
Quantum aspects of variational quantum
circuit-based models

MSc Thesis

Supervisors: Dr. Vedran Dunjko & Dr. Jordi Tura

First examiner: Prof. Dr. Anastasia Borschevsky

Second examiner: Dr. Ir. Gerco Onderwater

Marius van Laar

July 2022

Abstract

Variational Quantum Circuits (VQCs) are a class of Quantum Machine Learning
(ML) methods which have successfully been implemented on near-term devices.
However, VQCs do not benefit from any rigorous advantages over classical methods.
Where previous work has focused on establishing theoretical bounds in capacity or
generalization error, we probe the change in learning performance as the classical
computational hardness of the model increases. First we develop three simulation
methods which offer systematic control of the computation hardness; two for the
simulation of Matchgate circuits with few SWAP gates, and one based on the Gate
Cutting technique. We introduce a VQC model based on the latter technique, and
find the computational hardness has no impact on the learning performance for a
range of real-world and quantum datasets.

Contents

1 Introduction 2

2 Preliminaries 5
2.0.1 Quantum Computing . 5
2.0.2 Machine Learning . 8
2.0.3 Quantum Machine Learning 10

3 Research Questions & Original contributions 11

4 Related Work 13

5 Classical Simulation of quantum systems 17
5.1 Matchgates . 21

5.1.1 Notation . 21
5.1.2 Heisenberg technique . 22
5.1.3 Wick’s simulation . 24
5.1.4 The SWAP gadget - proof of theorem 5.0.1 25
5.1.5 SWAP gate decomposition for Matchgate circuits 29
5.1.6 Divide & Heisenberg - proof of theorem 5.0.2 30
5.1.7 Divide & Wick - proof of theorem 5.0.3 32
5.1.8 Discussion . 33

5.2 Circuit Partitioning . 34

6 The power of VQC models in Machine Learning 37
6.1 Experimental Methods . 38

6.1.1 Model ansatz . 38
6.1.2 Optimization procedure & Trainability 40
6.1.3 Datasets . 40

6.2 Numerical Results . 42
6.3 Discussion . 48

7 Conclusions 50

1

Chapter 1

Introduction

Quantum computers are devices based on the principles of quantum mechanics,
and as such offer fundamentally different methods of computation to classical de-
vices. Research into algorithms for such quantum devices have shown advantages
for certain problems over classical computers, through superior scaling as the prob-
lem size increases. Examples include solving a linear system of equations through
the HHL algorithm [1], finding discrete logarithms and prime factorization [2] and
solving complex quantum many-body problems in quantum chemistry [3]. These
algorithms rely on the unique aspects of quantum devices to produce complex data
distributions or perform particular operations which are difficult for a classical device
to produce or process.

Classical Machine Learning methods are capable of not only recognizing correla-
tions and patterns in data distributions invisible to the human eye, but also generat-
ing new data with the same correlations, patterns and statistics. If quantum devices
offer access to classically difficult processing capabilities and data distributions, it
motivates research into how Quantum computing and Machine Learning can benefit
each other. One goal might be finding algorithms and methods which are capable of
learning, and consequently reproducing, complex quantum data distributions which
are computationally difficult to sample from using classical methods.

Research into this interdisciplinary field, dubbed Quantum Machine Learning
(QML), has already generated many new (quantum) algorithms and ideas, many
of which are inspired by or generalizations of established classical methods [4]. A
simple yet effective approach is to use a quantum circuit as a model, which contain
gates with free parameters that introduce the variational component necessary to
create a continuous family of functions. These free parameters can be optimized
classically for a given problem, yielding a hybrid quantum-classical algorithm which
is broadly referred to as a Variational Quantum Algorithm (VQA) [5]. This approach
is already powerful enough to yield a universal function approximator with a single
qubit, at the expense of a large number of gates [6]. Whilst this proves the relevance
of quantum models for machine learning, a single qubit is still classically simulable.

What is it about these QML algorithms that gives them an advantage over clas-
sical methods? Advantages focused on improvements in time or query complexity
are often provable using theoretical arguments at the cost of stringent quantum
hardware requirements [7]. Consequently nearly all methods supported by strong
evidence of classical-quantum separations are unfeasible to run on near-term devices,
characterized by low gate fidelity, qubit count (up to 100 qubits) and short deco-

2

herence times. These near-term devices are referred to as Noisy Intermediate-Scale
Quantum (NISQ) computers [8]. For example, one caveat to the HHL algorithm
is the requirement to encode N bits of information in log2(N) qubits, using a pro-
cess called amplitude encoding. It is known that this process generally requires
exponentially many gates [9] and hence is unfeasible for many near-term devices
due to the accumulation of noise. Furthermore, these advantages are in the time
or query complexity and therefore do not imply any improvement in performance
on real world datasets. It remains a challenge to properly contrast and compare
classical and quantum machine learning methods suitable for NISQ devices within
the same framework [10], and identify practical settings where quantum methods
have a tangible advantage over classical methods.

Our pragmatic approach to analysing the difference between quantum and clas-
sical methods is to consider how difficult the quantum method is to classically sim-
ulate. The direct classical simulation of universal quantum computation (UQC)
requires keeping track of vectors and matrices that describe the quantum system,
whose dimensions grow exponentially in the system size. Methods scaling exponen-
tially either in space or in time with the problem size are considered to be intractable.
However, there are also restricted (i.e. non-universal) modes of quantum computa-
tion, such as Clifford circuits [11], Matchgates [12] or Tensor Networks [13] which
are tractable for classical devices. These modes give us intuition as to which charac-
teristics of quantum algorithms truly do (or do not) give them superior power over
classical algorithms. Typically these restricted modes have a specific ingredient or
resource that, when included in the computation, yield UQC again. An example is
the addition of SWAP gates to Matchgate circuits [14].

Schuld et al. prove that UQC is necessary for a quantum model to be an univer-
sal function approximator, assuming exponential circuit depth [15]. With machine
learning tasks it is of utmost important for the model to be able to represent the
underlying system or function that generates the data distribution. Typically the
underlying function is not known or fully understood, so universal function approxi-
mators are a safe choice to ensure successful learning. However this does not exclude
the possibility non-universal but computationally cheaper quantum models are ca-
pable of representing the function, so we should ask ourselves if we really need fully
quantum circuits in VQA, or whether some restricted circuit model is also sufficient
for common machine learning tasks. To properly study the advantage gained by
using fully universal quantum models in a learning setting one can compare models
based on restricted modes of quantum computation with and without the additional
resource that yields UQC. The methodological challenge is to find the most power-
ful classical simulation method for a restricted mode whereby one can control the
amount of this resource in our model and exactly determine its computational hard-
ness. A positive relation between the computational hardness and performance on
learning tasks would provide solid justification for the use of quantum devices for
machine learning.

In this work we probe the necessity of universal quantum computation in quan-
tum machine learning, specifically VQAs. First we assess literature for various
restricted modes of quantum computation and what additional resource or process
they require to recover UQC. Based on these insights we create two original algo-
rithms for the simulation of Matchgate circuits supplemented with SWAP gates.
Our main result will be to show one of these represents the most powerful simu-

3

lation technique reported in current literature. Additionally we develop a class of
quantum models where we partition a large circuit into multiple smaller subcircuits.
The exponential scaling of this class is now in the degree of non-local entanglement
between the subcircuits, rather than the overall system size. All three methods
provide a suitable basis to investigate how crucial it is to have fully quantum mod-
els in QML, however circuit partitioning approach is the only practically feasible
method. We probe the necessity of UQC in VQA by exploring the relation between
the simulation difficulty and learning performance. We develop a simulator for the
partitioning approach and use it to test a common type of model seen in literature
on various real-world and quantum datasets. We find our model already achieves
competitive results in the absence of the non-local entanglement, and varying the
simulation difficulty has no impact on the performance of the model.

The thesis is structured as follows. In Section 2 we introduce some theoretical
preliminaries and definitions. In Section 3 we set out our research questions and
original contributions. Related works are discussed in Section 4. Our new algo-
rithms are presented and discussed in Section 5. Finally in Section 6 we present our
experiments and results on the learning capabilities of our chosen class of models.

4

Chapter 2

Preliminaries

Before we go on to present our research questions it will be beneficial to introduce
some concepts from Quantum Computing, Machine Learning and QML. Readers
well versed in these topics may skip ahead to Section 3. Only concepts relevant to
this thesis are discussed in a concise manner.

2.0.1 Quantum Computing

Whilst classical bits can be in either the 0 or 1 state, quantum bits exhibit a property
called superposition whereby they can exist as a linear combination of the two basis
states. In Dirac notation the quantum equivalent of the 0 basis state is |0⟩ =

(
1
0

)
and the 1 basis state is |1⟩ =

(
0
1

)
. An arbitrary single qubit quantum state is

described by a state vector, denoted as

|ϕ⟩ = α|0⟩+ β|1⟩ =
(
α
β

)
, (2.1)

with α, β ∈ C and satisfy |α|2 + |β|2 = 1. In fact, this state vector completely
describes a closed physical system, and is a unit vector in the associated Hilbert
space H = C2. Larger systems comprising of n qubits are described by a state
vector of size 2n, reflecting the number of possible basis states.

Closed quantum systems (described by a quantum state) evolve according to the
Schrödinger equation,

i
d|ϕ⟩
dt

= H|ϕ⟩, (2.2)

where H is a hermitian operator, called the Hamiltonian, and we set ℏ = 1. A more
practical but equivalent formulation is to say the quantum state evolves via unitary
transformations,

|ϕ′⟩ = U |ϕ⟩, (2.3)

where U = e−iHt is a 2n × 2n unitary matrix for a system of n qubits, and t is the
time duration the system is being evolved by.

When combining N closed systems to obtain a composite system, one obtains
the state vector by taking the tensor product of the state vectors of each individual
system, |Φ⟩ = |ϕ1⟩⊗ |ϕ2⟩⊗ ...⊗|ϕN⟩. More generally, the state space of a composite
system is given by the tensor product of the individual state spaces H = H1 ⊗
H2 ⊗ ...⊗HN . The opposite operation, to decompose a single system into multiple
subsystems, is only possible if the subsystems are not entangled. A state is entangled

5

if it cannot be written as a product of its component states, for example |ψ⟩ =
|00⟩+|11⟩√

2
.

Quantum measurements are the tool to obtain information from (closed) quan-
tum systems. In particular here we focus on projective measurements, and refer
the reader to [16] for a broader overview on quantum measurements in general.
Projective measurements are described by an observable O, which is a Hermitian
operator. Each eigenvector of O corresponds to a particular basis state of the system
being measured, and has an associated eigenvalue λ. The spectral decomposition of
O =

∑
i λiPi where Pi is the projection of the ith eigenvector, which has a rank equal

to the degeneracy of the eigenvalue. When measuring the state |ϕ⟩ the probability
of obtaining the result λi is p(λi) = ⟨ϕ|Pi|ϕ⟩. If, after measurement, one obtains the
outcome λi, the state collapses to the associated eigenvector:

Pi|ϕ⟩√
(p(λi)

. (2.4)

Often these observables O have some physical interpretation which teaches us some-
thing about the system if we calculate the expected value ⟨O⟩ = ⟨ϕ|O|ϕ⟩ of the
observable. Due to the collapse of the wavefunction, to obtain the expected value
experimentally one has to initialize the system, evolve it, and measure it repeatedly.
After many measurements one obtains an estimate of the expectation value of the
observable by taking an average over all the observed measurement outcomes.

Deutsch introduced the circuit model of quantum computation, whereby the
evolution of a quantum state is governed by the sequential action of a set of unitary
gates [17, 18]. A universal gate set is a set of fixed and/or parameterized gates that
is capable of approximating any unitary evolution to arbitrary precision. The set of
Pauli matrices, which we shall denote I,X, Y and Z form a set of very elementary
gates. More common single-qubit gates include the Hadamard gate H, and the
parameterized Pauli rotations RP (θ) = exp(−iPθ/2) where P is one of the Pauli
matrices,

H =

(
1 1
1 −1

)
, RX(θ) =

(
cos(θ/2) −isin(θ/2)

−isin(θ/2) cos(θ/2)

)
.

Common two-qubit gates are the CNOT and SWAP gate, with the following
matrix representations;

CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , SWAP =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .

Quantum circuits consist of wires that carry qubits, and quantum gates that are
executed in a particular order. An example of a circuit diagram is given in Fig. 2.1.

As stated earlier, a quantum state consisting of n qubits is fully described by a
vector of dimension 2n, whilst its evolution is governed by unitary matrices of size
2n × 2n. As a result it is possible to carry out “brute force” simulation of such a
system on classical computers using Schrödinger’s algorithm [19]. The exponential
spacial complexity makes it is near impossible to study systems consisting of tens of
qubits or more. Feynman’s algorithm offers an alternative which is linear in memory,

6

Figure 2.1: A diagram of a two-qubit circuit containing a Hadamard gate, a CNOT,
a Pauli-X rotation and a SWAP gate respectively. It is for illustrative purposes only,
and does not represent an algorithmically meaningful sequence of gates.

but exponential in the time complexity. An exception here are systems which can
be decomposed into multiple subsystems. Simulation techniques that make use
of this feature are often referred to as “Divide & Conquer” methods. Restricted
modes of quantum computation (such as those mentioned in the introduction) are
classes of quantum systems whereby the classical resources required to simulate
them only grows polynomially in the system size, denoted poly(n). These classes
can be supplemented with a particular resource (or in the circuit model of quantum
computation, a specific gate) to recover UQC. An example of such a system are
non-interacting fermions. These are defined by the formalism of Matchgates, which
describes the action of two-qubit parity-preserving unitary operators allowed to act
on nearest neighbour qubits only. The addition of SWAP gates is required to obtain
universal quantum computation again. We will explore this formalism in Section 5.1.
Since classical simulation of UQC has exponential scaling in the input size, we can
expect the classical simulation techniques of the SWAP gate within the matchgate
formalism to also generate exponential scaling, now in the quantity of SWAP gates
rather than the overall system size.

It is important to consider what a simulation algorithm is capable of outputting.
In this report we will distinguish between the strong, semi-strong and weak classes
of classical simulation. These definitions are based on the notions of strong and
weak classical simulation from [20]:

Definition 2.0.1 (Strong simulation). Consider a uniform family of quantum cir-
cuits {Cn} acting on an n qubit input state |Ψ⟩. {Cn} is classically simulable in the
strong sense if, for every possible final measurement outcome y of k qubits in the
computational basis, the distribution Pr(y|Ψ) can be computed to a precision of m
digits on a classical computational device.

Brute-force simulation belongs this class, as it keeps track of the full state vector
throughout the computation. As this vector completely describes the closed system,
it is possible to extract any and all information desired, if necessary by creating
copies of the vector.

Definition 2.0.2 (Semi-strong simulation). Consider a uniform family of quantum
circuits {Cn} acting on an n qubit input state |Ψ⟩. {Cn} is classically simulable in
the semi-strong sense if, for some observable O on k qubits, the expectation value
⟨O⟩ can be computed to a precision of m digits on a classical computational device.

Definition 2.0.3 (Weak simulation). Consider a uniform family of quantum circuits
{Cn} acting on an n qubit input state |Ψ⟩. {Cn} is classically simulable in the
weak sense if, for every possible final measurement outcome y of k qubits in the

7

computational basis, the distribution Pr(y|Ψ) can be sampled from on a classical
computational device.

Whilst strong simulation is a more powerful tool, it is actually weak simulation
which more closely reflects the use of a quantum device. Measurement of a quantum
device is only capable of returning a sample from the probability distribution defined
by the state vector as a consequence of Eq (2.4). It is also not possible to repeatedly
sample copies of the state vector since copying quantum states is forbidden by the
No-cloning theorem. We consider the simulation classically efficient if it can be done
in polynomial time and space in n, k and m on a classical device.

2.0.2 Machine Learning

The goal of Machine Learning (ML) is to develop algorithms that can learn to
perform some task from data, and consequently come to some conclusions au-
tonomously. There are three main paradigms in ML:
Supervised learning, where algorithms learn a function which maps some input to an
output using labelled examples. The can be of images, text, real-world observations
or similar;
Unsupervised learning, where the dataset is does not contain labels, but rather the
task is to find structures or patterns in the given examples, typically with the goal
of finding a compressed representation of the data;
Reinforcement learning, where algorithms learn by repeated interaction with an en-
vironment in a stochastic process. Feedback is given in the form of rewards, and the
goal is to maximize the reward accumulated over throughout the process.
As we are using supervised learning to test our algorithms in this report, let us
discuss this paradigm in more detail.

