processing helps a system to
be flexible and general, top-down processing helps
disambiguate noisy or ambiguous raw data. Good-
old-fashioned-AI techniques were largely based on
symbolic reasoning, with systems crafted by hu-
man experts in the form of decision trees or for-
mal logic (Boden, 2014). In contrast, early deep-

1

learning (DL) models aimed to learn purely from
statistical relations in data, and were designed to
enable the use of a hierarchy of increasingly ab-
stract feature representations (e.g. Bengio et al.,
2006; Krizhevsky et al., 2012). This, more bottom-
up approach, has greatly influenced DL methods
today.

Though attempts at creating bidirectional
learning models exist, they have received less
attention from the academic community than
DL models such as feed-forward neural networks
(Mittal et al., 2020). This project aims to be a
first step towards creating a bidirectional classi-
fication paradigm in reservoir networks (a subset
of recurrent neural networks) using conceptors
(Jaeger, 2014). Top-down, symbolic information
is used to guide future, bottom-up predictions to
reduce the ambiguity between perceptually similar
signals. Three related methods to do this are
discussed, inspired by different interpretations of
human reasoning: symbolic, probabilistic and fuzzy.

Overview of Introduction: Section 1.1 lays
out phoneme transcription as an specific case of a
bidirectional task. Section 1.2 gives a brief overview
of reservoirs and conceptors, and section 1.3 de-
scribes how they can be used for classification tasks.
Section 1.4 describes a Boolean logic framework for
them, and sections 1.5 and 1.6 respectively speak
about fuzzy logic and set theory and how concep-
tor logic relates to it. Next, section 1.7 defines the
aperture adaptation operation on conceptors. Sec-
tion 1.8 describes Jaeger’s ∇-rule to compute ‘opti-
mal’ apertures. Finally, section 1.9 proposes a gen-
eral framework within which aperture adaptation
may act as an uncertainty operator on conceptors,
and section 1.10 condenses the previous ideas into
a general biasing framework for reservoirs.

1.1 Bidrectional Phoneme Tran-
scription

A phoneme is the smallest unit of sound whose re-
placement in a given spoken word changes the per-
ception of what the word is itself (Huang et al.,
2001). For example, the words ‘money’ and ‘honey’
are perceived as different words only because of
their respective differing starting sounds, /m/ and

/h/1. When transcribing a phoneme in isolation, it
can be difficult to classify it into a specific class ac-
curately due to signal similarities, for example, the
/m/ and /n/ sounds. However, using previously ac-
quired knowledge and the context of the surround-
ing phonemes that make up the word being spo-
ken, the task becomes simpler (Gianakas & Winn,
2016). Humans would expect that the word ‘candy’
is more likely to be spoken than ‘camdy’, and thus
the transcription2 would look like /k ae n d iy/ in-
stead of /k ae m d iy/. Thus, context is able to
disambiguate similar-sounding phonemes.

Some previous attempts at ‘bidirectional’
phoneme classification such as Graves & Schmid-
huber (2005) used bi-directional long short-term
memory (BLSTM) networks. However, this bidi-
rectionality is different than the one studied here.
For BLSTMs, there are two parallel regular LSTM
layers where the inputs feed into the network
forward in time for one, and backward in time
for the other. Thus, in the backward layer, there
is presumably a flow of sub-symbolic activation
data relating to the previous phonemes. Thus,
it is bi-directional in time. This project aims to
combine two sets of information – data gathered
at a symbolic level and the low-level excitations
of a neural network. Though it is also based on
previous phonemes, this sort of ‘bidirectionality’
refers more to this symbolic-subsymbolic divide.

Interestingly, in a phenomenon known as the
Ganong effect, humans also use recent signal inputs
to disambiguate or ‘correct’ phoneme recognition
that occurred further in the past (Ganong, 1980;
Gwilliams et al., 2018; Gianakas & Winn, 2016).
A human is much more likely to transcribe the
phoneme /k/ rather than /g/ if it occurs before the
phonemes /i s/ (i.e. making the word ‘kiss’), and
likewise more likely to transcribe /g/ rather than
/k/ if it is followed by /i f t/ (to make the word
‘gift’). Though implementing the Ganong effect in
an automatic transcription system would presum-

1A phoneme is generally notated by placing a represen-
tative symbol in between a pair of forward-slashes, which
looks like: ‘/aa/’. When transcribing a word with multi-
ple phonemes, all phonemes are placed between one pair
of forward-slashes, for example the word ‘symbol’ would be
transcribed as ‘/s ih m b el/’.

2All example in-text phonemic transcriptions used in this
thesis were taken from the TIMIT dataset (Garofolo et al.,
1993). Note that these symbols differ from the more com-
monly recognised International Phonetic Alphabet.

2

ably assist in making more accurate predictions,
the current research was designed with the intent
of being a true ‘online’ transcription task, i.e. ev-
ery new input is expected to have an immediate
corresponding prediction without waiting for any
more information. Thus, only previous signal infor-
mation is available with respect to the current in-
put. The Ganong effect, in comparison, cannot be
implemented in a true online task – older predic-
tions would need to be amendable by the system,
or there would need to be a delay in the predictions
with respect to the input.

1.2 Conceptors: An Overview

Motivated by the need of marrying high-level sym-
bolic concepts and the data-based dynamical inner
workings of a recurrent neural network3 (RNN),
conceptors were introduced by Jaeger (2014) as a
matrix representing a linear subspace of the ac-
tivations of such an RNN given a driving signal.
As such, they act as abstract, symbol-like objects
that represent a signal, while also being intimately
bound with the low-level excitations of the neurons
in the reservoir. They may be symbolically joined
using an analogue of a Boolean logic system, and
ordered to form ‘sub-conceptor’ relationships that
may be seen to correspond with symbolic hierar-
chies in the data itself. The details in the rest of
this section borrow from the description of concep-
tors given in Jaeger (2014) and Mossakowski et al.
(2018).

1.2.1 Reservoirs

Though conceptors have been extended to other ar-
tificial neural network architectures (such as feed-
forward neural networks in He & Jaeger, 2018), a
conceptor here is defined in terms of an RNN whose
weights do not change after random initialisation –
rather, these neurons act as a reservoir of recurrent
neural connections.
Let us now assume a reservoir is initialised as

having N neurons, the strength of whose recurrent
neural connections can be represented by a con-
nection matrix or weight matrix W of size N ×N ,
where the entry wi,j is the weight of the connection

3A recurrent neural network is a kind of artificial neural
network that has at least a subset of its neurons connected
recurrently – there are loops in the information flow.

between neuron i to neuron j. Let the input signal
or pattern at time t be denoted by s(t), which is a
vector of M dimensions. Let W in be the weights
that connect the input with each neuron in the
reservoir – thus, W in is a matrix of size N ×M .
Finally, let b be an N -dimensional bias vector that
contains time-invariant offsets added into each neu-
ron. Thus, given an arbitrary state of the excitation
of neurons at time t = 0, while driving the signal
through the reservoir over time we get the following
state-update rule:

x(t+ 1) = tanh(Wx(t) +W ins(t+ 1) + b) (1.1)

where tanh is the hyperbolic tangent. The vector
x(t) thus contains the excitation of the neurons. If
this pattern drives the reservoir for a total of T
time steps, the network states are approximately
confined to a linear subspace of the total space
of neuronal activations which is pattern-dependent.
The states may be concatenated into an excitation
collection matrix X of shape N × T of the form
[x(1) x(2) ... x(T)]. This can be interpreted as the
sequence of states in N -dimensional reservoir state
space that are visited by the neuronal activations
for this signal. This is also referred to as a trajec-
tory.

We may study how much the states correlate
with one another in time by computing a state cor-
relation matrix as:

R = XX ′/T (1.2)

The shape of R is N × N , and the entry ri,j is
the correlation of x(n)i with x(n)j over time, i.e.
how closely the neurons’ states correlate with one
another.

1.2.2 Computing Conceptors

A conceptor is a matrix that represents the linear
subspace of the trajectory of reservoir activations.
It can be computed using the state correlation ma-
trix as:

C(R,α) = R(R+ α−2I)−1

= (R+ α−2I)−1R
(1.3)

where I is the identity matrix of shape N × N ,
and α ∈ (0,∞) is a scaling factor known as the
aperture (more on apertures can be found in sec-
tion 1.7). The conceptor may be visualised as an

3

N -dimensional hyper-ellipse whose axes’ lengths in
each direction correspond to the singular value in
that direction.
The state correlation matrix can also be recom-

puted using a conceptor and an aperture as:

R(C,α) = α−2(I − C)−1C

= α−2C(I − C)−1
(1.4)

A conceptor matrix thus is real, symmetric, and
positive semi-definite with singular values in the
range of [0, 1].

1.3 Conceptor Classification

Most modern classification paradigms in machine
learning are trained to be discriminative classi-
fiers – they classify by looking at the differences
between learned input patterns. Thus, to learn to
discriminate a new pattern, differences between
the old classes and new classes need to be learnt,
often requiring a complete re-training or fine-
tuning. However, conceptor classification as was
described by Jaeger (2014) is based on what he
called ‘pattern-local’ classification, where patterns
are incrementally learned, and classification is
done purely with respect to comparing an input
with each learned class. This classification scheme
is recreated here and will be referred to as the
‘classical’ conceptor classification scheme.

Conceptor Creation (Training Phase):

1. A reservoir with N neurons is initialised.

2. The reservoir is driven by all training signals,
and the excitations of the neurons of the net-
work (i.e. the response of the reservoir to the
signal) are recorded. For each labelled instance
sj of signal/pattern class j in the training set,
let the excitations be collected in an N × T
shaped matrix Xj , where each column x(t) is
the reservoir’s response at time step t. Let Kj

be the number of instances of pattern j present
in the training data, and the kth example of the
signal be skj (which itself is a column vector of
size T).

3. The excitations, as well as the input signal,
are concatenated into a column vector zkj of

dimension dim(zkj) = T ∗ (N + M), where

k ∈ {1, ...,Kj} is an index of the sample.
zkj is of the form

zkj = [x(1); skj (1); ...;x(T); s
k
j (T)] (1.5)

Concatenate all zkj into a dim(zkj)×Kj matrix
called Zj .

4. Next, compute a correlation matrix as:

Rj = ZjZ
′
j/Kj (1.6)

5. Finally, calculate a conceptor Cj using Eq. 1.3
with some aperture α. Note that both Rj and
Cj are shaped dim(zkj)× dim(zkj).

