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Abstract

Most state-of-the-art object recognition systems make use of a multi-view recognition ap-
proach. In most approaches, viewpoints are selected from predefined viewpoint setups, like
orthographic, orbit, or hemisphere setups. The ability to have a more informed way of select-
ing viewpoints could potentially improve the performance of an object recognition system. For
robotic systems, it has the additional benefit of travel reduction, because only the most informa-
tive viewpoints are visited. This viewpoint optimization problem is called the Next-Best-View
(NBV) problem. Previous studies have shown that 2D shape measures such as view entropy and
view area are suitable measures for determining the goodness of a view in the context of ob-
ject recognition. We therefore propose a next-best-view selection model based on the predicted
depth-entropy of views in the neighborhood of the current viewpoint. The input for the model is
the point cloud of the object, taken from the current view. The output is a three-by-five depth-
entropy map of neighboring views. We define depth-entropy as Shannon’s entropy taken from
the depth image of the corresponding view. Local extrema in the depth-entropy map determine
the next-best-view. The backbone of our method is based on the PointNet model. In this the-
sis, we compare our model with various viewpoint selection methods. We have shown that our
approach increases the classification performance and decreases the distance traveled between
viewpoints compared to the baselines. Furthermore, experimental results showed that our model
generalizes well when tested on unseen object classes.
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1 Introduction
Present-day robotic systems use various sensors to perceive information about their environment.
The information perceived by the sensors is used to do multiple tasks such as observing the envi-
ronment and manipulating objects. Good information about the object is critical for accomplishing
such a task, but not every view of a scene or object holds the same amount of information. There-
fore, moving sensors in the environment can potentially increase the quantity and quality of the
information. Optimizing this ’information gain’ through different locations of the sensors is called
the next-best-view (NBV) problem. The next-best-view problem is defined as finding the next-best
sensor placement, which increases the total information gain for two consecutive sensor placements.
The sensor placement can be considered as the view of the object from the robot’s perspective. The
NBV is constrained by the robot’s working area and the cost of moving the sensors or objects rela-
tive to the sensors. For most robots, it is time-consuming to move sensors. Thus, in most definitions
of the next-best-view problem, this is included.

The definition of the information gain differs between system applications and tasks. Direct
information gain can be defined as the confidence in the success of the system’s task, such as the
confidence in the predicted class for a recognition task. Indirect information gain can be defined by
maximizing a feature extracted from a view, such as depth-entropy, Kullback–Leibler divergence,
mesh quality and many other measures. This definition assumes maximizing the feature’s value will
increase the task’s performance. Additionally, different types of sensors are suitable for different
measures.

In this thesis, we propose a solution to solve the next-best-view problem for object recognition.
We define the information gain in terms of the entropy of a depth image. The depth-entropy of an
image can be considered as a proxy for measuring the amount of information that can be observed
from a viewpoint. Entropy measures are used in many other solutions to predict the best viewpoint
or the next-best-viewpoint. Next to the indication from other research that depth-entropy can be used
as the definition of information gain, we extensively test and validate this hypothesis by comparing
it with several different methods, which we consider as baselines. Our solution consists of a model
which estimates the depth-entropy of neighbouring views given a point cloud, and the depth-entropy
value is used to choose the next-best-viewpoint. Additionally, we propose a model that directly
predicts the classification confidence score of neighbouring views and the next-best-view given these
scores.

The remainder of this thesis is organized as follows. Chapter 2 covers the theoretical background
needed to understand the methods and techniques used in our proposed solution. In Chapter 3 related
work about determining the goodness of a view and the next-best-view problem is explained. The
methodology is explained in Chapter 4 and the setup of the experiments are covered in Chapter 5.
Chapter 6 covers the results. In Chapter 7 we state our conclusions drawn from the results. Chapter
8 ends the report with a discussion about our results and we propose some ideas for future work.
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1.1 Research Questions
1. Is it possible to develop a learning algorithm which can predict the goodness of neighbouring

views?

1.1 Which measure is best suited for determining the goodness of a view?

2. Does the extension of the developed NBV selection method improve the classification perfor-
mance and decrease the travel distance compared to existing NBV selection methods?

3. How well does the NBV selection model perform when tested on unseen data?
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2 Theoretical Background
This section provides the necessary background information to understand the topics related to solv-
ing the next-best-view problem and determining the goodness of a view.

2.1 Object Representation
2.1.1 Mesh

A mesh represents a 3D object in vertices, edges and faces. A mesh can have different forms in
terms of the number of edges that form a face. In a triangular mesh, every face has three edges
and three vertices. Most mesh files consist of the location of each vertex in x,y, and z coordinates,
followed by the faces, which are represented as the index of the vertices.

2.1.2 Point cloud

Most point clouds are defined as a set of 3D points {Pi|i = 1, ...,n} where every point Pi is a vector
representing the x, y, and z location of the point and possibly other information about the point such
as color or surface normal. Depth and lidar sensors can create point clouds for real-life objects by
measuring distances from the sensor to the object. In a simulated environment, point clouds can be
extracted from meshes or other volume-based data through point sampling.

2.1.3 Voxel grid

A voxel is the 3D form of a pixel, thus representing a cubic cell instead of a square cell. In most
cases, a voxel grid has a size of n×n×n, making it a cube. But other rectangular configurations are
possible as well. The most basic form of a voxel grid consists of an ordered grid where each cell
holds a zero or a one. A one indicates the object’s presence in that cell, and a zero represents empty
space. It is possible to let other vector features be represented in the voxel, like the color of the
mesh surface. Then the voxel has a value of (r,g,b); other vectors like surface normal or gray-scale
value are other examples of voxel representations. A 3D occupancy grid is a special type of voxel
grid where a voxel is set as occupied, empty, or unknown. The latter is mainly helpful for the partial
representation of an object.

2.2 Classification
2.2.1 Neural networks

Neural networks are the main building blocks for solving most classification and regression problems
using machine learning. Basic neural networks consist of weights and neurons. The weights are
multiplied by the input values and go into neurons, which are activated if the input reaches a certain
threshold, called the activation function. The task of machine learning is learning such weights that
the difference between the correct output and the predicted out is the lowest. We call this difference

10



the loss, which can be calculated with different loss functions. Neural networks can be very ’deep’
and consist of multiple layers, with numerous neurons in each layer. Several special neural network
layers exist, like residual, sparse, and convolution layers. Convolution layers are broadly used in
multi-dimensions data like images and voxel grids. The following section will go over the definition
of a Convolutional Neural Network.