The goal of supervised learning is to make predictions on unseen data (a test
set), having learnt from a set of given examples (the training set). Both sets contain
feature vectors and their corresponding label. This data is drawn from some random
variable X with underlying probability distribution PX , which is a mathematical
model of the underlying observation procedure. The sample space SX denotes the
set of all samples that can be drawn from X. The prototypical task in supervised
learning is to learn the decision function h : SX → SY , based only on some model
ansatz h̃ and a finite set of data points (xi, yi)i=1,..,N , where xi ∈ SX is the feature
vector and yi ∈ SY the label. The common approach is to construct a parameterized
model, or more formally a hypothesis class:

Definition 2.0.4 (Hypothesis class). A hypothesis class is a family of surjective
decision functions defined by some model ansatz h̃ parameterized by θ which map
samples from variable X onto the sample space of Y :

H = {h̃(θ) : SX → SY |θ ∈ RM}

where M is the number of parameters in the model.

In order to quantify the quality of the model ansatz one uses a loss function
L : SY × SY → R≥0 which returns some value based on the closeness of the output
of the function h̃(θ,xi) to the true label yi. Learning the optimal decision function
now comes down to minimizing the true risk,

Rtrue(h̃) = E[L(h̃(x), y)] ∀(x, y) ∼ X × Y. (2.5)

8

As we do not have access to the distributions underlying X and Y , but rather a
set of N data samples, we instead deal with the empirical risk,

Remp(h̃) =
1

N

N∑
i

L(h̃(xi), yi). (2.6)

This corresponds to computing the average loss for a set of predictions and true
labels. The function h̃∗ which minimizes this empirical risk can be found using
optimization algorithms,

h̃∗θ = argmin
h̃∈H

1

N

N∑
i

L(h̃(xi), yi). (2.7)

Since each decision function h̃ is defined by its parameters θ we have h̃∗ = h̃(θ∗),
allowing us to re-write the above equation as

h̃∗θ = argmin
θ∗∈Rdim(θ)

1

N

N∑
i

L(h̃(xi), yi). (2.8)

As the primary objective of supervised learning is to minimize the true risk, we
must recognize that minimizing the empirical risk does not guarantee we complete
this objective. We gauge the difference between the true and empirical risks through
a measure called the generalization loss (sometimes referred to as the generalization
performance). The generalization loss is defined as follows

GL = REmp
test −REmp

train, (2.9)

the difference between the loss on the training (REmp
train) and test REmp

test sets. If the
generalization loss is small, we assume we have successfully minimized the true risk.
On the other hand, if there is a large discrepancy the model has likely over-fit to the
training data, and has failed to learn the true decision function h. For convenience
we sometimes use the generalization error, which is the model accuracy on the
training set minus the accuracy on the test set.

The choice of loss function can vary based on the type of label under considera-
tion. In the context of classification, each data point belongs to one particular class
ci from a discrete set of classes C. The output of a decision function in this setting
can be interpreted as the probability that that data point belongs to a particular
class (given the output of the decision function is in the range (0, 1)). A common
choice of loss function for classification task is Cross Entropy. When there are only
two unique classes, the Binary Cross Entropy Loss is given as

LBCE(xi, yi) = −
(
yilog(p(yi|xi)) + (1− yi)log(1− p(yi|xi))

)
. (2.10)

For regression tasks using continuous, real-valued labels, loss functions like the Mean
Square Error can be more appropriate:

LMSE(xi, yi) = (h̃(xi)− yi)
2. (2.11)

9

2.0.3 Quantum Machine Learning

Variational quantum circuits refers to the notion of quantum circuits containing ad-
justable gates (such as the Pauli rotation gates), and possibly also fixed gates (eg
the Hadamard or CNOT gates). We can denote the action of such a circuit as U(θ),
where θ is the collection of parameters defining the adjustable gates. Such circuits
are suitable model candidates for a hypothesis class [21]. To complete the hypothesis
class we need a data encoding strategy, which for now can be absorbed into the circuit
itself U(θ, x), and some procedure to obtain a (classical) label from the state re-
turned by the circuit. A logical choice is to use the expectation value of some observ-
able O, giving the following hypothesis class {h̃(θ, x) = ⟨ϕ|U †(θ, x)OU(θ, x)|ϕ⟩}
for some arbitrary fiducial state |ϕ⟩. For classification tasks an additional classical
function g : domain(h̃) → {ci}, might be necessary to return a label from the set of
class labels {ci}.

Various VQC based quantum models have been proposed in literature. In 2018
M. Schuld et al. and Mitarai et al. both developed the idea of using a shallow VQC
for supervised learning [22, 23], and demonstrate learning for a variety of artificial
and real-world datasets. Havlicek et al. were the first to experimentally realize this
idea on a quantum computer [24]. The feasibility of this approach is supported by the
existence of an analytical expression for the gradients of single qubit parameterized
gates. The expression is referred to as the parameter shift rule, and is especially use-
ful for NISQ devices where the errors of numerical differentiation are compounded by
noise. Deploying such a quantum ansatz for supervised learning leads to a quantum-
classical hybrid system where the role of the quantum computer is to output labels
(and gradients based the input data and parameters for variational models). The
overall learning process takes place in a hybrid quantum-classical system where the
role of the quantum processing unit (QPU) is to perform state preparation and mea-
surement [21]. By repeating the state preparation and measurement multiple times
an estimate of the expectation value of some observable can be made, which can be
postprocessed to generate a label. The classical central processing unit (CPU) feeds
in data and model parameters governing the state preparation (and possibly also the
measurement) to the QPU, and also performs the optimization loop to minimize or
maximize an objective function. The interplay of the two devices is the backbone of
a class of algorithms called Variational Quantum Algorithms (VQA), which extend
far beyond to domain of Quantum Machine Learning [5].

10

Chapter 3

Research Questions & Original
contributions

In this thesis we aim to investigate how the classical computational hardness of a
variational quantum circuit model influences its machine learning properties. We
do this using a Variational Quantum Algorithm, where the model parameters are
optimized using a classical procedure. To quantify and control the computational
hardness we must understand the fundamental quantum aspects of quantum models;
what features inhibit their efficient classical simulation? The more intuitive approach
is to ask what additional features are required by classically simulable restricted
quantum systems such that they yield universal quantum computation. Based on
literature discussing this matter, we ask ourselves:

1. Can we develop simulation methods whereby we systematically control the
“quantumness” i.e. the abundance of the resource required for universality,
of a quantum system?

Whilst such simulation methods exist in literature, we find there is room to develop
new methods. The challenge is developing these methods within the framework
of the formalism of the corresponding restricted mode of QC. This is necessary to
maintain its efficient classical simulation in the absence of any additional resources.
Typically the abundance of the relevant resource is a countable quantity, such as the
number of times a particular gate appears in a circuit e.g. SWAP gates in Matchgate
simulations. In order to carry out numerical studies using these simulation methods
we probe the following question:

2. Can we construct a sufficiently efficient classical simulator of these methods
such that we can simulate meaningful quantities of the additional resource that
yields UQC?

After tackling this question we can systematically control the classical compu-
tational hardness of a variational quantum model, allowing us to address the final
research question:

3. Does the computational hardness of a family of quantum models influence its
performance in a machine learning setting?

In answering these questions we deliver the following original contributions. We:

11

1. Propose a novel method of simulating SWAP gates in the Matchgate formalism
whereby one decomposes the SWAP gate into a sum of Matchgates. Building
on established Matchgate simulation techniques, our method gives rise to two
new algorithms, one of which is of a stronger level of simulation than the
gadget-approach for the same computational scaling, and also benefits from a
favourable overhead.

2. Introduce a class of quantum models based on a Divide and Conquer scheme
introduced by Bravyi [25], which gives a scaling that is linear in the total
number of qubits and exponential in the non-local entanglement. We dub this
class of models “Partitioned models”.

3. Develop a comprehensive classical simulator of the class of Partitioned models
and a pipeline to test their learning performance. The code can be found on
Github [26].

4. Demonstrate the learning performance of the efficiently simulable class of Par-
titioned models is competitive with classical methods, and not simply related
to the computational hardness of the model.

We assess the learning performance on a variety of real and artificial datasets.

12

Chapter 4

Related Work

The work of Bravyi et al. develops three classical algorithms to calculate the quan-
tum mean value of a circuit [27]. The quantum mean value problem refers to the
calculation of the expectation value of a n-qubit tensor product observable on the
output of a shallow quantum circuit. This task is a cornerstone in many QML
algorithms. Each algorithm introduces a necessary restriction to achieve a compu-
tational speedup. This restriction can significantly impede practical applications of
the algorithm, but the implications are insightful nonetheless.

The simplest algorithm applies to observables Oj close to the identity, ||Oj−I|| ≤
O(2−5d), where d denotes the circuit depth. Observables satisfying this restriction
could be used for verification purposes of noisy devices. The restriction based on
the circuit depth implies the method is only efficient for circuits which at most grow
logarithmically with the number of qubits. The second algorithm works only for
positive semi-definite observables and constant depth circuits. Interestingly, this
algorithm can output the absolute value of some expectation value of a Hermitian
(not necessarily positive semi-definite) observable, which leaves just the sign of the
mean value to be determined. The final algorithm works for an arbitrary observable
but the circuit must be defined on a two or three dimensional grid of qubits with a
constant depth circuit containing at most nearest-neighbour gates. Such mean value
problems can be solved in time O(n) and 2O(n1/3) for 2D and 3D grids respectively,
however the method suffers from a large constant overhead preventing it from being
a useful simulation method.

These results are suggestive of the features of quantum algorithms that lead
to quantum (dis-)advantages over classical methods. Either it must have super-
constant circuit depth (e.g. logarithmic in the number of qubits is already sufficient),
require qubit connectivity graphs that do not permit embedding in a 2D grid or
entanglement increasing with the system size.

In a landmark paper in 2002, Valiant introduced matchcircuits as a restricted
mode of quantum computation that can be simulated classically in polynomial time
[28]. These early “matchcircuits” were quantum circuits generated by two-qubit
operators where the 16 matrix entries were governed by a set of five polynomial
equations. Terhal & DiVincenzo showed the equivalence between these matchcir-
cuits and nearest-neighbour unitary linear fermionic operators. Furthermore, they
showed that the addition of arbitrary single qubit gates to the gate set gives rise to
a universal mode of quantum computation [12]. Jozsa & Miyake consequently iden-
tified that relaxing the nearest-neighbour condition to next-nearest-neighbour also

13

gives universal computation, meaning qubit swapping (i.e. the SWAP gate) is in
some sense the boundary between classical and quantum computational power [14].
Brod & Galvão extended this result (and boundary) to show any parity-preserving
non-matchgate unitary is capable of promoting matchgates to universal quantum
computation [29]. The work of Hebenstreit et al. provides a broad overview of the
various classical simulation methods of Matchgates, and possible additional features
(e.g. product state inputs or adaptive mid-circuit measurements) which when in
limited supply remain efficiently simulable [30]. We conclude with the remark that
it has been proven that an n qubit matchgate circuit can be compressed and run on
a universal quantum computer using just O(log(n)) qubits [31].

There has been some research done into hybrid systems whereby a larger quan-
tum circuit is simulated using a small quantum computer aided by some classical
resources. Such schemes use Divide and conquer (D&C) or circuit cutting methods,
and are an important line of research to maximize the utility of currently avail-
able NISQ devices [32]. These methods typically introduce some sort of cut that
allows the whole system to be treated as a weighted linear sum of smaller compos-
ite systems. Generally, these algorithms scale as 2O(K)poly(n) for some parameter
K related to the number of cuts, and n qubits [25]. The benefit of such methods
mainly arises when the whole system is too large to be handled by the available
resources, but the subsystems are not. There is also some evidence that circuit cut-
ting methods lead to higher fidelity estimates of the output of a circuit compared
to full circuit execution [33], which can be understood from the reduced noise due
to the smaller circuit size.

Various forms of cut have been investigated:
Tensor networks Tensor networks intuitively lend themselves well to partitioning
methods [34]. Both Yuan et al. and Barratt et al. use hybrid D&C methods to
solve problems where tensor networks make for a very efficient representation of the
target system, allowing them to solve large scale systems with only a small quantum
computer [35, 36]. Peng et al. focus on the simulation of quantum circuits. By first
finding the tensor network representation of the circuit and cutting some edges of
the network, the resulting smaller networks can be converted back into quantum
circuits, now acting on fewer qubits [37]. Clearly the scaling parameter K is circuit
dependent, and the authors recognize their method lends itself well to ansatze with
a high degree of clustering. They are able to implement a 6-qubit VQE on a 3-qubit
device.

Hamiltonian reduction Fujii et al. propose a two-level VQE method for Hamilto-
nians containing strong interactions within different subsystems of qubits, but weak
interactions between these subsystems [38]. By first solving each subsystem in the
absence of intersubsystem action, an approximate ground state can be built up.
In the second step, this approximate state is used to generate a basis with fewer
degrees of freedom to construct an effective Hamiltonian which does consider the
intersubsystem terms, which is consequently solved again using VQE (but now its
called deep VQE).

Qubit wires Tang et al. develop a full end-to-end method where a qubit wire
is cut vertically at some point in the circuit, creating smaller subcircuits which are
accessible to- and executed on available quantum devices [32]. Classical postpro-
cessing is then used to reconstruct the output of the original circuit. An example
cutting of a circuit is shown in Fig. 4.1. The authors complement their framework

14

Figure 4.1: Schematic of the qubit wire cutting procedure of Tang et al. The
original five-qubit circuit in the left hand diagram is cut at the point marked by
the red cross. The resulting subcircuits on the right hand side are evaluated for
the different operators or states shown in the red box. The final output can be
reconstructed using classical postprocessing. Figure reproduced from [32].

with a method to find the optimal cuts for arbitrary input quantum circuits.
Gate decomposition Rather than making a vertical cut as in the work of Tang

discussed above, it is also possible to cut circuits in the horizontal direction. Specif-
ically this involves ”cutting” two-qubit gates in half, whereby you decompose the
gate into a sum of tensor products of unitaries acting on each qubit individually [25].
In the Pauli basis this can give up to 16 terms, so by linearity of the inner product
on has to calculate O(162K) inner products for K two-qubit gates cut, although it is
often the case the decomposition requires fewer terms. As an example consider the
left hand circuit in Fig. 4.1. By cutting the cZ gate acting on qubits q0 and q2 one
is able to partition the circuit into two blocks, q0 and q1, and q2, q3 and q4, as there
are no gates acting across the boundary of these blocks. This technique generally
requires an unreasonable number of circuit evaluations for any substantial number
of cuts. Marshall et al. counteract this by accepting to merely approximate the
output of the original circuit with a limited budget of circuit evaluations [39]. They
do this by first parameterizing the decomposed two-qubit gates such that different
values of the parameter correspond to specific terms in the decomposition. This
mitigates the exponential number of inner products to be estimated at the cost of
increasing the number of parameters, which in the context of Machine Learning is
an acceptable compromise where gradient based optimization can effectively deal
with large parameter spaces.

Whilst all the above works focus on utilizing quantum computers, their methods
can readily be applied in the context of classical simulation too. As the cost of strong
simulation of quantum circuits increases exponentially with the system size, these
D&C techniques can readily increase the overall system size that can be handled on
classical devices.

In the field of QML there is an active debate on what grounds we should com-
pare quantum to classical methods. Where early on the focus was on improvements
in the algorithmic scaling [40], current research places more emphasis on the near
term feasibility of the model. This has led to heuristic approaches such as the VQA
method considered in this work. It is still possible to prove quantum advantage us-
ing these heuristic approaches. Liu et al. constructed a classification problem based
on the Discrete Logarithm Problem for which Shor’s algorithm offers an exponen-
tial speedup over classical methods [41]. Using a quantum device to compute the
kernel for a Support Vector Machine (SVM) they are able to realize this quantum

15

advantage. This kind of artificial construction has a very limited applicability to
real-world problems, which motivates analysis based on the capacity of the quantum
model [10].