Note that these conceptor matrices are not the
same as one computed purely from the excitation
values as described in Section 1.2.2, and have
different shapes. The conceptor matrices used for
classification described in this section are higher
dimensional, and contain temporal information
about the neuronal excitations and the pattern
itself.

Testing Phase:

1. With the same reservoir as in the training
phase, run a candidate signal of shape M × T
through it, and record the reservoir’s response.

2. Concatenate the excitations and signal to cre-
ate a vector z, in the same way as zkj was com-
puted in the training phase.

3. For each pattern class j, calculate a positive
evidence quantity :

hj = z′Cjz (1.7)

Informally, this value calculates how closely
the reverberations of z resemble that repre-
sented by Cj for a pattern j. Let there be n to-
tal conceptors learned corresponding to n pat-
tern classes. Thus, we can classify an input sig-
nal as pattern ĵ by choosing the pattern whose
conceptor allows for the highest evidence quan-
tity, i.e.

ĵ = argmax
i∈{1,...,n}

hi = argmax
i∈{1,...,n}

z′Ciz (1.8)

4

Informally, the evidence value z′Cz can be seen as
a measure of how ‘closely’ the vector z fits into
the linear space characterised by C – the higher
the value, the better the fit. Thus, the goal of the
classification paradigm above is to find the concep-
tor Cp (where p is a phoneme class, p ∈ P) which
characterises the trajectory of z best. Additionally,
searching for a good aperture for calculating con-
ceptors in the training phase is important in order
to achieve optimal classification performance over
all classes.

1.4 Conceptor Logic

Since a conceptor can be seen as a representation of
a signal class with respect to the neuronal response
that it creates in a reservoir, then an advantageous
attribute that conceptors carry is the ability to be
combined in a symbolic way. Specifically, Jaeger
(2014) defined a set of Boolean logic-analogous op-
erators that can be used to tackle tasks such as
pattern regeneration, time-series predictions, hier-
archical classifications etc. All operators operate on
conceptors and result in a conceptor.
Though Jaeger (2014) defines a set of equiva-

lent Boolean operator calculations, the definitions
of these operators below follow from Mossakowski
et al. (2018) and were implemented in code during
this project.

• NOT (¬): For a conceptor A, the logical nega-
tion is defined as:

¬A := I −A (1.9)

where I is the identity matrix of the same
shape as A. Intuitively, ¬A can be seen to be
the conceptor that encompasses the linear sub-
space of neuronal activation that A does not
occupy. This can be seen as analogous to the
set-theoretical operator Ac (complement) on a
set A, given a universal set U (i.e. Ac = U \A).

• OR (∨): For conceptors A and B, the logical
disjunction is defined as:

A ∨B := C(R(A, 1) +R(B, 1), 1) (1.10)

where C is the conceptor defined in Eq. 1.3,
and R is the correlation matrix from which
a given conceptor is computed, defined in
Eq. 1.4. Intuitively, A ∨ B can be seen to be

the conceptor that encompasses the linear sub-
space of activations that either A or B encom-
pass, or as a linear combination of both. It can
also be seen as the conceptor that is computed
using the all the data that was used in the
creation of either of the conceptors A or B.
With this interpretation, it can be seen as an
analogue to the set-theoretical operator A∪B
(union) on two sets A and B.

• AND (∧): For conceptors A and B, the logical
conjunction is defined using de Morgan’s rule
and the definition of disjunction in Eq. 1.10:

A ∧B := ¬(¬A ∨ ¬B) (1.11)

Analogous to the other operators above, A∧B
can be seen to be the conceptor that encom-
passes the linear subspace of activations that
both A and B encompass. With this interpre-
tation, it can be seen as an analogue to the
set-theoretical operator A ∩ B (intersection)
on two sets A and B.

For a set of conceptor matrices C = {C1, ..., Cn},
we write their disjunction as:∨

i=1...n

Ci := C1 ∨ ... ∨ Cn (1.12)

Likewise, we may do the same for their conjunction
as: ∧

i=1...n

Ci := C1 ∧ ... ∧ Cn (1.13)

1.5 Fuzzy Sets and Fuzzy Logic:
A Quick Introduction

Boolean logic is a ‘crisp’, or two-valued logic – all
statements are either true or false. In comparison,
fuzzy logic is a system of formal logic where the
truth value of sentences may lie in between the
interval [0, 1], where 0 is false and 1 is true. The
values in between true and false correspond to de-
grees/gradations of truth – a statement may be true
and false at the same time to complementary lev-
els (Zadeh, 1975). The benefit of fuzzy logic is that
it provides a method to quantify subjectivity, un-
certainty, vagueness and ambiguity in line with hu-
mans’ use of language and reasoning. It is not al-
ways the case that a sentence or series of arguments
in English necessarily is valued as true or false.

5

For example, the sentence:

Jakub is quite tall.

is neither true nor false on its own, and only makes
sense to humans in the context of a particular situ-
ation or reference. If we strictly define the limits of
the meanings of the words, e.g. defining ‘tall’ to be a
property of a person who has a height greater than
some measurable threshold value, the sentence will
have a crisp (true/false) truth-valuation – however,
humans do not generally reason this way, we allow
for some fuzziness in our words (Zadeh, 1975).

Fuzzy logic was a natural extension of what is
known as fuzzy sets (Zadeh, 1996). It considers the
fact that objects in the physical world belong to
classes whose criteria for membership (i.e. whether
they belong to the set or not) are generally not pre-
cisely defined. Thus, a fuzzy set is defined to be a
set that has a continuous, graded membership. This
is opposed to ‘crisp’ sets, corresponding to the more
common variety of mathematical sets (such as with
Zermelo–Fraenkel set theory), where objects are ei-
ther members or not members of a set. However, for
some classes, especially those that are described by
every-day linguistic terms, it is natural to think of
them as having graded memberships. For example,
a crisp version of the following set:

The set of tall men.

may or may not include Jakub from the previous
example, but depending on context, he may be re-
garded as belonging to the fuzzy version of that
set as a function of his height (for example, the
taller he is, the more of a member he is of the set
of tall men). Typically, memberships to fuzzy sets
are mathematically represented as a function from
a n-dimensional real-valued space of characteristics
of an object to the real interval [0, 1], where 0 rep-
resents not being a member of the set whatsoever,
and 1 representing definitely being part of such a
set. These are called ‘membership functions’ and
are denoted µS(x), which denotes the membership
value of an object x in set S (answering the question
What is the S-ness of x? or How S-like is x?). Thus,
fuzzy set theory provides a framework for dealing
with ambiguous linguistic classes and terms that
one may encounter and use in everyday language.

1.5.1 Neuro-fuzzy systems

Uncertainty in DL has often been quantified in
terms of probability. Though fuzzy logic and set
theory was recognised early on as a means of math-
ematically dealing with fuzzy concepts to help in
quantifying uncertainty in tasks such as pattern
recognition (Bellman et al., 1966) and control sys-
tems (Kosko & Burgess, 1998), it has had arguably
limited success in recent years due to the practical
success of (deep) machine learning. Notably, some
attempts have been made to merge neural networks
and fuzziness, in a field called neuro-fuzzy systems
(for an overview, see Abraham, 2005). Bottom-up,
data-driven learning systems such as neural net-
works are more robust to noise than rigid rules,
however, rule-based or logical systems benefit from
being structured and generally interpretable – neu-
ral networks have replaced these systems with sub-
symbolic, non-linear transformations, which are far
less interpretable. Since this project, in part, aims
to show potential benefits of fuzziness with reser-
voir computing and conceptors, it may be fair
to call the approach presented in Section 3.4.3 a
neuro-fuzzy system.

1.5.2 Fuzziness versus Probability

Fuzzy logic, as mentioned before, provides a math-
ematical basis for quantifying ambiguity or uncer-
tainty. One may argue that probability does too.
Both systems are similar in that uncertainty is de-
scribed with a real-valued number between 0 and
1. However, a notable difference between the fuzzy
and probabilistic interpretations of the same am-
biguous situation is a conceptual one – fuzziness
does not assume that there is one true answer,
whereas probability does (Kosko & Burgess, 1998).

Fuzziness quantifies the question How much...?,
whereas probability answers Whether...?. Whether
an event occurs is ‘random’, is interpreted as prob-
abilistic, and may be simulated by drawing from
an appropriate probability distribution. The prob-
ability of a fair coin landing heads-up and that of
it landing tails-up are required to sum to 1. If this
coin is flipped, it may be said that it landing heads-
up has a (frequentest) probability of 0.5, but the
‘heads-up-ness’ of the coin cannot be said to be 0.5.
Additionally, the sum of an object’s membership to
multiple sets do not have this requirement

6

Contrariwise, fuzziness asks to what degree an
event occurs, not whether or it has. A hybrid fruit
between an orange and a lemon may be belong to
both the fuzzy sets ‘orange’ and ‘lemon’ to differ-
ing degrees, since it may possess traits of both,
but to say it has a probability of being one or
the other is less meaningful. The question What
is the likelihood of this being a lemon? has a com-
pletely different meaning to How much like a lemon
is this?. The fruit’s membership values represent-
ing ‘orange-ness’ and ‘lemon-ness’ are somewhat
independent of other membership values such as
‘grapefuit-ness’ or ‘tangerine-ness’ (since it may
also posses comparable traits of these other classes
such as sweetness or being in the citrus family). The
total of the membership values a fruit may possess
is not required to sum to unity.

1.6 Fuzzy Conceptor Logic

Though Jaeger (2014) describes several aspects
of combining conceptors through the logic sys-
tem he calls ‘Boolean’ (described in section 1.4),
Mossakowski et al. (2018) suggest that conceptor
logic is better interpreted as fuzzy. Particularly, this
is motivated by the fact that conceptors are com-
puted based on generally noisy data – this brings
with it a notion of uncertainty of the identity of
the signal. Informally, they propose that conceptors
may be treated analogously to fuzzy sets. Impor-
tantly with respect to this project, they also anal-
yse the relationship of a signal to a conceptor within
the classical conceptor classification paradigm, and
propose to have a fuzzy membership function based
on the evidence value described in Eq. 1.7 as:

µC(z) :=
1

D
z′Cz (1.14)

where C is a conceptor associated to a certain signal
class, z is the column vector of concatenated reser-
voir excitations and pattern as described in Eq. 1.5,
and D = dim(z) = dim(C) is the dimension of z
and the conceptor C. Thus, this can be understood
as the evidence value z′Cz normalized with respect
to the number of dimensions of C – informally, this
answers how much z conforms to the subspace of
C averaged over all directions. Mossakowski et al.
showed that µC(z) has the properties of fuzzy mem-
bership with respect to the signal class, namely,
that µC(z) ∈ [0, 1].