2.2.2 Convolutional neural networks

A Convolutional Neural Network (CNN) is helpful for multi-dimensional data because of the sparse
connection between the inputs and the weights in a layer compared to a fully connected neural
network (FCNN). A convolutional layer has a kernel, which in the case of an image is an n by m grid
of weights; in many models, n = m. The kernel ’slides’ over the images and accumulates the output of
the n by m operations. One of the main benefits of CNNs is that we can easily use several channels,
meaning we use multiple kernels representing different input features. Furthermore, CNN’s are
cheap in terms of memory and computation time compared to fully connected neural networks.

2.2.3 Loss functions

Cross-entropy The cross-entropy loss function predicts the loss between the predicted and ex-
pected class probability. In the case of object classification, the probability is represented as the
probability that the respective object belongs to a particular class. In classification, the actual class
probability is a vector with the length of the total number of classes, where the correct class is rep-
resented by one and the rest by zero. The cross-entropy can be considered the maximum likelihood
loss in this case.

Mean squared error The mean squared error function takes the average of the sum of the squared
difference between the predicted and ground truth data. Mathematically this is represented by the
following formula:

MSE =
1
n

n

∑
i=0

(Yi− Ŷi)
2 (1)

where n represents the number of classes, Yi represents the ground truth value, and Ŷi represents the
predicted value.

PointNet loss The loss function used in training the PointNet model consists of the combination of
three loss values. The first loss function calculates the loss between the predicted and ground truth.
The type of loss function depends on the output of the model. The original paper from Qi et al. [1]
uses the cross-entropy loss for classification. The two other losses work as regularization and use
the 3×3 matrix and 64×64 matrix from the input and feature transform, respectively (see figure 2).
The loss is calculated by subtracting the product of the normalized matrix and its transposed matrix
from the identity matrix. The mathematical definition is as follows:

Lreg = In−M ·MT (2)
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where n is 3 or 64, defining the size of the matrix. The two losses are calculated and added to the
cross entropy loss with a multiplication factor of 0.0001. This definition of the loss follows the work
of a Pytorch implementation for the PointNet model. 1

2.2.4 Optimizers

Adam The Adam [2] optimizer is a widely used optimizer for classification and regression prob-
lems. One of the key aspects of the Adam algorithm is the use of moments for updating the moving
averages of the gradient. For more details, we refer to the paper of Kingma and Ba [2], because it
does not lie in the scope of this report to explain the algorithm thoroughly.

2.2.5 Regularization

Batch Normalization Batch normalization is a technique used for regularization and has proven
to reduce training time drastically [3] because the learning rate can be increased while keeping the
same performance. It is a reasonably simple but effective technique; it normalizes the output of each
instance in the batch over the whole batch.

Drop-out Layers Drop-out layers are another widely used technique for regularization. The algo-
rithm works by randomly ignoring neurons (dropping them) during training. This has the effect that
other neurons need to compensate for this non-existent behavior of the dropped neuron, and thus the
network becomes more robust.

2.3 Object Recognition
We define object recognition as categorizing an object into a predefined object class. There are
several methods for object recognition, mainly depending on the input data type. We separate the
approaches into three categories based on the input data, view-based, point-based and volume-based
methods. View-based methods try to find distinct features for the classes based on 2D images of
the object. Volume-based and point-based data try to do this by using spatial information about
the object, such as depth data in the form of a mesh, voxel grid or a point cloud. Voxel grids are
considered a structured form of data compared to a point cloud because the spatial location of the
voxel grid is discrete, whereas point clouds are in a continuous space.

2.3.1 View-based

View-based approaches use 2D images of an object as input for a recognition model. This approach
is widely used in all fields of visual recognition. The most common approaches use Convolution
Neural Networks (CNNs) as in the ResNet [4] and VGG models [5]. Multi-view recognition is a
form of view-based object recognition where multiple views are used to predict the class. This ap-
proach is only useful when the sensor can take multiple images from different views of the object.

1https://www.kaggle.com/code/balraj98/pointnet-for-3d-object-classification-pytorch/notebook
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RotationNet [6] uses such an approach and is one of the best-performing models for object recog-
nition. The downside of RotationNet is that it instantly assumes a number of views available from
around the object. Furthermore, the locations of these views are predefined.

2.3.2 Point-based

Most point-based object recognition approaches use hand-crafted features. A pre-defined function
maps a point in R3 to a feature in Rn, which can and ideally should contain all the local and global
information about the point. Note that the function can also map from Rn to Rm in the case of
additional feature vectors per point. The biggest challenge with point-based approaches is that a raw
point cloud is an unordered set of points. Thus, creating a general model for a point cloud is much
harder compared to an ordered set of points, like a voxel grid. Additionally, with real-time data,
the point cloud’s size is variable, which makes it harder to create a general model. But, compared
to voxel grids, point-based methods do not lose spatial information. More information is present in
less data, in theory this should improve a model. Nonetheless, point-based methods are not used as
extensively as voxel-based methods because of the computational complexity.

2.3.3 Volume-based

Most volume-based approaches use volume-based data in the form of a voxel grid. A voxel grid
can be considered as the 3D form of an image. Thus, it is not surprising a lot of voxel-based object
recognition techniques use similar methods to view-based techniques. One of the most popular
approaches uses 3D-CNNs. These special types of CNN have kernels in R3 instead of R2.

2.4 Grasp Synthesis
Grasp synthesis is the task of finding possible positions for a gripper to grasp an object successfully.
Manipulating objects is one of the keys task of most robotic arms, the way of grasping an object
is one of the critical aspects of successfully manipulating the object. It is a very challenging task
because of the wide variety of object shapes and possible surface areas to grasp in different environ-
ments. Furthermore, a viable grasp option has several physical constraints to consider. The size of
the gripper determines the potential area of the object that it can grasp, if it is at all possible. The
available surface area of the object, meaning the areas with free space around the object determines
the orientation from which the object can be grasped. This includes the space and orientation the
gripper can move to and the orientation of the object. This available free space is why many grasp
synthesis approaches constrain their solution to only produce grasps from the top since there is al-
most always free space. From these constraints, we can conclude that the orientation from which
to get the best information can be critical and that the next-best-view problem is also applicable to
grasp synthesis.
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2.5 Pose Estimation
We define pose estimation as finding the orientation of an object or sensor. The pose of a sensor is
relatively straightforward; it is the position in which all the actuators are in their zero position. For
objects, the orientation is harder to define, because it differs for every object. There is no general
rule which defines the front of an object.

