
HandTalk: American sign language recognition

by 3D-CNNs

Bachelor’s Project Thesis

Julia Walczynska, s3969436, j.i.walczynska@student.rug.nl,

Supervisors: dr. C.P. Lawrence and prof. dr. H. Jaeger

Abstract: The goal of the project is to build a resource-efficient American sign language clas-
sification model suitable for potential deployment on mobile devices. This task is a particularly
demanding visual recognition problem due to the nature of the sign language and the importance
of each of its five parameters: hand shape, orientation, location, movement, and non-manual ex-
pression. In order to capture all of those properties, videos are used instead of images, therefore
a 3D convolutional neural network needs to be used. On the other hand, such networks tend to
be huge and slow. Recently, attempts to introduce resource-efficient 3D-CNNs have been made.
This research investigates whether the resource-efficient MobileNetV2 architecture inflated to the
3D version by using the 3D filters as described in Kopuklu et al., 2019 is a suitable model for the
video-based sign language classification. The model was trained and tested on the Word-Level
American Sign Language dataset and evaluated using accuracy, precision, recall, and F1-score.
The top-1 and top-5 accuracy are compared to Pose-GRU, Pose-TGCN, VGG-GRU, and I3D.
The model achieved top-1 accuracy of 51.51%, outperforming Pose-GRU and VGG-GRU. Fur-
thermore, the top-5 accuracy was 86.32%, which is higher than achieved by other approaches.

1 Introduction

Sign language is a natural language that is used pre-
dominantly by deaf communities. American Sign
Language (ASL) is one of its most popular vari-
ations, being a first language throughout Anglo-
America and West Africa. It is also considered a lin-
gua franca and, as such, is often learned as a second
language by deaf people worldwide. It is important
to help deaf people by facilitating their everyday
lives. This can be done, for example, by creating
a translator from sign language to English, so that
people not knowing sign language can easily under-
stand deaf ones. However, to allow that to be done,
we need to first create a reliable sign language clas-
sification system.
This is a difficult task due to the complex nature
of sign language. In ASL, most of the signs repre-
sent single words, such as ’cat’. Furthermore, there
are 24 signs representing the letters of the English
alphabet. These are usually used for spelling words
that do not have their own gestures, such as names.
This is called fingerspelling or dactylology. More-

over, the signs can be either static or dynamic. The
first group includes mainly letters and digits, but
there are a few words that are also represented by
static signs, for example, ’pray’. However, the ma-
jority of the words are represented by dynamic ges-
tures.
Furthermore, the phonology of the ASL is complex
as well. The signs may be performed with either
one or two hands. The latter group is further di-
vided into symmetric signs, that is, those where
the same gesture is performed with both hands,
and non-symmetric signs, that is, both hands per-
form a different gesture. Furthermore, each of the
signs has five parameters: hand shape, movement,
palm orientation, location, and non-manual mark-
ers. Even a small difference can completely change
the meaning of the word. For example, the words
’read’ and ’dance’ differ only in the orientation of
hands (see Figure 1.1).
The difference may be even more subtle in the case
of words similar in meaning: when the word ’drink’
is performed using the c-hand shape, it means

1



Figure 1.1: ASL signs for ’read’ (top row) and
’dance’ (bottom row), differing only in hand ori-
entation. Taken from Li et al., 2020.

Figure 1.2: The subtle difference between ’drink
(non-alcoholic beverage)’ and ’drink (liquor)’.
Taken from Cartwright, 2016.

Figure 1.3: One ASL sign representing two dif-
ferent words: ’rice’ (top) and ’soup’ (bottom).
Taken from Li et al., 2020.

drinking something non-alcoholic, while when the
modified c-hand shape with three fingers is used,
it means drinking liquor (see Figure 1.2). Further-
more, multiple words may correspond to the same
sign, such as ’rice’ and ’soup’ (see Figure 1.3) or
even be performed differently by different signers
(see Figure 1.4). All of these characteristics and
subtle differences make sign language classification
a difficult and tricky task, not only in terms of de-
veloping an appropriate model but also in terms of
collecting and annotating datasets.

Figure 1.4: ASL sign for ’scream’ performed dif-
ferently by two signers. Taken from Li et al.,
2020.

1.1 Prior approaches

Many different approaches to sign language classifi-
cation have been studied. Early attempts often re-
quired the use of additional devices, such as sensor
gloves and magnetic trackers. Those were combined
with the use of methods such as rule-based match-
ing (Kadous et al., 1996), artificial neural networks
(Fels & Hinton, 1993) and hidden Markov models
(Liang & Ouhyoung, 1998).
Research on sign language classification has be-
come more popular recently, especially in the area
of visual-based recognition systems. A SqueezeNet
model, for example, achieved an accuracy of 83.29
percent after being trained on over 40 000 im-
ages representing letters of the ASL alphabet (Ka-
sukurthi et al., 2019). Another approach used a
Hough transform combined with a feed-forward
back propagation network. The dataset contained
the images of ASL letters and a few simple, static
signs. An accuracy of 92.3% was achieved with this
method (Munib et al., 2007). Such approaches are
suitable for fingerspelling, which in sign languages
is only used to represent ideas for which there are
no official signs, such as places or names. They may
also be useful in the recognition of static signs,
which rarely appear in ASL. However, it is not scal-
able to word-level sign language as the movement
is very important for almost all signs, and thus, the
model should be trained on videos rather than im-
ages to capture it properly.
In Starner et al., 1998 two cameras were used. The
first one was mounted on the desk and recorded
the signing person from the front. The other camera
was placed on the hat worn by the signing person so

