
Automatic Drum Transcription Using

Template-Initialized Variants of Non-negative

Matrix Factorization

Bachelor’s Project Thesis

Júlia Vághy, S3994759, j.vaghy@student.rug.nl,

Supervisors: dr. C.P. Lawrence and prof. dr. H. Jaeger

Abstract: Low-quality acoustic drum datasets limit the applicability of automatic drum tran-
scription (ADT) systems; however, this may be circumvented by template initialization in cases
where the drummer can provide sound samples of their specific drum kit. To explore performance
in these scenarios, the present project assesses the accuracy of different template-initialized non-
negative matrix factorization (NMF) variants on the ADT task in the presence of background
noise. Performance is evaluated for NMFD, the deconvolutional variant with 2-dimensional spec-
trotemporal templates, and NMF, the original variant with 1-dimensional spectral templates.
Three template adaptivity conditions are considered: adaptive, semi-adaptive, and fixed. Further-
more, the effect of additional noise template components is explored. Performance is evaluated
on a synthetic dataset containing 20 drum loops and corresponding instrument samples, each on
four noise conditions: none, mild, loud, and extreme. Initialization templates are derived from
the drum loop’s respective sample sounds on the given noise condition. The results suggest that
adaptive NMFD is best suited for the task with F = 0.83 ± 0.13, 0.83 ± 0.1, 0.74 ± 0.11, and
0.69 ± 0.14, on the four noise conditions, respectively. Additional noise template components do
not lead to significant performance improvement in either of the conditions.

1 Introduction

The present project explores automatic drum tran-
scription (ADT) for drum-only recordings in the
presence of background noise. Such a scenario is
especially relevant for home musicians with acous-
tic drum kits in the context of music production
and music education (Wu et al., 2018).
Firstly, producing a professional drum record-

ing using a non-electronic drum kit requires a stu-
dio room with suitable acoustics and multiple so-
phisticated microphones. ADT has the potential
to circumvent this need by converting the audio
recording from a single microphone into a MIDI
file containing the drum loop. The musician can
then import the MIDI file into their Digital Audio
Workstation (DAW) of choice. Here, they can apply
instruments and effects to produce a professional
drum recording with a natural feel. Secondly, peo-
ple learning to play drums could also benefit. If one
wants to master a given drum loop, ADT can be

used to match what they play against the original
loop and provide real-time performance assessment.

However, the quality of today’s drum transcrip-
tion algorithms is not high enough to be used in
such scenarios. As pointed out by Wu et al. (2018)
and Cartwright & Bello (2018), a major prob-
lem in drum transcription is insufficient datasets
of annotated real-world drum recordings, which
severely limits learning algorithms that require
large amounts of training data.

To overcome the lack of data, variants of the non-
negative matrix factorization (NMF) algorithm can
be initialized with templates derived from the
sounds of the user’s specific drum kit, as suggested
by Battenberg et al. (2012). In application scenar-
ios such as music education and music production,
asking the user to provide samples of each drum
sound before transcription is a viable option.

Most research on NMF for ADT uses generic
templates of bass drum, snare drum, and hi-hat

1

(Cartwright & Bello, 2018). Thus, there is no
conclusion on which NMF variant works best for
a broader range of instruments and in scenarios
where the templates are initialized using the user’s
specific drum kit. Moreover, the effect of back-
ground noise has not been explored. Therefore, the
present project aims to optimize and compare dif-
ferent variants of the NMF algorithm in this sce-
nario.
It is assumed that no instruments other than

drums and noise sources are present in the record-
ing and that drum sounds can be superposed,
i.e., hitting multiple drums simultaneously. Perfor-
mance is evaluated in the presence of different types
and levels of background noise.
The implementation, the results, and the

presentation slides can be found in the GitHub
repository github.com/vaghyjuli/nmf drums,
and the data in the Google Drive folder
drive.google.com/drive/folders/1FK LFWgXNtSg
gJ s1mbPQEojCsYjLf8f.

1.1 State of the art

ADT research can be partitioned into several sub-
fields, as stated by Wu et al. (2018). The most rel-
evant to the present project are Drum Transcrip-
tion of Drum-Only Recordings (DTD) and Drum
Transcription in the Presence of Melodic Instru-
ments (DTM). Drum transcription in the presence
of background noise has not yet been investigated,
despite being highly relevant in the previously men-
tioned application scenarios.
Gillet & Richard (2008) categorize early ADT

algorithms into three classes. Firstly, segment and
classify approaches perform onset detection to seg-
ment the signal into events, then apply pattern
recognition to the events. Secondly, separate and
detect approaches first separate the signal into
streams such that each stream consists only of acti-
vations of a given kit piece, then detect onset candi-
dates in each individual stream. Finally, match and
adapt approaches use drum templates that are it-
eratively matched to events and adapted to the de-
tected occurrences (Gillet & Richard, 2008). Later
on, Paulus & Klapuri (2009) also modeled tempo-
ral connections between events via hidden Markov
models (HMMs), and more recently, the field of
ADT has been shifting towards deep learning so-
lutions.

The most successful approaches include sup-
port vector machines with F-measure F=.83 (Gillet
& Richard, 2004), HMMs with F=.82 (Paulus
& Klapuri, 2009), probabilistic latent component
analysis with F=.7 (Benetos et al., 2014), non-
negative matrix factorization (NMF) with F=.89
(Wu & Lerch, 2015), and neural network-based ap-
proaches, such as convolutional neural networks
with F=.96 (Gajhede et al., 2016) and RNNs with
F=.95 (Southall et al., 2017).

Note that the above algorithms were trained and
evaluated on the same benchmark datasets, which
are limited in a variety of aspects, as explained in
Section 1.2. This suggests that algorithms trained
on the said datasets would not reach the same accu-
racies in real life, especially in the context of music
education and production.

1.2 The data problem

According to Cartwright & Bello (2018), a severe
problem in the field of ADT is that the majority of
research has been limited to bass drum, snare drum,
and hi-hat, as these are the instruments that have
enough coverage in public datasets. The most com-
monly used datasets are the IDMT-SMT-Drums
(Dittmar & Gärtner, 2014) and the ENST (Gillet
& Richard, 2006) datasets. Wu et al. (2018) point
out that in addition to the insufficient instrument
coverage, diversity of playing style is lacking, most
data comes from professional studio recordings with
homogeneous conditions, and due to the limits of
temporal accuracy in human labelling, most tran-
scribed drum loops are overly simple (Wu et al.,
2018).

The insufficiency of datasets is a severe problem
for the applicability of ADT algorithms. For ex-
ample, the lack of playing style diversity may be
a drawback for algorithms incorporating temporal
relations between events such as RNNs or HMMs.
Moreover, algorithms trained and optimized using
drum data recorded in homogeneous studio condi-
tions may exhibit worse performance in different
recording condition, such as a more realistic sce-
nario with background noise. Most importantly, al-
gorithms that need training or generic initialization
data to distinguish drum kit pieces are limited to
the three instruments with sufficient coverage in
the datasets (Wu et al., 2018; Cartwright & Bello,
2018).

2

https://github.com/vaghyjuli/nmf_drums
https://drive.google.com/drive/folders/1FK_LFWgXNtSggJ_s1mbPQEojCsYjLf8f
https://drive.google.com/drive/folders/1FK_LFWgXNtSggJ_s1mbPQEojCsYjLf8f

However, in application scenarios such as music
education and music production, the user can be
asked to provide a sample of each drum sound they
would like to distinguish in a transcription. Such
sound samples can be transformed into templates
to initialize variants of the NMF algorithm (Batten-
berg et al., 2012). NMF with interactive initializa-
tion may therefore have the potential to overcome
the lack of data and create ADT systems with real-
life applicability, which is what the present project
aims to explore.