Analysis of the capacity of quantum models in literature uses established tech-
niques from classical learning theory. Schuld proved quantum models based on
some encoding circuit (i.e. a circuit whose parameters are a function of the data)
followed by a parameterized section U(θ)U(x)|0⟩ are a special case of the well-
understood kernel methods [42]. This relation gives a very natural environment to
discuss quantum advantage, as one can devise quantum “feature maps” that are
classically hard to simulate based on their output data distributions [24]. Jerbi et
al. develop a framework which demonstrates that implicit quantum models (which
use |⟨0|U †(x)U(x′)|0⟩|2 directly for labelling) can achieve zero empirical risk, but
fail to minimize the true risk. Within the same framework explicit models (those
where labels are assigned based on the output of U(θ)U(x)|0⟩) introduce the nec-
essary restriction on the expressive power to yield a nontrivial generalization error.
More general still are data re-uploading methods, where the data is encoded multi-
ple times, either into additional qubits, or additional layers. Theoretical analysis by
Schuld et al. show data re-uploading enriches the frequency spectrum and enlarges
the range of the coefficients of the Fourier representation of the circuit [15]. Other
measures of capacity proposed in literature include the Fisher information spectrum
[43], Rademacher complexity [44] and Vapnik–Chervonenkis dimension [45]. The
latter two can be used to establish theoretical bounds on the generalization perfor-
mance of the model. This is a useful tool to design models with a high capacity,
although again this does not guarantee the model will perform well in practical
applications.

Beyond small-scale benchmarks, real world datasets often have a large number
of features. There has only been a modest amount of research into the performance
of quantum models on high-dimensional data. Peters et al. use a quantum SVM
(QSVM), which are a kind of implicit model, to learn 67-dimensional data on up
to 17 qubits [46]. Their noiseless simulations demonstrate overfitting, whilst for
results from their hardware the training and validation error lie much closer together.
Haug et al. achieve a similar feat, but instead use randomized measurements (and
postprocessing) to quadratically reduce the number of measurements required to
compute the kernel [47]. Both papers encode features in single qubit rotations, and
subsequently encode multiple features per qubit.

16

Chapter 5

Classical Simulation of quantum
systems

Whilst the development of quantum devices is currently making steady progress,
simulating them using classical computers remains an important tool to study quan-
tum algorithms. One goal of this work is to find a family of quantum models where
we have full control over the computational hardness of the simulation of the model.
Let us be more specific with what we mean by simulating a model, for the purposes
of this work. We want a general circuit simulator which takes as input:

1. some well-defined quantum circuit U on n qubits,

2. a set of parameters θ which dictate the action of certain gates in the circuit,

3. an observable f .

The output of this algorithm should be either an estimate or the exact value of the
expectation value of the observable on the output of this circuit ⟨0|U †(θ)fU(θ)|0⟩,
corresponding to weak and (semi-)strong simulation (definitions 2.0.3, 2.0.2 & 2.0.1)
respectively. This can be done by computing sequentially the action of each gate in
U(θ) on the |0⟩ fiducial state, yielding some output state |Ψout⟩. The expectation
value can then be computed explicitly ⟨Ψout|f |Ψout⟩. Such an approach leads to a
complexity scaling exponentially in the number of qubits. We would like a circuit
simulator with either the space- or time complexity to scale exponentially in the
number of resourceful gates and polynomially in the number of qubits and other
gates.

The first candidate for our circuit simulator are Matchgate circuits, which have
a rich theory regarding its computational power associated to it. Pure Matchgate
computations are classically efficiently simulable, and there are multiple ways to
extend the theory to achieve full UQC [30], such as the addition of SWAP gates (a
resourceful gate in the Matchgate formalism). One can exactly choose the number
of SWAP gates in a variational Matchgate model, offering us a way to systematically
increment the computational hardness of the model and satisfy research question
1. Furthermore, Matchgates are naturally parameterized to generate a continuous
family of functions which makes them particularly well suited for QML and to help
us answer research question 3. It remains to find a simulation method of Match-
gate circuits containing SWAP gates which allows us to experiment with circuits

17

containing more than two or three SWAP gates, as demanded by research question
2.

Let us provide an overview of some Matchgate simulation methods from litera-
ture. For pure Matchgate circuits the main simulation methods are the Heisenberg
technique and Wick’s simulation. At the core of both methods are Majorana op-
erators, which are related to the fermionic annihilation and creation operators as
c2i = ai + a†i and c2i+1 = −i(ai − a†i) where i indexes the qubit. Simulations of
Matchgates are restricted to observables that are products of Majorana operators
(or fermionic annihilation and creation operators). The number of factors in the
product affects the simulation cost which necessitates introducing the notion of the
rank of an observable, D (not to be confused with the rank of a matrix). The rank
of an observable is the number of factors in the product that defines the observable.
For example a single Pauli-Z observable on the i-th qubit is proportional to c2i−1c2i,
which is of rank D = 2. We discuss the Heisenberg technique and Wick’s simulation
in more detail in Section 5.1.2 and 5.1.3 respectively as they form an important
basis for the simulation methods which also allow the addition of the SWAP gate in
the circuit.

To simulate Matchgate circuits containing also a few SWAP gates Hebenstreit
et al. introduced the SWAP gadget [48]. The gadget allows one to implement
the SWAP gate within the Matchgate formalism by using a combination of Match-
gates, so-called “magic states” and adaptive mid-circuit measurements. We defer
the details and proof to Section 5.1.4 and simply state the time complexity of the
algorithm:

Theorem 5.0.1 (SWAP Gadget, [48]). A quantum circuit on n qubits consisting
of polynomially many Matchgates and N SWAP gates, paired with some observable
of rank D can be weakly simulated using the SWAP gadget with the time complexity
upper bounded by O(42N(D + 24N)3poly(n)).

This method represents the state-of-the-art simulation method of Matchgate cir-
cuits containing SWAP gates in literature. Importantly, it is only able to provide an
estimate of the expectation value as the the final simulation output must be evalu-
ated for the various possible mid-circuit measurement outcomes. This corresponds
to the weak level of simulation, meaning one would have to repeat the simulation
many times to obtain a reasonable estimate of the expectation value.

Having to repeat the simulation multiple times to obtain the output hinders the
practical usage of the method. An important contribution of our work to overcome
this is the development of two new methods to implement SWAP gates in Matchgate
computations which correspond to the semi-strong level of simulation. Our approach
is to decompose the SWAP gate into a sum of Matchgates, which allows one to
represent a Match- and SWAP gate circuit as a sum of Matchgate-only circuits.
The desired expectation value can be computed by evaluating the inner products
between the various Matchgate-only circuit as this is a linear computation. We
prove these inner products can be evaluated using both the Heisenberg technique
and Wick’s simulation in the following two theorems.

Theorem 5.0.2 (Divide & Heisenberg). A quantum circuit on n qubits consisting
of polynomially many Matchgates and N SWAP gates, paired with some observable
of rank D can be semi-strongly simulated using the Divide & Heisenberg method with
the time complexity upper bounded by O(42NnD+4Npoly(n)).

18

Theorem 5.0.3 (Divide & Wick). A quantum circuit on n qubits consisting of
polynomially many Matchgates and N SWAP gates, paired with some observable of
rank D can be semi-strongly simulated using the Divide & Wick method with a time
complexity upper bounded by O(42N(D + 4N)3poly(n)).

The proof of Theorems 5.0.2 and 5.0.3 are provided in Section 5.1.6 and 5.1.7
respectively. As these theorems rely on the Heisenberg technique and Wick’s simula-
tion we dub the associated simulation technique “Divide & Heisenberg” and “Divide
& Wick”.

Algorithm Time complexity
Simulation
type

SWAP gadget +Wick’s
Simulation

42N(D + 24N)3poly(n) Weak

Divide & Heisenberg† 42NnD+4Npoly(n) Semi-strong

Divide & Wick† 42N(D + 4N)3poly(n) Semi-strong

Table 5.1: A comparison of three algorithms for the simulation of Matchgate circuits
containing SWAP gates. The time complexity is parameterized by the number of
SWAP gates, N , the rank of the observable D, and the total number of qubits in the
circuit n. Each algorithm is discussed in Section 5.1.4, 5.1.6 and 5.1.7 respectively.
† identifies our contributions.

We summarize the main differences between the three Match- and SWAP gate
circuit simulation techniques in Table 5.1. From the time complexity it is evident
methods based on Wick’s theorem offer the best scaling. The scaling between the
SWAP gadget and Divide & Wick are very similar, however the latter is of a stronger
level of simulation. Consequently, in tasks where one wants to compute the expecta-
tion value of some observable our Divide & Wick method is superior over the SWAP
gadget. Despite the Divide & Wick being the most powerful Match- and SWAP
gate circuit simulation method available, the exponential scaling in the number of
SWAP gates is still prohibitively expensive to practically use a Matchgate circuit as
a quantum model. Although it is difficult to quantify the exact number of SWAP
gates one could simulate without empirical testing, it is likely too few to satisfy
research question 2.

Our second candidate circuit simulator is the Circuit Partitioning formalism. It is
inspired by the gate decomposition techniques of [25] and [39]. Consider a variational
quantum circuit containing primarily single-qubit gates, and some CNOT gates. In
the Circuit Partitioning formalism we partition the circuit into sets of qubits of
equal size. CNOTs which act on qubits in different sets (i.e. across a partition) are
then the resourceful gate. They are decomposed using the Schmidt decomposition,
allowing us to simulate each circuit on subsets of qubits individually. Based on the
Circuit Partitioning formalism we arrive at the following theorem:

Theorem 5.0.4. The space complexity of a quantum circuit consisting of B parti-
tions of np qubits and N CNOT gates acting across partitions is O(2np+NB).

Proof of this theorem and details of the Circuit Partitioning formalism can be
found in Section 5.2. This method scales exponentially in the number of resourceful

19

CNOT gates, and linearly in the number of qubits when the partition size is fixed.
In the absence of CNOTs we have a classically efficiently simulable model, and can
increment the computational hardness by adding a single cross-partition CNOT.
Secondly, the scaling gives a high degree of flexibility to balance the number of
partitions with the number of cross-partition CNOT gates, which allows us to probe
a satisfactory quantity of resourceful CNOT gates. Finally, the single-qubit gates can
be parameterized to generate a continuous family of functions apt for a hypothesis
class. Overall, the Circuit Partitioning formalism gives us a positive response to
research questions 1 & 2 and offers a suitable platform to probe research question
3.

In the remainder of this chapter the details of the Matchgate algorithms are
discussed in Section 5.1. Section 5.2 presents the Circuit Partitioning formalism.

20

5.1 Matchgates

We have identified Matchgate circuits as a suitable quantum model to investigate
the research questions of this work. Research question 1 is focused around finding
techniques whereby you supplement matchgate simulations with SWAP gates, while
research question 2 demands minimizing the computational cost of doing so. In this
section we start by introducing common notation used in the Matchgate setting.
Following this we explain the Heisenberg technique and Wick’s simulation, two core
Matchgate simulation algorithms in Subsections 5.1.2 and 5.1.3 respectively. Sub-
sequently we illustrate the workings of the SWAP gadget and prove Theorem 5.0.1
in Subsection 5.1.4. The basic premise of our SWAP gate decomposition is defined
in Section 5.1.5, and prove Theorem 5.0.2 (Divide & Heisenberg) and 5.0.3 (Divide
& Wick) in Subsections 5.1.6 and 5.1.7. We compare and discuss the simulation
methods based on the three theorems in Subsection 5.1.8.

5.1.1 Notation

A 2-qubit matchgate is defined as

G(A,B) =

a 0 0 b

0 e f 0

0 g h 0

c 0 0 d

with A =

(
a b

c d

)
, B =

(
e f

g h

)
, (5.1)

where both A and B are in U(2) and det(A)=det(B). For Matchgate circuits to be
efficiently simulable the qubits must be on a line and the gates may act only on
nearest neighbour qubits.

A matchgate circuit is described by a unitary with a Hamiltonian quadratic in
these Majorana operators [14]:

H = i
2n∑

µ̸=ν=1

hµνcµcν . (5.2)

hµν is a 2n×2n matrix of coefficients. cµ and cν are Majorana operators: for n qubit
lines we have the set of 2n hermitian Majorana operators {cµ}. These are based on
the fermionic creation and annihilation operators:

c2i = ai + a†i , c2i+1 = −i(ai − a†i) (5.3)

which satisfy
{cµ, cν} = 2δµνI, (5.4)

where δ is the Knonecker delta. The Jordan-Wigner representation of the operators
is as follows:

c2i−1 ⇔Z⊗i−1 ⊗X ⊗ I⊗n−i

c2i ⇔Z⊗i−1 ⊗ Y ⊗ I⊗n−i.
(5.5)

Such a Hamiltonian is called a quadratic Hamiltonian, and U = exp(iH) a Gaus-
sian operation. By the anti-commutation relations between the cµ’s, and requiring
the Hamiltonian to be hermitian, we see hµν is real and antisymmetric.

21

The aim of Matchgate simulations is to compute the quantity ⟨0|U †fU |0⟩, where
U is some Gaussian operation, and f an observable that can be expressed as a
product of Majorana or fermionic operators (or a sum of products). This covers
many common observables. A Pauli-Z on the ith qubit can be written as −ic2i−1c2i,
and the single qubit projectors |0⟩⟨0|i = aia

†
i and |1⟩⟨1|i = a†iai. All three expressions

are a product of two Majorana or fermionic operators, and hence the rank of these
observables is D = 2. More complicated observables can be constructed using these
expressions. Note, based on these expressions generally we have D is twice the
number of qubits being measured.

We are now ready to consider the Heisenberg simulation technique.

5.1.2 Heisenberg technique

The simplest approach to simulating a matchgate-only circuit is using the Heisenberg
technique, which uses the following theorem by Jozsa & Miyake:

Theorem 5.1.1 ([14]). Let H be any quadratic Hamiltonian and U = eiH the cor-
responding Gaussian operation. Then for all µ:

U †cµU =
2n∑
ν=1

Rµνcν ,

where the matrix R is in SO(2n), and we obtain all of SO(2n) in this way. In fact
R = e4h, where h is the matrix of coefficients defined by the Hamiltonian H as per
Eq. (5.2).

For the proof we refer the reader to [14]. Note that U (or it’s associated Hamil-
tonian H) can represent any circuit with polynomially many two-qubit Matchgates.

It is possible to extend the theorem to apply to annihilation and creation oper-
ators, yielding the following expressions:

U †aµU =
2n∑
ν=1

Tµνcν , U †a†µU =
2n∑
ν=1

T ∗
µνcν , (5.6)

where Tµν = 1
2
(RT

2µ−1,ν + iRT
2µ,ν) where .

T is the matrix transpose.
We can use theorem 5.1.1 to simulate (as per our definition at the start of this

chapter) a matchgate circuit using the following equation:

⟨0|U †ci1ci2 ...cidU |0⟩ =
2n∑

ν1 ̸=ν2 ̸=...νd=1

Ri1,ν1Ri2,ν2 ...Rid,νd⟨0|cν1cν2 ...cνd|0⟩. (5.7)

This equality is obtained by inserting UU † = I between each Majorana operator,
and applying theorem 5.1.1 to each U †cµU that appears. We refer to the right hand
side of this expression as the “Heisenberg sum”, and with the Heisenberg technique
we compute the sum explicitly to obtain the solution.

As mentioned in Section 5.1.1, the use of this technique is restricted to observ-
ables that are decomposable into a polynomial sum of products of Majorana or
fermionic operators (or equivalently a polynomial sum of Pauli strings). If the ob-
servable is expressible as a product of rank d in the Majorana operators, the above

22

sum will be O(nd) sized and hence computable in polynomial time if d does not
increase with n. The overall run-time of the Heisenberg technique for a Matchgate
circuit on n qubits and an observable of rank D is O(nDpoly(n)) [14].