2



that the recorded image was similar to that person’s
perspective. Their recognition system was based on
the hidden Markov model and achieved 92% and
97% accuracy for each camera, respectively, for a
40-word lexicon. The issue with the use of HMM
was defined as extracting view-invariant features
and the use of the homography of hand motions
instead was proposed (Wang et al., 2006). In this
method, each sign is represented by a template se-
quence. It is then broken into small units of 3 con-
secutive frames, such that every unit represents a
tiny hand motion. The system is tested by compar-
ing every three frames of video with template units.
This method proved to be efficient and performed
well. Furthermore, it did not require view-invariant
features nor alignment.
Recently, the use of convolutional neural net-
works has been popularized in the domain of
sign language classification. For example, a cas-
caded model including Single Shot Detector (SSD),
Convolutional Neural Network (CNN), and Long
Short Term Memory (LSTM) was proposed (Rast-
goo et al., 2020). The dataset included 100 000
videos of 100 Persian signs. About 96% accu-
racy was achieved using only SSD, pre-trained
ResNet-50 model, and LSTM. The best system
achieved over 98% and included additional fea-
ture extraction methods. Furthermore, the use of
three-dimensional convolutional neural networks,
cascaded for different viewpoints, was proposed
(Sharma & Kumar, 2021). It scored 96% precision
on the ASL-LVD dataset, which consists of about
3300 ASL words, recorded with four synchronized
cameras showing a side view, a head close-up, a
half-speed high resolution front view, and a full res-
olution front view (Neidle et al., 2012).
The 3D-CNN-based methods achieve high accura-
cies in sign language classification problems. On the
other hand, they are often slow and not suitable for
use in real-time, especially on mobile devices. Re-
cently, five resource-efficient 3D convolutional neu-
ral networks were introduced: 3D-SqueezeNet, 3D-
MobileNetV1, 3D-MobileNetV2, 3D-ShuffleNetV1
and 3D-ShuffleNetV2 (Kopuklu et al., 2019). The
models are based on popular, lightweight 2D-CNNs
often used in mobile applications and inflated to
3D-CNNs versions.

1.2 Outline

This research will focus on investigating the use of
3D-MobileNetV2 for the American Sign Language
classification. The MobileNetV2 model was built
and inflated to 3D-CNN as described in Kopuklu
et al., 2019. It was trained and tested on the Word-
Level American Sign Language Dataset (WLASL),
which is the largest available video dataset for
ASL. The videos had to be first processed in terms
of rescaling and extracting frames. Furthermore,
data augmentation was performed to ensure more
diversity. This is covered in section 2.1 and 2.2.
Section 2.3 describes the architecture of the 3D-
MobileNetV2. The model is trained on 32 consec-
utive video frames of size 112× 112px for over 400
epochs. Then, it is evaluated using metrics such as
accuracy, precision, recall, and F1-score. Further-
more, the top-1 and top-5 accuracy are compared
between this model and other approaches on the
same dataset: Pose-GRU, Pose-TGCN, VGG-GRU,
and I3D.

2 Method

This section begins by introducing a dataset. It
is followed by a brief description of the other ap-
proaches on which it was tested, and the accuracies
achieved by them are presented. The next subsec-
tion covers preprocessing and data augmentation.
Then, the architecture of 3D-MobileNetV2 is de-
scribed in detail, and the most important building
blocks and layers are covered. In the last two sub-
sections, the training setup and the metrics used to
evaluate the model are given.

2.1 Dataset

Li et al., 2020 introduced a Word-Level American
Sign Language Dataset (WLASL). It is one of the
largest publicly available datasets, containing 21
083 videos of 2 000 signs performed by 119 sign-
ers. The length of the videos varies between 0.26
and 8.12 seconds, with an average length of 2.41
seconds. Moreover, the width and height vary be-
tween videos. All the data is collected from educa-
tional websites and YouTube tutorials about ASL.
Due to the limited resources available, as well as
to shorten training time, only a subset of the
WLASL dataset was used. The chosen subset is

3



called WLASL100 and contains over 2 000 videos
belonging to 100 classes and performed by 97 sign-
ers. The dataset is unbalanced, as the number of
samples per class varies between as low as 18 and
as high as 40.
Apart from the videos, the JSON file is provided by
the authors. It contains information such as: video
id, split (training or validation), label, start frame,
and end frame. Furthermore, the Li et al., 2020
tested the dataset on four different methods: Pose-
GRU, Pose-TGCN, VGG-GRU, and I3D. Those
approaches are briefly described below. Further-
more, Table 2.1 shows the top-1 and top-5 accuracy
achieved by each of the models on the WLASL100
subset.

VGG-GRU uses a 2D-CNN model called
VGG16, pre-trained on ImageNet to extract spatial
features. Those features are then fed to a stacked
Gated Recurrent Unit (GRU) network.

Pose-GRU first extracts 13 upper-body key-
points and 21 joints for each hand. Then, 2D coordi-
nates are concatenated and fed to a stacked GRU.
GRU’s role is to model the movement’s temporal
sequential information. The main issue with this
approach is that, for this reason, it may not be able
to fully capture the spatial relationship between key
points. Pose-TGCN was proposed to tackle this is-
sue.