1.3 Short-time Fourier transforms

Before diving into the formal definition of NMF
and its variants, let us understand the idea behind
short-time Fourier transforms, which gives the basis
of the features used in NMF. The description to
follow is based on Müller (2021), van Netten et al.
(2020), and van Rij (2020).
The analogue acoustic waves created by drum-

ming and background noise sources can be con-
verted to a digital discretized time-domain rep-
resentation by sampling air pressure at equally
spaced points in time via a microphone, yielding
a discrete-time signal x ∈ RL, where L is the num-
ber of sampled sound pressure points. The sampling
frequency Fs, given in Hz, denotes the number of
samples taken each second. As such, a recording of
t seconds yields L = t · 1

Fs

As explained in Appendix B, one of the first steps
of human sound perception is to decompose the
acoustic waveform into its constituent frequencies.
In the digital representation, mapping from time
to frequency domain can be achieved via a discrete
Fourier transform (DFT) with K frequency coeffi-
cients. For a discrete-time signal x ∈ RL, the kth
frequency coefficient y(k) ∈ C for k ∈ [1 : K] of the
discrete Fourier transform (DFT) y ∈ CK is given
by

y(k) =

L∑
l=1

x(l)e−j
2π
L lk, (1.1)

where x(l) is the time domain signal’s value at time
step l ∈ [1 : L]. The DFT can be efficiently com-
puted from the time domain representation using
the fast Fourier transform (FFT) algorithm, popu-
larized by Cooley & Tukey (1965).
However, a pure frequency domain representa-

tion is insufficient for signals whose frequency char-

acteristics change over time, such as a drum record-
ing. Time-frequency representation can be obtained
using a short-time Fourier transform (STFT). The
method takes signal sections of length ν ∈ N and
calculates the DFT of each section using FFT. The
hop size defines the numbers of time frames be-
tween the starting frames of subsequent windows.
It is often defined as ν

2 . The kth spectral coefficient
of the localised DFT starting at time point m is
given by

X(n, k) =
ν−1∑
m=0

x(n+m)e−j
2π
ν mk, (1.2)

for n ∈ [1 : N], k ∈ [1 : K], where ν ∈ N is the
STFT window size, X ∈ CN×K , and x(n+m) ∈ R
is the time domain signal’s value at time step n+m.
The Nyquist limit FNyquist = Fs

2 is the maximal
frequency that can be measured, therefore, the ob-
tained Fourier coefficients will correspond to the
intensities of equally sized frequency bands in the
range [0 : Fs

2].

A magnitude STFT ||X|| ∈ RN×K can be ob-
tained by taking magnitudes of the complex en-
tries in X, and thereby a time-frequency represen-
tation in the real domain is obtained. In addition,
Müller (2021) suggests logarithmically compressing
the magnitude STFT in order to accentuate onsets
with lower striking velocity. As such, entries in the
final matrix representation Y ∈ RK×N are given by

Y(n, k) = log(1 + α||X(n, k)||), (1.3)

for ∀n ∈ [1 : N],∀k ∈ [1 : K], where α ∈ R>0 is
a hyperparameter driving the degree of logarithmic
compression.

There is a critical trade-off when choosing the
window size ν of the STFT. A narrow window leads
to good time resolution; however, it prevents the al-
gorithm from identifying low frequencies and may
create artifacts in the high-frequency range. On the
other hand, a wider window gives poor time reso-
lution and is more computationally expensive but
covers a larger range of frequencies.

The obtained (logarithmically compressed) mag-
nitude STFT can be visually represented as a spec-
trogram, essentially, a heatmap of the entries in
Y ∈ RK×N .

3

1.4 NMF algorithms in ADT

NMF is an originally unsupervised source separa-
tion algorithm aimed at decomposing a signal into
its constituent sources and their respective time-
varying gains. The composite signal is represented
by a non-negative matrix V ∈ RK×N

≥0 , and the
goal of NMF is to rank factorize the matrix V
into two non-negative matrices: a template matrix
W ∈ RK×R

≥0 and an activation matrix H ∈ RR×N
≥0 .

The rank of the factorization R < K,N is pre-
defined and corresponds to the expected number of
sources in the composite signal. After factorization,
each template matrix column W(, r) ∈ RK

≥0 is ex-
pected to contain the template of the rth source
for r ∈ [1 : R], and each activation matrix row
H(r,) ∈ RN

≥0 should contain the activation of the
rth source on N time steps.

1.4.1 NMF features in ADT

For the drum transcription task, this definition nar-
rows down to decomposing the magnitude STFT of
an audio recording of drumming into its constituent
instrumental source templates and their respective
time-varying activations. In its elementary imple-
mentation, NMF is an unsupervised method, how-
ever, in ADT, the template matrix W ∈ RK×R

≥0 is
often initialized with generic drum templates and
is thereby better described as semi-supervised, as
explained in Section 1.4.3.

For the drum transcription task, V ∈ RK×N

is the magnitude STFT derived from the record-
ing using K spectral coefficients and N time win-
dows, as explained in Section 1.3. Then, each en-
try V(k, n) ∈ R represents the intensity of the kth
spectral coefficient for k ∈ [1 : K] in the nth time
window for n ∈ [1 : N]. A spectral band’s intensity
cannot be less than zero, thus, V ∈ RK×N

≥0 .

In the elementary implementation, the rank of
factorization R is defined as the number of drum in-
struments present in the audio recording. Suppose
for now that V represents a drum-only recordings
without background noise. Then, with the ideal
factorization, the template matrix W ∈ RK×R is
expected to contain spectral templates for each
drum sound as column vectors. As such, W(k, r)
denotes the prototype intensity of the rth source for
r ∈ [1 : R] in the kth spectral band for k ∈ [1 : K].
As negative spectral intensities cannot occur in a

magnitude STFT, W ∈ RK×R
≥0 must by nature be

non-negative.
As the audio recording is made up of R sound

sources with varying intensity over time, the orig-
inal time-frequency matrix V ∈ RK×N

≥0 can be
thought of as a superposition of instrument tem-
plate columns W(, r) weighted at each time step
n ∈ [1 : N] by their respective time-dependent
activation. As such, each row H(r,) ∈ RN of the
activation matrix H ∈ RR×N should represent
the rth drum instrument’s activation over the N
time windows of the original time-frequency ma-
trix V ∈ RK×N

≥0 . The activation of a source cannot

be less than zero, thus, H ∈ RR×N
≥0 .

1.4.2 Elementary update rules

NMF algorithms find a template matrix W ∈
RK×R
≥0 and an activation matrix H ∈ RR×N

≥0 via gra-

dient descent, such that V ≈ V̂ = W · H, where V̂
is the low-rank approximation of V. In the elemen-
tary unsupervised implementation of NMF, both
the template matrix W and the activation matrix
H are initialized uniformly or randomly (Müller,
2021).

The standard NMF update rules use the cost
function L defined by Lee & Seung (2000) as

L(V|V̂) =
∑(

V ⊙ log

(
V

V̂

)
− V + V̂

)
, (1.4)

where ⊙ denotes the Hadamard (element-wise)
product, division is also element-wise, and the sum
is computed over all entries of the resulting matrix.