2.6 Next Best Viewpoint Selection
Viewpoint selection is the task of selecting a viewpoint in an environment, that is best suited for
a specific task. The premise of viewpoint selection is that the whole environment is known be-
fore doing the actions or that it is possible to move the sensor to another location relative to the
environment. We define a system where the sensors can move as an active vision system. The next-
best-view problem applies to both scenarios, with the difference that it solves a different task. In
active vision, the goal is to reduce sensor movement while keeping high task performance. There is
no sensor movement with static vision, so the goal is to reduce the number of data points (views)
while keeping the task performance high. Sensor movement and data-point reduction are essential
in most robotic systems to reduce the time for task completion.

Before choosing the best or next-best viewpoint, the goodness of a view needs to be determined.
The goodness of a view is determined by the task and is not trivial. The optimal goodness of a view
is the performance of the view for a specific task. The only problem with this definition is the cost
of determining this performance. If we want to compare the goodness views in this way, the views
have to go through the system and move to the view. The goal of reducing data points and camera
movement is then lost. Therefore, determining the goodness of a view needs to be done using less
costly performance measures. Optimally, these measures should be chosen or predicted without
observing or fully observing the respective view to reduce the movement of the sensor. Concluding,
we define viewpoint selection as selecting the best or next-best viewpoint for a specific task while
reducing the movement of the sensor, the number of data points, and computational power to find
the goodness of a view.

2.7 ModelNet
There are two ModelNet datasets [7], ModelNet40 and Modelnet10. Modelnet40 is a 3D object
dataset with CAD files with 40 different object classes, totaling 12431 CAD models. A smaller
subset of ModelNet40 with ten object classes is called ModelNet10. It consists of the object classes
which are considered as most popular. Furthermore, the dataset has a benchmark leader-board 2

recording the performance of more than 60 object recognition models on both datasets. The 3D
models are available in the Object File Format (OFF) and are represented as triangle meshes.

2https://modelnet.cs.princeton.edu/
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3 Related Work

3.1 Multi-View Object Recognition
Multi-view object recognition based methods are currently state-of-the-art in object recognition. The
state-of-the-art in multi-view object recognition is RotationNet [6], it is also the leader on the Mod-
elNet benchmark leaderboard. RotationNet is a multi-view approach that simultaneously predicts
an object’s pose and class. The method works so well that it has a 97.37% accuracy on the test set
of ModelNet40 and a 98.46% accuracy on ModelNet10. The biggest downside of the ModelNet is
that a lot of hypotheses need to be tested. If there are 40 possible views, and you want to use three
views for prediction, you need 120 runs of the model to make the prediction.

Su et al. [8] proposed a solution for object recognition using a multi-view approach with a
view-pooling layer. Several views go into a CNN model based on VGG-m [5] to create a feature
vector. The feature vector of all the views goes into a maximum view pooling layer to create one
feature. This feature goes into a second CNN and ends with a softmax layer which predicts the class
probabilities. This is called the Multi-View CNN or MVCNN. The performance is not at the top of
the leader-board, but the paper inspired a lot of other research to pursue this type of model [9, 10].

DeepPano is a model created by shi et al. [11] which uses a panoramic 2D view of an object
as input to the model. The model is rotation invariant because of its row-wise max-pooling layer.
The proposed model is not multi-view based because it uses one panoramic input image. But the
panoramic image can be seen as a concatenation of multiple images into one, making it multi-view.
The network consists of multiple CNN layers, a row-wise max-pooling layer, two fully connected
layers, and a softmax at the end.

One of the key points we can get out of this section is that most state-of-the-art approaches use
some CNN, where most of them use a pre-trained version of either VGG [5], AlexNet [12], ResNet
[4] or models which are based on them. VGG and Alexnet were one of the first very deep CNNs
with a good performance on the ImageNet dataset [13]. The ResNet model uses residual layers
and is even deeper than VGG and Alexnet but less complex in some configurations. A residual
connection in a neural network means a connection between the output of a layer and a layer further
in the network, where at least one layer is skipped. He et al. [4] proposed five different forms of
the ResNet model with respectively, 18, 34, 50, 101 and 156 layers. The ResNet model consists of
one 7x7 convolution layer, multiple 3x3 convolution layers with 64, 128, 256, and 512 kernels, an
average pooling, max pooling, fully connected, and a softmax layer. Every two layers between the
pooling layers have a residual connection. The number of layers for each kernel size depends on
the total number of layers. Figure 1 shows the architecture of ResNet18. The first two layers have a
stride of two, as have the first layers for each time the kernel size goes up.

3.2 Point-Based Object Recognition
Point-based object recognition is a less used technique than image-based recognition because of the
limited availability of datasets. But, the number of point cloud and mesh datasets is increasing. One
of the main challenges of point-based object recognition is creating an object representation that can
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Figure 1: ResNet18 Architecture

be used for recognition. One of the most notable approaches to solving this problem is the PointNet
model of Qi et al.[1]. The input for the model is a point cloud of N× 3, where N is the number
of points in the point cloud. Each point goes through the model consisting of fully connected, 1-
D convolution, and matrix multiplication layers. The output of the central part of the model is an
N×1024 vector which goes through a max-pooling layer to create a global feature (See Figure 2).
For object recognition, the global feature goes into an FCNN with K outputs to predict K classes.
In the original paper, the model also does part and semantic segmentation with a slightly different
network but is not relevant for this project.

Figure 2: PointNet classification model [1].

After the first publication of the model, there have been several improvements. PointNet++
[14] tries to capture local structures in the point cloud by a hierarchical neural network and performs
better than the original model. Ahmed et al. [15] created the Edge-Aware PointNet, using techniques
to find the edges of objects in combination with predicting the class of the objects.
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3.3 Volume-Based Object Recognition
The state-of-the-art in volume-based approaches uses voxel grids as input for their model. Wu et al.
[7] proposed a volume-based method that uses a 3D convolutional deep belief network, transforming
a 2.5D image into a voxel grid as input for the model. Furthermore, they proposed a system to select
the next-best viewpoint, which can be used to improve the reconstruction and recognition of an
object. Most notably, they created the benchmark dataset named ModelNet, which is used in many
state-of-the-art 3D object recognition models.