1.7 Aperture adaptation

Recall that computing a conceptor relies on an an
‘aperture’ value α. With the geometric intuition of
a conceptor corresponding to a linear subspace of
neuronal activations, α can be seen as a regulating
parameter of the balance between how large the
lower singular values of the correlation matrix are
taken into account compared to the higher ones –
a larger aperture implies that the axis of the ellipse
will be larger for the directions of the lower-powered
singular values, or that more of the lower singular
values are taken into account when computing the
conceptor-representation of the trajectory. It can
also be interpreted as a scaling factor of the reser-
voir data, or scaling the signal energy by α2. If α is
set too low, the resultant conceptor may not ade-
quately or fully encompass the space of activations
of the underlying signal. However, if α is set too
high, the conceptor may begin to encompass signif-
icant space in the singular directions that may not
represent the signal itself – i.e. the conceptor may
begin to encompass noise.

A conceptor may be recomputed with a differ-
ent aperture relative to the one it was trained with
using an operation called aperture adaptation. This
operation on conceptors is defined by Jaeger (2014)
as:

φ(C, γ) = C(C + γ−2(I − C))−1 (1.15)

where I is the identity matrix the same shape as
C, and γ ∈ [0,∞] is an aperture adaptation factor.
This operation scales the aperture of the conceptor
by a factor of γ.

1.7.1 Aperture-adapted Disjunction and
Conjunction

Let us assume we have an set of conceptor ma-
trices C = {C1, ..., Cn} whose apertures we wish
to adapt respectively to corresponding factors Γ =
{γ1, ..., γn}, and after which, whose disjunction is
taken. This process will be termed aperture-adapted
disjunction and denoted by:∨

i=1...n

φ(Ci, γi) := φ(C1, γ1) ∨ ... ∨ φ(Cn, γn)

(1.16)
For completeness, we may also define an aperture-
adapted conjunction operator, as the name implies,

7

as the conjunction of the respectively aperture-
adapted conceptors above as:∧

i=1...n

φ(Ci, γi) := φ(C1, γ1) ∧ ... ∧ φ(Cn, γn)

(1.17)

1.8 ‘Optimal’ Aperture Computa-
tion

Let us assume that for a conceptor C, there exists
a corresponding aperture αopt that optimally rep-
resents the data corresponding to the signal class
it were trained on. Though there does not yet exist
a rigorous definition of a ‘goodness’ or ‘optimality’
of this type (Jaeger, 2014), we can define one with
respect to the task.
For classical conceptor classification, Jaeger

(2014) defines a ‘∇-rule’, which monitors the gra-
dient of the squared Frobenius norm of a conceptor
originally trained with α = 1 with respect to the
logarithm of log(γ), which is an aperture adapta-
tion factor as per Eq.1.15. We can then choose the
value of γ that maximises the function in Eq 1.18.

∇(γ) = d

d log(γ)
||φ(C, γ)||2 (1.18)

This may be computed for each conceptor by
sweeping through a large range of γ, computing
the squared Frobenius norm, and approximating
the derivative. Let the sequence of γ be enumerated
by an index n. Now, define the difference between
two sequential log-transformed γ values as:

∆γ(n) = log(γ(n+ 1))− log(γ(n)) (1.19)

Likewise, we can define the difference in sequential
Frobenius norms as:

∆F (n) = ||φ(C, γ(n+ 1))||2 − ||φ(C, γ(n))||2
(1.20)

Thus, based on the definition of the (right-hand)
derivative:

d

dx
f(x) = lim

h→0

f(x+ h)− f(x)

h
(1.21)

with f(x) := F (n), h := ∆γ(n), we get an approxi-
mation of the derivative, since ∆γ(n) does not nec-
essarily tend to zero.

∇(γ(n)) ≈ ∆F (n)

∆γ(n)
(1.22)

For each conceptor, we choose the γ that is maxi-
mal as γopt, and adapt the conceptor to φ(C, γopt).
The semantics of this rule can be found in Jaeger
(2014) and is outside the scope of this thesis. Other
optimal aperture calculations such as searching for
the set of α that maximise performance of some
kind are also possible. However, this project uses
the ∇-rule for finding the ‘optimal’ apertures for
all conceptors, since this criterion allowed Jaeger
(2014) to achieve high accuracy in a separate clas-
sification task.

1.9 Aperture Adaptation as a Func-
tion of Uncertainty

We can tentatively claim that this optimal aperture
allows the conceptor to model the signal with high
‘certainty’. When we are certain a signal belongs to
a class, the linear excitation subspace represented
by the conceptor is well adjusted to the trajectory
of the signal. If we adjust the apertures of the con-
ceptors with a scaling factor γ < 1, this would re-
sult in allowing for an amount of uncertainty in the
evaluation of a test example’s excitation space en-
capsulated by the conceptor. Note that this inter-
pretation is one of many possible interpretations.
The exact shape of γ as a function of uncertainty
is not known, and was not investigated during this
project due to time constraints.

For a conceptor C, let the optimal aperture be
αopt, and let C be computed using αopt according to
Eq. 1.3 or suitably aperture-adapted to have αopt.
Let there be some uncertainty quantifier Ψ(s) that
arises with respect to a symbol s, contextualised by
the task. We wish to adapt the aperture of C by
some scaling factor γ (using Eq. 1.15) to represent
this. Thus, we may expect there to exist a function
γ(Ψ(s)), which represents an aperture adaptation
based on some uncertainty function Ψ(s).

According to the previous interpretation of un-
certainty with respect to the scaling of the aperture
of the conceptor C away from αopt, we may intu-
itively expect γ(Ψ(s)) to be bound in the range
[0, 1]. If our expectation of a symbol with respect
to our task is totally certain, e.g. we expect the
next classification to be a particular symbol class,
then γ(Ψ(s)) = 1, and the conceptor is left opti-
mally adapted. If we are certain that our expec-
tation is not the that the conceptor represents,
then γ(Ψ(s)) = 0, and when aperture-adapted, the

8

conceptor becomes a zero matrix. If we are uncer-
tain about whether we expect this symbol or not,
γ(Ψ(s)) ∈ (0, 1). This mathematical notion is mir-
rored in other uncertainty quantification paradigms
such as probability and fuzziness.

1.10 Biased Conceptor Classifica-
tion Paradigm

This section describes how the panorama of top-
ics covered in sections 1.1 to 1.8 are combined to
form a novel and cohesive procedure of biasing a
reservoir’s neuronal activations, used to augment
classical conceptor classification.
The three biased classification schemes presented

all follow the same basic principle: use contextual
information about a symbolic prediction ŝt at time
t to create a conceptor to change/prepare the reser-
voir for an prediction ŝt+1 at the next time step
t+1. All three assume that the symbol class of the
next time-step is stochastically determined by the
current one.
The process constituting ‘biasing’ is as follows:

given a (‘biasing’) conceptor B, the reservoir exci-
tations with respect to the previous time-steps can
be transformed or biased in order to regulate the
excitations in the current time step. This can be
done by modifying the reservoir’s state update rule
(in Eq. 1.1) to:

x(t+1) = B tanh(Wx(t)+W ins(t+1)+b) (1.23)

In this way, the excitations within the reservoir
are transformed or ‘re-shaped’ towards the linear
subspace that is determined by B. We then use the
classical conceptor classification paradigm to make
class predictions using Eq 1.23 to drive the reser-
voir. If the conceptor B is generated from global or
top-down data, then it may be claimed that top-
down information influences the bottom-up predic-
tions of the system via biasing the state updates of
the reservoir.
In the context of phoneme transcription, where

a phoneme is defined as a symbol, this idea should
help the system disambiguate similar phonemes,
since, although the phonemes may be similar in
terms of raw audio data, they do not often occur in
the same phonemic contexts – for example, given
the previous phoneme /ae/, we do not expect to
hear the phoneme /ng/ as much as we expect /n/,

thus, we interpret the phoneme as /n/ (i.e. the
phoneme pair ‘/ae n/’, e.g. in the word “hand”,
may have more occurrences in our training data
more often then ‘/ae ng/’).

The three systems generate these biasing concep-
tors in different ways, inspired by different inter-
pretations of human reasoning. The first is termed
symbolic, and is based on reasoning that uses ‘crisp’
notions of symbols. The second, termed probabilis-
tic, is based on symbols whose uncertainty is quan-
tified in terms of probability. The third one, termed
fuzzy, is based on symbols whose uncertainty is
quantified in terms of fuzzy membership. The bias
conceptors B are created by an aperture-adapted
disjunction of conceptors that correspond to the
next symbolic phonemes predicted, using probabil-
ity and fuzziness to guide the aperture adaptation.
The details for generating these bias conceptors can
be found in section 3.4.

2 Task & Data Set

Since this project aims to be an exploratory start-
ing point in using context to disambiguate similar
input signals, the toy task of phoneme classification
in English was used. The TIMIT data set (Garofolo
et al., 1993) was used for this task, as it contains
the audio recordings of a large variety of (Amer-
ican) English speakers as well as time-segmented
and labelled phonemes. Since phonemes are the
most primitive symbolic building blocks of speech,
which is often noisy and ambiguous, it lends itself
to being an interesting symbolic-subsymbolic inte-
gration task.

Large phonemic variation across different spo-
ken accents, as well as frequency variation amongst
genders (women usually have higher pitched voices
than men) may prove problematic to analysing the
behaviour of the system – more variation in the way
each phoneme class is represented sub-symbolically
(i.e. on the data level) would require a larger reser-
voir and thus larger conceptors to suitably classify
them apart, which may become computationally
expensive. Thus, only sentences spoken by male
speakers of the New England dialect region was
used (denoted ‘DR1’ in the data set).