Pose-TGCN similarly to Pose-GRU, utilizes the
body and hand keypoints. However, a novel tempo-
ral graph convolutional network was proposed. This
network was designed to capture both temporal and
spatial features. It shows a significant improvement
over Pose-GRU, achieving 55.43% accuracy, as op-
posed to only 46.51% scored by Pose-GRU.

I3D is the Inception network with the filters
inflated to 3D. It is pre-trained on both ImageNet
and Kinetics-400. Furthermore, the I3D network
uses a two-stream configuration, meaning that
two models are trained: one on RGB frames and
the other one on optical flow. The prediction is
averaged over both of them at test time (Carreira
& Zisserman, 2017).

Table 2.1: Top-1 and top-5 accuracy achieved by
each model on the WLASL-100 subset

top-1 top-5
Pose-GRU 46.51 76.74
Pose-TGCN 55.43 78.68
VGG-GRU 25.97 55.04
I3D 65.89 84.11

Due to the fact that a significant portion of the
videos are not available anymore and only part of
the original dataset could be downloaded using the
code provided by the authors, the dataset used was
downloaded from Kaggle instead (Gazquez, 2022).
It included all the videos from the original WLASL
dataset. The only difference between this and the
original dataset was that the videos were already
resized, which will be further described in section
2.2.

2.2 Data preprocessing and augmen-
tation

All of the videos in the dataset have been resized
to 256px at their longest dimension. Then, it was
padded with the pixel value of 0 in the other di-
mension to form a square video of size 256×256px.
It is different from the implementation of Li et al.,
2020. The original rescaling was performed as fol-
lows: if either the width or the height of the frame
is lower than 226px, the frames are scaled by the
factor s as in the equation 2.1, where w is the width
and h is the height of the frame. When the width or
height exceeds 256px, both dimensions are resized
to 256px.

s = (1 +
226−min(w, h)

min(w, h)
) (2.1)

The custom PyTorch data loader reads the infor-
mation from the JSON file mentioned in section 2.1
and converts it to a dataset. Therefore, the dataset
contains information such as video ID, label, start
frame, and the number of frames. The actual videos
are not loaded beforehand. Instead, the IDs saved
in the dataset correspond to the filenames, and thus
videos are only loaded when they are needed.This
approach saves memory and allows for more vari-
ation in a dataset due to the fact that each time

4



a different portion of the video is loaded. This is
done by randomly choosing a value equal to or big-
ger than the start frame, but lower than the end
frame, minus 32. This value will be the starting
point of the video for the given step. For example,
let’s take the video, which has 73 frames. The start
frame is 0 and the end frame is 72. The starting
frame for the given step of the training is a ran-
domly chosen value between 0 and 72 − 32 = 40.
Let’s say this value is 25. Then, the subsequent 32
frames, starting from frame number 25, are used
during this step of the training. This is only rele-
vant for videos consisting of more than 32 frames
and it assures that the model will be trained on
different portions of the video.
The next step is extracting the frames from the
video, starting from the frame chosen before. There
are 32 frames to be extracted. If the video is shorter
than that, the remaining frames will be padded
with repeated frames, either the first or last one,
chosen with equal probability.
Subsequently, data augmentation is performed.
This is different for training and validation
datasets. During training, a random patch of 112×
112px is cropped first from the video, in the same
location for every frame. Then, the brightness is ad-
justed by randomly choosing a value between -111
and 111. Similarly, the contrast value is adjusted
to be between -31 and 31. Those ranges were cho-
sen by experimenting with the videos present in
the dataset. The same brightness and contrast val-
ues are used across all frames in a video. The last
step in data augmentation is a horizontal flip with a
probability of 0.5. This is necessary as left-handed
people usually perform the non-symmetric signs in
a mirrored way. During the validation phase, only
the center crop is performed; that is, the patch of
size 112 × 112px is cropped from the center of the
video. After the data augmentation, for each frame
of the video, the values of all pixels are normalized
to be between 0 and 1.

2.3 Model

Kopuklu et al., 2019 introduced five resource-
efficient 3D-CNN models: 3D-MobileNetV1, 3D-
MobileNetV2, 3D-ShuffleNetV1, 3D-ShuffleNetV2
and 3D-Squeezenet. All of those models are based
on popular architectures for image classification.
Those architectures are fast and lightweight, which

was the main reason for choosing one of them
for this research. Following a comparison of those
five networks, the 3D-MobileNetV2 was selected
for several reasons. First of all, its 2D version
was specifically tailored for use on mobile devices.
Moreover, it achieved 94.59% accuracy for one
of the largest available hand-gesture datasets
called Jester (Sandler et al., 2018). This result is
comparable to that of the ResNetXT-101 model
(Sandler et al., 2018), which has over 15 times
more parameters. Furthermore, 3D-MobileNetV2
outperformed other resource-efficient 3D-CNN
models with a width multiplier of 1, which is
a scaling parameter further described in sec-
tion 2.3.5. On the other hand, resource-efficient
3D-CNN architectures tend to achieve low ac-
curacy on Kinetics-600 (Sandler et al., 2018),
with 56.84% achieved by 3D-ShuffleNetV1 with a
width multiplier of 2, being the best result, and
3D-MobileNetV2 scoring only 50.65% . The I3D
network used as one of the methods of comparison
for the WLASL dataset achieved 71.70% accuracy
on Kinetics-600 (Carreira et al., 2018). This may
suggest that MobileNetV2 will not be able to
outperform it, but should achieve higher accuracy
than other efficient 3D-CNNs would.
The architecture of this model is based on a 2D-
CNN called MobileNetV2 introduced by Sandler
et al., 2018. Due to the use of videos as an input,
the model was modified by using the 3D kernels,
as described in Kopuklu et al., 2019 to allow the
network to extract spatio-temporal features within
video frames. The code was written in Python and
the PyTorch framework was used. It is based on
an existing, official Torchvision implementation
of MobileNetV2 and the implementation of 3D-
MobileNetV2 by Kopuklu et al., 2019.
In this subsection, I will give the reasoning behind
choosing this architecture, describe the key build-
ing blocks of MobileNetV2 and provide details of
its architecture.