The VoxNet model [16] uses an occupancy grid as input for the model. VoxNet uses a reasonable
simple 3D CNN, with a max pooling layer, fully connected layer, and softmax layer. They are most
notable for using Lidar sensor data and other depth data, on which they perform reasonably well.

The FusionNet model is one of the best performing models on the ModelNet datasets that use
voxel grids as inputs. It uses a combination of two 3D-CNNs and one 2D-CNN and thus is not a
complete volume-based technique.

Field-Probing Neural Networks (FPNN) [17] are a form of NNs which use a voxel grid as input.
The network does not go over the entire grid but learns only to use the most informative points. It
does so by using probing filters. They use 1024 filters which all have eight probing points. The
initialization of the filters is done by spreading out the input locations of the points. The second
layer in the network is a Gaussian layer which acts as the weight for the selected points. The most
significant benefit of this solution is that the complexity stays the same, even if the voxel grid size
increases, without necessarily losing information.

3.4 Shape Measures
The first step in next-best-view selection is determining the goodness of a view for the specific task.
The most obvious choice for assessing the goodness of a view is the actual performance of a view
for a particular task, such as classification performance. The downside of this method is that it
is too computationally expensive in most cases, and more importantly, it does not generalize very
well. Using such a measure for a specific task will probably only work for the particular task and
dataset. Therefore it would be better to find a more general measure for the goodness of a view.
Dutagaci et al. [18], Polonsky et al. [19] and Secord et al. [20] have done research in which they use
human subjects to select the best viewpoints to specify the goodness of a chosen view and compare
these choices with several computational measures which determine the goodness of a view. In
the following section, different 2D shape measures proposed by the three papers are presented.
The section is divided into five sub-sections based on the type of information of the object; area,
silhouette, depth, curvature, and semantic information.

3.4.1 Area Measures

Entropy The entropy of a view should give the amount of information in that view, determined
by the amount of uncertainty or differences in a random variable. The most common definition of
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entropy for images is Shannon’s entropy, and is mathematically defined as:

H(X) =−
n

∑
i=1

pi log(pi) (3)

where pi is the probability of the pixel value occurring in the stream of pixel values, the image X .
It differs between research as to how the entropy is calculated exactly. There are mainly differences
in how the probability is calculated. In Dutagaci et al. [18] the probability is calculated as the
ratio between a projected triangle’s area and the view’s total projected area. This assumes we have
knowledge about the mesh of the 3D object. Most research use some ratio between local properties
(triangles, pixels, faces) and the total projected area.

View Area The view area or projected area is the area of the object visible from a specific view.
This can be represented as the projected area, such as the number of non-background pixels in an
image, the number of points extracted from a point cloud, or the mesh area visible from a viewpoint.

Ratio of Visible Area The ratio of visible area [18], surface visibility [18] or visibility ratio [19]
measures the ratio between the visible area of the viewpoint and the total area of the object. As with
the view or projected area, the visible area is determined by the number of non-background pixels
or the actual area of the object seen from the view.

3.4.2 Silhouette measures

Silhouette length The length of the silhouette can be calculated by edge detection of the view, the
length of the edges combined is the silhouette length.

Curvature entropy Curvature entropy is the entropy over the curvature distribution of the visible
surface of the object. In Dutagaci et al. [18] the measure is calculated by the ratio of the mean
curvature and the curvature between vertices. They do not specify how they calculate the curvature.
In Polonsky et al. [19] the estimated curvature at a vertex is defined by the standard angle-deficit
approximation, given by:

C(v) =
2π−∑i θi

3∑i Ai
(4)

where θi is the sum of apex angles from triangles coincident with vertex v, and Ai is the sum of areas
of the triangles coincident with v.

Silhouette entropy The silhouette entropy is similar to the curvature entropy but calculates the
entropy with the outer edges of the visible area, the silhouette.
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3.4.3 Depth measures

Depth distribution The depth distribution [20] is calculated by creating a histogram of depth
values taken at each pixel of the view. The measure is defined by:

D(X) = 1−
∫

H(z)2dz (5)

where H(z) is the normalized histogram of the depth z of the view X per pixel. The measure becomes
small when most points are at the same depth and is maximum when all points are at a different
depth.

Maximum depth The maximum depth method in Secord et al. [20] tries to find the view with the
maximum projected area and the maximum depth in a view.

3.4.4 Surface curvature measures

The mean curvature and Gaussian curvature [20] are both measures to calculate the amount of
curvature in the mesh. For more details about these kinds of measure we refer to the paper by Secord
et al. [20].

Mesh saliency The mesh saliency [18] [20] [18] is based on the local curvature of the surface of
an object. It is constructed by the mean curvature at different levels of the mesh. The saliency score
is the sum of the saliency values at each visible vertex from the respective view. The method was
first proposed by Ha Lee et al. [21] and is used in other research to find visually interesting regions
in a mesh object.

3.4.5 Semantic measures

Semantic measures are measures that prefer seeing some predefined part of the object. In Secord
et al. [20] they tested three of these methods, above preference, eyes, and base. Above preference
prefers views taken from above. The eyes method likes views from which eyes are visible, and
the base method tries to avoid the base of the object, which is the bottom for most objects. These
methods are only feasible if we have a lot of information about the object. The methods are very
specific and can only be used for particular objects and use cases.

3.5 Next-Best-View selection
Best viewpoint selection and next-best-view selection are considered problems for many different
tasks, the thing they have in common is that they use 3D object data. Examples of different tasks are
thumbnail generation, 3D scene generation, surgery planning and view-based 3D object recognition.
The different tasks also have different best viewpoints, making it very hard to create a general solu-
tion for the next-best-view problem. In both Secord et al [20] and [18] the entropy method is in the
top of their proposed viewpoint selection methods and can be considered as a good general measure
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to determine the goodness of a view.
The methods described in Section 3.4.1 do not test the viewpoint selection for classification or

any other task. They only formalize general measures, which can determine the next-best or best
viewpoints. Since this report proposes a solution for next-best-view selection for 3D object recogni-
tion, we also looked at other work concerning either next-best or best viewpoint selection. Leifman
et al. [22] proposed a different hand-crafted feature approach for next best viewpoint selection using
a model which first determines the regions of interest on the surface of an object, and then chooses
the next best viewpoint. The regions of interest are selected by finding dissimilarities in vertices of
the object, the dissimilarities are defined by a vertex descriptor based on various local descriptors.