We demonstrate the method in a short example below. The following steps will
show how the expectation value of the Pauli Z operator acting on the second and
third qubit can be calculated. First of all, using the Jordan-Wigner representation of
the Majorana operators, we have the operator Z2⊗Z3 can be expressed as −c3c4c5c6.
From there we can use theorem 5.1.1 to derive

⟨Z2Z3⟩ = ⟨0|U †Z2Z3U |0⟩
= ⟨0|U †(−c3c4c5c6)U |0⟩
= ⟨0| − (U †c3U)(U

†c4U)(U
†c5U)(U

†c6U)|0⟩

=
2n∑

ν1 ̸=ν2 ̸=ν3 ̸=ν4=1

R3,ν1R4,ν2R5,ν3R6,ν4⟨0| − cν1cν2cν3cν4|0⟩,

(5.8)

where in the last step we have applied Theorem 5.1.1 with R = exp(4h) where h is
the matrix of coefficients associated to the Hamiltonian of U . The sum runs over
all sets of indices where no index is repeated. ⟨0| − cν1cν2cν3cν4 |0⟩ can be computed
explicitly. This concludes the example.

So far we have only required our simulations to work for the all-zero |0⟩ fiducial
state. It is possible to extend the Heisenberg simulation method to allow as fiducial
state any product state, or even a restricted class of tensor product states. This is
proven in the following Proposition.

Proposition 5.1.1. The Heisenberg technique remains efficiently simulable for any
fiducial state which is a tensor product input state |Ψin⟩ = |ϕ1⟩ ⊗ ... ⊗ |ϕk⟩ as long
as each |ϕi⟩ involves up to O(log(n)) qubits.

Proof. We will first prove the above proposition for computational basis states and
arbitrary product states, as these are special cases of the tensor product states
considered in the proposition. For a computational basis state input the addition of
a product of Majorana operators Cinput = c2j1−1...c2jw−1 acting on the all zero state
|0⟩ is able to generate any computational basis state with Hamming weight w at the
cost of n2w additional sums in the Heisenberg sum. Using the Jordan-Wigner form
of the Majorana operators (see Eq. (5.5)) we have

⟨0|C†
inputCcircuitCinput|0⟩ =

n∏
i

⟨0|P input†
i P circuit

i P input
i |0⟩, (5.9)

where Ccircuit is a product of Majorana operators arising from the circuit itself.
Next we consider the case of arbitrary product state inputs |Ψin⟩ = |ϕ1⟩|ϕ2⟩...|ϕn⟩

where we omit the tensor product sign for brevity. To obtain an arbitrary product
input state we introduce an ancilla qubit in the |+⟩ state and apply the procedure
of [49]:

1. Use the G(H,H) gate and single-qubit Z rotations (These are allowed match-
gates) on the |+⟩ ancilla and the neighbouring qubit line to prepare the first
qubit in the |ϕ1⟩ state;

23

2. Use the fermionic swap gate G(Z,X) to swap |ϕ1⟩ all the way out to the final
qubit line;

3. Repeat steps 1 and 2 sequentially to prepare |ϕi⟩ and move it out to qubit line
i until all qubits are in the desired state.

After following this procedure the ancilla can be ignored and the original matchgate
circuit can be executed on the product state. To prove this procedure can be simu-
lated efficiently, note |+⟩|0⊗n⟩ = (1 + a†0)|0⊗n+1⟩ (again omitting the normalization
constant). One can simulate each term on the right hand side of this expression
individually:

⟨0⊗n+1|α†
jCcircuitαj|0⊗n+1⟩ = (⟨0|α†

jαj|0⟩)
n∏
i

⟨0⊗n|P circuit
i |0⊗n⟩, (5.10)

where αj ∈ {1, a†0}1. This increases the overall run-time of the algorithm by a factor
of 2. The gates used in step 1 & 2 can be absorbed into the matchgate circuit.

It remains to prove arbitrary tensor product states |Ψin⟩ = |ϕ1⟩ ⊗ ... ⊗ |ϕk⟩
where each |ϕi⟩ involves at most O(log(n)) qubits are allowable fiducial states in
classically efficient matchgate simulations. To simulate some tensor product input
states |Ψ⟩ = |ϕ1⟩ ⊗ ...⊗ |ϕk⟩ we generalize Eq. (5.9):

⟨Ψ|Ccircuit|Ψ⟩ =
k∏
i

⟨ϕi|P circuit
i |ϕi⟩. (5.11)

P circuit
i is now itself a tensor product of Paulis acting on the qubit lines part of ϕi. By

restricting the size of |ϕ⟩ to at most O(log(n)) qubits the matrices involved in Eq.
5.11 are poly(n) sized and hence the overall expression is computable in polynomial
time.

5.1.3 Wick’s simulation

With the Heisenberg technique we end up explicitly computing the Heisenberg sum.
The size of the sum grows exponentially if the rank of the observable scales as O(n),
which is renders the method classically inefficient. Terhal & DiVincenzo demon-
strated Wick’s Theorem for ordinary operator products can be used to compute a
Heisenberg sum more efficiently [12]. Wick’s theorem allows us to write a Heisenberg
sum as the Pfaffian of an antisymmetric square matrix O2, which we can construct
using a lookup table. The Pfaffian of an antisymmetric matrix has the property that
Pf(A)2 = det(A), and since the determinant of O can be computed efficiently, the
Pfaffian can too. As we will see, O can be constructed efficiently too. For brevity we
refer the reader to [12, 30] for a full discussion of Wick’s Theorem. Here we describe
the process of constructing O, starting from a Heisenberg sum. First, we define the
block diagonal matrix

H =
n⊕

l=1

(
1 i

−i 1

)
. (5.12)

1This equation already takes into account that the cross terms arising from ⟨0⊗n+1|(1+a†0)
†...(1+

a†0)|0⊗n+1⟩ evaluate to zero.
2The Pfaffian and O arise from the theory of perfect matchings in graphs. For a discussion see

Chapter 3 of [14]

24

To find the entry Oi,j, look at the subscript of the ith and jth Majorana operator
in the Heisenberg sum. Find the matrices R which have this subscript as their
column index. We shall refer to these matrices as R(i) and R(j). Compute the
matrix product R(i)HRT (j). Note down the row index of R(i) and R(j), say α and
β: Oi,j is equal to (R(i)HR

T (j))α,β. The entries of O can be populated by extracting
the relevant matrix elements of the stored R(i)HRT (j). Wick’s theorem tells us to
repeat this for each pair of Majorana operators in the Heisenberg sum. Since O is
anti-symmetric only the pairs i < j have to be found explicitly. The dimension of O
for a purely Matchgate circuit and observable of rank D is D. As the dimension of
R (and H) is 2n one can compute the matrix product R(i)HRT (j) in poly(n) time.
The cost of computing the determinant of O is O(D3) meaning the time complexity
of the Wick’s simulation method is O(D3poly(n)).

Understanding the above method might be aided by the following example based
on the Heisenberg sum from Eq. (5.8). Consider the element O1,3, this element is
related to the first and third Majorana operators: cν1 and cν3 . Recall or compute
(RHRT). The l1 (l3) index associated to ν1 (ν3) is 3 (5), giving O1,3 = (RHRT)3,5.
Using the anti-symmetric property of O we can set O3,1 equal to −O1,3. We can

repeat this process to find every element of O. Finally we have ⟨Z2Z3⟩ =
√
det(O).

This concludes the example.
For a pure Matchgate circuit each R is the same, so RHRT only has to be

computed once and stored in memory. This does not hold for circuits which have
additional features, including but not limited to computational basis states as the
fiducial state, or mid-circuit measurements. For these circuits it may be useful
to construct a lookup table to keep track of the different matrix products to be
computed, and avoid repeatedly computing the same matrix products. The gain in
efficiency is hidden in the poly(n) contribution to the time complexity.

An important caveat to Wick’s simulation is that the Majorana operators in the
final Heisenberg sum may only act on the all-zero fiducial state |0⟩ [12]. Conse-
quently we have the following lemma:

Lemma 5.1.1. Matchgate circuits with computational basis or product input states
are efficiently classically simulable using Wick’s simulation. Arbitrary tensor product
input states |Ψin⟩ = |ϕ1⟩⊗ ...⊗|ϕk⟩ where each |ϕi⟩ involves at most O(log(n)) qubits
are not.

Proof. Both Eq. (5.9) and Eq. (5.10) consider expectation values over the vacuum
state |0⊗n⟩, whilst in Eq. (5.11) arbitrary multi-qubit states are considered.

Remark. The scaling for computational basis states increases to O((D+2w)3poly(n))
where w is the Hamming weight of the computational basis state. We will explain
the method below.

Remark. Using product state inputs increases the size of matrix O by at most 2,
when simulating the a†0|0n+1⟩ state. Otherwise the additional computational cost is
captured by the increased circuit depth used in the procedure of [49].

5.1.4 The SWAP gadget - proof of theorem 5.0.1

The SWAP gadget [48] is a tool inspired by the concept of magic states introduced
in [50] which allows the realization of a SWAP gate using alternative resources.

25

The gadget achieves this using two key features: magic states and adaptive mea-
surements. These two features by themselves are allowable additions to classically
simulable matchgate circuits, however together yield the much more powerful SWAP
gadget [30], shown in Fig. 5.1. In this section we will first present the methods by
which the features individually are efficiently simulable, and followed by the SWAP
gadget method. We conclude with the proof of theorem 5.0.1.

Let us consider how to simulate Matchgate circuits supplemented with magic
states. Magic states for Matchgate computation are states that A) cannot be gen-
erated from a particular restricted gate set, and B) can be moved across qubit lines
”freely” by gates from the same restricted gate set. Consequently, we have the
following theorem:

Theorem 5.1.2 ([48]). Any pure fermionic state which is non-Gaussian is a magic
state for matchgate computations

An example of a magic state is the following: 1
2
(|0000⟩+ |0011⟩+ |1100⟩+ |1111⟩),

which is the product of two |Φ+⟩ Bell states. Magic states are a special type of tensor
product input state, meaning Matchgate circuits supplemented with magic states
are classically simulable through Lemma 5.1.1, but not using Wick’s simulation due
to Lemma 5.1.1.

Next, we consider adaptive measurements. Adaptive measurements are mea-
surements in the computational basis that do not necessarily take place at the end
of a circuit (we refer to these as “intermediate measurements”), and the outcome
of which conditions a gate on a different qubit. Such intermediate measurements
can be included in Matchgate simulations by calculating the conditional probability
of obtaining a particular final measurement given the outcome of the intermediate
measurements.

To demonstrate the procedure by which one can simulate matchgate circuits
containing adaptive measurements, let us follow the notation of [30]. The probability
of obtaining a bitstring x after measuring some matchgate circuit is p(x). For a
circuit containing a single intermediate measurement we have the joint probability
p(x, y1) of obtaining the intermediate measurement outcome y1 and final outcome
x, or in the case of J intermediate measurements we have p(x, yJ , ..., y1). We can
calculate these marginal and joint probabilities as follows. Let U1 be the subset of
gates that affect the first intermediate measurement and Π(y1) the projector of y1,
then

p(y1) = ⟨ψ|U †
1Π(y1)U1|ψ⟩, (5.13)

which can be computed efficiently using for example Wick’s simulation. The general
form of the joint probabilities is

p(yi+1, yi, ..., y1) = ⟨ψ|(
i∏

k=1

U †
kΠ(yk))U

†
i+1Π(yi+1)Ui+1(

i∏
k=1

Π(yk)Uk)|ψ⟩, (5.14)

where i runs from 1 to J . When using Wick’s simulation, the dimension of the
matrix O is D+4J where D is twice the length of the bitstring x and J the number
of intermediate measurements. The cost of computing the determinant is hence (D+
4J)3, i.e. polynomial in the number of intermediate measurements. Consequently
the method remains classically simulable for poly(n) intermediate measurements. To
enable gates conditioned on the intermediate measurement note that each section

26

of the matchgate circuit now depends on the outcome of the measurements in the
previous sections; Uk → Uk(yk−1, ..., y1) cf Eq. (5.14).

Critically, we must recognize that in order to obtain p(x) we must sum over
all possible intermediate measurement outcomes: p(x) =

∑
yJ ,...,y1

p(x, yJ , ..., y1).
Generally, there are exponentially many combinations of such outcomes possible
and therefore it is not feasible to simulate circuits containing adaptive measurements
in the strong sense (as per Definition 2.0.1). Instead, we introduce the procedure
of [12] to sample from p(x) instead (which corresponds to weak simulation as per
Definition 2.0.3):

1. Simulate the circuit up to the first measurement to obtain y1, p(y1) using Eq.
(5.13);

2. classically sample one outcome y1 from p(y1) and fix this for the remainder of
the procedure;

3. compute p(y1, y2) using Eq. (5.14), from which p(y2|y1) = p(y2, y1)/p(y1) can
be calculated;

4. classically sample one outcome y2 from p(y2|y1);

5. repeat the previous steps for each adaptive measurement up until the final
measurement outcome x is sampled.

We now have all the ingredients for the SWAP gadget, shown in Fig. 5.1. The
procedure by [48] is as follows. First, one copy of a magic state is moved to in-
between the two qubit lines to be swapped. Through the Bell measurements the
target states are available on qubit lines 2 and 3, which are corrected up to local
Pauli equivalence immediately after. The Z corrections are done using the G(Z,Z) =
Z⊗I matchgate. For the X corrections first a |0⟩ ancilla is moved in using fSWAPs
(G(Z,X)), then a G(X,X) gate acts on it and the target line, after which G(-Z,X)
gates are used to move the ancilla out again. The |ψ⟩ and |ϕ⟩ states have now been
swapped.

As evident from Fig. 5.1, to deterministically implement a SWAP gate using the
SWAP gadget, one magic state is consumed and four adaptive measurements are
made. In order to classically simulate matchgate circuits containing SWAP gadgets
we turn to Wick’s simulation. As the magic states cannot be simulated within
the framework of Wick’s simulation, we instead consider them as a superposition
of computational basis states so that we can apply Eq. (5.9). Each magic state
is made up of at best 4 computational basis states, so for a circuit containing N
SWAP gadgets 4N × 4N cross terms are to be computed. Through symmetry we
can reduce this to 1

2
4N(4N − 1). Each cross term can be expressed as a Heisenberg

sum and consequently compute using Wick’s simulation (the lookup table for these
computations is printed in [30]).

The dimension of each O is at most (D + 16N + 8N), where the 16N comes
from the adaptive measurements and 8N from the maximum combined Hamming
weights of the computational basis states representing the Magic states. As a result
the overall scaling of the algorithm is O(42N(D + 24N)3poly(n)) or equivalently
O(42Npoly(n,D,N)). Due to the use of adaptive measurements the SWAP gadget
corresponds to the weak level of simulation. This proves theorem 5.0.1.

27

Figure 5.1: A circuit diagram of the SWAP gadget. |M⟩ is the magic state
|Φ+

1,3⟩|Φ+
2,4⟩ which is equivalent to the magic state in the text up to a fermionic

swap gate. The Bell measurements can be implemented by applying the G(H,H)
matchgate, followed by two local computational basis measurements. The outcomes
of the Bell measurements are used to apply the local Pauli corrections, connected
via solid double lines. The dashed lines represent ancillas used in the Pauli X cor-
rections. Reproduced from [48].

28

5.1.5 SWAP gate decomposition for Matchgate circuits

The SWAP gadget is not a suitable simulation method for us to address research
question 3, as it belongs to the weak level of simulation due to the use of adaptive
measurements. The core idea underpinning our simulation algorithm is to express
the SWAP gate as a sum of matchgates only. This circumvents the use of adaptive
measurements. Since matchgate only circuits are classically simulable, one can cal-
culate the expectation value of an observable for a circuit containing SWAP gates
by considering the various matchgate only circuits arising from the matchgate de-
composition of the SWAP gate. In this section we explain the basic workings of our
method.