2.3.1 Depthwise separable convolutions

The main layers of MobileNetV2 are depthwise
separable convolutions. They have been used in
MobileNet since its first version, introduced in
Howard et al., 2017, due to the drastic reduction
in the model size and computations needed. This

5



is achieved by replacing standard convolution with
two separate layers: depthwise and pointwise con-
volutions. The main difference is that, in contrast
to standard convolution, which is applied across all
channels at each step, depthwise separable convolu-
tion is applied along one channel at a time and then
combined using pointwise convolution. The depth-
wise layer applies a single kernel of size 3 to each
input channel, leading to the number of input chan-
nels being equal to the number of output channels.
The pointwise convolution is a regular convolution
layer with a kernel of size 1. For example, if we
take the input image of volume 10× 10× 3 (width
× height × number of channels) and apply a stan-
dard convolution with a 33 kernel, the output vol-
ume will be 8× 8× 1. In depthwise separable con-
volution, the depthwise layer first applies 33 on the
same image and outputs 8 × 8 × 3 volume. Then,
the pointwise layer combines information across all
channels and outputs the result of 8×8×1 volume.
For both layers, batch normalization and the rec-
tified linear activation function are applied. The
computational cost of standard convolutions is as
presented in equation 2.2, where CS is the compu-
tational cost,M is the number of input channels, N
is the number of output channels, DK is the kernel
size and DF is the size of the feature map.

CS = DK ·DK ·M ·N ·DF ·DF (2.2)

The depthwise separable convolution’s cost CD is
the sum of the costs of the depthwise and pointwise
convolutions, and it can be expressed as in equation
2.3.

CD = DK ·DK ·M ·DF ·DF +M ·N ·DF ·DF (2.3)

The cost reduction R of using the depthwise sep-
arable convolutions instead of standard convolu-
tions can be calculated by dividing equation 2.3
by equation 2.2, as calculated in equation 2.4.

R =
DK ·DK ·M ·DF ·DF +M ·N ·DF ·DF

DK ·DK ·M ·N ·DF ·DF

=
1

N
+

1

D2
K

(2.4)

Since in 3D-MobileNetV2, 3D kernels are used,

the cost reduction is 1
N + 1

D3
K

as calculated in equa-

tion 2.5.

R =
D3

K ·M ·D3
F +M ·N ·D3

F

D3
K ·M ·N ·D3

F

=
1

N
+

1

D3
K

(2.5)

The MobileNetV2, compared to its previous ver-
sion, introduced two new elements: bottlenecks
between layers and shortcut connections between
those bottlenecks.

2.3.2 Bottleneck residuals

Residual bottleneck blocks were introduced by He
et al., 2016 as a part of the ResNet architecture.
The main idea behind them is to make the num-
ber of parameters and matrix multiplications lower
by stacking three convolution layers. The first and
third layers have a filter size of 1. They are responsi-
ble for reducing the dimensions and restoring them
afterward. The second layer has a filter size of 3,
but its input and output dimensions are lower than
they normally would be due to the use of the other
two layers. The Rectified Linear Unit (ReLu) acti-
vation is used after every layer. Furthermore, the
ratio between the size of the input bottleneck and
its inner size is called the expansion ratio.

2.3.3 Linear bottlenecks

The linear bottlenecks are very similar to the resid-
ual bottlenecks. However, it was found that ReLu
activation discards values lower than 0, which may
result in hurting the performance by destroying too
much information. Therefore, in the linear bottle-
necks used in MobileNetV2, ReLu is used after the
first two layers only. There is no activation func-
tion after the last convolution layer in a bottleneck
block.

2.3.4 Inverted residuals

This block is the modified version of the linear bot-
tleneck and, as such, it is also built from three
stacked convolution layers. As mentioned in pre-
vious sections, in a linear block, the dimensions
are first reduced, then expanded, and then reduced
again. Inverted residuals are called so because those
three operations are inverted. The dimensions are

6



first expanded using the convolution layer with a fil-
ter of size 1. This layer is followed by a depth-wise
convolution with filter size 3. The third layer, with
filter size 1, is responsible for reducing the num-
ber of channels. Then, the input and output can be
added. Inverted residual blocks yield slightly better
results and allow for more memory-efficient imple-
mentation than non-inverted versions. This is due
to the fact that the amount of memory required
is dominated by the size of the smaller bottleneck
tensors instead of larger tensors internal to the bot-
tleneck (Sandler et al., 2018).