Parrissoto et al. [23] proposed a model which predicts the depth-entropy of 60 views around a
3D object, which results in an entropy map of 12 by 5. The local-entropy peaks are chosen from this
map as the best viewpoints and used in a classification model. The model does not test on next-best-
viewpoint selection but tests best viewpoint selection for classification.

Ding et al. [24] developed a training algorithm consisting of a linear regression model trained
to predict the surface complexity. They define the surface complexity by fusing the three view de-
scriptors, variance, information entropy, and Vollath. The higher the predicted value, the better the
viewpoint.

Shui et al. [25] proposed a system that uses the calculated viewpoint entropy from 42 views
around the object, the 14 viewpoints with the highest entropy are chosen as the best viewpoints.
This solution is not optimal because it assumes information about all the viewpoints is available.

Some approaches do not use any predefined measure to predict the next-best-view. Mendoza et
al. [26] propose a 3D-CNN from which they predict the next-best-view from a set of 14 possible
viewpoints. The goal of the next-best-view selection model is to go to the viewpoint which can
reconstruct the image as best as possible compared to the already constructed part of the object. Mc-
Greavy et al. [27] propose a solution for next-best-view planning for object recognition in cluttered
environments. Their model consists of two stages; environment analysis and model analysis. The
environment analysis determines the possible viewpoints the sensor can reach without visually oc-
cluding the to-be-evaluated object with another object. The model analysis determines the possible
viewpoints from which the unexplored area of the object becomes visible. They do so by comparing
the visible part of the object to the actual 3D model of the object.

Note that many models use some shape descriptor based on the 2D views of the object. Addi-
tionally, measures like information entropy and view area are recurring measures in many models
and are considered suitable measures to determine the amount of information in an image.

20



4 Methods
This project aims to find a solution for the next-best-view problem by determining the goodness of
a view for neighboring viewpoints. We propose a solution that tries to maximize the information
gain by choosing the next-best-view according to the predicted depth-entropy of the neighboring
views. To predict the depth-entropy, we propose a model based on PointNet [1] which predicts a
local-depth-entropy map with the current view in the center.

Figure 3 shows the pipeline of the model including the classification and next-best-view selec-
tion. The pipeline starts with an initial random view chosen from the 40 possible viewpoints. The 2D
RGB image of this view goes into the ResNet classification model, and the value of the output vector
with the highest confidence score is compared to a threshold. If the threshold is reached, we con-
sider the class which belongs to this confidence score as the predicted object class. If it is lower, the
point cloud of the respective view serves as input for the PointNet model. A fully connected neural
network predicts the local-depth-entropy map from the PointNet feature. The local-depth-entropy
map’s highest peak and lowest valley are extracted and used for the NBV selection. Depending on
the object, the peak or valley is considered the next-best-view. The 2D image of this view serves as
input for the ResNet classification model. The output of the ResNet model is added to the previously
predicted features. The accumulated feature goes into a softmax layer and outputs the confidence
scores. This continues until either the threshold for the confidence score is reached or if a total
number of five viewpoints are explored. Next to the prediction of the local-depth-entropy map, we
also trained a model which predicts the local classification performance map.

In the remainder of this chapter, we will explain in more detail which methods, techniques, and
models are used to create and test the pipeline for NBV selection for classification, shown in Figure
3. In the first section, we explain which dataset is used and how we generated 2D images, depth
images, and point clouds. Section 4.2 covers the proposed local map prediction model for both
depth-entropy and classification performance. In section 4.3 we introduce the object-recognition
model.

Figure 3: Pipeline for the next-best-view selection model for classification
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4.1 Dataset
We choose to use the ModelNet dataset for training and testing our models. The large number of
annotated 3D objects makes it easy to render 2D images, depth images, and generate point clouds.
Furthermore, the ModelNet datasets are used extensively for object recognition; thus, we can easily
compare our results. For ModelNet40 and 10, a few objects are left out due to broken files. The total
number of object instances for ModelNet is 12313 and 4905 for ModelNet10. Figure 4 shows the
distribution of objects per class in the ModelNet40 dataset. The number of objects is not very evenly
distributed throughout the dataset. The classes in ModelNet10 are better distributed, but there is also
still a significant difference in the number of objects per class (see Appendix 19)

Figure 4: The number of objects for each class in the ModelNet40 dataset

4.1.1 Viewpoint distribution

We have chosen to use a fixed set of views around the objects to consider as viewpoints for the object
recognition task. On both ModelNet10 and 40, we used two approaches regarding the number of
viewpoints. The first approach renders 12 views around the object in a uni-directional manner at an
angle of 45 degrees (Figure 5, left). Note that the 12 views approach is only used as preliminary
testing for the classification model to reduce training time. The second approach generates views at
40 positions regularly distributed from the middle to the top of the object (right image in Figure 5). A
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spherical coordinate system is used with five different values for the polar angle and eight different
values for the azimuthal angle regularly distributed around the object. We refer to Appendix A.4
for more details about the coordinate frame. This creates five rings at different heights with eight
views evenly spaced around the object. With this setup, we assume the object is always in an upright
position. We choose 40 views, so we have enough views to create enough local maps with different
views and still make sure the views are not too similar.

Figure 5: Viewpoint distribution pattern with 12 views (left) and 40 views (right)

4.1.2 Data processing

The 2D views, depth maps and partial point clouds are all created with the help of the open3d library
[28]. The models are loaded in as meshes and the location of the vertices are normalized to [-1,1].
The 2D image, depth map and partial point cloud at each viewpoint position around the object are
generated creating three datasets with a test and train set. The test-train split is 20-80 as is the default
for the ModelNet dataset.

2D images The 2D images are rendered and saved as 224× 224 pixels images, with rgb values
between 0 and 255. We save each view by their polar and azimuthal angles. In the maps we also
refer to the viewpoints by their index in the set of views, starting at 0,0 moving sideways and starting
again at the row above (see Appendix A.5 for the schematic). The number of data-points per dataset
are shown in Table 1.