To decompose the SWAP gate into matchgates we use the Schmidt decomposi-
tion, which in the Pauli basis is as follows:

SWAP =
1

2
(I ⊗ I +X ⊗X + Y ⊗ Y + Z ⊗ Z). (5.15)

It has a Schmidt number of 4. These terms correspond to the G(I,I), G(X,X),
G(-X,X) and G(I,-I) matchgates respectively, as required. It will be convenient to
decompose these matchgates into the Majorana operators. For further convenience,
let us define the “Pauli products” PA := A ⊗ A, where A ∈ {I,X, Y, Z} are the
Pauli matrices. In terms of Majorana operators we have

P j
I =I

P j
X =− ic2jc2j+1

P j
Y =ic2j−1c2j+2

P j
Z =− c2j−1c2jc2j+1c2j+2,

(5.16)

where P j indicates the operator is acting on qubit j and j + 1. Trivially the index
j is irrelevant for PI . Note we can trivially express the SWAP gate in terms of the
Pauli products;

SWAP =
1

2
(PI + PX + PY + PZ). (5.17)

Before we move on let us first state some product and commutation relations of the
Pauli products that may be readily derived from the Pauli matrices:

Pa = P †
a ∀a ∈ {I,X, Y, Z},

PaPI = PIPa = Pa ∀a ∈ {I,X, Y, Z},
PaPb = −Pc ∀a ̸= b ̸= c (+permutations) ∈ {X, Y, Z},
PaPa = PI ∀a ∈ {I,X, Y, Z},
[Pa, Pb] = 0 ∀a, b ∈ {I,X, Y, Z}.

(5.18)

The goal is to develop a simulation method which takes as input a circuit con-
taining both Matchgates and a few SWAP gates, a set of parameters θ and an
observable f . Consider the following circuit: a block of matchgates U , a SWAP
gate, followed by another block of matchgates V (see Fig. 5.2). We are interested
in calculating the expectation value of some observable f :

⟨0|(V (SWAP)U)†f(V (SWAP)U)|0⟩,

29

Figure 5.2: Diagram of a matchgate circuit containing a SWAP gate. U and V are
Gaussian operators, which are separated by a SWAP gate.

which, up to a normalization constant, can be expressed as

⟨0|(V (PI + PX + PY + PZ))U)
†f(V (PI + PX + PY + PZ)U)|0⟩ =

⟨0|(V PIU)
†f(V PIU)|0⟩+ ⟨0|(V PIU)

†f(V PXU)|0⟩+
⟨0|(V PIU)

†f(V PYU)|0⟩+ ⟨0|(V PIU)
†f(V PZU)|0⟩+

⟨0|(V PXU)
†f(V PIU)|0⟩+ ⟨0|(V PXU)

†f(V PXU)|0⟩+
...

⟨0|(V PZU)
†f(V PYU)|0⟩+ ⟨0|(V PZU)

†f(V PZU)|0⟩ =
{I,X,Y,Z}∑

a,b

⟨0|(V PaU)
†f(V PbU)|0⟩,

(5.19)

using the linearity of the inner product (the normalization constant is 1
4
). This yields

us 16 terms where the operators either side of the observable are not necessarily
each others conjugate, but are purely matchgate circuits. Four of these terms are
expectation values, and the remaining twelve are inner products. Provided the
observable f is Hermitian it is clear the inner product terms come in pairs that
are the complex conjugates of each other, meaning S4 = 4(4 + 1)/2 = 10 terms
are to be computed overall. For a circuit containing N SWAP gates, 4N(4N + 1)/2
terms have to be computed. The challenge is to find a simulation algorithm that
can compute both expectation values as well as inner products. We prove this is
possible with both the Heisenberg technique, and Wick’s simulation, yielding the
Divide & Heisenberg and Divide & Wick methods.

5.1.6 Divide & Heisenberg - proof of theorem 5.0.2

In order to prove theorem 5.0.2 we must show we can express the various terms
appearing Eq. (5.19) as Heisenberg sums. We will demonstrate it is possible for
the generalized case of a Matchgate circuit containing N SWAP gates. The inner
product to be computed in the simulation of such circuits is ⟨ϕ|U †

afUb|ϕ⟩, where
Ua =

(∏N
i=1 UiPai

)
U0 = UNPaNUN−1...Pa1U0 and similarly Ub =

(∏N
j=1 UjPbj

)
U0.

The P operators are Pauli products which arise due to the decomposition of the
SWAP gates into these Pauli products. The only difference between Ua and Ub

are the Pauli products Pa and Pb. Both Ua and Ub are matchgate circuits. Note
the index of the qubits where the ith SWAP gate acted before being decomposed
is implicitly included in the label ai and bi. For convenience let us introduce the
following notation: Ub:l =

(∏l
j=1 UjPbj

)
U0 with Ub:0 = U0.

30

Without loss of generality we can take f = c1c2 , as the below procedure is
readily generalized to an observable consisting of arbitrary product of fermionic
or Majorana operators. The following procedure demonstrates how to obtain the
Heisenberg sum of some inner product ⟨ϕ|U †

afUb|ϕ⟩ where Pa ̸= Pb:

1. Introduce Ub:NU
†
b:N before each operator from the observable:

⟨0|U †
a:Nc1c2Ub:N |0⟩ = ⟨0|U †

a:NUb:NU
†
b:Nc1Ub:NU

†
b:Nc2Ub:N |0⟩. (5.20)

2. Apply theorem 5.1.1;

⟨0|U †
a:NUb:NU

†
b:Nc1Ub:NU

†
b:Nc2Ub:N |0⟩ =

2n∑
ν,µ

RUb:N
1,ν RUb:N

2,µ ⟨0|U †
a:NUb:Ncνcµ|0⟩,

(5.21)
where RUb:N = e4hUb:N . From here on all sums are implied to be over 2n.

3. The product U †
NUN in U †

a:NUb:N cancels to give U †
a:N−1PaNPbNUb:N−1. PaNPbN

can be simplified by the product identities (Eq. (5.18)), after which we can
insert its Majorana operator representation Ck1,...,kd = ck1 ...ckd :

∑
ν,µ

RUb:N
1,ν RUb:N

2,µ ⟨0|U †
a:NUb:Ncνcµ|0⟩ =∑

ν,µ

RUb:N
1,ν RUb:N

2,µ ⟨0|U †
a:N−1Ck1,...,kdUb:N−1cνcµ|0⟩. (5.22)

4. Introduce Ub:N−1U
†
b:N−1 before each operator in Ck1,...,kd and again apply the-

orem 5.1.1, giving∑
l1,...,ld,ν,µ

R
Ub:N−1

k1,l1
...R

Ub:N−1

kd,ld
RUb:N

1,ν RUb:N
2,µ ⟨0|U †

a:N−1Ub:N−1Cl1,...,ldcνcµ|0⟩. (5.23)

5. Repeat step 3 and 4 until all the Pauli products have been resolved no unitaries
remain in the inner product:∑

q1,...,qd,
...,

l1,...,ld,
ν,µ

RUb:0
p1,q1

...RUb:0
pd,qd

...R
Ub:N−1

k1,l1
...R

Ub:N−1

kd,ld
RUb:N

1,ν RUb:N
2,µ ⟨0|Cq1,...,qd ...Cl1,...,ldcνcµ|0⟩.

(5.24)

The final expression is the Heisenberg sum of an inner product of the form
⟨ϕ|U †

afUb|ϕ⟩ where Pa ̸= Pb. To prove theorem 5.0.2 it remains to calculate the time
complexity.

With the Heisenberg technique the sum is computed explicitly. For an observable
of rankD steps 1 and 2 generateD sums. In step 3 we introduce the general notation
for a product of Majorana operators Cp1,...,pd , where the sub-index d refers to the
degree of the Pauli product PaiPbi . Based Eq. (5.16) when Pai = Pbi we have
d=0, for PaiPbi = PX or PY d=2 and finally if PaiPbi = PZ we have d = 4. The

31

overall size of the sum is nD+
∑N

j dj for a circuit containing N SWAP gates, which
is maximal when all dj’s evaluate to 4. In this case the size of the sum is nD+4N .
Considering the number of inner products that have to be computed is 1

2
4N(4N +1)

for a matchgate circuit containing N SWAP gates, and the number of sums for each
computation is at most nD+4N , the cost of the algorithm scales as O(42NnD+4N).
This proves theorem 5.0.2. Clearly the complexity is polynomial in the number of
qubits n as long as the number of SWAP gates N and the rank of the observable D
are independent of n. The algorithm may find use cases when the number of SWAP
gates is O(1) and the observable considers few qubits.

5.1.7 Divide & Wick - proof of theorem 5.0.3

We have demonstrated the inner products arising from decomposing SWAP gates
into a sum of Matchgates can be expressed as a Heisenberg sum. We have seenWick’s
simulation is a method whereby one avoids explicitly computing the Heisenberg sum.
Consequently, we can readily improve the efficiency of theorem 5.0.2 by using Wick’s
simulation. The overall recipe for computing O remains the same, but there are two
key differences. Firstly, the dimension of O increases, specifically with the number
of SWAP gates. Secondly, the lookup table is bigger to accommodate the various
matrix products arising from the R matrices in the Heisenberg sum. A lookup table
for a generic Heisenberg sum such as Eq. (5.24) is given in Table 5.2

cqβ · · · ckβ cν cµ

cqα (RUb:0HRUb:0T)pα,pβ · · · (RUb:0HRUb:N−1T)pα,lβ (RUb:0HRUb:NT)pα,1 (RUb:0HRUb:NT)pα,2
... X

. . .

ckα X X (RUb:N−1HRUb:N−1T)lα,lβ (RUb:N−1HRUb:NT)lα,1 (RUb:N−1HRUb:NT)lα,2

cν X X X X (RUb:NHRUb:NT)1,2

cµ X X X X X

Table 5.2: Lookup table used to construct the matrix O for a generic Heisenberg
sum given by Eq. (5.24). X indicates such combinations of Majorana operators
do not appear. .T denotes the transpose operation w.r.t. the computational basis.
Additional rows and columns can be added in the row and column denoted by three
dots to accommodate further subscripts introduced by additional SWAP gates.

Based on the number of sums in a generic Heisenberg sum (Eq. (5.24)) it can be
inferred that the dimension of O is D+

∑N
j dj, up to D+4N where D is the rank of

the observable. For each SWAP gate introduced the dimension of O increases by up
to four, but the size of the lookup table only grows if a partition is introduced in a
block of unitaries by the SWAP gate. Wick’s simulation can also be applied to the
different types of input state discussed in Lemma (5.1.1). For computational basis
state inputs, the dimension of O increases by w where w is the Hamming weight
of the basis state. For a product or tensor product input state the dimension of
O increases by at most one for the a†0 coefficient, however the overall cost of the
simulation increases by a factor of two as two circuits have to be evaluated, one
with each superposition component of the |+⟩ ancilla.

The cost of computing the determinant of a matrix of dimension M is M3. The

32

dimension of O is at worst D + 4N , meaning the complexity of computing each
inner product is (D+4N)3 which is polynomial in D and N . With the D&C scheme
1
2
4N(4N +1) of such inner products have to be computed, giving an overall scaling of
O(42N(D+4N)3poly(n)) which can be simplified to O(42Npoly(n,D,N)) or equiva-
lently O(42Npoly(n,N)) as physically D can be at most O(n). This proves theorem
5.0.3. Additional costs associated to product state inputs are readily absorbed into
the prefactor constant and poly(n,D,N) term.

5.1.8 Discussion

We have presented two algorithms which provide an alternative method to simu-
late matchgate circuits containing SWAP gates to the SWAP gadget developed by
Hebenstreit et. al [48]. Our algorithms work by decomposing the SWAP gate into a
sum of matchgates. As a result each term by itself is a pure matchgate circuit which
can be classically simulated in polynomial time. By taking this decomposition a
number of cross terms arise which have to be computed: we show that it is possible
to compute each cross term in polynomial time too. The number of cross terms
however, is exponential in the number of SWAP gates in the circuit. We compare
the cost of simulation for our algorithms to that of the SWAP gadget in Table 5.1.

From the table it is evident that Wick’s simulation (used in both the SWAP
gadget and Divide & Wick) allows for a polynomial algorithm even when the number
of qubits measured is O(n), whilst the Heisenberg technique does not. Furthermore,
the D&C methods are of the semi-strong level of simulation for observables which
can be expressed as a product of fermionic and/or Majorana operators acting on nq

qubits. This includes all projectors as

|0⟩⟨0| = aa† |1⟩⟨1| = a†a, (5.25)

where the qubit index is omitted. Pauli string observables also meet this criteria, as
the equivalent product of Majorana operators can be obtained through its Jordan-
Wigner transformation (see Eq. (5.5)). One can also plug in the above observables
directly into the SWAP gadget. This does not promote it to the semi-strong level
of simulation, as one still has to sample over all the possible adaptive measurement
outcomes.

One practical difference between the Divide & Wick and the SWAP gadget meth-
ods is the cost of increasing the distance between the two qubit lines on which the
SWAP gate acts. As is evident from Fig. 5.1, qubit lines 2 and 3 of the magic state
|M⟩ can be separated by any number of qubits as there are no matchgates acting
across them (recall matchgates can act on nearest neighbour qubits only). We only
require that the outcome of any intermediate measurement can condition a match-
gate on any pair of qubits. For the Divide & Wick method however, we assumed the
SWAP gate was acting on nearest-neighbour qubits when decomposing the tensor
product of Paulis into a product of Majorana operators. For a SWAP gate acting
on two qubits separated by d qubit lines, this decomposition becomes a product of
2(d + 1) operators for PX and PY (cf Eq. (5.16)) whilst PZ remains a product of
just four operators. This change only affects the size of the matrix O as follows:
for a set of N SWAP gates G ∈ {Gi}N , each acting on qubits which are di qubit
lines apart, the dimension of O is at worst (D+max(2

∑N
i (di+1), 4N)). Assuming

max(2
∑N

i (di + 1), 4N) = 2
∑N

i (di + 1), the scaling in the Divide & Wick theorem

33

Figure 5.3: A decomposition of a CNOT gate into a tensor product two qubit gate,
supplemented by single qubit gates. The S† gate is the phase gate, given by diag(1,
−i). Adopting the form of Eq. (5.26) we have α0 =

1√
2i

and α1 =
−i√
2i
.

becomes O(42N(D + 2
∑N

i (di + 1))3poly(n)). This teaches us that qubit swapping
across a distance is a fundamentally quantum feature. Crucially, the exponential
scaling in the number of SWAP gates remains unaffected.

Whilst the SWAP gadget is more suited to circuits that contain SWAP gates
acting on distant qubits, the Divide & Wick method is still capable of a stronger
level of simulation. We associate this to the lack of adaptive measurements in our
alternative implementation of the SWAP gate. Consequently, it has more practical
use-cases, namely those where the expectation value of some observable is consid-
ered as the output of some model. This idea is the foundation of many near term
algorithms, such as Variational Quantum Algorithms [51, 5], and as a result our new
algorithm is more applicable than the SWAP gadget.

5.2 Circuit Partitioning

The run-time scaling of our Matchgate algorithms are likely too expensive for us
to properly probe the relation between the learning performance and computational
hardness of a Matchgate model. For this reason we consider here an entirely different
simulation framework as an alternative candidate. We call the approach Circuit
Partitioning, and will use it to prove theorem 5.0.4.

The Circuit Partitioning formalism uses the gate decomposition technique to
decompose (or “cut”) two- (or multi-) qubit gates into a sum of tensor products of
single qubit unitaries. This can be done using the operator-Schmidt decomposition:

U ij =
ns∑
a

αaU
i
a ⊗ U j

a , (5.26)

where U ij is a unitary acting on qubits i and j, αa a constant and U i (U j) a single
qubit unitary acting on qubit i (j). The number of terms in the sum ns is also
known as the Schmidt number. All two-qubit gates have a Schmidt number of four
or smaller: the CNOT gate is an entangling gate with a Schmidt number of 2 [52].

The original CNOT operator-Schmidt decomposition by Nielsen is as follows:

CNOT = (|0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗X)/
√
2, (5.27)

which involves projective measurements. The decomposition in the Pauli basis uses
Hadamard and Phase gates along with a two-qubit Pauli tensor product gate, and
is shown in Fig. 5.3.