2.3.5 Width multiplier

The width multiplier is a parameter α allowing
the uniform scaling of the MobileNet at each layer.
The width multiplier’s default value is alpha = 1.
Changing the value of the parameter to α ∈ (0, 1),
typically 0.25, 0.5, or 0.75, allows the model to be
even smaller and faster by reducing the number
of parameters by roughly α2. For multipliers other
than 1, it is applied to all the convolution layers ex-
cept for the last one. On the other hand, the width
multiplier may be used to increase the size of the
network.

2.3.6 Architecture

The architecture of 3D-MobileNetV2 is shown in
Table 2.2. The first layer is 3D convolution with
32 output channels and a stride of 1 × 2 × 2. It is
followed by 17 inverted residual blocks with either
stride 1 or stride 2, meaning spatiotemporal 2×
downsampling (see Figure 2.1). Each of the inverted
residual bottleneck blocks, except for the first one,
has an expansion factor t = 6. Furthermore, every
block is repeated up to four times, denoted by n in
the table. The network architecture concludes with
convolution with a filter size of one and a stride
size of one, followed by average pooling and a lin-
ear layer with an output size equal to the number
of classes k.

2.4 Training

The model accepts a series of 32 frames, each of
size 112× 112px. The batch size was 8. 70% of the
dataset was used for training, 15% for validation,
and 15% for testing. The model was trained for

Figure 2.1: Difference between 3D-
MobileNetV2 block with stride 1 (left) and
stride 2, meaning spatiotemporal 2× downsam-
pling (right). Based on Kopuklu et al., 2019.

Table 2.2: The architecture of 3D-MobileNetV2
model with expansion factor (t), number of out-
put channels (c), number of times the block is
repeated (n) and stride (s). k denotes the num-
ber of classes. Based on Kopuklu et al., 2019 and
Sandler et al., 2018.

Layer t c n s
Conv3D - 32 1 1× 2× 2
Bottleneck 1 16 1 1× 1× 1
Bottleneck 6 24 2 2× 2× 2
Bottleneck 6 32 3 2× 2× 2
Bottleneck 6 64 4 2× 2× 2
Bottleneck 6 96 3 1× 1× 1
Bottleneck 6 160 3 2× 2× 2
Bottleneck 6 320 1 1× 1× 1
Conv3D - 1280 1 1× 1× 1
AvgPool - - 1 -
Linear - k - -

7



about 400 epochs.
At each step, the cross-entropy loss was calculated
between the input and the target. Furthermore, the
AdamW optimizer was used. It is a version of the
Adam optimizer that implements decoupled weight
decay (Loshchilov & Hutter, 2017). The weight de-
cay was found experimentally, and 0.001 was found
to work the best. All other parameters were left
at their default values. Furthermore, I found the
learning rate of 0.0001 to work the best for this
model. Moreover, the ReduceLROnPlateau learn-
ing rate scheduler was used. If there was no change
in loss observed throughout 10 epochs, it decreased
the learning rate by a factor of 0.1.
For training of the model, the Peregrine HPC clus-
ter of the University of Groningen was used. Specif-
ically, the node with 6 cores @ 2.7 GHz (12 cores
with hyperthreading), 128 GB of memory, and
an Nvidia V100 GPU accelerator card were used.
Training with this setup took about 7 hours. This
was as expected, especially after changes in the
number of frames (32) and video size (112×112px).
The training time in the initial trials, where those
values matched the setup used by Li et al., 2020
(64 frames of size 224× 224px) was about 18 hours
per 100 epochs.

2.5 Evaluation

To evaluate the model, the test set was used. The
main metrics used for the evaluation and further
comparison to other models are top-1 and top-5
accuracy. Top-1 accuracy measures the percentage
of correct predictions over all predictions, as in the
equation 2.6. The top-5 accuracy is similar, but the
prediction is classified as correct when the correct
label is among the best 5 predictions.

accuracy =
correct classifications

all classifications
· 100% (2.6)

Due to the unbalanced dataset, three additional
metrics will be used for the evaluation of the model.
These are: precision, recall, and F1 score. A macro-
average is used for all of those metrics, as it is sensi-
tive to data imbalance. It is computed as the arith-
metic mean of all per-class scores for the given met-
rics.
Precision measures true positives, that is, the num-
ber of correct positive predictions. For each class,

Figure 3.1: Training and validation accuracy of
MobileNetV2 trained on WLASL100 dataset.

it is calculated as in equation 2.7, where TP means
true positive and FP means false positives. Then,
the average of all classes is taken.

precision =
TP

TP + FP
(2.7)

The recall is the number of correct positive predic-
tions over all positive labels in the data. Similarly
to the precision, it is calculated for each class sepa-
rately and then averaged. Equation 2.8 shows how
the recall is calculated for each class.

recall =
TP

TP + FN
(2.8)

The F1 score is a harmonic mean of precision and
recall. It helps to balance those two metrics. In this
case, it is calculated as the average of the F1 scores
for each class. Equation 2.9 shows how the F1 score
is calculated for each class.

F1 = 2 · precision · recall
precision+ recall

(2.9)

Furthermore, the cross-entropy loss for both the
training and validation for each epoch will be plot-
ted.

3 Results

The results of the 3D-MobileNetV2 for WLASL100
are presented in this section. First, the training
and validation accuracy for all epochs is plotted
(see Figure 3.1). Similarly, the loss was also plotted
for both the training and validation for each epoch

8



Figure 3.2: Training and validation loss of Mo-
bileNetV2 trained on WLASL100 dataset.