Lee & Seung (2000) suggest that the matrices
W and H are updated iteratively instead of jointly
for the sake of computational efficiency. At a given
gradient descent step, the cost function L exhibits
the steepest decrease from the points H and W
in the direction of the negative gradients −∇L(H)
and −∇L(W), respectively. Therefore, the matrices
should be updated as

H← H− γH∇L(H) (1.5)

W←W − γW∇L(W), (1.6)

where γW and γH are the step size parameters.
However, the update rules in Equations 1.5 and

1.6 may result in negative entries inW and H which
would obstruct correspondence to real source tem-
plates and time-dependent activations. To enforce

4

Figure 1.1: Illustration of non-negative matrix factorization. V̂ = W ·H.

non-negativity without the introduction of addi-
tional constraints Lee & Seung (2000) propose set-
ting the step size parameters γW and γH to

γH :=
H

W⊺WH
(1.7)

γW :=
W

WHH⊺ , (1.8)

which results in the final update rules

W←W ⊙
V
V̂
H⊺

JH⊺ (1.9)

H← H⊙
W⊺ V

V̂

W⊺J
, (1.10)

where ⊙ again denotes the Hadamard (element-
wise) product, division is also element-wise, and
J ∈ RK×N is a matrix of ones. As the initializa-
tion entries of the template matrix W and the acti-
vation matrix H are non-negative, this property is
preserved by the multiplicative update rules.
Multiplicative update rules with a non-

decreasing learning rate may raise questions
about convergence, however, Lee & Seung (2000)
point out that the loss function L is non-increasing
under the update rules.
Additionally, as specified by Müller (2021), one

can impose stop criteria such as stopping at an iter-
ation limit I ∈ N, or if the (element-wise) distance
between two subsequently computed matrices is be-
low some threshold ϵ ∈ R>0.

1.4.3 Initialization

It is important to note, that having accurate in-
formation on the number of sources and the rank

of factorization R is crucial to obtain a mean-
ingful solution. Moreover, there are many differ-
ent factorizations mathematically possible, thus,
given a complex enough drum recording, factoriza-
tion using an uninformed intialization of the tem-
plate matrix W is unlikely to lead to a meaning-
ful solution (Müller, 2021). As a result, the field of
ADT adopted semi-supervised NMF, whereby the
columns of W are initialized with the generic tem-
plates of drum instruments, generally bass drum,
snare drum, and hi-hat (Wu et al., 2018). On the
other hand, Battenberg et al. (2012) suggest a more
flexible solution, initializing with the R sounds of
the specific drum kit used in the recording to be
transcribed, which is what the present project is
concerned with.

As such, R is defined as the number of instru-
ments, and templates are obtained by taking the
average magnitude spectra of isolated drum hit
sound samples, yieldingW(, r) ∈ RK for r ∈ [1 : R],
where K is the number of spectral bands.
Once W is initialized, one option is to run the al-

gorithm as explained before, leaving the algorithm
in its fully adaptive form. Another option is to fix
the template matrix W and only update the acti-
vation matrix H, which defines the fixed variant
(Wu et al., 2018).

1.4.4 Semi-adaptive NMF

To account for the variability of drum sounds and
differences from the generic templates, Dittmar &
Gärtner (2014) proposed the semi-adaptive NMF
(SANMF) method for the DTD task. The method
initially pushes the template matrix W toward the

5

template sounds and allows more deviation as the
iteration limit I ∈ N is approached. The SANMF
update rule for W thereby becomes

W← (1− α) ·W(0) + α ·W ⊙
V
V̂
H⊺

JH⊺ , (1.11)

where α = (i
I)

β , i ∈ [1 : I] is the iteration count,
I ∈ N is the iteration limit, and β ∈ R is a hyper-
parameter governing the rate of divergence from
the initial template matrix W(0) and thereby the
degree of adaptivity. The update rules for H remain
as defined in Equation 1.10.
Let us take a closer look at the hyperparame-

ter β. If β = 0, then α = (k
K)0 = 1 , thus, the

(1 − α) ·W(0) term in Equation 1.11 cancels out,
which makes the update rule equivalent to that of
the adaptive variant, as defined in Equation 1.9. On
the other hand, as β →∞, α→ 0. As such, the sec-
ond term of Equation 1.11 cancels out, resulting in
no updates, which corresponds to the fixed variant.
In essence, the larger the value of the hyperparam-
eter β, the less adaptive the initialized templates
are.
Dittmar & Gärtner (2014) found no significant

difference between the performance of the semi-
adaptive and fixed NMF variants on the DTD task
with initialization using generic templates, and that
the adaptive NMF variant leads to worse perfor-
mance. Regardless, the present task may justify the
use of semi-adaptivity. In particular, since the tem-
plates are mixtures of drum hits and background
noise, it might be beneficial to allow the algorithm
to filter the spectral components of noise in order
to avoid spurious activations.

1.4.5 Partially-fixed NMF

Wu & Lerch (2015) introduced the partially-fixed
NMF (PFNMF) variant for the DTM task. This
form of the algorithm is intended to also pick up the
spectral templates and corresponding activations of
harmonic instrumental components with previously
unknown spectral characteristics. As such, PFNMF
includes Q additional randomly initialised columns

in the template matrix W ∈ RK×(R+Q)
≥0 and cor-

responding rows in the activation matrix H ∈
R(R+Q)×N
≥0 , which are expected to pick up on har-

monic components. The drum template-initialized
columns inW are fixed during gradient descent, the

additional randomly initialized harmonic columns
remain adaptive as defined in Equation 1.9, and
both the randomly initialized harmonic and drum
template-initialized components in H are updated
normally using Equation 1.10.

Additional template components may also prove
to be useful in picking up background noise, in-
stead of harmonic instrumental components as im-
plemented by Wu & Lerch (2015), therefore, this
option is also explored.

1.4.6 NMFD

Non-negative matrix factor deconvolution (NMFD)
is the convolutive variant of the NMF algorithm,
introduced by Smaragdis (2004). NMFD uses the
full spectrotemporal pattern of each drum sound’s
magnitude STFT as templates. The goal is to
model the magnitude spectrogram of the record-
ing V ∈ RK×N using R spectrotemporal patterns
P(, r,) ∈ RK×T , where again, R generally corre-
sponds to the number of drum instruments present
in the recording. As such, the method has the power
to capture more complex time varying characteris-
tics of drum events.

The set of R patterns can be grouped into a pat-
tern tensor P ∈ RK×R×T

≥0 . Patterns with less frames
in their magnitude STFT are zero-padded to have
the same length T as the pattern with maximum
length. Then, the convolutive approximation V̂ of
the original magnitude STFT V of the drum loop
is given by

V̂ =

T−1∑
t=0

P(, , t) ·
t→
H , (1.12)

where P(, , t) refers to the tth time frame in all pat-

terns, and
t→
(.) denotes a frame shift operator, as de-

fined by Smaragdis (2004), shifting a matrix by t
columns to the right. For example,

A =

[
a b c d
e f g h

]
,
2→
A =

[
0 0 a b
0 0 e f

]
. (1.13)

In the same way,
←t

(.) would shift a matrix by t
columns to the left.

Smaragdis (2004) adapted the multiplicative up-
date rules formulated for NMF by Lee & Seung

6

Figure 1.2: Illustration of non-negative matrix factorization deconvolution. V̂ =
∑T−1

t=0 P(, , t) ·
t→
H .

(2000) as

P(, , t)← P(, , t)⊙

V
V̂
·
(

t→
H

)⊺

J ·
(

t→
H

)⊺ (1.14)

H← H⊙
P(, , t)⊺ ·

←t[
V
V̂

]
P(, , t)⊺ · J

, (1.15)

for ∀t ∈ [1 : T], where T is the number of frames in
the template patterns, V ∈ RK×N is the drum loop
recording’s magnitude STFT, V̂ ∈ RK×N is its con-
volutive approximation as defined in Equation 1.12,
H ∈ RR×N

≥0 is the activation matrix, P ∈ RK×R×T
≥0

is the pattern tensor, ⊙ denotes the Hadamard
product, division is element-wise, and J ∈ RK×N

is a matrix of ones.