Depth-entropy map The depth-entropy is calculated from the depth map, and the depth map is a
224× 224 grayscale image. Pixels with a value of zero are pixels where no object is present. For
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ModelNet10 ModelNet40
12 views 58,850 147,756
40 views 196,200 492,440

Table 1: Number of 2D images per dataset

every view around the object, Shannon’s entropy is calculated as defined in equation 3. The depth-
entropy is zero if all the pixels are at the same depth and increases if the number of different depth
values increases. If a depth image has a lot of pixels where an object is present (values above zero),
the depth-entropy is higher than an image with a higher number of zero pixel values. Meaning that
if more of the object is visible from a certain view, the depth-entropy is higher than if less of the
object is visible. The entropy gives the average information or uncertainty of a random variable, in
our case, the depth values of the pixels. The depth-entropy values are normalized for every object
so the values range between zero and one (see Figure 6). The viewpoint with a value of one has the
highest depth-entropy, and the viewpoint with a value of zero has the lowest depth-entropy.

Figure 6: Extracting of the local-depth-entropy map from view (0,54)

To create the local-depth-entropy map for every view, the full map is shifted such that the current
view is located in the second column of the map. The local-depth-entropy map is extracted from this
representation by taking the three-by-five matrix from the full depth-entropy map with the second
column as the center, see Figure 6.

Partial point clouds The partial point clouds are generated with the built-in function of Open3D
library. It creates a point cloud with the zero-zero point in the middle of the object. The function
uniformly samples 1024 points from the mesh, resulting in a vector of 3× 1024. Additionally, the
point clouds are normalized between zero and one to have the same scale for the input and output
for the PointNet model.
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4.2 Viewpoint Selection
4.2.1 Local-depth-entropy Map Prediction

The Local-depth-Entropy Map (LEM) prediction model aims to create a three-by-five depth-entropy
map of the neighbouring views from one viewpoint. The three columns represent the angle around
the object (azimuthal angle) and the rows represent the polar angles. (see Figure 7).

Figure 7: Normalized depth-entropy map of chair 938 from the (0, 54) viewpoint (highlighted in
blue).

The model is based on PointNet [1] (Figure 2), the input is a 1024×3 point cloud and outputs a
vector of 15 values, which represents the three-by-five depth-entropy map. The network only differs
from the original PointNet model in the last layers. The last fully connected layer has an output of
length 15 and uses the Relu activation function.
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4.2.2 Local classification Performance Map

The Local Classification performance Map (LCM) is also a three-by-five map, but this map consists
of the predicted classification confidence scores for every view. The first step in obtaining these
maps is using all the images from the test and train dataset separately as input for the trained ResNet
model. For every view, the confidence score and prediction are saved. Only the maps of the objects
which are classified correctly for at least one view are included in the dataset. Furthermore, the
confidence score is set to zero if the class is mispredicted. This decreases the training dataset to
202640 instances and the test dataset to 97120 instances for ModelNet40. But this is still enough to
train the model properly. Furthermore, the ratio of train/test is now about 0.68/0.32. We decided
not to swap more test instances to train instances for consistency between all the datasets in terms
of which objects belong to which set.

4.2.3 Next-Best-View selection

We use the peak local max function from the scikit-image package to find peaks in the local maps.
The function uses a maximum filter of three by three. The filter convolves over the map and sets
the value of each viewpoint as the highest value within the bounds of the filter. The new map is
compared to the original map, and the values of the points that are equal in both maps, and are not
direct neighbors of each other, are considered local peaks. If two peaks are too close, the highest
peak is chosen. In our method, we choose the highest peak as the next-best-view if it is not already
explored. If it is already explored, we select the next highest peak. If there is no peak, the view with
the next highest depth-entropy value is chosen as NBV. For some objects, we choose to find the local

Figure 8: Peak selection method
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valley in the map. This method works the same as peak selection, but only it tries to find the lowest
local values in the map.

4.3 Object Classification
4.3.1 Resnet

We used the ResNet object classification model to test our viewpoint selection model. Resnet is state-
of-the-art in view-based object recognition and image-based recognition in general. Furthermore,
pre-trained models are available for multiple packages and different programming languages, and
much open-source code is available. The model’s architecture is the same as the original one, as
explained in Section 3.1. An RGB image of 224×224 serves as input for the model, and the output
is a n×1 vector of the probability that the object belongs to a class. Where n is 10 or 40, depending
on the number of classes in the dataset.

4.4 Multi-View
In the next-best-view and classification pipeline (3) the ResNet model is used as a multi-view object
recognition approach. If multiple views are explored, the feature vectors of size n are accumulated
before they go into the softmax layer. The index of the value with the highest score after the softmax
layer is considered the predicted class.
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5 Experiments
All training is done on the RUG’s High-Performance Cluster (HPC). We used the NVIDIA V100
GPU with a virtualized Intel Xeon Gold 6150 @ 2.70GHz CPU. The models are created, trained,
and tested with the help of Pytorch 1.7.0 and Torchvision 0.8.1, in combination with several other
packages. The models are tested locally on an NVIDIA GeForce GTX 1050 GPU with an Intel Core
I7 @ 2.8GHz CPU. For more details about the code, we refer to the Github page of the project 3.

5.1 Classification
The experiments aim to train and test a ResNet model that can be used in the NBV pipeline. High
performance is not of the greatest concern for this model since we are not trying to optimize the
object recognition network but rather optimize the network’s input through an NBV model. Thus
we do only a minimal fine-tuning of the hyper-parameters for this network.

Training As a proof of concept and to tune some parameters, we trained a ResNet18 network
on the ModelNet10 dataset with 12 views and a batch size of 32. To test if the batch size makes
a difference during training, we trained the ResNet18 model on ModelNet10 with 40 views and a
batch size of 4, 8, 16, 32, and 64. A batch size of 32 has a slightly better performance than the rest of
the models; thus, this batch size iwas chosen for further training of the networks. With a batch size
of 32, ModelNet10 with 40 views is trained with all the five possible ResNet architectures. We did
this to see if a bigger ResNet model would improve the performance. To decrease training time we
did the same for ModelNet40, but with 12 views. Both tests determined that ResNet34 performed
best, and thus ResNet34 with a batch size of 32 was trained on ModelNet40 with 40 views. During
training, batch normalization is done after every convolutional layer as a regularization. The Adam
optimizer is used in combination with the cross entropy loss function. The learning rate was set to
0.001 and halves every fifth epoch.