Consider a quantum device where the set of qubits is partitioned into blocks A
and B, with each qubit in one block only. Let U be a quantum circuit that can

34

be decomposed as blocks of unitaries UA, UB and UAB acting on A, B and AB
respectively;

U = (UA
1 ⊗ UB

1)UAB(UA
2 ⊗ UB

2). (5.28)

By inserting the operator-Schmidt decomposition of UAB we get a sum of circuits
that act on A and B independently;

ns∑
a

αa(U
A
1 ⊗ UB

1)UA
a ⊗ UB

a (UA
2 ⊗ UB

2) =
ns∑
a

αa(U
A
1 U

A
a U

A
2)⊗ (UB

1 U
B
a U

B
2). (5.29)

This expression can readily be generalized for a unitary U with L repeating layers
of UA ⊗ UB and UAB:

U =
L∏
i

(UA
i ⊗ UB

i)UAB
i =

ns∑
a1,a2,...,aL

αa1αa2 ...αaL(
L∏
i

UA
i U

A
ai
⊗ UB

i U
B
ai
). (5.30)

Suppose one would like to compute the expectation value of an observable f =
fA ⊗ fB of this circuit U acting on some fiducial state |Φ⟩ = |ϕA⟩ ⊗ |ϕB⟩. Using
Eq. (5.30) we are able to simplify the computation to a sum of inner products of
the partitions independently;

⟨Φ|U †fU |Φ⟩ =
ns∑

{aq}Lq=1,{bq}Lq=1

α∗
a1
α∗
a2
...α∗

aL
αb1αb2 ...αbL

⟨ϕA|(
L∏
i

UA
i U

A
ai
)†fA(

L∏
j

UA
j U

A
bj
)|ϕA⟩⟨ϕB|(

L∏
p

UB
p U

B
ap)

†fB(
L∏
q

UB
q U

B
bq)|ϕ

B⟩, (5.31)

where ns is the Schmidt number of UAB. The advantage of this alternative com-
putation is that the dimensions of the wavefunctions are 2|A| and 2|B|, rather than
2|A|+|B|, at the expense of having to compute n2L

s inner products. Through the inter-
change of the a and b subscripts it is evident for each ai ̸= bj the complex conjugate
of that inner product appears in the sum too, meaning we can reduce the number
of inner products that are to be explicitly computed to the sum of natural numbers
SnL

s
= nL

s (n
L
s + 1)/2.

Generalizing further the above method to the case of multiple partitions yields
the following proposition.

Proposition 5.2.1 (Partitioned circuit). Consider a circuit U on n qubits. Par-
tition the qubits into B sets bi ∀i ∈ [B] (where [B] := 1, 2, ..., B) such that each
qubit appears in one set and one set only. Define an observable that can be decom-
posed into a tensor product of observables that considers independently each partition
f =

⊗B
i fi. We can always express the expectation value of such an observable as

⟨Φ|U †fU |Φ⟩ =
M∑
j,k

cj,k

B∏
p

⟨ϕp|Up†
j f

pUp
k |ϕ

p⟩, (5.32)

where c is a matrix of coefficients and U b
g is the g-th unitary arising from the

operator-Schmidt decomposition of all two-qubit gates acting on qubits in different
sets, acting on partition b.

35

Remark. If every decomposed two-qubit gate is of the same kind, we have M =
nN
s , where ns is the Schmidt number of the decomposed gate, and N the number of

decomposed gates.

The above proposition yields a method to simulate circuits which can be bro-
ken up into sub-circuits that are sparsely connected via cut two-qubit gates. This
framework will be used to define a variational circuit model where the partitions are
predefined and the placement of resourceful two-qubit gates is a design choice. We
say these resourceful two-qubit gates creates non-local entanglement. Given access
to classical memory, for B partitions we only have to compute and store B × nN

s

different states Up
k |ϕp⟩, which can consequently be used to compute each inner prod-

uct. If each partition contains n qubits, then the space complexity of the simulation
method is O(nN

s B2n)3. By setting ns = 2 for the CNOT gate we prove theorem
5.0.4.

Our final research question concerns testing the performance of quantum models
with variable computational hardness in a QML setting. With the Circuit Parti-
tioning formalism we can simulate circuits which contain parameterized single qubit
gates, non-resourceful CNOTs which act on qubits within the same partition, and
resourceful CNOTs, which act on qubits in different partitions. Since it is a design
choice how many and where to place resourceful CNOTs, we have exact control
over computational hardness of the circuit. For this reason we develop and use a
simulator based on the Circuit Partitioning formalism for the next section of this
work, and leave a numerical investigation with Matchgates as future work.

3For the simulation of quantum circuits it is typically the spacial complexity (memory) that is
the limiting factor, particularly for constant depth circuits. For this reason we do not discuss the
time complexity here.

36

Chapter 6

The power of VQC models in
Machine Learning

In the previous section we developed three new algorithms to simulate Matchgate
circuits containing SWAP gates, or Partitioned circuits. Whilst these algorithms
might find use in intermediate-scale device verification, we aim to use them to
investigate how the capacity and performance of parameterized versions of these
circuits change with respect to their simulation difficulty. The results will give an
indication of whether truly intrinsic quantum properties are necessary to achieve
practical quantum advantages in a learning setting.

At present, Variational Quantum Circuits (VQCs) are the most common ML
model implementable on NISQ devices for supervised, generative or reinforcement
learning [5, 53]. They have been used in numerous classical ML settings, such as
classification [43], generative tasks [54], learning temporal sequences [55] and image
recognition [56] to mention just a few examples. We focus on classification and
regression tasks.

Our final research question, which we tackle in this section, is to investigate how
the computational hardness of a family of quantum models influences the perfor-
mance of the model in supervised learning tasks. The family of models we use are
a class of VQCs simulated using the Partitioned Circuit method. The two main
factors governing the simulation difficulty of this class of circuits are the number of
qubits per block, and the number of cut gates. By designing the model circuit based
on a fixed number of qubits for some number of blocks, we have isolated the number
of cut gates as the primary variable affecting the difficulty of the simulation. The
aim of our experiments is to see how the performance changes as a function of the
number of cut gates. By placing the cut gates randomly, we avoid introducing design
bias and consequently artificially restricting the hypothesis class or influencing the
results.

With our partitioned model the aim is to push the total number of qubits, given
by ntot = B × n, beyond what is feasible with brute-force classical simulation. For
most datasets we use n = 5, and determine B based on the number of features
per dataset. Our key experiment to address the final research question is thus
a comparison of the model performance against the number of cut gates. Before
we can address this question there are a number of design choices which must be
considered. These include the optimization algorithm, the model observable and
the number of data-reuploading layers. We reduce the bias in our results by using

37

multiple datasets. Our experimental settings are presented in Section 6.1, we justify
open design choices with empirical observations reported in Section 6.2 in the lead-
up to the results of our final experiment.

6.1 Experimental Methods

In this section we set out our Machine learning methodology. We first present the
framework for our partitioned model, followed by details of the various optimization
procedures tested in this work. Finally, in Section 6.1.3 we describe the datasets
used in this report.

6.1.1 Model ansatz

We develop our model based on the Partitioned circuit formalism. The core building
block of our model is one partitioned set of n qubits (called a “block”). On the pth
block acts a variational circuit Up(θp,xp). This variational circuit performs both the
qubit encoding of the data x, and a parameterized unitary transformation defined
by the set of parameters θp. The parameterization of the encoding gate increases
the flexibility of the model, for convenience we absorb the parameters λp into θp.
This variational circuit can be repeated L times in sequence with a unique set of
parameters, to generate the notion of “layers” Up(θp,xp) →

∏L
l=1 U

p
l (θ

p
l ,x

p) and
yield a data re-uploading model. These variational circuits are interlaced with pre-
cut gates which act to entangle different blocks. Finally, parameterized arbitrary
single qubit rotations V p(ηp) =

⊗n
q=1 Urot(η

p
q) are applied at the end of the circuit

to allow the model to learn the optimal measurement basis. These rotations are
implemented as Rz(αj)Ry(βj)Rz(γj), giving ηj = (αj, βj, γj)

T .
For our variational circuit we elect to go with a hardware efficient ansatz, as the

gate set is native to many NISQ devices [57] and universal, meaning it can be used
to approximate any unitary transformation to arbitrary precision [58]. A circuit
diagrammatic representation is shown in Fig. 6.1.

The most important remaining design choices are the placement of cut gates (if
any), and the observable. Whilst for our final experiment we place the cut gates ran-
domly, it will be beneficial to define a placement method of our cut gates to increase
the consistency across preliminary testing. We refer to models with some (no) cut
gates as entangled (non-entangled) models. For our entangled model the method of
placement is demonstrated in Fig. 6.2. Our cut gate of choice is the CNOT as it
has a Schmidt number of two and hence offers the most favourable scaling. Since
the intra-block CNOTs act before the inter-block CNOTs, the overall entanglement
structure at a per-qubit level is not exactly cyclic, and only for L > 1 do we have full
qubit connectivity. For our final experiment cut CNOTs can randomly entangle any
pair of qubits in different blocks, but only act between variational layers up until the
final layer of single qubit rotations. Our choice of observable is Pauli-Z. We empiri-
cally test the differences between a Pauli-Z on all qubits, on the first qubit of each
block and on the first qubit in the first block below. The former two observables
guarantee every data feature is part of the decision function defined by the model,
whilst for the single qubit observable it depends on the inter-block entanglement
and the number of blocks. Preliminary results showed that entangling structures

38

Figure 6.1: A circuit diagram of our variational circuit ansatz Up
l (θ

l,xp). Together
the sequences λl, ζl and ωl form the set of parameters denoted by θl. Each block
is assigned a subset of n feature vectors {xi}, which are encoded via a parameter-
ized RX(λ) single qubit rotations, such that each rotation angle is λixi. The data
encoding gates are followed by RZ and RY parameterized single qubit rotations as
the core variational component of our model. This is followed by a cyclic chain of
CNOT gates, entangling each qubit.

Figure 6.2: Circuit diagram of the Entangling model used in this report, with 2
layers and N = 6 cut CNOTs. Each U j

l is one layer as shown in the blue box in Fig.
6.1. All CNOTs (acting across block partitions) have the last qubit in the control
block as the control qubit, and the first qubit in the target block as the target qubit.

resulting in only a restricted set of features contributing to the decision function
performed worse than non-restricting architectures.

Based on the above elements, we define our model hypothesis class;

Definition 6.1.1 (Partitioned circuit model). The model labels a datapoint x by

F (x)Θ = ⟨0|U †(Θ,x)OU(Θ,x)|0⟩,

which is computed using Proposition 5.2.1. Specifically we have

Up
j = V (ηp)

L∏
l

W l
jU

l(θp
l ,x

p) (6.1)

where Wj represents the gates arising from cut gates acting on partition p at layer l,
V the single qubit rotations and U the data encoding and hardware efficient ansatz.
We use the following fiducial state; |ϕp⟩ = |0⟩. O is the Pauli-Z observable. For
simplicity we have collected all parameters ν and θ in Θ.

39

The above model outputs a label within the range defined by the eigenvalues
of the observable, which for our case is [-1,1]. For classification tasks whereby we
require the output to be a probability we rescale this to the range [0,1], which is
equivalent to replacing the Pauli-Z observable with an all-zero projector |0⟩⟨0| on
the measured qubits.

6.1.2 Optimization procedure & Trainability

Many ML models with free parameters suffer from exploding or vanishing gradi-
ents during training with gradient-based optimizers, especially if the parameters are
randomly initialized [59]. This phenomenon describes the situation where the gra-
dients, and hence the value by which parameters should change in order to move
to an optimal solution, become exponentially large or small with respect to some
parameter related to the model complexity. VQC models were first shown to suffer
from vanishing gradients, commonly dubbed “Barren Plateaus”, by McClean et al.
[60], and the issue remains an active field of research. The first evidence for bar-
ren plateaus by McClean et al. considers randomly initialized Hardware Efficient
Ansatze, which are our variational circuit of choice. They show such circuits corre-
spond to a unitary 2-design, ie they match the Haar distribution up to the second
moment [61], which can be used to prove the variance of the gradient of the loss
function decreases exponentially with the number of qubits. As we are using this
ansatz we must be vigilant that Barren plateaus might affect the training of our
models, especially for larger models.

This does not preclude using gradients for training. In our model our param-
eterized gates satisfy the requirements to analytically calculate the gradient using
the parameter shift rule [62], which only requires two further circuit evaluations.
As each parameter only appears once in one gate, when we apply the chain rule to
the product of partitions only one term is non-zero. The gradient still has to be
calculated individually for each term in the sum in Eq. (5.32), such that 2M circuits
have to be evaluated overall.

To determine the best optimization method we performed some preliminary test-
ing of the Adam, Covariance matrix adaptation evolution strategy (CMA-ES), Si-
multaneous perturbation stochastic approximation (SPSA), L-BFGS and Coordinate-
wise descent optimization routines. We find the gradient-based Adam optimizer to
be the best in terms of obtained loss, stability, rate of convergence and processing
time for models with 2 blocks of 5 qubits each. For this reason we primarily use the
Adam optimizer in our experiments.

6.1.3 Datasets

We repeat our experiments on multiple datasets to minimize the impact of the un-
derlying decision functions of the datasets on our results. To achieve this we pick
a number of classical and quantum datasets. Classical data covers samples of im-
ages, text and real world macroscopic observations (e.g. temperature readings),
whilst quantum data is generated from quantum process. All the chosen real-world
datasets originate from the UCI repository. A brief description of each dataset is
given below, and a summary is given in Table 6.2.

40

WDBC [63]
The Wisconsin Breast Cancer (Diagnostic) dataset considers various geometric fea-
tures of cell nuclei computed from medical images of breast masses. The task is to
identify the sample as either malignant or benign, which is a binary classification
problem. In total there are 10 such geometric features, and our only preprocessing
of the features is to rescale them to the range [−π/2, π/2].

ION [64]
The Ionosphere dataset concerns the identification of structure amongst free elec-
trons in ionosphere. The raw data was collected by a radar system, which had 17
pulse numbers. This was processed by an autocorrelation function which yields 17
complex values, one per pulse number. The dataset is obtained by splitting the real
and complex parts into their own features, resulting in 34 features in total. It is
a binary classification task. One feature has zero variance so is dropped. Further-
more some pairs of features show a high degree of correlation, so we use Principle
Component Analysis (PCA) to allow us to obtain a variable number of features (we
always use the first N principle components when asked for N features). The output
principle components are rescaled to the range [−π/2, π/2].

SPECTF [65]
For this dataset Single Proton Emission Computed Tomography (SPECT) has been
used to obtain images to assess the cardiac health of a patient. The images were
processed to give 44 features, and labelled as either normal or abnormal. The
features exhibit a strong degree of correlation amongst themselves so we use PCA
to obtain a more efficient representation. Again the resulting features are rescaled
to the range [−π/2, π/2].

MNIST [66]
We use an alternative handwritten digit dataset to the popular benchmarks in
Machine Learning. Specifically the 32x32 bitmaps are segmented into 4x4 non-
overlapping blocks. Within each block the number of ”on” pixels are counted and
returned, resulting in an 8x8 matrix with integers in the range [0, 16]. We rescale
these integers to the range [0, π], as this is a more appropriate range for our data
encoding strategy. The dataset contains 10 unique classes corresponding to the dig-
its 0 to 9. We restrict the dataset to samples only from the classes corresponding
to the digits 2 and 3, resulting in a binary classification task.

VQC output
Our artificial dataset is the output of our partitioned model initialized with random
weights sampled from the uniform distribution on [−π/2, π/2]. The underlying
decision function is hence quantum in nature. We generate 1000 input vectors from
a uniform distribution over [−π, π], and the label is given by the output of the model
(the expectation value of a Pauli Z observable on the first qubit in each block). The
model parameters are given in Table 6.1.

Blocks Qubits per block Layers Inter-block entanglement

2 5 2 q1,5 on q2,1, q2,5 on q1,1

Table 6.1: Model parameters used to generate the VQC output dataset. qi,j on qk,l
represents a CNOT where the jth qubit in the ith block is the control qubit and
the lth qubit in block k is the target qubit. The inter-block CNOTs only acts in
between the first and second layer.

41

Ising dynamics
For our second quantum dataset we take the critical transverse field Ising Hamilto-
nian H =

∑N−1
j ZjZj+1 +

∑N
i Xi to generate a regression task. We simulate the

Hamiltonian using the Lie/Trotter product formula exp(−i
∑m

j Hjt) = (
∏m

j exp(−iHjt/τ))
τ .