1.4.7 Conclusion

The following unique features can be extracted
from the previously researched template-initialized
NMF variants in ADT:

• Template dimensionality (NMF, NMFD),

• Adaptivity of template matrix/pattern tensor
(adaptive, semi-adaptive, fixed), and

• Additional (noise) template components.

The present project evaluates all combinations of
the above features on the drum transcription task
in the presence of background noise with specific
template initialization.

2 Methodology

2.1 Data

The goal of data synthesis was to obtain a dataset
simulating the scenario of a home musician initial-
izing the templates with their own drum kit then
recording a drum loop. As such, data is made up
of drum loop recordings, sets of isolated drum hit
recordings of the drum instruments present in each
drum loop, and expected transcription results. The
noising of the data builds on the assumption that
instrument sound samples and drum loops are both
recorded in the same background noise condition.
This entails having the same noise sources, how-
ever, spectral characteristics of a given source may
vary over time.

MIDI samples For an explanation of the MIDI
file format, refer to Appendix C. The drum loop
data builds on MIDI snippets from the Groove
MIDI dataset created by Gillick et al. (2019). The
Groove MIDI dataset contains MIDI drum loops
recorded on electronic drum kits, played by 10 dif-
ferent drummers. Thereby, it covers various playing
styles and genres, such as rock, funk, jazz, latin,
and blues. The striking velocity v varies and is en-
coded in the MIDI information. The present project
uses 20 extracted snippets of two bar length each,
approximately two from each drummer while max-
imizing the number of genres. The key signature
of each snippet is 4

4 with BPM ∈ [59 : 152] with
mean µBPM = 104.9. The extracted snippets con-
tain 731 drum strokes in total with striking velocity
v ∈ [6 : 127] with mean µv = 73.86. The Python
library mido was used to extract annotations for

7

https://mido.readthedocs.io/en/latest/index.html

each drum loop from the corresponding MIDI files,
as explained in Appendix C.

WAV samples Each MIDI snippet was ren-
dered into a WAV file using the Ableton digital
audio workstation’s Core 505, 606, or 707 drum
kits. The number of recordings for each drum kit
is approximately equal, and 11 ± 1 drum sounds
are included from each kit, giving a total of 33
drum sounds in the dataset. Besides the drum
loops, WAV template recordings of isolated drum
hits for each of the 33 instruments were extracted
with Ableton, using striking velocity v = 100. All
WAV samples are mono recordings with sample
rate Fs = 22050 Hz, synthesized with a bit depth of
16 and the triangular dithering settings of Ableton.

Figure 2.1: Logarithmically compressed magni-
tude spectrograms of the airplane, chatter, and
ambient noise audio files on the loud condition,
and their superposition, respectively. The su-
perposition defines the extreme condition.

Noise To simulate realistic recording conditions,
the drum loop and template recordings are super-
posed with noise audio. Three sources of back-
ground noise are used with two loudness condi-
tions, namely mild and loud. The airplane back-
ground noise simulates mechanical noise and has
an almost perfectly time-invariant spectrum. The
chatter noise simulates people talking in the back-
ground, while the ambient noise is mild, melodic
music without percussive components. The chat-
ter and ambient noise conditions have highly time-
variant spectra. Each noise audio file is 90 seconds
long. In addition, an extreme noise condition is
added, which is the superposition of the three noise
types on the loud condition. For reference, a none
noise condition is included which entails no added
noise.

The type (airplane, chatter, ambient) and loud-
ness (none, mild, loud, extreme) is invariant in
a single transcription experiment. As such, before
transcription begins, the drum loop and instrument
templates are noised by superposing their original

recordings with random snippets of the respective
90-second noise audio file.

Each NMF variant is evaluated on all 20 drum
loop recordings in all noise conditions, namely
none, mild airplane, mild chatter, mild ambient,
loud airplane, loud chatter, loud ambient, and ex-
treme. Performance on the mild and loud condi-
tions is averaged over the airplane, chatter, and
ambient conditions.

2.2 Features and template initializa-
tion

The discrete time-domain signal x with a length
of t second is obtained from each WAV file and is
converted to a discrete time-frequency representa-
tion using the librosa’s (McFee et al., 2022) STFT
functionality with window size 512 and hop size
256, yielding X ∈ CK×N , where K = 257 and
N = t · Fs

hop = t · 22050256 . Due to the Nyquist limit of
Fs

2 , the frequency bands cover the frequency range
[0, 11025]. The window size corresponds to 23.2 ms,
and a hop size to 11.6 ms. The latter is ideal be-
cause according to Wu et al. (2018), humans iden-
tify two sounds as separate if they at least are 8-
10 ms apart. A preliminary mock experiment with
window sizes ν ∈ 256, 512, 1024, 2048 and hop sizes
ν
2 also suggested that this option leads to the best
performance.

The complex STFT X ∈ CK×N of each drum
loop recording is further converted to a logarith-
mically compressed magnitude STFT V = log(1 +
α||X||) ∈ RK×N

≥0 with α = 10, as explained in Sec-
tion 1.3. The same feature transformation is ap-
plied to the WAV files of the instrument sample
sounds, yielding logarithmically compressed mag-
nitude STFTs Mr ∈ RK×Tr for each instrument
r ∈ [1 : R] with varying length Tr.

The two-dimensional NMFD templates for a
given from loop are obtained by zero-padding each
instrument template Mr to have length T =
max({Tr for ∀r ∈ [1 : R]}). This yields a set of
templates {Pr ∈ RK×T for ∀r ∈ [1 : R]}, which are
then grouped to form the initialized pattern tensor
P, as explained in Section 1.4.6.

The one-dimensional NMF templates are ob-
tained by averaging the spectral coefficient inten-
sities of each Mr ∈ RK×Tr over the Tr time win-
dows, thereby obtaining a one-dimensional NMF

8

https://librosa.org/doc/latest/index.html

Figure 2.2: Template initialization. a) Waveforms of the sample sounds bassdrum, snare drum, and
open hi-hat, respectively. b) Logarithmically compressed magnitude spectrograms derived from
the waveforms. c) Initialized NMF template matrix (left) and NMFD pattern tensor (right).

template vector wr ∈ RK for each of the r ∈ [1 : R]
instruments. As such, the kth spectral coefficient in
the template vector wr(k) for ∀k ∈ [1 : K] is given
by

wr(k) =

∑Tr

t=1 Mr(k, t)

Tr
.

Then, each column W(, r) ∈ RK of the template
matrix W ∈ RK×R is initialized with wr.

2.3 NMF variants

A preliminary mock experiment showed no signifi-
cant difference between performance using uniform
and random initialization of the activation matrix
H and the additional noise components in the tem-
plate matrix W, thus, uniform initialization was
chosen arbitrarily.
The tested NMF variants are combinations of the

unique features that can be identified in previous
research, as explained in Section 1.4.7. The update
equations are listed below.
As suggested by Müller, 2021, gradient descent

stops at the iteration limit I = 1000 for NMF and

I = 50 for NMFD, or when the maximal element-
wise difference between two subsequently computed
matrices is smaller than ϵ = 0.001. As such,(
max(H′ −H) ≤ ϵ ∧max(W′ −W) ≤ ϵ

)
=⇒ stop

(2.1)
for the NMF variants, and(
max(H′ −H) ≤ ϵ ∧max(P′ − P) ≤ ϵ

)
=⇒ stop

(2.2)
for the NMFD variants.