(see Figure 3.2).
The presented graphs show very little change

in both accuracies during the first 30 epochs.
Furthermore, we can clearly see that the model
tends to underfit during about 130 first epochs.
This happens when the model struggles to fit the
training data. In this case, it is most likely caused
by the amount of data augmentation during the
training, which includes mainly random crop,
horizontal flip with 0.5 probability, and randomly
adjusted brightness and contrast. In contrast, for
the validation step, only a center crop is performed.
This causes the training data to be significantly
harder to predict than the validation data. Over
time, this difference becomes less significant, and
both the accuracies and losses converge. The
training loss then varies between 0.23 and 0.25 for
the rest of the training, and the validation loss
varies between 0.26 and 0.31.
The testing set was used to determine all the other
metrics for the model. The accuracy on the testing
set was 51.64%. Therefore, the MobileNetV2
performed worse than the I3D model trained on
the same dataset by Li et al., 2020. However, it is
worth noting that the I3D model was pre-trained
on both ImageNet and Kinetics. Furthermore, it
is significantly larger than MobileNetV2. It also
employs the two-stream configuration described in
Section 2.1. The action classification model may
significantly benefit from such an approach due to
the fact that optical flow captures the motion.
The model performed slightly worse than Pose-
TGCN, based on extracting body and hand
keypoints and the TGCN network. This model

Figure 3.3: The comparison of top-1 and top-5
performance of Pose-GRU, Pose-TGCN, VGG-
GRU, I3D and MobileNetV2 on WLASL100
dataset.

achieved a top-1 accuracy of 55.43%. On the other
hand, the Pose-GRU is based on a similar idea
but uses GRU instead of TGCN. This model was
outperformed by 3D-MobileNetV2, as it scored
46.51%. The worst performance was demonstrated
by the VGG-GRU, which is a 2D-CNN network
VGG16 combined with GRU. Only 25.94% accu-
racy was achieved by this model.
Surprisingly, the MobileNetV2 outperformed all
other models in terms of top-5 accuracy, achieving
86.62%. This may suggest that the model is overall
learning well, but often faces issues when signs are
similar to each other. It probably fails to recognize
the difference between some of the features of sign
language.
Table 3.1 shows the values of the remaining

metrics. All of them have rather low values. The
precision was calculated to be 54.02%. Therefore,
only 54.02% of the videos classified actually
belonged to the class they were predicted to belong
in. Furthermore, the recall was 43.10%. This is the
percentage of the videos classified correctly over all
of the examples for the class they belong to. The
F1 score, being the harmonic mean of the two, is
only 47.94%.

4 Discussion

Overall, MobileNetV2 outperformed two popular
approaches: 2D-CNN combined with RNN and
a pose-based approach with RNN. Both the

9



Table 3.1: F1 score, precision and recall for
MobileNetV2 model trained on WLASL100
dataset.

Metrics Result
precision 54.02%
recall 43.10%
F1 score 47.94%

Pose-TGCN and I3D models are better than
MobileNetV2. On the other hand, all of the
methods introduced for the WLASL database
are performing worse in terms of top-5 accuracy.
Therefore, as for now, the Convolutional Neural
Networks with 3D kernels yield the best results
for the task of sign language recognition based on
video input.
Figures 3.1 and 3.2 showed that the validation
accuracy was higher than the training accuracy
and the validation loss was lower than the train-
ing loss during the first stages of the training.
However, the values converge, and eventually the
training accuracy exceeds the validation accuracy,
and the training loss becomes lower than the
validation loss. All the values begin to stabilize
after about 150 epochs. The underfitting during
the first phase of the training is most likely caused
by a heavy difference in the data augmentation.
For the training dataset, significantly more data
augmentation is performed: random crop, random
horizontal flip, and randomly adjusted brightness
and contrast. With the validation set only being
cropped in the center, it is undoubtedly much
easier to fit, causing the model to underfit in
the first phase. On the other hand, a lot of data
augmentation ensures that the training data is
more diverse and therefore allows the model to
better learn the relevant features.
The 3D-MobileNetV2 achieved lower testing accu-
racy than the I3D and Pose-TGCN. Unfortunately,
none of those are directly comparable in terms
of architecture. Pose-TGCN utilizes a completely
different method, based on extracting the body
and hand keypoints. I3D is the only architecture
different from 3D-MobileNetV2, which is based
on CNN with 3D filters. On the other hand, it
utilizes a two-stream configuration, where two