The training set consists of 24 speakers speaking
a total of 240 sentences, and the test set consisted
of 7 speakers, speaking a total of 70 sentences. The

9

raw audio data has a sampling rate of 16kHz, and
was in monaural format (one signal channel over
time). In total, there are 61 labels defined in the
training data including phonemes and silence.
Let P be defined as the finite set of phoneme

classes that exist in the given data set. The order-
ing and indexing of phonemes is arbitrary as long
as it is consistent, but was done alphabetically by
their labels. The list of all phonemes represented
in this data and the distribution of their sample
occurrences can be seen in Table A.1.
The training and testing audio data is windowed

over time, and a set of concurrent, overlapping win-
dows in the (mel-)frequency-domain are input for
classification. One sequence of windows in this for-
mat will be called an ‘audio-snippet ’.
Thus, informally, the final task is defined as:

given an input audio signal, classify each audio-
snippet as being part of a phoneme from a set of
known phoneme classes.

2.1 Pre-processing

The raw audio data was first pre-processed and
translated from a time-domain to a frequency-
domain representation. This was done by taking a
mel-frequency cepstrum coefficient (MFCC) repre-
sentation for short audio windows (Lyons et al.,
2020). This is often done with raw audio data
in tasks such as speaker recognition (Ganchev et
al., 2005) and automatic phoneme transcription
(Graves & Schmidhuber, 2005). This change of rep-
resentation is useful, since some speech features im-
portant to classification, such as formants, are bet-
ter represented in the frequency-domain than the
time-domain. Additionally, it is known to reduce
the effects of noise (Huang et al., 2001).
Using the Python library published by Lyons et

al. (2020), 15 MFCCs (coefficients) with 26 filter-
bank channels were taken for each window in a
sequence of overlapping windows of length 15ms
and a step size of 7.5ms. Each input sample (i.e.
an ‘audio-snippet’, as named previously) consisted
of T = 5 concurrent windows (again, each over-
lapped with the ones adjacent to it). For reference,
the mean number of concurrent windows per seg-
mented phoneme in the training and testing data
is approximately 10.
Thus, the nth audio-snippet can be represented

as a matrix U(n) of shape M×T = 15×5 where M

is the number of coefficients. The columns of U(n)
are denoted s(t), which represents individual time
steps of the transformed audio-data. This was done
for the audio data for every sentence in the training
and test sets.

Additionally, if an audio-snippet sample fell
wholly within the bounds of a segmented phoneme,
it was labelled an instance of that phoneme. If an
audio-snippet consisted of information from two or
more phonemes, i.e. it fell across phoneme bound-
aries, it was discarded. In total, this resulted in
79553 input samples in the training set, and 21326
in the test set. The distribution of phonemes rep-
resented by these samples is quite skewed, as can
be seen visually for the training and test sets in
Figures A.1 and A.2 respectively.

3 Methods

This section discusses the specific steps taken
to run the phoneme classification task with the
classical and biased paradigms (cf. section 1.10).
This was implemented in Python 3.7.3, and
the code can be found at https://github.com/

satchitchatterji/ContextualConceptors.

3.1 Reservoir Initialisation

A single reservoir ofN = 50 neurons was initialised.
This was achieved by creating an N × N matrix
W of 70% sparsity with entries that were sampled
from a normal distribution N (0, 1), representing
the weights of the recurrent connections between
the neurons. A bias vector b was created by sam-
pling from a normal distribution N (0, 0.1). Finally,
an input weight matrix W in was created of shape
N×M = 50×15, whose entries were sampled from
a normal distribution N (0, 1).

The reservoir weight matrix was then altered in
order to guarantee that it had the ‘echo state prop-
erty’: any initial state of a reservoir is forgotten af-
ter a given period such that the excitations of the
reservoir are just a function of the input signal. This
has been shown to be an important condition for
recurrent neural networks in learning and control
tasks (Jaeger, 2014). The echo state property was
guaranteed using the procedure outlined in Yildiz
et al. (2012), as described here:

10

https://github.com/satchitchatterji/ContextualConceptors
https://github.com/satchitchatterji/ContextualConceptors

1. First, a random weight matrix with non-
negative entries is needed. Thus, each of the
entries of the previously initialised weight ma-
trix were replaced with their absolute-values.

2. W was scaled such that its spectral radius
ρ(W) was less than 1. Here, the spectral radius
refers to the largest absolute eigenvalue of W .
Thus, W can be scaled as W ←W/(ρ(W)+ϵ),
for an arbitrary small positive value ϵ (here,
ϵ was chosen to be 0.005). If ϵ = 0, then
ρ(W) = 1. The value ϵ ensures that the new
spectral radius ρ(W) is less than 1.

3. The signs of a certain proportion of entries
were flipped, i.e. a random sample of the en-
tries of W were made to be negative, chosen
here to be 50%.

The weights and biases of this reservoir will no
longer be changed.

3.2 Training: Learning Conceptors

For each phoneme class p ∈ P, two conceptors of
different purposes were created which were called
Cp

class and Cp
bias respectively, with audio-snippets

of class p used to drive the reservoir. All neurons
in the reservoir had an initial excitation state of
zero, and this is discarded when creating the state
collection matrices.
These two types of conceptors were used in order

to facilitate both classification and biasing. Cp
class

is a high-dimensional representation of both the ex-
citations of the neurons and the signal itself, and
includes temporal information (since they are cre-
ated by flattening the excitations over time into a
vector). These are thus used by Jaeger (2014) to de-
fine the classical conceptor classification paradigm
– a method which is extended in this project. Since
this does not directly represent the subspace of neu-
ronal excitations with respect to the total space of
the reservoir, a second conceptor type Cp

bias is used
to transform or bias the space of excitations of the
reservoir as per Eq 1.23, and is the same shape as
the reservoir’s weight matrix.
The first type of conceptor, Cp

class, created to en-
able the classical conceptor classification scheme as
described in section 1.3, were square matrices of di-
mension T ∗ (N +M) = 5∗ (50+15) = 325 (i.e. the
shape of the matrix is 325 × 325), where T is the

number of time steps of the input audio-snippet, M
is the dimension of the input vector (i.e. the number
of MFCCs of each time step in the audio-snippet)
and N is the number of neurons in the reservoir.
Let the set of all conceptors of this kind be CP

class,
indexed to correspond with the order of P.
The second type of conceptor, Cp

bias, created
to enable the biasing of the reservoir, were com-
puted according to the procedure described in sec-
tion 1.2.2, and represents the linear subspace that
encapsulates the trajectory of the excitations of
the neurons of the reservoir when driven by exam-
ples of phoneme p. The shape of this conceptor is
N × N = 50 × 50. Let the set of all conceptors
of this kind be CP

bias, again ordered to correspond
with the order of P.
The apertures that Cp

class and Cp
bias for all

phonemes p ∈ P were set to their respective ‘opti-
mal’ apertures based on the ∇-rule defined in 1.8,
though other methods may be used. The∇(γ) func-
tions for a sample of conceptors is given in Fig-
ures 3.1a and 3.1b for visual reference on how αopt

was computing using this procedure.

3.3 Testing I: Unbiased Classifica-
tion

An unbiased classification refers to the classical
conceptor classification paradigm as described in
section 1.3. To summarise the procedure, an un-
seen audio-snippet is used to drive the reservoir,
and the excitations collected. A column vector z is
created which consists of concatenated excitations
of the reservoir and the signal itself.

For each phoneme class p ∈ P, the corresponding
conceptor Cp

class is used to calculate an evidence
value for the signal as

h = z′Cp
classz (3.1)

The audio-snippet then is classified into the
phoneme class p̂ with the highest corresponding ev-
idence value.

3.4 Testing II: Biased Classification

The three systems described below generate these
biasing conceptors in different ways, inspired by
different interpretations of human reasoning. The
symbolic and probabilistic biasing methods rely on

11

(a) Frobenius norm over log(γ) for CP
class. (b) Frobenius norm over log(γ) for CP

bias.

Figure 3.1: Visualisation of the ∇-rule for computing optimal apertures of the CP
class (left) and

CP
bias (right) conceptors for a sample of 10 random phonemes. This was done for all conceptors,

and γopt is chosen at the point of maximal Frobenius norm.

a Markov matrix consisting of conditional probabil-
ities of phonemes occurring after one another in the
training dataset. This is described in appendix A.2.
Additionally, the fuzzy method relies on predict-
ing fuzzy phoneme membership values of the next
audio-snippet given the current one. This was done
using a multi-layer perceptron and is described in
appendix A.3.

3.4.1 Symbolic Biasing

This method generates a biasing conceptor B by
looking at whether a particular symbol class may be
expected at the next time step at all – that is, bias
based on all possibilities seen in the training data.
Let a sequence of symbols (si, sj) be called a bigram
(as it is often called in natural language processing
when using words as symbols instead). Thus, sym-
bolic biasing here is based on whether a phonemic
bigram (pi, pj) exists for a set of phonemes pj ∈ P
in the training data set.

Thus, if the system predicts phoneme pi at time
t, it looks for possible sequences or bigrams of the
form (pi, pj). This amounts to looking at the row
of the Markov matrix that corresponds to the lat-
est prediction and looking for symbols whose condi-
tional probability is greater than zero. This process
was termed ‘symbolic’ in order to encapsulate the
concept of ‘crisp’ symbolic human reasoning that
can be modelled by classical logic, i.e. the sym-
bols have no ambiguity or certainty associated with
them.

For the current audio-snippet at time t, let
Cnext ⊂ CP

bias be the set of bias conceptors cor-
responding to the next possible phoneme classes at
time t + 1. The biasing conceptor B is created as
the disjunction of all of these:

B =
∨

Cnext (3.2)

The above bias can be interpreted as: Given our
prediction of phoneme pt, the next phoneme is ex-
pected to be p1 or p2 or ... or pn since the phoneme
pair (pt, pi) exists in the training set for i = 1, ..., n.

For the sake of computational equivalence with
respect to the other two biasing methods, this can
also be written out as an aperture-adapted disjunc-
tion. The aperture adaptation factors γi for each
conceptor Cpi

bias ∈ CP
bias are either 1 or 0 based

on whether the bias conceptor corresponds to a
phoneme class that deemed possible in the next
time step. This can be written concisely as:

γi =

{
1 if Cpi

bias ∈ Cnext

0 if Cpi

bias ̸∈ Cnext

(3.3)

This ensures that the conceptors in Cnext re-
main at their optimal aperture, and all others are
reduced to the zero-matrix. Thus our aperture-
adapted disjunction is:

B =
∨

i=1,...,61

φ(Cpi

bias, γi) (3.4)

This bias can now be interpreted as: Given our pre-
diction of phoneme pt, the next phoneme is certain

12

to be p1 or p2 or ... or pn and not any others since
the phoneme bigram (pt, pi) exists in the training
set for i = 1, ..., n.