2.3.1 Update rules

Adaptive NMF
The adaptive NMF implementation builds on the
FMP notebook created by Müller & Zalkow (2019).

W←W ⊙
V
V̂
H⊺

JH⊺ (2.3)

H← H⊙
W⊺ V

V̂

W⊺J
(2.4)

Semi-adaptive NMF

9

https://www.audiolabs-erlangen.de/resources/MIR/FMP/C8/C8S3_NMFbasic.html

W← (1− α) ·W(0) + α ·W ⊙
V
V̂
H⊺

JH⊺ , (2.5)

where α = (i
I)

β , i ∈ [1 : I] is the iteration count,
I ∈ N is the iteration limit I = 1000, and β ∈
[1...6] is a hyper-parameter governing the rate of

divergence from the initial template matrix W(0).

H← H⊙
W⊺ V

V̂

W⊺J
(2.6)

Fixed NMF

H← H⊙
W⊺ V

V̂

W⊺J
(2.7)

Adaptive NMFD
The adaptive NMFD implementation builds on
the NMF Toolbox created by López-Serrano et al.
(2019).

P(, , t)← P(, , t)⊙

V
V̂
·
(

t→
H

)⊺

J ·
(

t→
H

)⊺ (2.8)

H← H⊙
P(, , t)⊺ ·

←t[
V
V̂

]
P(, , t)⊺ · J

(2.9)

Semi-adaptive NMFD

P(, , t)← (1−α)·P(, , t)(0)+α·P(, , t)⊙

V
V̂
·
(

t→
H

)⊺

J ·
(

t→
H

)⊺ ,

(2.10)
where α = (i

I)
β , i ∈ [1 : I] is the iteration count,

I ∈ N is the iteration limit I = 50, and β ∈ [1...6] is
a hyper-parameter governing the rate of divergence
from the initial pattern tensor P(0).

H← H⊙
P(, , t)⊺ ·

←t[
V
V̂

]
P(, , t)⊺ · J

(2.11)

Fixed NMFD

H← H⊙
P(, , t)⊺ ·

←t[
V
V̂

]
P(, , t)⊺ · J

(2.12)

Added template components
The number of added uniformly initialized noise
template components Q was considered in the
range Q ∈ [0, 1, 2, 3, 4, 5]. The noise template
columns in W and patterns in P were intialized
uniformly and were adaptive during gradient de-
scent, while the drum components were adaptive,
semi-adaptive, or fixed, based on the condition eval-
uated in the experiment. The noise activation rows
in H were intialized and updated in the same way
as those corresponding to drum templates.

2.4 Onset detection

After the source separation step, gains in the acti-
vation matrix H were converted to onsets for each
instrument, as explained below.

Figure 2.3: Processing a) a row of the activation
matrix H(r,) for instrument onset detection. b)
Local energy function e. c) Energy-based nov-
elty function ∆e. d) Enhanced novelty function
∆̃e. The grey line denotes the onset threshold
θ, red dots indicate real onsets, and black dots
indicate the set of onsets O labelled by the al-
gorithm.

Let us take the rth row of the activation matrix
H(r,) ∈ RN

≥0, where N is the number time windows
in the recording’s magnitude STFT, and r ∈ [1, R]
is the index of the instrument to which the row’s
activation corresponds. H(r,) can be thought of as
a local energy function e for the respective instru-
ment, from which an energy-based novelty function
is derived, as explained by Müller (2021).

10

https://www.audiolabs-erlangen.de/resources/MIR/NMFtoolbox/

Firstly, the derivative of the energy function is
calculated, which in the discrete case can be defined
as the distance between two subsequent energy val-
ues e(n + 1) − e(n), where n ∈ [1, N] is the time
step. As onset detection is concerned only with in-
creases in energy, half wave rectification is applied,
defined as

||a||≥0 =

{
a, if a ≥ 0

0 if a < 0.
(2.13)

As such, the energy-based novelty function is given
by

∆e(n) = ||e(n+ 1)− e(n)||≥0. (2.14)

Additionally, small fluctuations are suppressed
using a local average function µ, defined as

µ(n) =
1

2M + 1

M∑
m=−M

∆e(n+m), (2.15)

where M ∈ N is the averaging window size. The
present implementation uses M = 3. The local av-
erage is then subtracted from the original novelty
function and the result is half-wave rectified. As
such, an enhanced novelty function ∆̃E is obtained,
where peaks only show if they exceed the novelty
function’s local average (Müller, 2021).

∆̃e = ||∆e(n)− µ(n)||≥0 (2.16)

Finally, a peak picking algorithm is applied to the
enhanced novelty function, which yields a set of on-
set candidates P = {p1, p2, ...}.
It proved to be beneficial to select peaks only be-

yond a certain height due to additional fluctuations
not filtered out by the local average function. Thus,
the final set of onsets O is given by

O =

{
pi if pi >

max(P)

θ
for ∀pi ∈ P

}
, (2.17)

where max(P) is the maximum peak height, and
the onset threshold θ ∈ R>0 can be thought of
as a hyperparameter balancing precision and re-
call. Based on preliminary mock experiments, NMF
variants were implemented using θ = 3, and NMFD
variants using θ = 6.

2.5 Evaluation

According to Wu et al. (2018), precision, recall, and
the F-measure are commonly used for evaluating

the performance of automatic drum transcription
algorithms. The precision shows the ratio of cor-
rectly detected onsets to all detected onsets, the
recall shows the ratio of correctly detected onsets
to all annotated onsets, and the F-measure balances
both concerns. The present analysis focuses on the
F-measure.

Wu et al. (2018) point out that humans iden-
tify two sounds as separate if they at least are 8-
10 ms apart, thus, transcription inaccuracies up to
20 ms are acceptable. However, as human anno-
tated data sets are transcribed less accurately, ADT
performance more often evaluated on wider toler-
ance windows, i.e., 50-100 ms (Wu et al., 2018).
The present project adopts the most common 50
ms window.

The F-measure is defined based on true posi-
tives, false positives, true negatives, and false nega-
tives, however, true negatives are not used in ADT.
True positives (TP) denote detected onsets that
fall within the tolerance window of an annotated
drum event, while false positives (FP) denote de-
tected onsets that do not. As the tolerance win-
dow is quite narrow, it is unlikely that more onsets
would be detected within the tolerance window of
a single annotated event. However, in case this oc-
curs, the closest one will be classified as TP and
others as FP. False negatives (FN) denote an an-
notated drum event with no detected onset within
its tolerance window. Then, the F-measure can be
calculated as

F =
2 · TP

2 · TP + FP + FN
. (2.18)

To assess the performance of a given NMF vari-
ant on a noise condition, the F-measure is com-
puted for each of the 20 drum loops with added
noise, then averaged to obtain an overall perfor-
mance measure. For the mild and loud noise con-
ditions, performance is averaged over the airplane,
chatter, and ambient conditions. As such, four F-
measures are obtained for each variant, one for each
noise condition (none, mild, loud, extreme).

3 Results

3.1 Adaptivity

Recall from Section 1.4.4 that the larger the value
of the hyperparameter β is in Equation 1.11, the

11

less adaptive the initialized templates are. β = 0
corresponds to the adaptive condition, while β →
∞ leads to the fixed condition.

Figure 3.1: Average F-measure of the best per-
forming NMF and NMFD variants: fixed NMF
(blue) and adaptive NMFD (red), respectively,
as a function of noise level. The performance
shown here is without added noise components
(Q = 0).