5.2 Point Correspondence
The number of points that correspond between each view is calculated to determine the right size
for the local maps. This so-called point correspondence is visualized for each view in a point cor-
respondence map. The first step in calculating the correspondence map is determining which points
from the whole point cloud of an object are visible from every view for every object. For every view,
it is determined which points are the same in every other view. This leads to a five-by-eight map for
every view. Figure 9 shows an example of the point correspondence map of the view at 18 degrees
polar and a 90 degrees azimuthal angle. The maps are normalized such that the view with the lowest
correspondence is zero and the view with the highest correspondence is one, which is the evaluated
view.

3https://github.com/koenbuiten/PointNetNBV
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Figure 9: The point correspondence map of view 18, 90 (polar, azimuthal)

5.3 Next-Best-View Selection
These experiments aim to train an NBV selection network and compare it to existing baselines.
Due to a limited amount of time, only hyper-parameter tuning for the learning rate and scheduler is
done with some preliminary testing. The other parameters are defined by the parameters used in the
original paper [1].

Training After some preliminary tests, a batch size of 16 is chosen for training the PointNet net-
work. The learning rate is set at 0.001 with a decay factor of 0.1 every 5th epoch. The Adam
optimizer and the loss function described in section 2.2.3 are used to train the model. In total, four
different networks are trained, local-depth-entropy prediction and local performance prediction on
the ModelNet10 and ModelNet40 with 40 views.

Testing As a preliminary test for viewpoint selection, we tested the classification model with four
viewpoint selection methods based on the highest depth-entropy, lowest depth-entropy, random, and
best possible viewpoints. This is done on the ResNet34 model trained on ModelNet40, so all the
classes are included. The test is done by selecting the five best views according to the viewpoint-
selection method and using those as input for the classification model. The goal of these tests is to
have an indication about the performance of our NBV model before training and testing the actual
NBV model. Furthermore, we want to know which classes react better to selecting the highest
or lowest depth-entropy. The best possible viewpoints are selected by their performance on the
classification model, which is defined by using all the views as input for the model and saving the
prediction together with the confidence score.
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To calculate the performance of our NBV model based on depth-entropy and confidence, we
defined two metrics. We consider the loss between the predicted and the correct maps for the first
metric. The second metric calculates the euclidean distance between the predicted highest peak and
the correct highest peak in the map. We set three thresholds for the euclidean distance. We consider
the prediction correct if the metric is lower or equal to the threshold. In Figure 10 a visualization of
the metric is shown.

Figure 10: Euclidean metric visualization, black is the ground truth, green corresponds to predictions
that are considered correct, and red to a wrong prediction.

We compare the performance of the proposed viewpoint selection approach with several base-
lines (Figure 11). The easiest baseline method for viewpoint selection is random viewpoint selection.
Our methods work with local NBV prediction. Thus, the random baseline also selects a view in the
three-by-five grid of possible local viewpoints. Furthermore, it only selects views that have not
previously been visited. The second baseline method chooses the viewpoints furthest away from
the current viewpoint. The last baseline consists of a uni-directional viewpoint selection method.
The method starts with a random view from which the viewpoint on the next azimuth angle at the
same polar angle is chosen. All the baseline methods work such that the viewpoint selection stops
once a certain threshold for the confidence score is reached or if it has explored five views. During
testing, the thresholds are set to 0.85, 0.9, 0.95, 0.97, and 0.99. Because the prediction starts with
a random viewpoint, we run every method ten times. Additionally, we ensure that the initial ran-
dom views are the same for every method and threshold but differ for every tested object and per run.
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Figure 11: Examples of the three NBV selection baseline methods furthest, random and uni-
directional. In all cases, the starting point is highlighted by the red circle
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6 Results

6.1 Classification
The accuracy of the class prediction defines the performance of the classification model. Table 2
shows the instance accuracy of the two best models trained on ModelNet10 and ModelNet40 with
40 views. The entire table with all the trained models, including the models trained on 12 views, is
visible in Appendix A.3.

Model classes viewpoints batch size accuracy
ResNet34 10 40 32 87.10%
ResNet34 40 12 32 87.03%

Table 2: Instance classification performance on the test set for the best model trained on ModelNet10
and 40 with 40 views.

Figure 12 shows the confusion matrix for the best model trained on ModelNet10 with 40 views.
We noticed that the four classes, desk, dresser, night stand, and table, have low performance com-
pared to the other classes. Furthermore, table and dresser are wrongly classified as each other. The
same holds for night stand and dresser, where night stand is also predicted as a table in 10% of the
cases. This behavior can be explained by looking at the type of object. A desk and a table are very
similar, the definition of something being a table or desk is even for humans hard to tell. The same
holds for the dresser and the night stand. They are generally both smaller tables with drawers and
cabinets.

The same behavior occurs when testing the network trained on ModelNet40. Cup and vase,
flower pot and plant are predicted as each other. The confusion matrix for the ResNet34 model
trained on ModelNet40 is shown in Appendix A.6.

6.2 Next-Best-View Selection
As explained in Section 5, we did preliminary tests on the classification model regarding best-view
selection. In this test, the five best views from the set of 40 views are chosen according to the low
depth-entropy, high depth-entropy, random, or best viewpoint selection method. From the five views,
a majority vote procedure is followed to select the predicted class. The procedure accumulates the
ResNet features and lets the accumulated feature go through a softmax function to get the confidence
scores. The index with the highest confidence score is considered the correct class. Table 3 shows
the accuracy for the ModelNet10 classes tested with ResNet34 trained on ModelNet40. The table
with all the classes is shown in Appendix A.15. These results show that some classes prefer views
with low depth-entropy and others with high depth-entropy. The performance between low and high
depth-entropy is best visible in the table class. The difference in performance between high and low
depth-entropy is about 42%.