3.4.2 Probabilistic Biasing

This method generates a biasing conceptor B by
looking at the probability of a particular symbol
class being present at the next time step. For this,
we read the row of the Markov matrix (see ap-
pendix A.2) that corresponds to the classification
pt of audio-snippet phoneme at time t. Let this row
be represented as a row vector of conditional prob-
abilities P (pi|pt) for all pi ∈ P. We can treat these
probabilities as the function of uncertainty. Thus,
we define an uncertainty quantifier around pi with
respect to pt to be:

Ψi(pt) := P (pi|pt) (3.5)

Let the aperture adaptations be γi(Ψi(pt)) for
phoneme-corresponding indices i ∈ {1, ..., 61}. We
may define γ(x) to be the identity function for sim-
plicity. Thus for each phoneme class i:

γi(Ψi(pt)) := P (pi|pt) (3.6)

This follows the conditions laid out for γ(Ψ(s)) in
section 1.9 – namely, that it is bound in [0, 1]. Ad-
ditionally, it allows us to understand the aperture
adaptation directly as a correlate for probabilistic
uncertainty. Finally our bias conceptor can be cal-
culated to be:

B =
∨

i=1,...,61

φ (Cpi

bias, P (pi|pt)) (3.7)

We may use a disjunction of all conceptors, cor-
respondingly aperture-adapted to their uncertain-
ties. The above bias can be interpreted as: Given
our prediction of phoneme pt, the next phoneme
is expected to be p1 or p2 or ... or pn but with
some conditional probabilities P (p1|pt), P (p2|pt),
..., P (pn|pt) learned from the training set.

3.4.3 Fuzzy Biasing

This method is similar to the one described previ-
ously with probabilities, however, instead of calcu-
lating probabilities from one time step to another,
we use the fuzzy membership values based on the
evidence values of the current time step. For the

audio-snippet at time t, 61 evidence values are cal-
culated as per Eq. 1.7 (one for each conceptor in
CP

class), from which we can calculate 61 fuzzy mem-
bership values as per Eq 1.14, i.e. by normalising it
with respect to the number of dimensions of each
conceptor in CP

class (i.e. divide the evidence value
by 325).

Thus, a phoneme such as /m/ can have some
degree of /n/-ness, and vice versa. This holds for all
pairs of phonemes – every phoneme instance may
hold some graded membership in every phoneme
class. Thus, for now, we ignore the there may exist
one single “true” phoneme, and allow for gradation
in between.

From the current set of 61 membership values,
we aim to predict the next set in order to define
the bias conceptor. However, no suitable algorithm
was found in previous literature, thus, for now, we
assume there exists a function F : R61 → R61

that can predict multi-class fuzzy membership val-
ues, given fuzzy membership values as an input.
Under this assumption, a multi-layered perceptron
(MLP), whose details can be found in appendix
A.3, was created to model this function. It was
trained to predict the fuzzy membership values of
the next phoneme, given the current one. Let the
current set of membership values of the audio snip-
pet at time t be M(t). This MLP is notated and
treated as a function called F : R61 → R61, such
that F(M(t)) =M(t+ 1).
Just like with probabilities, we can treat these

fuzzy predictions as a function of uncertainty Ψ –
however, this is now defined as a function of mem-
bership functions over time. let µi(t+1) be the pre-
dicted fuzzy membership value for the fuzzy class
pi at time t+1 (i.e. µi(t+1) ∈M(t+1)). Thus, the
uncertainties around phoneme class i for the future
is:

Ψi(µi(t)) := µi(t+ 1) (3.8)

We again define γ(x) to be the identity function.
Thus for each phoneme class i, the aperture adap-
tations are:

γi(Ψi(µi(t))) := µi(t+ 1) (3.9)

This also follows the conditions laid out for γ(Ψ(s))
in section 1.9 – namely, that it is bound in [0, 1].
This corresponds with the fuzzy intuition of mem-
bership – if an object is fully in a fuzzy set, their
membership value approaches 1. When it is totally

13

not a member, the membership value approaches
zero. Thus, we may use a disjunction of all con-
ceptors, correspondingly aperture-adapted to their
fuzzy uncertainties. Finally our bias conceptor can
be calculated to be:

B =
∨

i=1,...,61

φ (Cpi

bias, µi(t+ 1)) (3.10)

At first glance, this equation looks similar to
Eq. 3.7 – however, the underlying uncertainty quan-
tification philosophies and valuations are quite dif-
ferent, specifically in the estimation of Ψ and the
aperture adaptation factors γi(Ψ).

The bias can be interpreted as: Given the current
audio-snippet’s fuzzy membership values for each
phoneme pi ∈ P, the next phoneme is expected to
have a fuzzy membership value in p1 or p2 or ... or
pn for all pi ∈ P with graded memberships of each
phoneme class F(M(t)) =M(t + 1) learned from
the training set.

This model necessarily does not consider one
phoneme to be true, rather, that an audio-snippet
can sound like several phonemes at once with vary-
ing degrees of membership. However, in order to
compare this model to the two other biased mod-
els and the unbiased one, the highest membership
value was considered to be the system’s overall clas-
sification.

4 Results

The overall differences in accuracy between all four
methods (one classical conceptor and three biased
conceptor methods) is small but noticeable. This
is documented in Table 4.1. We note that the bi-
ased methods are better than the unbiased one
by around 2.4%. Additionally, since the phoneme
/h#/ is regarded as silence and is over-represented
in the testing set, the accuracies excluding this
phoneme class are shown as well, with the biased
methods showing a similar 2% improvement. Thus,
biasing seems to improve accuracies overall.

For reference, if phoneme labels were distributed
uniformly within the test set, the random baseline
accuracy (randomly choosing a phoneme class for
each audio-snippet) is 1/|P| ≈ 1.63%. However,
since we see that it is non-uniform (Figure A.2),
an empirical evaluation was conducted by choosing

a uniformly random phoneme class for each audio-
snippet and calculating the overall accuracy. This
was done 1000 times for each audio-snippet. The
mean baseline was found to be 1.66% for all classes,
and 1.70% without the /h#/.

Method Accuracy Without /h#/
Unbiased 28.2% 21.9%
Symbolic 30.6% 23.5%

Probabilistic 30.6% 23.4%
Fuzzy 30.6% 23.5%

Table 4.1: Overall accuracies of the unbiased and
biased conceptor classification methods.

4.1 Phoneme Similarity & Grouping

Since there are 61 phonemes in total and four
classification models, analysing all results in their
entirety may not be beneficial in understanding
the behaviour of the classification systems. In or-
der to gain insight into specific cases, specifically
how the biased classification systems act on similar
sounding phonemes, subgroups of similar-sounding
phonemes were defined.

A first attempt at grouping phonemes are by
looking how similar each phoneme class’s conceptor
is to every other one. This is a measure of the simi-
larity of the response of the reservoir (in a sense, the
‘perception’) to input examples of phoneme classes.
This is done using the conceptor similarity measure
defined in Jaeger (2014) and Eq. 4.1 on the bias
conceptors CP

bias.

simα
i,j =

||(Si)1/2(U i)′(U j)(Sj)1/2||2

||diagSi|| ||diagSj ||
(4.1)

where USiU ′ is the single value decomposition of
conceptor C(Ri, α) for a phoneme class pi. The
similarities for all conceptors was computed with
α = 1, and range in [0, 1]. The similarities are
shown visually in appendix A.4.

Additionally, the phoneme examples were subjec-
tively heard by the author and grouped according
to how similar at least one human perceived the
signals to be. Since this project is exploratory, it
was decided that this was a sufficient enough mea-
sure, though a more thorough determination of sig-
nal similarity should be done.

14

In the end, four phonemes groups were identified,
given labels (group names) for identification pur-
poses, and are defined in Table 4.2. Though other
groups of similar phonemes exist, and these four
groups do not contain all 61 phonemes, it provides a
reasonable overview of different types of phonemes
– vowels, nasals, plosives, and fricatives.

Group Name Group Members
Open vowel aa, ae, ah, ao, aw, ax

Nasal em, en, m, n, ng, nx
Closed plosive pcl, bcl, dcl, tcl, gcl, kcl

sh-Group sh, jh, ch, zh

Table 4.2: Groups of similar phonemes and their
group names as assigned by the author. For clar-
ity, the forward slashes that usually surround
the phoneme are removed. For details, refer to
section 4.1.

4.2 Performance Within Groups

To reiterate, the goal of this project was to see if
a biasing paradigm using context-related concep-
tors on reservoir networks would help disambiguate
similar phonemes. Thus, we can analyse these in
detail by only looking at the classification of audio-
snippets which either have the ground-truth la-
bel belonging to the a particular group of similar
phonemes or were predicted to have such. This es-
sentially elucidates if the model is now able to clas-
sify similar phonemes correctly.

Since we wish to focus on the difference that bi-
asing brings to the classical conceptor classification
paradigm in terms of misclassification of similar
phonemes, we may use confusion matrices. Specif-
ically, the confusion matrices that follow show the
difference in total true positives, false positives,
false negatives and true negatives compared to the
unbiased model. For an overall improvement, we
would expect there to be an increase in the true
positives and true negatives, and a decrease in the
false positives and false negatives. For compactness,
this is called a difference confusion matrix. In the
description presented in this section of the values
within the difference confusion matrices, the means
of all three biasing methods have been presented
rounded to the nearest whole number, with specific
values being available in the figures 4.1-4.4.

4.2.1 Open Vowel Group

Figure 4.1 shows the results of all the biasing meth-
ods based on the open vowel group of phonemes.
For the true positives, we see a total increase for
all three biased models to be 58 audio-snippets
more than the unbiased model. Additionally, The
true negatives increase substantially too with each
model having a mean increase of around 1129 sam-
ples. This would imply that the models are now
better at both classifying a phoneme correctly, and
not classifying it as another phoneme in the group
too. We also see a decrease in the number of false
positives in each (58 samples), however, the false
negatives increase to a mean of around 281 more
samples than the unbiased model. Thus overall we
see an improvement in three of the four quadrants
of the difference confusion matrices.

4.2.2 Nasal Group

Figure 4.2 shows the results of all the biasing meth-
ods based on the nasal group of phonemes. We see
a similar behaviour to the Open Vowels, but less
pronounced in terms of absolute values of change.
The true positives and true negatives increase by
about 102 and 71 respectively. The false positives
decrease by approximately 102, however, the false
negatives increase for each model by 168 samples.
This also indicates an improvement in three of the
four quadrants of the difference confusion matrices.