NMF On the none and mild noise conditions,
NMF variants exhibit a clear tendency towards
better performance as the hyperparameter β in-
creases, as shown in Figure 3.2 and Table D.1. The
fixed variant with F = 0.832± 0.089, 0.79± 0.107,
0.612 ± 0.137, 0.539 ± 0.141, in order of increas-
ing noise level, outperforms the adaptive and semi-
adaptive variants on the none and mild conditions,
however, the semi-adaptive NMF performs slightly
better than the fixed variant in the loud and ex-
treme conditions. The adaptive variant performs
the worst in all noise conditions with F = 0.684 ±
0.101, 0.645 ± 0.147, 0.508 ± 0.121, 0.476 ± 0.095,
in order of increasing noise level.

NMFD does not show large performance vari-
ation as a function of adaptivity, as shown in Fig-
ure 3.2 and Table D.2. The adaptive NMFD variant
with F = 0.833±0.129, 0.833±0.097, 0.744±0.111,
0.691± 0.139, on the four noise conditions in order
of increasing noise level, performs slightly better
than the other NMFD variants in the mild and loud
conditions. On the none condition, the fixed variant
achieves a higher score, namely F = 0.836± 0.109,
and in the extreme condition, the adaptive vari-
ant is slightly outperformed by three semi-adaptive
variants, the maximum being F = 0.701±0.105 with
β = 5, however, these differences seem negligible.

3.2 Template dimensionality

Figure 3.1 shows the average F-measures of the
fixed NMF and the adaptive NMFD variants as a
function of noise level. Even though the two vari-
ants exhibit approximately the same performance
on the none noise condition, F = 0.832± 0.089 for
fixed NMF and 0.833± 0.129 for adaptive NMFD,
their performance diverges significantly with the in-
crease in noise level. Additionally, the worst per-
forming NMFD variants outperform the best per-
forming NMF variants on every noise condition, as
it can be observed in Tables D.1 and D.2.

Figure 3.2: Heatmap of the average F-measures
of NMF (upper) and NMFD (lower) as a func-
tion of the degree of adaptivity and noise level.
β = 0 corresponds to the adaptive condition,
β ∈ [1 : 6] to the semi-adaptive condition, and
the fixed condition (β → ∞) is not included. The
performance shown here is without added noise
components (Q = 0).

3.3 Added template components

As shown in Figure 3.3, the number of added noise
template components Q ∈ [0 : 5] does not lead
to significant performance differences for adaptive
and fixed NMF and NMFD. The same holds for the
semi-adaptive variants, as shown in Figure 3.4.

12

Figure 3.3: Average F-measure of adaptive NMF
(red), adaptive NMFD (green), fixed NMF
(cyan), and fixed NMFD (violet) as a function of
the number of additional template components
Q ∈ [0 : 5]. The noise conditions mild (1), loud
(2), and extreme (3) are shown.

4 Discussion

4.1 Adaptivity

NMF performs best in its fixed form without noise
and with mild noise, and its semi-adaptive form
leads to the best performance on louder conditions.
NMFD performance is not subject to as much vari-
ance as a function of adaptivity, however, its adap-
tive form performs slightly better overall.
Dittmar & Gärtner (2014) found that semi-

adaptivity for NMF did not improve performance
compared to the fixed variant on the DTD task
with generic template initialization. However, ap-
plied to the ADT task with specific template initial-
ization and transcription in the presence of back-
ground noise, semi-adaptivity for NMF appears to
be beneficial on the louder noise levels. The results
are homogeneous in that adaptive NMF performs
worse than the other two variants.
Semi-adaptivity for NMFD has not yet been in-

vestigated, however, it appears to have comparable
performance to the adaptive and fixed variants and
does not lead to a significant improvement.

4.2 Template dimensionality

The complexity of two-dimensional NMFD pat-
terns seems to result in more robustness against
noise, in comparison to one-dimensional NMF tem-
plates. Fixed NMF and adaptive NMFD start at a
comparable performance on the none noise condi-

Figure 3.4: Heatmap of the average F-measures
of semi-adaptive NMF (upper) and NMFD
(lower) as a function of adaptivity (β ∈ [1 : 6])
and the number of additional template compo-
nents Q ∈ [0 : 5]. The noise conditions mild (1),
loud(2), and extreme (3) are shown.

tion with F = 0.832± 0.089 and F = 0.833± 0.129,
respectively. However, fixed NMF performance de-
grades significantly as the noise level increases, to F
= 0.79±0.107, 0.612±0.137, 0.539±0.141. On the
other hand, adaptive NMFD attains the same per-
formance with F = 0.833± 0.097 in the mild noise
condition, and degrades only to F = 0.744± 0.111
and F = 0.691 ± 0.139 on the loud and extreme
conditions, respectively, as shown in Figure 3.1.

Recall that the initialization of templates hap-
pens in the presence of background noise. NMF
template columns are single dimensional and rep-
resent the average spectra of the isolated instru-
ment sample with noise. If a milder drum instru-
ment sample, such as a bass drum hit is superposed
by a noise segment with large spectral magnitudes,
then it may dominate the template and thereby
the computed activation corresponding to the tem-
plate. On the other hand, NMFD patterns are two-
dimensional, also encoding the temporal variation
of drum spectra and the added noise spectra. As the
added noise is less likely to occur in the same spec-
trotemporal form during the drum loop recording,
the adaptive NMFD variant is more likely to filter
it out and thereby converge to the spectrotemporal
patterns corresponding to the actual drum sound.

NMFD is also meant to capture highly time-
variant sounds better than NMF (Wu et al., 2018),
however, the performance of fixed NMF and adap-
tive NMFD are approximately the same on the
none noise condition, therefore, the advantage of

13

NMFD seems to result rather from its robustness
against noise.

4.3 Added template components

Although Wu & Lerch (2015) found that introduc-
ing additional uninitialised template components
led to a robust system for the DTM task, the
number of additional noise template components
Q ∈ [0 : 5] did not appear to make a difference in
the present task. Thus, Q = 0 can be used for the
sake of computational efficiency.

4.4 Limitations

The focus of selecting drum loops for the dataset
was to include a broader range of instruments, gen-
res, and playing styles than it is customary in NMF
research, in order to evaluate the variants in a more
general and realistic scenario. However, the dataset
is quite limited in its size, containing only 20 drum
loops that are being evaluated on each noise con-
dition. Since the present study is exploratory in its
nature, this appears sufficient, however, evaluation
could benefit from a larger dataset. Moreover, a
synthetic dataset only allows for the variation of
striking velocity but not striking position. Strik-
ing position may introduce additional spectrotem-
poral variation, as explained in Appendix B, which
is not accounted for in the present evaluation. Addi-
tionally, the faithfulness of simulating a home mu-
sician’s recording scenario could be enhanced by
adding different types of reverberation conditions
to the dataset.

4.5 Future directions

A truly usable ADT system would require near-
perfect accuracy, however, all of the evaluated NMF
variants failed to produce results that approach this
objective, even in the condition without noise. This
seems to suggest that the way forward in ADT is
not with NMF variants. Given the performance of
neural network-based systems (see Section 1.1) on
the generic datasets, it appears more productive to
focus on creating more sophisticated datasets that
would allow neural network-based systems to gen-
eralize to a wider range of drum instruments and
more realistic recording conditions.