I3D networks are trained. One accepts RGB
frames as input, while the other uses optical
flow. The predictions are averaged between the
two networks. Optical flow is the pattern of an
apparent motion between two consecutive frames.
Thus, using such a configuration, the model’s
performance can be improved due to capturing
motion better than when using RGB frames
only. Another notable difference is that the I3D
was pre-trained on both the ImageNet and the
Kinetics-400. Firstly, the 2D-CNN Inception was
trained on ImageNet. Then, the 3D filters were
bootstrapped from the 2D filters, and the network
itself was inflated to use 3D filters. It was then
fine-tuned on Kinetics-400. The authors of the
WLASL dataset used this network to fine-tune
it on their own, sign language dataset. There are
few resources on 3D-MobileNetV2 because it is
still relatively new and not as widely used as I3D.
Therefore, no such method has been used on it yet.
This may be an idea for future research. It would
be interesting to test how much the pretraining
on a classic MobileNetV2 based on 2D kernels can
influence the performance of the 3D-MobileNetV2
of that network. Another idea for future research
would be to check how well 3D-MobileNetV2 deals
with the optical flow and whether it would benefit
from using two streams.
Furthermore, the 3D-MobileNetV2 proved to
achieve high top-5 accuracy, outperforming all of
the other models. This may suggest that it fails
to capture small differences between the signs
and often confuses those that are very similar to
each other. This may be due to another difference
between the used model and the methods utilized
by the authors of the WLASL dataset: the input
size. They used 224 × 224px frames for training.
In my case, the videos were already resized to
256 × 256px. The portion cropped from them and
input to the model was only 112 × 112px. Due to
the limited resources available, it was necessary to
reduce the training time significantly. On the other
hand, this could lead to some details being lost.
Furthermore, due to the size of the data being only
256 × 256px, cropping the random 224 × 224px
patch from it would reduce the number of different
data points for training when compared to the
smaller size of the patch. Moreover, only 32 frames
were used for the training, compared to 64 in
the original study. On the one hand, it reduces

10



the training time due to the smaller input size.
Furthermore, it provides more variability in the
dataset due to the fact that at each step, different,
randomly chosen portions of videos will be used.
On the other hand, it can hurt the performance,
as often only part of the sign is visible. This could
be another reason for the confusion caused by
similar signs. For example, if there is part of the
motion for different signs that is almost the same,
it is possible that the model classified it as one
of them, but in fact, it should be the other one.
Thus, the top-1 accuracy is low, but the correct
prediction was among the top-5, hence the high
top-5 accuracy. With more resources and time
available, it may be interesting to see how the
I3D model would compare to 3D-MobileNetV2
when both are trained with the same training
configurations.
A further issue with the American Sign Language
classification lies in the data itself. Even though
the Word-Level American Sign Language dataset
is one of the largest ones available, it is still very
limited. For most of the classes in the WLASL100
subset, there are only 20 or even fewer samples.
In the whole dataset, there are often fewer than
10 samples per class. To compare, Kinetics-400
has as many as 400 videos per class (Kay et al.,
2017) and its newest version, Kinetics-700, has at
least 600 samples per class (Carreira et al., 2019).
Furthermore, the Jester (hand gesture dataset), on
which 3D-MobileNetV2 achieved an accuracy of
94.59%, consists of 148 092 videos belonging to 27
classes (Materzynska et al., 2019). Moreover, the
WLASL dataset sometimes contains videos of the
compound signs. For example, in the ’book’ class,
there are signs for ’geography book’, ’history book’,
’law book’, ’math book’, etc. While undeniably
all of those means ’book’, each of those videos in
fact contains two signs: ’geography’ and ’book’;
’history’ and ’book’; ’law’ and ’book’, ’math’ and
’book’. Thus, it would be more useful to divide
those videos into two, such that in a ’book’ class
there are only signs meaning exactly the ’book’.
Those compound signs may often confuse the
classifier, as when the video is cropped, it may
only contain one of the signs (so, for example,
’chemistry’ from a ’book’ class, while the full
video would mean ’chemistry book’. Moreover,
there are sometimes a few different signs with the
same meaning. This is also an issue, especially

when considering an already limited number of
samples. All of the issues mentioned above make
the training of the classifier an even harder task.
There is a need for a bigger and cleaner dataset of
American sign language or a model able to learn
to generalize sufficiently well after training on such
limited resources.

5 Conclusion

Recently, convolutional neural networks with 3D
kernels have been gaining more and more interest
from the research community. For example, the
new efficient network called X3D has been intro-
duced (Feichtenhofer, 2020). It is also based on
a 2D-CNN network but expands it in different
dimensions rather than just inflating the kernels.
The basic set of expansion operations includes
X-Fast expanding the temporal activation size;
X-Temporal expanding the temporal size; X-
Spatial expanding the spatial resolution; X-Depth
expanding network depth; X-Width expanding
the channel number; X-Bottleneck expanding the
inner channel width. The smallest version of the
network has only 3.8 M parameters and achieved
76% accuracy on the Kinetics-400 dataset. It
is a great result, especially when compared to
state-of-the-art I3D pre-trained on ImageNet,
achieving only 71.1%. It may be worthwhile to
investigate the X3D network further, and it will
be interesting to see how it performs in such a
difficult task as sign language classification.
To conclude, the 3D-MobileNetV2 requires further
testing to determine whether it is suitable for
sign language classification. It outperformed the
significantly larger I3D architecture in terms of
top-5 accuracy, while it was only slightly worse
in terms of top-1 accuracy. This, together with
the great results on the Jester dataset, may
suggest that 3D-MobileNetV2 is able to capture
the spatio-temporal features of hand gestures
sufficiently well. It would be interesting to see how
it performs when trained on a bigger and cleaner
dataset.
The area of CNN with 3D kernels to be used for
video classification tasks is still fairly new. There
is not much research on it. Furthermore, most of
the current networks are built by inflating the

11



kernels of well-known 2D-CNN architectures, such
as Inception or MobileNet. As for now, there are
not many alternative approaches, nor architectures
tailored specifically for video classification.
Furthermore, the research on sign language clas-
sification in the past has been largely focused on
learning from images. This is not a suitable ap-
proach for something as complex as sign language,
where motion is very important. Furthermore, the
video-based approaches are often tested on small
datasets or only for a limited vocabulary. This is
due to the large dataset not being available. The
other reason is that 3D-CNN, even in its efficient
versions such as 3D-MobileNetV2, is expensive to
train.