4.2.3 Closed Plosive Group

Figure 4.3 shows the results of all the biasing meth-
ods based on the closed plosive group of phonemes.
For this group, we see a general decrease in perfor-
mance. The true positives decrease by 32 samples.
However, the true negatives increase to 193 sam-
ples for each – however, the symbolic and fuzzy bi-
asing methods do far better than the probabilistic
method in this regard, with a respective increase of
251, 251 and 77 samples each. The false negatives
increase by 32 samples each, and the false nega-
tives increasing by around 97 each. This phoneme
group shows greater differences between the models
in performance than the others. Thus, we only get
an improvement in the true negatives.

15

Figure 4.1: Difference in confusion matrices for
total classifications of phonemes with respect to
the Open Vowel group.

Figure 4.2: Difference in confusion matrices for
total classifications of phonemes with respect to
the Nasal group.

Figure 4.3: Difference in confusion matrices for
total classifications of phonemes with respect to
the Closed Plosive group.

Figure 4.4: Difference in confusion matrices for
total classifications of phonemes with respect to
the sh-Group.

16

4.2.4 sh-Group Group

Figure 4.4 shows the results of all the biasing meth-
ods based on the sh-group of phonemes. For this
group, we see a general decrease in performance
also. The true positives and true negatives each
respectively decrease by 29 and 303 samples. The
false positives increase by 29 samples. However, we
see an improvement in the false negatives, with the
biased models doing substantially better than the
unbiased one by 282 samples. Thus, we get an im-
provement only in the false positives.

5 Discussion

With respect to results overall, we see that the bi-
ased models perform better than classical conceptor
classification. On all 61 phoneme classes, the clas-
sification accuracies for all three biased models are
better by around 2.5%. If the silence marker /h#/
is removed, the models show an improvement of
around 2%. The absolute accuracies of the biased
models are around 30.6% and 23.5%, and the unbi-
ased model 28.2% and 21.9% respectively in these
situations (Table 4.1).

Previous work on phoneme classification on the
TIMIT data set have not provided a standardised
method for testing classifiers. Different publications
use different pre-processing and testing methodolo-
gies, thus it is difficult to directly compare this
work to theirs (discussed further in sections 5.3.1-
5.3.3). For example, Cao & Fan (2010) claim a
mean phoneme classification accuracy of 93.1% –
however, this is based on pre-segmented phoneme
instances of just 5 predetermined phoneme classes.

The highest accuracy found in literature dur-
ing this project for windowed classification was at-
tained by Graves & Schmidhuber (2005), with a
mean reported test accuracy of 73.2%. They used
a BLSTM model to achieve this, with information
flowing both forwards and backwards in time. They
also report relatively high accuracies with normal
LSTMs (70.2%), ‘bidirectional’ RNNs (65.3%) and
normal RNNs (61.9%).

Note that they test on the entire TIMIT test set,
whereas this work used only a subset. Additionally,
they group phoneme labels to create a 43 class clas-
sification task instead of testing on all 61 phonemes.
Thus this comparison only qualitative.

5.1 Within-Group Behaviour

Amongst phoneme groups, we see notable improve-
ments in the biased models for some phoneme
groups and decreases in others. For the Open Vowel
and Nasal groups, there seems to be a effective in-
crease in performance, and in the Closed Plosive
and sh-Groups.

This could be explained linguistically: since we
are working with MFCC data, which is in a trans-
formed frequency domain, better performance may
be expected in those phonemes which are better
represented in the frequency domain. Vowels have
very distinct formants (i.e. primary frequencies and
overtones), whereas the fricatives and plosives tend
to have noisy, non-distinct frequency values asso-
ciated with them due to quite turbulent airflow
(Huang et al., 2001). This might present in these
conceptors as, respectively, information distributed
amongst higher and lower singular values (though
without further analysis, this is just conjecture).
There may be more overlap between noisy plosive
and fricative conceptors than those associated with
vowels and nasals, and thus the biasing will not
be as effective, or even be detrimental to the final
model.

Intuitively with respect to the uncertainty, we
may be able to distinguish vowels and nasals bet-
ter than fricatives and plosives simply due to their
frequencies respectively overlapping less and more.
However, a more thorough analysis of this must be
done in order to determine the changes in behaviour
seen in these biased models.

We generally see similar results across all three
biasing methods. However, we see a slight visual
trend of the probability model doing worse than
the other two, however, this has not been numer-
ically quantified. The symbolic and fuzzy models
seem to be on par for all phoneme groups. The
only substantial difference seen in perhaps in the
true negatives with respect to the Closed Plosive
group of phonemes, where the symbolic and fuzzy
methods have four times as many improved classi-
fications compared to the probabilistic one.

However, these results may be task- and data
set-specific. It is possible that top-down influence
better assists in the disambiguation of some simi-
lar phoneme groups over others – in other words,
purely symbolic, probabilistic or fuzzy prediction
may be better for some groups than others. Addi-

17

tionally, these results do not consider the classifica-
tion of silence phoneme /h#/, which may change
the overall behaviour of the system.

5.2 Limitations

Only a fraction of the full TIMIT dataset was used
in this project due to time and computation con-
straints. In a full study of bidirectional phoneme
classification using the methods introduced here,
more data such as from other dialects and female
voices may be useful or be detrimental to the results
of this experimental project. However, purely on an
implementation level, the methods would need to
be refined or paralleled to make such a system run
quickly enough to be useful in real-world scenarios.

Additionally, hyper-parameter optimisation and
cross-validation was not carried out for the same
reason. This leaves much room for future research
in this direction, for example, using these methods
to increase overall classification performance.

5.3 Future Research

The current research aims to act as a stepping stone
in using conceptors to bias reservoir networks to
disambiguate similar signals. Thus, there may be
several other applications of the core idea of this
project that may be implemented elsewhere.

5.3.1 Reduced phoneme set

Previous attempts at classifying the TIMIT dataset
often used a reduced phoneme set by clustering sim-
ilar phonemes (such as plosives and their closed
counterparts) and not considering phonemes that
were not linguistically accepted (for example, three
types of silence phonemes). For example, Graves &
Schmidhuber (2005) use a reduced phoneme set of
43 phonemes, far fewer than the 61 used here. Cao
& Fan (2010) use an ever smaller 5-class classifi-
cation task on predetermined, phonetically unam-
biguous, phoneme classes. This may assist in better
reported accuracies of classification. If the biasing
methods introduced here are to be used competi-
tively or in order to validate classification systems,
similar data sets and pre-processing must be used.

5.3.2 Snippets versus Segmentation

The audio data in the TIMIT dataset is segmented
and labelled with phoneme classes. The methods
used here did not take make classifications with
respect to this segmentation of phonemes in the
audio data directly – rather, classification is on
window-based audio-snippets. Audio-snippets may
exist anywhere within the bounds of the segment.
Training conceptors on audio-snippets generalises
information about the phoneme, and longer tem-
poral information such as changes in the start and
end of the phoneme (which may help classifica-
tion) is no longer explicitly present. Thus, a sys-
tem that classifies on a full phoneme segment may
have higher overall results than one that classifies
audio-snippets (or other window-based structures).

The audio-snippets that lie on the boundary of
labelled phonemes are also discarded, since these
would arguably have two or more associated la-
bels. Thus, a classification paradigm that uses these
boundary conditions (which may contain impor-
tant information about the transitions between
phonemes) may also be fruitful.

5.3.3 Hyperparameter optimisation

Within the task of phoneme classification and time-
series classification in general, there are several
hyperparameters to consider when implementing
the unbiased and biased classification methods de-
scribed in this thesis. These include (but are not
limited to):

• Reservoir hyperparameters: Spectral ra-
dius, choice of initial weights (i.e. the choice
of sampling distribution), sparsity, initial net-
work state.

• Data preprocessing-centric hyperpa-
rameters: Number of windows in an audio-
snippet and amount of overlap between each
of them, mel-frequency transform coefficients,
filter banks, window lengths and strides.

• Conceptor training hyperparameters:
Choice of initial aperture α, or alternatively,
choice of αopt calculation.

This creates a very large search-space of hyperpa-
rameters that would require significant computing
power and time to exhaustively search. However

18

this is still an important consideration in order to
get optimal performance and/or a rigorous analysis
of system behaviour.

5.3.4 Regulating Biasing

In order to understand the behaviour of the three
biasing methods better, an analysis of the top-down
biasing towards each phoneme class at each time
step is required. This may be in the form, for ex-
ample, of analysing how γ(Ψ) relates to the sys-
tem’s behaviour over time. This may help eluci-
date how we may combine two sets of information
with different semantics – symbolic, with human-
comprehensible meaning pointing to abstract con-
cepts or the relations between them, and sub-
symbolic, arising from the relatively unclear non-
linear dynamics of a neural network.
Notably, it is an open question as to how impor-

tant the top-down model should be with respect to
the bottom-up perception for a given task. Since
biasing influences the prediction of the next audio-
snippet based on the current, a ‘bad’ top-down pre-
diction will bias the reservoir away from a poten-
tially correct phoneme classification. This has the
potential to cascade – a bad prediction now may
influence decisions several steps into the future.
Overall, if the biasing towards a particular

phoneme is too strong, the system may lose all
benefits of reservoir computing, such as better
noise-robustness, and fall back towards a purely
rule-based predictor. Biasing the excitations too
strongly towards a particular expected class will
result in a high evidence value for that class, and
thus, the top-down model will dictate behaviour of
the system. The reverse is true as well – not bi-
asing enough will lose the benefits of context that
the top-down models provide, and move back to-
wards classical conceptor classification. Thus, be-
tween these two flows of information, a balance
must be achieved.

5.3.5 Uncertainty function Ψ and Aperture
Relation γ(Ψ)

The function Ψ and the function used to com-
pute the aperture adaptations γ(Ψ) (discussed in
section 1.9) are both core to the biasing models
presented here. In essence, the function changes
how important the higher singular values of the

data (the ones with higher variance) compared to
lower singular values (the ones with lesser varia-
tion). With this interpretation, the behaviour of
the functions Ψ and γ(Ψ) are not necessarily re-
stricted – perhaps the differences between two sim-
ilar phonemes /m/ and /n/ lie in the lower singular
values, and other pairs may have their differences
distributed elsewhere. The functions of Ψ chosen
here, corresponding to conditional probabilities and
fuzzy membership values are derived from anthro-
pocentric intuitions of uncertainty-quantified sym-
bolic reasoning. The optimal function may be com-
pletely different, either for the system or for actual
human thought.