5 Conclusion

The present study explored the performance of dif-
ferent NMF variants in a simulated ADT scenario
of interactive initialization and recording in the
presence of background noise, a setting especially
relevant in music education and music production
with rudimentary equipment. NMF performed best
in its fixed form without noise and with mild noise,
and in its semi-adaptive form with louder condi-
tions. NMFD performance was not subject to as
much variation as a function of adaptivity, how-
ever, its adaptive form performed slightly better
overall. Added noise template components did not
make a significant difference. As for the template
dimensionality, NMFD was clearly better suited for
the task, due to the robustness given by the two-
dimensional templates. As such, adaptive NMFD
without added noise components appears to be
most well-suited for the task with F = 0.833±0.129,
0.833 ± 0.097, 0.744 ± 0.111, 0.691 ± 0.139, on the
four noise conditions in order of increasing noise
level. As this performance is insufficient for real-
life application, a more productive near-future di-
rection for the field of ADT appears to be resolving
the data problem in order to create more general
neural network-based ADT systems.

References

Battenberg, E., Huang, V., & Wessel, D. (2012).
Live drum separation using probabilistic spec-
tral clustering based on the Itakura-Saito diver-
gence. In Proceedings of the AES 45th conference
on time-frequency processing in audio, Helsinki,
Finland.

Benetos, E., Ewert, S., & Weyde, T. (2014). Au-
tomatic transcription of pitched and unpitched
sounds from polyphonic music. In Proceedings
of 2014 IEEE international conference on acous-
tics, speech and signal processing (ICASSP) (pp.
3107–3111).

Cartwright, M., & Bello, J. P. (2018). Increasing
drum transcription vocabulary using data syn-
thesis. In Proceedings of the international con-
ference on digital audio effects (DAFx) (pp. 72–
79).

14

Cooley, J. W., & Tukey, J. W. (1965). An algorithm
for the machine calculation of complex fourier se-
ries. Mathematics of computation, 19 (90), 297–
301.

Dittmar, C., & Gärtner, D. (2014). Real-time
transcription and separation of drum recordings
based on nmf decomposition. In Proceedings of
the international conference on digital audio ef-
fects (DAFx) (pp. 187–194).

Gajhede, N., Beck, O., & Purwins, H. (2016). Con-
volutional neural networks with batch normaliza-
tion for classifying hi-hat, snare, and bass percus-
sion sound samples. In Proceedings of the 2016
audio mostly conference (pp. 111–115).

Gillet, O., & Richard, G. (2004). Automatic
transcription of drum loops. In Proceedings of
2004 IEEE international conference on acous-
tics, speech, and signal processing (Vol. 4, pp.
269–272).

Gillet, O., & Richard, G. (2006). Enst-drums: an
extensive audio-visual database for drum signals
processing. In Proceedings of the international
society for music information retrieval confer-
ence (ISMIR).

Gillet, O., & Richard, G. (2008). Transcription
and separation of drum signals from polyphonic
music. IEEE Transactions on Audio, Speech, and
Language Processing , 16 (3), 529–540.

Gillick, J., Roberts, A., Engel, J., Eck, D., & Bam-
man, D. (2019). Learning to groove with in-
verse sequence transformations. In Proceedings of
the international conference on machine learning
(ICML).

Lee, D., & Seung, H. S. (2000). Algorithms for
non-negative matrix factorization. Advances in
neural information processing systems, 13 .

López-Serrano, P., Dittmar, C., Özer, Y., & Müller,
M. (2019). NMF toolbox: Music processing ap-
plications of nonnegative matrix factorization. In
Proceedings of the international conference on
digital audio effects (DAFx). Birmingham, UK.

McFee, B., Metsai, A., McVicar, M., Balke, S.,
Thomé, C., Raffel, C., . . . Kim, T. (2022, June).
librosa/librosa: 0.9.2. Zenodo. doi: 10.5281/
zenodo.6759664

Müller, M. (2021). Fundamentals of music pro-
cessing: Using Python and Jupyter notebooks.
Springer Nature.

Müller, M., & Zalkow, F. (2019). FMP notebooks:
Educational material for teaching and learning
fundamentals of music processing. In Proceed-
ings of the international conference on music in-
formation retrieval (ISMIR). Delft, The Nether-
lands.

Paulus, J., & Klapuri, A. (2009). Drum sound de-
tection in polyphonic music with hidden markov
models. EURASIP Journal on Audio, Speech,
and Music Processing , 2009 , 1–9.

Smaragdis, P. (2004). Non-negative matrix fac-
tor deconvolution; extraction of multiple sound
sources from monophonic inputs. In Proceedings
of the international conference on independent
component analysis and signal separation (pp.
494–499).

Southall, C., Stables, R., & Hockman, J. (2017).
Automatic drum transcription for polyphonic
recordings using soft attention mechanisms and
convolutional neural networks. International So-
ciety of Music Information Retrieval.

van Netten, S., Maathuis, H., & Visser, J. (2020).
Lecture notes in signals and systems. Faculty of
Science and Engineering, University of Gronin-
gen.

van Rij, J. (2020). Lecture notes in language and
speech technology. Faculty of Science and Engi-
neering, University of Groningen.

Wu, C.-W., Dittmar, C., Southall, C., Vogl, R.,
Widmer, G., Hockman, J., . . . Lerch, A. (2018).
A review of automatic drum transcription.
IEEE/ACM Transactions on Audio, Speech, and
Language Processing , 26 (9), 1457–1483.

Wu, C.-W., & Lerch, A. (2015). Drum transcription
using partially fixed non-negative matrix factor-
ization with template adaptation. In Proceedings
of the international society for music informa-
tion retrieval conference (ISMIR) (pp. 257–263).

15

A Notation

• X = matrix

• x = vector

• X = constant, set

• x = variable

• X(i,) = ith row of matrix X.

• X(, i) = ith column of matrix X.

• X(i, j) = ith element of the jth column of ma-
trix X.

• X⊺ = transpose of matrix X.

• X · Y = dot product of matrices X and Y.

• x(i) = ith element in vector x.

• [1 : X] = integer interval [1, 2, ..., X − 1, X].

B The nature of drum sounds

When a mechanical system is set in motion with
an initial input and allowed to vibrate freely, it vi-
brates at one or more of its natural frequencies,
which depend on the system’s structure, material,
and boundary conditions. If it is not isolated, the
vibrating system gradually gives off its energy to
its environment until vibration damps down com-
pletely.

Vibrating objects generate pressure waves in air.
This is because the object’s motion in one direc-
tion compresses the air directly in front of it, while
its motion in the other direction decompresses the
air. Molecules are always in motion, constantly ex-
changing energy, thereby making such compression
and decompression points propagate through air.
This results in a pressure wave propagating the fre-
quencies of the vibrating body (van Rij, 2020).

When a pressure wave hits the eardrum, forced
vibration occurs; thereby, the eardrum picks up the
vibration, which gets transmitted through other
structures to the fluid in the cochlea. The waves
flowing through the cochlea induce waves in the
basilar membrane. Each part of the basilar mem-
brane has different resonant frequencies; thus, dif-
ferent incoming frequencies lead to resonant be-
havior at different locations. On top of the basilar
membrane, the organ of Corti contains receptors
called hair cells, which pick up the vibrations. If
the amplitude at a given point is large enough -
that is, when resonance occurs - the movement of
the hair cells opens ion channels, which causes the
release of neurotransmitters and the firing of an ac-
tion potential, carrying information of the respec-
tive frequency band. Thereby, the inner ear acts
as a filter bank with bandpass filters, translating
mechanical vibration to electrical impulses corre-
sponding to the vibration’s constituent frequencies.
Corresponding action potentials are finally carried
to the brain through the auditory nerve, where
the time-frequency information can be further pro-
cessed (van Rij, 2020).