The data is obtained from a 10 qubit system, with t/τ = 0.08 and an all-zero fiducial
state. The data feature is time, and the output is a Pauli Z observable on the first
qubit. We obtain the output as follows: The simulation is run for 3750 timesteps
(ie for t=300); for each subsequent timestep, we evolve the wavefunction as before,
and record the expectation value ⟨Z⟩ on the first qubit. This is repeated for 100
timesteps (ie from t=300 to t=308) to generate an equivalent number of datapoints.
The time span is mapped from the range [300, 308] to [-π, π] to give our final data
attribute.

Name Type Task # of features Preprocessing

CANCER Medical Classification 10 Rescaling

ION RWO Classification 33 PCA & rescaling

SPECTF Medical Classification 44 PCA & rescaling

MNIST Images Classification 64 Rescaling

VQC output Quantum Regression 10 None

ISING Quantum Regression 1 Rescaling

Table 6.2: Summary of the main features of each dataset. RWO is an acronym for
Real World Observation.

6.2 Numerical Results

In this work we have developed two new algorithms for computing the expectation
value of matchgate circuits supplemented with SWAP gates, and one for arbitrary
circuits with little non-local entanglement. In this section we implement the latter to
demonstrate the relation between the degree of non-local entanglement of a circuit
model and its performance in a learning setting. First we investigate the performance
differences between the three proposed observables: Pauli Z on all qubits, on the first
qubit in each block and on the first qubit in the first block. The mean validation
accuracy is plotted in Fig. 6.3 for the first three real-world datasets. We define
the validation accuracy as the accuracy obtained by the model on a test set (i.e.
datapoints not used to train the model). Similarly, the validation loss is the loss
obtained by the model on the test set. The validation accuracy is an important
indicator of model performance in classification tasks, while the validation loss holds
the same status in regression tasks.

It is evident the differences in validation accuracy between the three observables
are smaller than the error bars. Notably we do notice a minor improvement in
model performance for the non-entangled model for the ION dataset, compared to
that of the entangled model. The non-entangled model with the “Single” observable
performs as well as all the other models, which is interesting because only half of
the data features contribute to the decision function. For the WDBC dataset we
attribute this to the high discriminative power of a single feature already, whilst for

42

Figure 6.3: Learning performance on real-world datasets for different ob-
servables. The validation accuracy is computed as the accuracy on the entire test
set after training, and the mean and first standard deviation is over 10-fold cross
validation. Every model consisted of 2 blocks of 5 qubits with 4 layers.

the ION and SPECTF we used PCA preprocessing and used the first 10 features.
Despite shuffling the order of each feature, this likely also decreased the difficulty
of classifying the data. The above experiment was also performed with the same
models but instead 1, 2 and 3 layers. More layers increases the performance, but it
is still not possible to establish a superior choice of observable. It should be noted
the results across all settings are competitive with classical models, based on results
reported by the UCI repository they were obtained from.

We repeat the above study on the VQC dataset; the results are presented in
Table 6.3.

Observable
Training loss
(×10−3)

Validation
loss (×10−3)

Generalization
loss (×10−3)

First 1.018± 0.023 1.293± 0.311 0.275± 0.318

All 1.014± 0.032 1.345± 0.294 0.331± 0.315

Single 1.038± 0.022 1.273± 0.295 0.235± 0.305

Neural Net-
work

1.079± 0.100 1.583± 0.247 0.503± 0.299

Table 6.3: Learning performance on the VQC output dataset for different
observables. The values in the table are the MSE loss. The same methodology
is applied as in Fig. 6.3 to obtain a mean and standard deviation. Additionally
we test a Neural Network with two layers of 50 neurons for comparison. It is likely
the performance can be improved by architectural tuning and/or hyperparameter
optimization.

The Neural Network converges to a significantly higher training and validation
loss than the quantum models, providing good evidence that quantum models are
better suited to learning quantum decision functions. All models exhibit overfitting
as the training loss is much lower than the validation loss and is further evidenced
by the much larger error bars on the validation loss. The All-qubit observable
has the largest generalization loss, which we define as the validation loss minus the

43

training loss, whilst the single qubit observable has the smallest. This can in part be
understood by the difference in model complexities as for the all-qubit observable a
larger number of parameters and gates contribute to the decision function relative to
the single qubit observable. Repeating this study for a dataset generated using an all-
qubit Pauli Z observable reinforces the findings. Strikingly, the variance of the labels
for the VQC dataset is 1.095× 10−3, which is very similar to the training loss. One
might hypothesize that the model is only learning to output the same distribution
of the data generating model ie h̃(xi) = yj ∼ SY , rather than learning the exact
decision function h(xi) = yi. To test this hypothesis we repeat the experiment but
with randomized labels, and report the results in Table 6.4.

Observable
Training loss
(×10−3)

Validation
loss(×10−3)

Generalization
loss(×10−3)

First 1.425± 0.094 1.480± 0.230 0.055± 0.259

All 1.428± 0.080 1.493± 0.242 0.064± 0.264

Single 1.414± 0.083 1.453± 0.229 0.039± 0.262

Neural Net-
work

1.244± 0.081 1.617± 0.274 0.373± 0.305

Table 6.4: Learning performance on a quantum dataset with randomized
labels for different observables. The labels of the entire dataset were randomly
shuffled before using 10-fold cross validation to obtain a mean and standard devia-
tion.

By randomizing the labels we can distinguish between models that memorize
the training dataset and those that learn the distribution of the training labels.
Those that merely memorize the training set will generalize poorly as there is no
correlation between the input and the labels. On the other hand, models that
learn characteristics of the underlying label distribution PY will have a very small
generalization error or loss as both the training and test sets are sampled from this
distribution. From Table 6.4 it is evident the Neural Network maintains a large
generalization loss, suggesting it is memorizing the dataset. On the other hand the
quantum models are capable of learning PY as the generalization error is small.
Key here is that the mean of PY is zero, meaning the best the model can do is
to output zero for every input. This strategy would give a loss of 1.406 × 10−3,
which is slightly lower than the losses posted in Table 6.4. Hence we can conclude
our quantum model is capable of learning PY when given randomized training data.
Furthermore, since the losses on the original dataset are lower than 1, 406 × 10−3,
we confirm our model is learning the underlying decision function, and disprove the
hypothesis that the model is learning the label distribution PY only.

Comparing the different observables in Tables 6.3 and 6.4 the generalization loss
suggests restricting the number of measured qubits acts to regularize the model.
For this reason our observable of choice for the remainder of this investigation is
the “First” observable: a product of Pauli Z’s on the first qubit of each block. In
particular we thereby guarantee that even in the absence of inter-block entanglement
every data feature contributes to the decision function.

The last model parameter to optimize for the final experiment is the number of
layers. We study the performance of the entangled and non-entangled models as a

44

(a) WDBC (b) ION (c) SPECTF

Figure 6.4: Learning performance on real-world datasets for increasing
numbers of layers. The validation (red) and generalization (blue) loss for a range
of layers for the 3 real-world datasets. Due to hardware limitations we are only able
simulate up to 4 layers for the entangled model (corresponding to 8 cut gates). For
each setting we perform 10-fold cross validation and report the mean and standard
deviation.

function of the number of layers in Fig. 6.4 for the real-world datasets.
By the theoretical work of [15] the additional data-encoding gates introduced

with an increasing number of layers should increase the capacity of the model, as
well as through the parameterized single qubit rotations and entangling gates. The
downside of adding more layers is the additional parameters increase the size of
the parameter space that must be searched for the optimum solution, as well as
increasing the run-time due to the additional matrix multiplications that must be
computed. Based on the results in Fig. 6.4 we set the number of layers to 2 and
4 for the WDBC and ION datasets respectively. As the SPECTF dataset shows
remarkable apathy to any set of model parameters and architectures we test it on,
its use is discontinued for our remaining experiments. As the VQC dataset was
generated with a model with 2 layers, we use the same number of layers for the final
experiment.

Our final dataset, based on an Ising model Hamiltonian, was generated from a
10 qubit system. A very similar learning task using an equivalent amount of qubits
was done by [23], who observed they were able to learn the dynamics using only
a 6-qubit circuit. To verify this we attempt to learn the ISING dataset with the
entangled and non-entangled models, both consisting of 2 blocks and 2 layers. We
vary the number of qubits per block (qpb) from 2 through 7. The results are plotted
in Fig. 6.5.

For the entangled model, the best mean validation loss is for the 5 qpb model,
whilst the best training and validation loss occurs at 4 qpb. The mean losses for
the non-entangled models decrease steadily up to 5qpb, after which it plateaus. The
variance in the dataset labels is 0.055, which is significantly higher than the losses
obtained in this experiment, which suggests the models are successfully learning.
In the final experiment we train a 2 block model with 5 qubits per block for the
ISING dataset. To assess the models ability to learn the actual evolution of system
we evaluate them on a holdout set consisting of the 40 timesteps after the main
dataset. The results are plotted in Fig. 6.6.

From Fig. 6.6 it is evident the quantum model is more than capable of learning

45

Figure 6.5: Model performance on the ISING dataset for a varying number
of qubits per block. The mean was obtained over the results from 10-fold cross-
validation, and is plotted with a solid line. The final training and validation loss
varied over a few orders of magnitude so we find the error bars to be too large to
plot. The loss obtained by the best performing model is plotted with a dashed line.
Green lines indicate the validation loss, whilst the red lines are plots of the training
loss.

Figure 6.6: Learning the evolution of an transverse Ising Hamiltonian.
The dashed line represents the true evolution, whilst the solid lines represent the
functions learnt by 10 different models. The transition from the training and test
set to the holdout set occurs at a rescaled time of 1.35.

46

(a) WDBC (b) ION

(c) VQC (d) ISING

Figure 6.7: Learning performance for models with an increasing number
of cut gates. Both the mean and best validation losses are plotted on the left
hand axis, for 16 runs of 10-fold cross-validation, giving 160 datapoints overall.
On the right hand axis the mean generalization error (loss) is shown, given by
1/N

∑
i(f

i
val−f i

train) where fval and ftrain are the accuracies (losses) obtained on the
entire validation and training set respectively, and we sum over all runs. An excep-
tion is the Ising dataset (d); here we instead take 1/N

∑
i(log10(L

i
val)−log10(L

i
train)).

the function representing a system governed by a transverse Ising Hamiltonian.
However, it is not capable of learning and reproducing the system dynamics as the
predictions for the holdout poorly represent the true evolution.

So far we have not presented any results for the MNIST dataset. The goal was to
train a model of 8 blocks of 8 qubits, which would represent one of the largest QML
models to be reported in literature. Unfortunately it has not been possible to train
the model using the Adam or SPSA routines for a large range of hyperparameter
settings. The CMA, LBFGS and Coordinate descent routines are prohibitively slow
to run on the hardware available. It is likely some heuristic training algorithm is
necessary to circumvent the issue of exponentially degrading gradients.

We now have all the experimental settings to evaluate the learning performance
of our quantum model as a function of the degree of non-local entanglement only,
which we measure by the number of cut gates. The results are plotted in Fig. 6.7.

For both the WDBC, ION and VQC datasets, it is clear the number of cut gates
has no observable effect on the validation accuracy or generalization error. The
error bars cover a range of around 5, 10 and 20 percent respectively. As the range
of the error bars also does not change with respect to the number of cut gates, the
variability likely arises due to the intrinsic trainability of the model. A comparison of
the cut gate placement for models performing within, above and below the error bars

47

does not unveil particular placements which are especially beneficial or detrimental
to the performance. With the ISING dataset we actually observe the addition of
cut gates leads to a decrease in performance. Across all datasets the generalization
error or loss is independent of the number of cut gates, which suggests the self-
regularizing aspect of our quantum model is not due to the difficulty of quantum
simulation, but rather due to some quantum characteristic such as the unitarity of
evolution [23]. Alternative explanations have also been put forward by eg [15] who
tie the regularization to the depth of the data re-uploading circuit.

6.3 Discussion

The goal of QML is to utilize quantum information theory to create better machine
learning methods. The notion of ”better” is purposely left ambiguous as there are
many ways to compare quantum and classical methods. Here we focus simply on
learning performance of a VQA. VQAs are a NISQ-friendly, flexible approach to
QML as they utilize both classical and quantum processing units. Classical data
can be converted into a quantum state via qubit encoding or the more difficult to
implement amplitude encoding. By parameterizing a quantum system, such as the
gates in a circuit, and choosing an observable one has created a hypothesis class
which can be trained in a classical optimization loop.

In this work we have used a VQA to explore the relation between the compu-
tational hardness of a quantum model and it’s machine learning performance. Our
circuit partitioning scheme allows us to systematically control the computational
hardness of the circuit through the dosed inclusion of non-local entanglement via
cross-partition CNOTs. The computational hardness of this scheme is primarily
dictated by the spacial complexity. We investigated research question 3 with a par-
titioned circuit model based on a data re-uploading Hardware Efficient Ansatz and
a selection of classical and quantum supervised learning tasks.

First we empirically justified some model features that do not affect the spa-
cial complexity and hence computational hardness. These include the choice of
observable, and the number of variational layers (and thereby also the number of
data re-uploading gates). In these studies we found both our entangled and non-
entangled models were already capable of competing with common classical methods
on real-world datasets, giving an early indication the non-local entanglement is not
an important factor in model performance. Learning the output of VQC was a
more difficult task, despite using the exact same circuit to generate the data as to
learn. This might be due to the fact we chose to use the expectation value as our
label, rather than the state vector output by the data generating circuit. Since each
possible value of the expectation value does not have one unique quantum state
associated to it (under reasonable conditions), the loss function will have a local
minimum when the model outputs any of the quantum states corresponding to that
expectation value. Consequently, gradient based methods are highly likely to get
stuck in these local minima and fail to converge to the global minimum. We do
find our model is very capable of learning the function defined by the evolution of a
system described by a transverse Ising Hamiltonian.

In our final experiment to address research question 3, the cut gates are placed
randomly. We conclude the performance is independent of the number of cut gates
for the real-world datasets. Our general methodology was to design the model as

48

to maximize the performance of both entangled and non-entangled variants of our
model. As we were already able to achieve competitive results in these preliminary
investigations (eg Fig. 6.3) it is possible we hit a natural ceiling in the separability
of the data within the hypothesis class. The quantum dataset focused on learning
the evolution of a transverse Ising Hamiltonian was more difficult for the model to
learn as the number of cut gates increased. This might be due to there being only
one feature, namely time. The additional entanglement creates higher order terms
in the model function that are not necessarily present in the underlying decision
function.

It should be noted that the number of possible configurations in which cut gates
can be placed increases combinatorially in the number of cut gates. As we tested
around 160 configurations for each number of cut gates, this is only a small fraction
of the possible placements for the models with more than one cut gate, decreasing
the probability of finding the optimal placements and consequently of finding the
true best possible model performance. By keeping the number of layers low we
restrict the space of possible configurations, but this also restricts the performance
benefit anticipated for data re-uploading models such as the one used in this work.

Our results provide further evidence that potent quantum learning models can
be created by combining multiple smaller circuits. This allows practitioners to use
multiple devices to create models with qubit counts beyond what is available with
state of the art devices. Furthermore, these smaller circuits can already be designed
and optimized to achieve competitive performances without needing to entangle
the circuits. Due to vanishing gradients training does get more difficult as the
model size increases, however due to the disjoint sets of parameters, clever training
methods may circumvent this issue whereby one uses both the gradients of single
blocks as well as the total gradient. Non-entangled models may even be trained
individually when using projectors as an observable. Such non-entangled structures
have strong parallels with ensemble learning or multiple classifier systems, which are
well established classical techniques in Machine Learning. A study of these parallels
may be an interesting avenue for further research.

49

Chapter 7

Conclusions

In this thesis we have studied the features that determine the computational hard-
ness of classically simulating quantum systems and circuits. Moreover, we investi-
gated the impact one example of such a feature has on the performance of a quantum
model in a supervised machine learning setting. Studying such features is impor-
tant to better understand how to maximally utilize quantum devices to compute
systems larger than they are themselves. It can also be used to guide expectations
surrounding the future of QML.

In our search of finding simulation methods whereby we can systematically con-
trol the computational hardness, we find the interaction and entanglement of distant
qubits to be an important feature in both the Matchgate formalism and the circuit
model of quantum computing. This influences the extent to which they can be sim-
ulated by classical algorithms. Within the matchgate formalism these interactions
are realized by the SWAP gate, which is not a matchgate but still preserves parity,
a key symmetry in matchgates. For arbitrary quantum circuits the computational
hardness is in part determined by the degree to which the circuit can be partitioned
into subcircuits by cutting two-qubit gates.