Thus, an interesting future study may be to find
an optimal Ψ and analyse if its behaviour matches
up with human intuition of uncertainty. Addition-
ally, it may be interesting to study this it relates to
apertures with a function γ(Ψ), and see if aperture
adaptation and uncertainty can indeed be analo-
gous in conceptors.

5.3.6 More Context

Natural language often has long-term dependen-
cies (Huang et al., 2001) that a first-order Markov
matrix may not be able to capture. Thus, a bet-
ter performing model may be created by enabling
longer term context, for example, by assuming a
higher-order Markov property. However, this will
lead to an exponentially larger Markov matrix, and
an approximation for the same may be necessary.

Additionally, analogously to the Ganong effect
(Ganong, 1980), for an more offline classification
task, or an online task where the system is allowed
to alter previous predictions, future phonemes may
also be used as context for previous ones in order
to disambiguate similar sounds.

5.3.7 Other Conceptor Classification
Paradigms

Jaeger (2014) describes several conceptor varieties,
though two are used here for different purposes.
The classification conceptors CP

class are used since
they consist of high-dimensional temporal informa-
tion of both the excitations and the signal, which
is useful for comparing the shape of trajectories
in the training set and those of new, test signals.

19

The biasing conceptors CP
bias are used to bias the

reservoir since they represent a subspace of exci-
tations. Other conceptors and architectures using
them have been posited to be used in classification
or other signal-related tasks, for example, the au-
toconceptor. Thus, it may be fruitful to explore the
idea of reservoir biasing using other kinds of con-
ceptor architectures.

5.3.8 Other Neural Networks and Tasks

Various natural language tasks other than phoneme
transcription may benefit from top-down contex-
tual information. Humans use context regularly in
these kinds of tasks too. This includes tasks such
as speed-to-text translation, speaker recognition,
named entity recognition, and parts-of-speech tag-
ging (Olsson, 2009).

Since reservoirs may be used for tasks that other
RNN architectures are used for (Jaeger, 2014), the
method outlined in this paper lends itself well to be-
ing extended into other time-series tasks that might
leverage symbolic context. Non-linguistic temporal
tasks such as stock market or weather prediction
and control tasks may also presumably benefit from
top-down contextual information flow as well.

Benefits of controlling or biasing neuronal excita-
tions may prove to be useful in other RNNs too, in-
cluding those trained with typical training routines
(such as backpropagation through time), and not
just in an untrained reservoir. This may be useful
to fine-tune the predictions of an existing, trained
network. Additionally, the idea of a conceptor is
general one, and has been extended to non-reservoir
networks such as feed-forward neural networks (He
& Jaeger, 2018). Thus, it may be interesting to ex-
plore how context may be used in non-temporal
tasks such as image recognition and segmentation.

6 Conclusion

The robustness of human context-enhanced percep-
tion, where symbolic top-down information inter-
acts with low-level perceptual pathways, is not yet
fully replicated in artificial neural networks. This
project introduced three related methods of doing
so, by biasing a reservoir network with conceptors
that represent different symbols. The three meth-
ods are inspired by human symbolic, probabilis-

tic and fuzzy reasoning methods, and a tentative
mathematical relationship between them and con-
ceptors were introduced. These method were used
in an online learning task of automatic phoneme
transcription. Though a more thorough analysis is
required to determine the generality of its effec-
tiveness, these methods show promise with fewer
misclassifications amongst phonemes in similar-
sounding phoneme groups compared to an unbiased
model.

7 Acknowledgements

I thank Guillaume Pourcel and Steven Abreu for
their supervision and continual guidance through-
out the project. Additionally, I would like to thank
Joris Peters, Daniel Woonings and especially David
Coslar for our long conversations about conceptors
that helped me gain insight and inspiration in this
field. I wholeheartedly thank Ruhi Mahadeshwar,
Andreea Minculescu, Pradnesh Mahadeshwar, Sha-
nia Sinha and my parents for coming on this jour-
ney with me.

References

Abadi, M. (2016). TensorFlow: Learning Functions
at Scale. In Proceedings of the 21st ACM SIG-
PLAN International Conference on Functional
Programming.

Abraham, A. (2005). Adaptation of Fuzzy Infer-
ence System Using Neural Learning. In N. Ned-
jah & L. d. Macedo Mourelle (Eds.), Fuzzy Sys-
tems Engineering: Theory and Practice (pp. 53–
83). Springer. doi: 10.1007/11339366 3

Bellman, R., Kalaba, R., & Zadeh, L. (1966). Ab-
straction and Pattern Classification. Journal of
Mathematical Analysis and Applications, 13 (1),
pp. 1–7.

Bengio, Y., Lamblin, P., Popovici, D., & Larochelle,
H. (2006). Greedy Layer-wise Training of Deep
Networks. Advances in Neural Information Pro-
cessing Systems, 19 .

Bermúdez, J. L. (2014). Cognitive Science: An In-
troduction to the Science of the Mind. Cambridge
University Press.

20

Boden, M. A. (2014). Chapter 4: GOFAI. In
K. Frankish & W. Ramsey (Eds.), The Cam-
bridge Handbook of Artificial Intelligence. Cam-
bridge University Press.

Cao, J., & Fan, G. (2010). Signal classification
using random forest with kernels. In 2010 sixth
advanced international conference on telecommu-
nications (pp. 191–195).

Ganchev, T., Fakotakis, N., & Kokkinakis, G.
(2005). Comparative Evaluation of Various
MFCC Implementations on the Speaker Verifi-
cation Task. In Proceedings of the SPECOM
(Vol. 1, pp. 191–194).

Ganong, W. F. (1980). Phonetic Categorization
in Auditory Word Perception. Journal of exper-
imental psychology: Human perception and per-
formance, 6 (1), 110.

Garofolo, J. S., Lamel, L. F., Fisher, W. M., Fiscus,
J. G., & Pallett, D. S. (1993). DARPA TIMIT
Acoustic-phonetic Continous Speech Corpus CD-
ROM. NIST speech disc 1-1.1. NASA STI/Recon
Technical Report , 93 , 27403.

Gianakas, S. P., & Winn, M. (2016). Exploiting
the Ganong Effect to Probe for Phonetic Uncer-
tainty Resulting from Hearing Loss. Journal of
the Acoustical Society of America, 140 , 3440.

Graves, A., & Schmidhuber, J. (2005). Frame-
wise Phoneme Classification with Bidirectional
LSTM Networks. In Proceedings. 2005 IEEE
International Joint Conference on Neural Net-
works, 2005. (Vol. 4, pp. 2047–2052).

Gwilliams, L., Linzen, T., Poeppel, D., & Marantz,
A. (2018). In Spoken Word Recognition, the Fu-
ture Predicts the Past. Journal of Neuroscience,
38 (35), 7585–7599.

He, X., & Jaeger, H. (2018). Overcoming
Catastrophic Interference Using Conceptor-aided
Backpropagation. In International Conference
on Learning Representations.

Hornik, K., Stinchcombe, M., & White, H. (1989).
Multilayer Feedforward Networks are Universal
Approximators. Neural Networks, 2 (5), 359–
366.

Huang, X., Acero, A., Hon, H.-W., & Reddy, R.
(2001). Spoken Language Processing: A Guide
to Theory, Algorithm, and System Development.
Prentice Hall PTR.

Jaeger, H. (2014). Controlling Recurrent Neu-
ral Networks by Conceptors. arXiv preprint
arXiv:1403.3369 .

Kosko, B., & Burgess, J. C. (1998). Neural Net-
works and Fuzzy Systems. Acoustical Society of
America.

Krizhevsky, A., Sutskever, I., & Hinton, G. E.
(2012). Imagenet Classification with Deep Con-
volutional Neural Networks. Advances in Neural
Information Processing Systems, 25 .

Lyons, J., Wang, D., Gianluca, H. S., Mavrinac,
E., Gaurkar, Y., Watcharawisetkul, W., . . . oth-
ers (2020). James Lyons/python speech fea-
tures: Release v0. 6.1. Zenodo, 10 . doi: 10.5281/
zenodo.3607820

Mittal, S., Lamb, A., Goyal, A., Voleti, V., Shana-
han, M., Lajoie, G., . . . Bengio, Y. (2020). Learn-
ing to Combine Top-down and Bottom-up Sig-
nals in Recurrent Neural Networks with Atten-
tion over Modules. In International Conference
on Machine Learning (pp. 6972–6986).

Mossakowski, T., Glauer, M., & Diaconescu, R.
(2018). Towards Logics for Neural Conceptors.
AITP 2018 .

Olsson, F. (2009). A literature survey of active
machine learning in the context of natural lan-
guage processing (1st ed.). Swedish Institute of
Computer Science.

Rauss, K., & Pourtois, G. (2013). What is bottom-
up and what is top-down in predictive coding?
Frontiers in psychology , 4 , 276.

Yildiz, I. B., Jaeger, H., & Kiebel, S. J. (2012).
Re-visiting the Echo State Property. Neural Net-
works, 35 , 1–9.

Zadeh, L. A. (1975). Fuzzy Logic and Approximate
Reasoning. Synthese, 30 (3), 407–428.

Zadeh, L. A. (1996). Fuzzy Sets. In Fuzzy sets,
fuzzy logic, and fuzzy systems: Selected papers by
Lotfi A Zadeh (pp. 394–432). World Scientific.

21

A Appendices

A.1 List and Distribution of
Phonemes

Table A.1 shows the list and distribution of
phonemes found in the training and test sets de-
fined in section 2. Figures A.1 and A.1 how this
data graphically. We see a large non-uniformity in
the distribution of the phonemes in both training
and test sets, notably, the ‘h#’ phoneme label (used
to indicate silence at the start and end of sentence)
is greatly over-represented. However, it should be
noted that both the training and testing distribu-
tions are visually very similar. For all of the details
on this list, please refer to Garofolo et al. (1993).