The two most essential qualities of sound humans
perceive are pitch and loudness. Higher frequencies
denote higher pitch, while loudness has to do with
the amplitude of pressure waves. Humans can hear
frequencies in the range of 20 to 20,000 Hz, and
can distinguish sounds that are at least 20 ms apart
(Wu et al., 2018).

16

Instruments in a drum kit can be classified
as membranophones, and idiophones. Membra-
nophones consist of an elastic membrane, stretched
over one end of a cylindrical body. Some membra-
nophones have additional components, such as an
additional resonating membrane stretched over the
other end of the body. Or, in case of the snare
drum, wires stretched accross the lower membrane.
On the other hand, idiophones, such as the cymbal
are metallic bodies that vibrate as a whole (Wu et
al., 2018).
So how do humans discern which drum is play-

ing at a given moment? Each drum instrument
has a distinct structure, material, and boundary
conditions, which makes it resonate with certain
characteristic frequencies. For the case of membra-
nophones, the membrane tension and body shape
are especially important. The human brain classi-
fies sounds based on these characteristic frequencies
and their temporal variation. Loudness does not
matter for the classification of a drum sound. Nev-
ertheless, it contributes to a listening experience;
thus, the transcription algorithm should recognize
it in an ideal scenario. This, however, is beyond the
scope of the present project.
According to Wu et al. (2018), there are several

particularities of drum sounds that distinguish au-
tomatic drum transcription from other music in-
formation retrieval problems. Right after the on-
set, drum sounds exhibit an initial transient with
broadband, noise-like spectrum, called attack, fol-
lowed by a slow decay of a few hundred millisec-
onds. While there is little variability in the sound
pattern produced by striking a specific drum, the
attack often has different spectral characteristics
than the decay, and some drums exhibit even more
complex time-varying patterns. Additionally, dif-
ferent striking positions and velocities can intro-
duce some variation, especially if the tightness of
the membrane is not uniform.
Tonal components in drums have an inharmonic

structure, meaning that the overtones depart from
being integer multiples of the fundamental fre-
quency. Thus, many algorithms for pitched instru-
ment transcription, such as fundamental frequency
estimation, are not applicable in ADT (Wu et al.,
2018).

C MIDI

As explained by Müller (2021), beats are the funda-
mental temporal units that Western musical pieces
build on. Beats define the overall duration of notes,
given as a fraction with regard to a whole note 1

B ,
where B ∈ Z>0. A number N ∈ Z>0 ≤ B of beats
are contained in a larger structure called a bar or
measure. The temporal structure of a piece of music
is indicated by the key signature, defined as N

B .

The duration of a beat is defined by the tempo,
indicated in beats per minute (BPM). For instance,
if a beat is defined as a quarter note, that is, 1

B = 1
4

and the tempo is 120 BPM, then, a quarter note
takes 60

120 ·
1
4 = 0.125 seconds.

The MIDI standard encodes music in a digital
format that computers can parse. A MIDI file con-
tains meta-messages that are relevant for parsing
and a list of MIDI messages. If transmitted to an
electronic instrument or applied to a virtual instru-
ment in a DAW, the messages trigger sounds. Note
that MIDI does not carry information about sound
directly; it only encodes performance information,
i.e., with what velocity and pitch, and when given
instruments were played. For the case of drums,
pitch does not play a role. Instead, a drum kit oc-
cupies a single channel in the MIDI file and each
kit piece has a corresponding note.

The MIDI messages m of interest to the present
project indicate the start and end of notes, respec-
tively, accompanied by a note number, a velocity
value, a channel number, and a time value. As such,

type(m) ∈ {”note-on”, ”note-off”}.

In the midi message mi, the note number ni ∈
[0, 127] corresponds to the musical pitches C0 to
G#9 for pitched instruments, while it denotes indi-
vidual drum instruments if the channel represents
a drum kit. The velocity vi ∈ [0, 127] defines the
sound intensity and has different interpretations de-
pending on the instrument. For drum instruments,
it corresponds to the striking velocity of the drum.
The channel number ci ∈ [0, 15] denotes the MIDI
channel assigned to the instrument or kit. The time
value ∆ki ∈ R>0 defines the time of execution,
given in ticks, for message mi relative to mi−1.

To use a MIDI file for performance evaluation, it
must be converted to a set of labels, namely, times-
tamps for each instrument, given in seconds. Given

17

the tick duration D, the absolute time position in
seconds ti of mi can be calculated as

ti = (

i∑
n=0

∆kn) ·D. (C.1)

Thereby, we obtain tuples (mi, ti). For each in-
strument r, onsets are given by ti where note(mi)
= r and type(mi) = ”note-on”.

D Results

Table D.1: Average F-measures for NMF with-
out additional template components (Q=0), as
a function of adaptivity and noise level.

None Mild

Adaptive 0.684± 0.101 0.645± 0.147
Semi β = 1 0.756± 0.112 0.696± 0.125
Semi β = 2 0.757± 0.114 0.713± 0.107
Semi β = 3 0.775± 0.117 0.74± 0.108
Semi β = 4 0.799± 0.12 0.758± 0.113
Semi β = 5 0.813± 0.11 0.774± 0.107
Semi β = 6 0.829± 0.096 0.787± 0.106
Fixed 0.832± 0.089 0.79± 0.107

Loud Extreme

Adaptive 0.508± 0.121 0.476± 0.095
Semi β = 1 0.605± 0.116 0.53± 0.135
Semi β = 2 0.585± 0.128 0.549± 0.128
Semi β = 3 0.619± 0.127 0.548± 0.141
Semi β = 4 0.602± 0.127 0.535± 0.136
Semi β = 5 0.637± 0.133 0.547± 0.162
Semi β = 6 0.619± 0.131 0.537± 0.151
Fixed 0.612± 0.137 0.539± 0.141

Table D.2: Average F-measures for NMFD with-
out additional template components (Q=0), as
a function of adaptivity and noise level.

None Mild

Adaptive 0.833± 0.129 0.833± 0.097
Semi β = 1 0.834± 0.11 0.825± 0.095
Semi β = 2 0.834± 0.11 0.818± 0.097
Semi β = 3 0.835± 0.11 0.822± 0.095
Semi β = 4 0.835± 0.11 0.821± 0.099
Semi β = 5 0.835± 0.11 0.819± 0.101
Semi β = 6 0.835± 0.11 0.817± 0.097
Fixed 0.836± 0.109 0.821± 0.096

Loud Extreme

Adaptive 0.744± 0.111 0.691± 0.139
Semi β = 1 0.724± 0.108 0.696± 0.11
Semi β = 2 0.727± 0.107 0.685± 0.108
Semi β = 3 0.72± 0.102 0.682± 0.122
Semi β = 4 0.732± 0.094 0.676± 0.103
Semi β = 5 0.722± 0.104 0.701± 0.105
Semi β = 6 0.73± 0.107 0.685± 0.111
Fixed 0.725± 0.104 0.683± 0.104

18

	Introduction
	State of the art
	The data problem
	Short-time Fourier transforms
	NMF algorithms in ADT
	NMF features in ADT
	Elementary update rules
	Initialization
	Semi-adaptive NMF
	Partially-fixed NMF
	NMFD
	Conclusion

	Methodology
	Data
	Features and template initialization
	NMF variants
	Update rules

	Onset detection
	Evaluation

	Results
	Adaptivity
	Template dimensionality
	Added template components

	Discussion
	Adaptivity
	Template dimensionality
	Added template components
	Limitations
	Future directions

	Conclusion
	Notation
	The nature of drum sounds
	MIDI
	Results