By developing algorithms around these specific features we obtain exact simula-
tion methods which scale polynomially in the system size but exponentially in the
number of SWAP or cut gates. We develop two new algorithms for the simulation
of Match- + SWAP gate circuits, one of which achieves the semi-strong level of
simulation and scales as O(42Npoly(n,N). This is the same algorithmic scaling as
the SWAP gadget approach, which belongs to the weak level of simulation. As such
our algorithm represents the current state of the art method for Match- + SWAP
gate simulation. Furthermore we develop the notion of circuit partitioning, based
on the gate decomposition technique, and develop code for the simulation of a class
of partitioned circuits. It allows for the linear scaling in the total number of qubits
by keeping the partitions a constant size, whilst the scaling is exponential in the
number of cross-partition entangling gates.

Finally, we use the simulator to investigate the learning capabilities of a VQC and
the influence of the simulation difficulty on it’s performance. Our model ansatz is
competitive with classical methods for a range of real-world tasks, and outperforms
a small selection of Neural networks when learning the output of a quantum circuit.
Most significantly we find the presence of cross-partition gates to have no effect on
the learning performance, and even be detrimental when learning the dynamics of
a quantum Ising system.

50

The results of this thesis have raised further questions, both on matters regarding
computational hardness as well as learning capabilities. Our work on Matchgates has
focused on exact methods only: there is a notable under-representation of approxi-
mate matchgate simulation methods in literature, whilst this could be a worthwhile
direction to explore. Furthermore, we have explored the SWAP gate only. It re-
mains an open question if there exists a decomposition of a non-matchgate parity
preserving two-qubit unitary into matchgates that has fewer than four terms. The
basis defined by the Pauli products (plus the I⊗Z and Z⊗I matchgates) is insuffi-
cient to achieve this, as any sum of two or three of these terms is either a matchgate
or not unitary. This can be proven by evaluating all C6

2 +C
6
3 = 35 possible combina-

tions. Similarly, a SWAP gadget which requires fewer adaptive measurements would
also improve it’s scaling, allowing it to compete with our SWAP decomposition for
problems where sampling the output of the circuit is sufficient.

One of our research question was to investigate the learning performance as
a function of the simulation difficulty of quantum models. This is a very broad
question and our findings are limited by our choice of algorithm and the associated
quantum feature which dominates the simulation difficulty. Evidently, our measure
of non-local entanglement is not an important factor of learning performance. Are
there other schemes whereby a different quantum feature is isolated and simulated
such that it is a significant indicator of learning capability? Despite the limited
scope of our numerical results, this thesis provides a basic recipe to systematically
identify which aspects of quantum models enable them to learn.

51

Bibliography

[1] Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum Algorithm
for Linear Systems of Equations. Physical Review Letters, 103(15):150502, 10
2009.

[2] Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and
factoring. Proceedings - Annual IEEE Symposium on Foundations of Computer
Science, FOCS, pages 124–134, 1994.

[3] Seth Lloyd. Universal Quantum Simulators. Science, 273(5278):1073–1078, 8
1996.

[4] Jonathan Allcock and Shengyu Zhang. Quantum machine learning. National
Science Review, 6(1):26–28, 1 2019.

[5] M. Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C. Benjamin, Suguru
Endo, Keisuke Fujii, Jarrod R. McClean, Kosuke Mitarai, Xiao Yuan, Lukasz
Cincio, and Patrick J. Coles. Variational quantum algorithms. Nature Reviews
Physics 2021 3:9, 3(9):625–644, 8 2021.

[6] Adrián Pérez-Salinas, Alba Cervera-Lierta, Elies Gil-Fuster, and José I. Latorre.
Data re-uploading for a universal quantum classifier. Quantum, 4:226, 2 2020.

[7] Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan
Wiebe, and Seth Lloyd. Quantum machine learning. Nature, 549(7671):195–
202, 9 2017.

[8] Scott Aaronson. Read the fine print. Nature Physics 2015 11:4, 11(4):291–293,
4 2015.

[9] Martin Plesch and Časlav Brukner. Quantum-state preparation with univer-
sal gate decompositions. Physical Review A - Atomic, Molecular, and Optical
Physics, 83(3):032302, 3 2011.

[10] Maria Schuld and Nathan Killoran. Is quantum advantage the right goal for
quantum machine learning? 3 2022.

[11] Daniel Gottesman. The Heisenberg Representation of Quantum Computers. 7
1998.

[12] Barbara M. Terhal and David P. DiVincenzo. Classical simulation of
noninteracting-fermion quantum circuits. Physical Review A, 65(3):032325, 3
2002.

52

[13] Román Orús. Tensor networks for complex quantum systems. Nature Reviews
Physics 2019 1:9, 1(9):538–550, 8 2019.

[14] Richard Jozsa and Akimasa Miyake. Matchgates and classical simulation of
quantum circuits. Proceedings of the Royal Society A: Mathematical, Physical
and Engineering Sciences, 464(2100):3089–3106, 12 2008.

[15] Maria Schuld, Ryan Sweke, and Johannes Jakob Meyer. Effect of data encod-
ing on the expressive power of variational quantum-machine-learning models.
Physical Review A, 103(3):032430, 3 2021.

[16] Michael A. Nielsen and Isaac L. Chuang. Quantum computation and quantum
information. Cambridge University Press, 2010.

[17] David Elieser Deutsch. Quantum computational networks. Proceedings of the
Royal Society of London. A. Mathematical and Physical Sciences, 425(1868):73–
90, 9 1989.

[18] Andrew Chi Chih Yao. Quantum circuit complexity. Annual Symposium on
Foundatons of Computer Science (Proceedings), pages 352–361, 1993.

[19] Scott Aaronson and Lijie Chen. Complexity-Theoretic Foundations of Quantum
Supremacy Experiments. 2016.

[20] Richard Jozsa and Maarten van den Nest. Classical simulation complexity
of extended Clifford circuits. Quantum Information and Computation, 14(7-
8):633–648, 5 2013.

[21] Marcello Benedetti, Erika Lloyd, Stefan Sack, and Mattia Fiorentini. Param-
eterized quantum circuits as machine learning models. Quantum Science and
Technology, 4(4):043001, 11 2019.

[22] Maria Schuld, Alex Bocharov, Krysta Svore, and Nathan Wiebe. Circuit-centric
quantum classifiers. Physical Review A, 101(3), 4 2018.

[23] K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii. Quantum circuit learning.
Physical Review A, 98(3):032309, 9 2018.

[24] Vojtěch Havĺıček, Antonio D. Córcoles, Kristan Temme, Aram W. Harrow,
Abhinav Kandala, Jerry M. Chow, and Jay M. Gambetta. Supervised learning
with quantum-enhanced feature spaces. Nature 2019 567:7747, 567(7747):209–
212, 3 2019.

[25] Sergey Bravyi, Graeme Smith, and John A. Smolin. Trading classical and
quantum computational resources. Physical Review X, 6(2):021043, 6 2016.

[26] https://github.com/MariusvanLaar/MSc-thesis.

[27] Sergey Bravyi, David Gosset, and Ramis Movassagh. Classical algorithms for
quantum mean values. Nature Physics 2021 17:3, 17(3):337–341, 1 2021.

[28] L. G. Valiant. Quantum computers that can be simulated classically in polyno-
mial time. Conference Proceedings of the Annual ACM Symposium on Theory
of Computing, pages 114–123, 2001.

53

[29] Daniel J. Brod and Ernesto F. Galvão. Extending matchgates into universal
quantum computation. Physical Review A - Atomic, Molecular, and Optical
Physics, 84(2):022310, 8 2011.

[30] M. Hebenstreit, R. Jozsa, B. Kraus, and S. Strelchuk. Computational power of
matchgates with supplementary resources. Physical Review A, 102(5):052604,
11 2020.

[31] Richard Jozsa, Barbara Kraus, Akimasa Miyake, and John Watrous. Match-
gate and space-bounded quantum computations are equivalent. Proceedings
of the Royal Society A: Mathematical, Physical and Engineering Sciences,
466(2115):809–830, 3 2010.

[32] Wei Tang, Teague Tomesh, Martin Suchara msuchara, Jeffrey Larson, and Mar-
garet Martonosi. CutQC: Using Small Quantum Computers for Large Quantum
Circuit Evaluations. Proceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems,
2021.

[33] Michael A. Perlin, Zain H. Saleem, Martin Suchara, and James C. Osborn.
Quantum Circuit Cutting with Maximum Likelihood Tomography. npj Quan-
tum Information, 7(1), 5 2020.

[34] Jacob Biamonte and Ville Bergholm. Tensor Networks in a Nutshell. 7 2017.

[35] Xiao Yuan, Jinzhao Sun, Junyu Liu, Qi Zhao, and You Zhou. Quantum Sim-
ulation with Hybrid Tensor Networks. Physical Review Letters, 127(4):040501,
7 2021.

[36] F. Barratt, James Dborin, Matthias Bal, Vid Stojevic, Frank Pollmann, and
A. G. Green. Parallel quantum simulation of large systems on small NISQ
computers. npj Quantum Information 2021 7:1, 7(1):1–7, 5 2021.

[37] Tianyi Peng, Aram W. Harrow, Maris Ozols, and Xiaodi Wu. Simulating Large
Quantum Circuits on a Small Quantum Computer. Physical Review Letters,
125(15):150504, 10 2020.

[38] Keisuke Fujii, Kaoru Mizuta, Hiroshi Ueda, Kosuke Mitarai, Wataru Mizukami,
and Yuya O. Nakagawa. Deep Variational Quantum Eigensolver: A Divide-
And-Conquer Method for Solving a Larger Problem with Smaller Size Quantum
Computers. PRX Quantum, 3(1):010346, 3 2022.

[39] Simon C. Marshall, Casper Gyurik, and Vedran Dunjko. High Dimensional
Quantum Machine Learning With Small Quantum Computers. 3 2022.

[40] Diego Ristè, Marcus P. Da Silva, Colm A. Ryan, Andrew W. Cross, Antonio D.
Córcoles, John A. Smolin, Jay M. Gambetta, Jerry M. Chow, and Blake R.
Johnson. Demonstration of quantum advantage in machine learning. npj Quan-
tum Information 2017 3:1, 3(1):1–5, 4 2017.

[41] Yunchao Liu, Srinivasan Arunachalam, and Kristan Temme. A rigorous and
robust quantum speed-up in supervised machine learning. Nature Physics 2021
17:9, 17(9):1013–1017, 7 2021.

54

[42] Maria Schuld. Supervised quantum machine learning models are kernel meth-
ods. 1 2021.

[43] Amira Abbas, David Sutter, Christa Zoufal, Aurelien Lucchi, Alessio Figalli,
and Stefan Woerner. The power of quantum neural networks. Nature Compu-
tational Science 2021 1:6, 1(6):403–409, 6 2021.

[44] Matthias C. Caro, Elies Gil-Fuster, Johannes Jakob Meyer, Jens Eisert, and
Ryan Sweke. Encoding-dependent generalization bounds for parametrized
quantum circuits. Quantum, 5:582, 11 2021.

[45] Casper Gyurik, Dyon van Vreumingen, and Vedran Dunjko. Structural risk
minimization for quantum linear classifiers. 5 2021.

[46] Evan Peters, João Caldeira, Alan Ho, Stefan Leichenauer, Masoud Mohseni,
Hartmut Neven, Panagiotis Spentzouris, Doug Strain, and Gabriel N. Perdue.
Machine learning of high dimensional data on a noisy quantum processor. npj
Quantum Information, 7(1), 1 2021.

[47] Tobias Haug, Chris N. Self, and M. S. Kim. Large-scale quantum machine
learning. 8 2021.

[48] M. Hebenstreit, R. Jozsa, B. Kraus, S. Strelchuk, and M. Yoganathan. All Pure
Fermionic Non-Gaussian States Are Magic States for Matchgate Computations.
Physical Review Letters, 123(8):080503, 8 2019.

[49] Daniel J. Brod. Efficient classical simulation of matchgate circuits with gener-
alized inputs and measurements. Physical Review A, 93(6):062332, 6 2016.

[50] Sergey Bravyi and Alexei Kitaev. Universal quantum computation with ideal
Clifford gates and noisy ancillas. Physical Review A - Atomic, Molecular, and
Optical Physics, 71(2):022316, 2 2005.

[51] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man Hong Yung, Xiao Qi
Zhou, Peter J. Love, Alán Aspuru-Guzik, and Jeremy L. O’Brien. A variational
eigenvalue solver on a photonic quantum processor. Nature Communications
2014 5:1, 5(1):1–7, 7 2014.

[52] Michael A. Nielsen, Christopher M. Dawson, Jennifer L. Dodd, Alexei Gilchrist,
Duncan Mortimer, Tobias J. Osborne, Michael J. Bremner, Aram W. Harrow,
and Andrew Hines. Quantum dynamics as a physical resource. Physical Review
A, 67(5):052301, 5 2003.

[53] Sofiene Jerbi, Casper Gyurik, Simon C. Marshall, Hans J. Briegel, and Vedran
Dunjko. Parametrized quantum policies for reinforcement learning. 3 2021.

[54] Christa Zoufal, Aurélien Lucchi, and Stefan Woerner. Variational quantum
Boltzmann machines. Quantum Machine Intelligence, 3(1):1–15, 6 2021.

[55] Samuel Yen-Chi Chen, Shinjae Yoo, and Yao-Lung L. Fang. Quantum Long
Short-Term Memory. 9 2020.

55

[56] Junhua Liu, Kwan Hui Lim, Kristin L. Wood, Wei Huang, Chu Guo, and
He Liang Huang. Hybrid quantum-classical convolutional neural networks. Sci-
ence China Physics, Mechanics & Astronomy 2021 64:9, 64(9):1–8, 8 2021.

[57] Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita, Markus
Brink, Jerry M. Chow, and Jay M. Gambetta. Hardware-efficient variational
quantum eigensolver for small molecules and quantum magnets. Nature 2017
549:7671, 549(7671):242–246, 9 2017.

[58] Jean Luc Brylinski and Ranee Brylinski. Universal quantum gates. Mathematics
of Quantum Computation, pages 101–116, 1 2002.

[59] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy
Layer-Wise Training of Deep Networks. Advances in Neural Information Pro-
cessing Systems, 19, 2006.

[60] Jarrod R. McClean, Sergio Boixo, Vadim N. Smelyanskiy, Ryan Babbush, and
Hartmut Neven. Barren plateaus in quantum neural network training land-
scapes. Nature Communications 2018 9:1, 9(1):1–6, 11 2018.

[61] Aram W. Harrow and Richard A. Low. Random Quantum Circuits are Ap-
proximate 2-designs. Communications in Mathematical Physics 2009 291:1,
291(1):257–302, 7 2009.

[62] Gavin E. Crooks. Gradients of parameterized quantum gates using the
parameter-shift rule and gate decomposition. 5 2019.

[63] Street W Mangasarian Olvi Wolberg William. Breast Cancer Wisconsin (Di-
agnostic). UCI Machine Learning Repository, 1995.

[64] Wing S Hutton L Baker K Sigillito V. Ionosphere. UCI Machine Learning
Repository, 1989.

[65] Kurgan Lukasz Goodenday Lucy Cios Krzysztof. SPECTF Heart. UCI Ma-
chine Learning Repository, 2001.

[66] C Alpaydin E. & Kaynak. Optical Recognition of Handwritten Digits. UCI
Machine Learning Repository, 1998.

56

	Introduction
	Preliminaries
	Quantum Computing
	Machine Learning
	Quantum Machine Learning

	Research Questions & Original contributions
	Related Work
	Classical Simulation of quantum systems
	Matchgates
	Notation
	Heisenberg technique
	Wick's simulation
	The SWAP gadget - proof of theorem 5.0.1
	SWAP gate decomposition for Matchgate circuits
	Divide & Heisenberg - proof of theorem 5.0.2
	Divide & Wick - proof of theorem 5.0.3
	Discussion

	Circuit Partitioning

	The power of VQC models in Machine Learning
	Experimental Methods
	Model ansatz
	Optimization procedure & Trainability
	Datasets

	Numerical Results
	Discussion

	Conclusions