A.2 Generating a Markov Matrix

In order to facilitate the symbolic and probabilistic
biasing methods, we need to analyse the contexts
of the occurrences of the phonemes themselves. For
now, let us assume the Markov property within the
data: the phoneme class at time t+1 is only depen-
dant on the current one at time t. Note that this is
not totally realistic, since often phonemes can have
longer-term dependencies (for further discussion on
this, see section 5.3.6).
With this assumption, the probabilistic biasing

method described in section 3.4.2 relies on the cal-
culation of the conditional probabilities of an audio-
snippet of phoneme class pj occurring after one
with class pi, i.e. how probable is pj given pi. Addi-
tionally, the symbolic method in section 3.4.1 can
be interpreted as given two audio-snippets with
phoneme classes pi and pj , we check in the training
data if pj ever follows from pi – that is, check if
the occurrence of pj is possible after pi with given
previous experience. This is equivalent to checking
if the condition probability is greater than zero.
Let the total number of occurrences of the se-

quence (pi, pj) (pj occurring directly after pi) be
N(pi,pj), and the total number of occurrences of pi
be Npi

. Thus the conditional probability for each
pair of phonemes in the set of phoneme classes can
be calculated as:

P (pj |pi) =
P (pj ∩ pi)

P (pi)
(A.1)

=
N(pi,pj)

Npi

(A.2)

To reiterate, P is defined as the ordered set
of phoneme classes seen in the training data. We
may organise these conditional probabilities in a
|P| × |P| matrix, whose numerical entry at po-
sition (i, j) represents the conditional probability
P (pj |pi). This is known as a Markov matrix. In
this context, the phoneme classes may be termed as
states, and their conditional probabilities as state
transitions from one phoneme to another. Given
the data set, |P| = 61, thus, the Markov matrix is
of shape 61× 61.

A.3 Fuzzy Membership Prediction
using a Multi-layer Perceptron

Let us assume that there exists a static function
F : R61 → R61 that takes the fuzzy membership
values of all phonemes input as a vector at time t
and outputs the same at time t+1. Thus, a multi-
layer perceptron (MLP) was used to approximate
this function, since MLPs are known to be univer-
sal function approximators (Hornik et al., 1989).
For this, a small model was created using Tensor-
flow (Abadi, 2016). Since we assume the Markov
property, no previous information before the cur-
rent time step should influence the future: thus,
an MLP was chosen, and not a temporal function
approximating neural network such as a recurrent
neural network. This MLP is notated as F .

• Data: After training all classification concep-
tors CP

class as described in section 3.2, all sam-
ples in the training data were run through the
reservoir once more, and the evidence values
for each of the phoneme classes were computed
using the procedure described in section 1.3
under Testing. These were then normalised to
form fuzzy membership values as described in
Eq. 1.14 by dividing the value by 325 (the di-
mension of each conceptor in CP

class). Let the
number of audio-snippets in the training data
be S = 79553. Thus the membership values
were collected sequentially in a matrix Xall of
size S × |P| = 79553× 61.

The inputs to the MLP were created as a ma-
trix Xtrain, which consisted of all samples in
Xall except the very last, which gives Xtrain

the shape (S − 1) × 61. The corresponding
targets to these inputs were the membership
values that corresponded to exactly one time

22

Phoneme # Training Set # Test Set Phoneme # Training Set # Test Set
aa 3817 659 ix 3428 683
ae 6239 780 iy 4978 944
ah 1769 387 jh 597 93
ao 3097 689 k 1859 266
aw 1110 88 kcl 2929 347
ax 1381 227 l 2940 573
ax-h 93 17 m 1993 360
axr 2156 386 n 2990 383
ay 3421 623 ng 616 106
b 118 20 nx 122 33
bcl 1028 224 ow 2766 498
ch 651 122 oy 1233 207
d 390 55 p 826 122
dcl 2143 265 pau 2008 341
dh 697 119 pcl 1541 167
dx 430 87 q 1989 318
eh 3175 670 r 3002 515
el 811 147 s 8111 1288
em 131 7 sh 2484 369
en 591 33 t 1482 279
eng 31 0 tcl 2824 411
epi 504 103 th 599 96
er 1838 410 uh 379 103
ey 2740 477 uw 844 123
f 2366 482 ux 1681 273
g 400 65 v 1046 183
gcl 852 142 w 1627 354
h# 19165 3195 y 1031 186
hh 509 86 z 2800 483
hv 660 116 zh 113 13
ih 3035 523

Table A.1: List of phonemes and their total occurrences in terms of number of audio-snippets in
the training and test sets.

23

Figure A.1: Distribution of phonemes classes amongst audio-snippets in training set.

Figure A.2: Distribution of phonemes classes amongst audio-snippets in testing set.

24

step after the input. Thus, the training targets
were collected in a matrix Ytrain with shape
(S − 1)× 61, which consisted of all samples in
Xall apart from the first sample. Thus, for all
xi ∈ Xtrain, yi = xi+1, where i ∈ {1, ..., S− 1}
is an index.

The pairs (xi, yi) were shuffled before training,
and a random sample of 20% of the training
set (15911 input-target pairs) was used as a
validation set.

• Architecture: The MLP F consisted of two
hidden layers of 128 neurons each, with an in-
put size of 61 and an output size of 61. The
two hidden layers used rectified linear units
(ReLUs) as non-linear activation functions ap-
plied to them. The ReLU function is defined
as:

ReLU(x) = max(0, x) (A.3)

Since this task can be seen as a regression task,
the linear activation function is was first con-
sidered as the activation for the output layer.
However, the outputs of this regression task is
bounded – since we expect fuzzy membership
values to be in the range [0, 1], the sigmoid ac-
tivation function σ was used as an alternative:

σ(x) =
1

1 + e−x
(A.4)

Due to an MLP’s inherent non-linearity, out-
of-distribution test examples may lead to the
prediction of a particular membership value
being greater than 1 or less than 0. Thus, the
sigmoid activation function acts as a a ‘squash-
ing’ function, having a range of [0, 1] itself.
Thus it was used as the activation function of
the output layer of the MLP.

• Training: The model was trained using back-
propagation, with the Adam optimiser, (with
is a stochastic-gradient descent variant), with
a learning rate of 0.0001. Note that the de-
fault values of Tensorflow 2 of the Adam opti-
miser was used during training: β1 = 0.9, β2 =
0.999, ϵ = 10−7. For more details, refer to
Abadi (2016). The loss function used was mean
squared error, since we attempt to minimise
the distance between the target vector and the
one predicted by the MLP in all dimensions.

The model was trained for 15 epochs with a
batch size of 128. The loss curves are shown
in figure A.3. The trained model was saved to
disk and loaded when necessary for the fuzzy
conceptor classification paradigm.

Figure A.3: Training curves for MLP F . Train-
ing MSE loss is in blue, and validation loss is in
orange. For details, refer to section A.3.

Thus, we achieve an approximation of a function
F that outputs the set of fuzzy membership values
of a set of 61 phoneme classes at time t + 1 given
the same at time t that was used in section 3.4.3.

Notes on Fuzzy-membership MLPs: There
are a number of possible changes or improvements
that may be explored in future research for approx-
imating F :

• Regularization: Though figure A.3 visually
suggests that the model is learning well and no
overfitting is occurring, one might consider us-
ing a regularisation technique such as dropout
to increase the generality of the network’s pre-
dictions.

• Hyper-parameter optimisation: Hyper-
parameters such as the learning rate, opti-
miser, number of epochs, etc. or even the MLP
architecture itself were not optimised rigor-
ously, but were tuned by hand until subjec-
tively acceptable learning behaviour and per-
formance was achieved. In order to get optimal
results, a tuning method such as a grid search
over the space of all hyper-parameters with k-
fold cross validation would be ideal.

25

• Removing Data Set Bias: Finally, as we
see in figures A.1 and A.2, the distributions
of phonemes in the data is not uniform, and
thus one would expect this to be reflected in
the fuzzy membership value training data as
well. This may lead to a bias in the predic-
tions of the network. A more thorough inves-
tigation may be fruitful in understanding this
bias and potentially taking it into account for
the MLP’s predictions.

A.4 Phoneme Conceptor Similarity

The heat map of similarities for all phoneme classes
are shown in figure A.4. Phoneme labels on the x−
and y−axes are alphabetically ordered. The higher
the similarity, the more red the region. Likewise,
the lower the similarity, the more blue the similar-
ity. We see that in general, all conceptors are rel-
atively similar, with the most negative similarity
around 0.625 between /eng/ and /z/. The simi-
larity measure between the same conceptors is 1,
which we see as a red diagonal on this heat map.
We can also somewhat see grouping already: for ex-
ample, the Open Vowel group in the top left of the
graph.

26

Figure A.4: Similarity heat map between phoneme conceptors CP
bias. The conceptor similarity

measure ranges from 0 to 1. Phoneme groups are tentatively seen here too – for example, members
of the Open Vowel phoneme group can be seen in the top left corner of this heat map as a reddish
square, since all their conceptors are similar to one another. The members of this group also
subjectively sound very similar to one another.

27

	Introduction
	Bidrectional Phoneme Transcription
	Conceptors: An Overview
	Reservoirs
	Computing Conceptors

	Conceptor Classification
	Conceptor Logic
	Fuzzy Sets and Fuzzy Logic: A Quick Introduction
	Neuro-fuzzy systems
	Fuzziness versus Probability

	Fuzzy Conceptor Logic
	Aperture adaptation
	Aperture-adapted Disjunction and Conjunction

	`Optimal' Aperture Computation
	Aperture Adaptation as a Function of Uncertainty
	Biased Conceptor Classification Paradigm

	Task & Data Set
	Pre-processing

	Methods
	Reservoir Initialisation
	Training: Learning Conceptors
	Testing I: Unbiased Classification
	Testing II: Biased Classification
	Symbolic Biasing
	Probabilistic Biasing
	Fuzzy Biasing

	Results
	Phoneme Similarity & Grouping
	Performance Within Groups
	Open Vowel Group
	Nasal Group
	Closed Plosive Group
	sh-Group Group

	Discussion
	Within-Group Behaviour
	Limitations
	Future Research
	Reduced phoneme set
	Snippets versus Segmentation
	Hyperparameter optimisation
	Regulating Biasing
	Uncertainty function and Aperture Relation ()
	More Context
	Other Conceptor Classification Paradigms
	Other Neural Networks and Tasks

	Conclusion
	Acknowledgements
	Appendices
	List and Distribution of Phonemes
	Generating a Markov Matrix
	Fuzzy Membership Prediction using a Multi-layer Perceptron
	Phoneme Conceptor Similarity