The code for this project is available on GitHub:
github.com/JuliaWalczynska/3D-MobileNetV2-ASL

References

Carreira, J., Noland, E., Banki-Horvath, A., Hillier,
C., & Zisserman, A. (2018). A short note about
kinetics-600. arXiv preprint arXiv:1808.01340 .

Carreira, J., Noland, E., Hillier, C., & Zisserman,
A. (2019). A short note on the kinetics-
700 human action dataset. arXiv preprint
arXiv:1907.06987 .

Carreira, J., & Zisserman, A. (2017). Quo vadis,
action recognition? a new model and the kinet-
ics dataset. In proceedings of the ieee conference
on computer vision and pattern recognition (pp.
6299–6308).

Cartwright, B. (2016). Signs that are
close... but not the same - set 1.
https://www.signingsavvy.com/article/173/

Signs+That+Are+Close...+But+Not+the+Same+

-+Set+1.

Feichtenhofer, C. (2020). X3d: Expanding archi-
tectures for efficient video recognition. In Pro-
ceedings of the ieee/cvf conference on computer
vision and pattern recognition (pp. 203–213).

Fels, S. S., & Hinton, G. E. (1993). Glove-talk:
A neural network interface between a data-glove

and a speech synthesizer. IEEE transactions on
Neural Networks, 4 (1), 2–8.

Gazquez. (2022). Wlasl (world
level american sign language) videos.
https://www.kaggle.com/datasets/gazquez/

wlasl-processed. (Version 2)

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep
residual learning for image recognition. In Pro-
ceedings of the ieee conference on computer vi-
sion and pattern recognition (pp. 770–778).

Howard, A. G., Zhu, M., Chen, B., Kalenichenko,
D., Wang, W., Weyand, T., . . . Adam, H. (2017).
Mobilenets: Efficient convolutional neural net-
works for mobile vision applications. arXiv
preprint arXiv:1704.04861 .

Kadous, M. W., et al. (1996). Machine recognition
of auslan signs using powergloves: Towards large-
lexicon recognition of sign language. In Proceed-
ings of the workshop on the integration of gesture
in language and speech (Vol. 165, pp. 165–174).

Kasukurthi, N., Rokad, B., Bidani, S., Dennisan,
D., et al. (2019). American sign language al-
phabet recognition using deep learning. arXiv
preprint arXiv:1905.05487 .

Kay, W., Carreira, J., Simonyan, K., Zhang, B.,
Hillier, C., Vijayanarasimhan, S., . . . others
(2017). The kinetics human action video dataset.
arXiv preprint arXiv:1705.06950 .

Kopuklu, O., Kose, N., Gunduz, A., & Rigoll, G.
(2019). Resource efficient 3d convolutional neural
networks. In Proceedings of the ieee/cvf interna-
tional conference on computer vision workshops
(pp. 0–0).

Li, D., Rodriguez, C., Yu, X., & Li, H. (2020).
Word-level deep sign language recognition from
video: A new large-scale dataset and methods
comparison. In Proceedings of the ieee/cvf win-
ter conference on applications of computer vision
(pp. 1459–1469).

Liang, R.-H., & Ouhyoung, M. (1998). A real-
time continuous gesture recognition system for
sign language. In Proceedings third ieee interna-
tional conference on automatic face and gesture
recognition (pp. 558–567).

12



Loshchilov, I., & Hutter, F. (2017). Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101 .

Materzynska, J., Berger, G., Bax, I., & Memisevic,
R. (2019). The jester dataset: A large-scale video
dataset of human gestures. In Proceedings of the
ieee/cvf international conference on computer vi-
sion workshops (pp. 0–0).

Munib, Q., Habeeb, M., Takruri, B., & Al-Malik,
H. A. (2007). American sign language (asl) recog-
nition based on hough transform and neural net-
works. Expert systems with Applications, 32 (1),
24–37.

Neidle, C., Thangali, A., & Sclaroff, S. (2012).
Challenges in development of the american sign
language lexicon video dataset (asllvd) corpus. In
5th workshop on the representation and process-
ing of sign languages: interactions between cor-
pus and lexicon, lrec.

Rastgoo, R., Kiani, K., & Escalera, S. (2020).
Video-based isolated hand sign language recog-
nition using a deep cascaded model. Multimedia
Tools and Applications, 79 (31), 22965–22987.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A.,
& Chen, L.-C. (2018). Mobilenetv2: Inverted
residuals and linear bottlenecks. In Proceedings
of the ieee conference on computer vision and
pattern recognition (pp. 4510–4520).

Sharma, S., & Kumar, K. (2021). Asl-3dcnn: Amer-
ican sign language recognition technique using
3-d convolutional neural networks. Multimedia
Tools and Applications, 80 (17), 26319–26331.

Starner, T., Weaver, J., & Pentland, A. (1998).
Real-time american sign language recognition us-
ing desk and wearable computer based video.
IEEE Transactions on pattern analysis and ma-
chine intelligence, 20 (12), 1371–1375.

Wang, Q., Chen, X., Wang, C., & Gao, W. (2006).
Sign language recognition from homography. In
2006 ieee international conference on multimedia
and expo (pp. 429–432).

13