In Figure 13 the depth-entropy map of a table shown, two views are highlighted as examples for
viewpoints with a high and low depth-entropy value. If we compare the depth-entropy of these views
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Figure 12: Confusion matrix for ResNet34 trained on ModelNet10 with 40 views

to their corresponding confidence score in Appendix A.7, we see that the values are exact opposites
of each other. The view with a high depth-entropy has a low confidence score and the view with a
low depth-entropy has a high confidence score. This can be explained by looking at the respective
images of the views. The view at 0,72 shows only the tabletop, which is a rectangle. But because it
is at a slight angle (18 degrees) compared to a full tabletop view, the depth values from the bottom of
the image to the top are all different, and thus the depth-entropy is high. But intuitively, we can say
that a rectangle does not give us much information about the object, it could also be a dresser, desk,
night stand or anything with a rectangular flat surface. The view with a low depth-entropy shows the
four legs of the table and part of the bottom of the tabletop. First of all, fewer pixels of the object are
present in the image; thus, the chance of the depth-entropy being high is already lower. Secondly,
the legs at the front are at the same depth as the back legs. Only the small part of the bottom side
of the table top has some difference between depth values. For this reason, it does not surprise that
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the classification model performs better on views with low depth-entropy than on views with high
depth-entropy.

Figure 13: Depth-entropy map of table 0399 with the images of the views with the lowest and highest
depth-entropy value in the map.

Table 3 also shows us the best possible performance by selecting the best viewpoints for each
object. This performance is as expected, much higher than the other selection methods for about half
of the classes. This indicates that a performance increase is possible for some of the classes, but that
for the classes which already have a good performance on random selection, it will be challenging.
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low depth-entropy high depth-entropy Best Random
bathtub 0.78 0.9 0.98 0.89

bed 0.98 1.0 1.0 1.0
chair 0.97 0.94 1.0 0.96
desk 0.67 0.65 0.99 0.76

dresser 0.69 0.69 0.95 0.68
monitor 0.95 0.94 1.0 0.96

night stand 0.59 0.67 0.99 0.68
sofa 0.91 0.97 0.98 0.96
table 0.84 0.42 1.0 0.8
toilet 0.99 0.97 1.0 0.99

Table 3: Accuracy per class for low, high depth-entropy selection, best possible view, and random
view selection for a fixed number of five views as input for the ResNet model. A majority vote
chooses the prediction.

6.2.1 Point correspondence

From the point correspondence maps of all the views in Figure 14, we can see that a region of three
by four views has a high correspondence for every view. For some views, the region is much wider,
but at least a three-by-four map is visibly high in all the views. With this information, we decided to
use a three-by-five local map of neighboring views from which we try to predict the depth-entropy
and confidence score. We decided on using five rows instead of four to ensure the map is the same
for every view in terms of rows and does not have to be shifted up and down.

Figure 14: Average point correspondence maps for every view.
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6.2.2 Map prediction

In this section, the results are shown for the depth-entropy and performance map prediction mod-
els. In Appendix A.2 the loss curves for testing and training the model on ModelNet10 are shown.
The loss for testing and training converges nicely to a low loss value and settles around the 10th
epoch. The overall loss on the test set is reasonably low for all the models, as shown in Table 4.
The table also shows the peak selection accuracy (see Section 8) for each model trained on the dif-
ferent datasets, with the three different thresholds. The results for both the local-depth-entropy map
models show that the predicted peaks are at least in the region of the correct peak in about 85% of
the views. For the local confidence prediction model, this is not the case. Between views in the
confidence maps, the difference in the scores is not as big as with the depth-entropy map, making it
harder to predict the correct peak. A lot of values are either one; a good prediction and the maximum
confidence score, or the values are 0 because the prediction is wrong. Values in between do occur,
but just less frequently.

For our primary model, the local-depth-entropy map approach trained on ModelNet10, the per-
formance per class is visible in Table 7. It shows that the model makes the prediction reasonably
well for all the classes. This indicates that the model generalizes well. Additionally, in Appendix
A.11 we show four examples of predicted local-depth-entropy maps together with their respective
ground truth map. The examples show that even with a medium loss value, the map prediction is still
good when tested on ModelNet10. Furthermore, the examples from ModelNet40 show us that the
model generalizes pretty well because it can predict the map for never-seen-before object classes.

NBV selection Classes train Classes test d = 0 d <= 1 d < 2 avg loss
LEM 40 40 0.1873 0.6019 0.8517 0.0203
LEM 10 10 0.3988 0.8011 0.8677 0.0222
LEM 10 30 0.0819 0.3642 0.6140 0.0973
LEM 10 40 0.0898 0.3790 0.6058 0.0890
LCM 10 10 0.0461 0.2332 0.4276 0.1120
LCM 10 30 0.0258 0.1549 0.3521 0.1345
LCM 10 40 0.0254 0.3402 0.6598 0.154

Table 4: Test results for local map prediction for the three models tested on three different datasets.
The three models are tested on ModelNet10, ModelNet40, and the classes from ModelNet40 that
are not in ModelNet10 having 30 classes. The results for the average loss and the peak selection
performance for the three thresholds are also reported.

6.2.3 Next-best-view selection

As described in Section 5.3 we tested our two proposed methods and three baselines on ModelNet10
and ModelNet40. Additionally, we have set five different thresholds for the confidence score. The
classification performance for all the tests done on ModelNet10 is shown in Figure 15. The Model-
Net10 dataset consist of 4905 test object and the ModelNet40 dataset consist of 12311 test objects.
The first thing we notice in the plot is that the performance generally goes up when the threshold
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goes up. As expected, because more views will be explored when the threshold is higher. The next
thing to note is that both the local-depth-entropy map prediction and local confidence map prediction
outperform the three baselines when tested on ModelNet10. Additionally, the confidence method
outperforms the depth-entropy method. The table in Appendix A.9 shows the accuracy per class for
the five approaches tested on ModelNet40. One of the most important things to note from this table
is that our approaches perform significantly better on most classes that are harder to predict over-
all. Which are table, desk, dresser, and night stand, as shown in the confusion matrix for ResNet34
tested on ModelNet10 (Figure 12). Night stand is the exception because it performs better with the
further selection approach. The bathtub class performs significantly better on the random approach
than our depth-entropy and confidence methods.

Figure 15: Class accuracy for each NBV method per threshold tested on ModelNet10. The test set
consists of 4905 objects.

Table 5 shows the average classification performance and travel distance for all the approaches
tested on ModelNet10. The results are shown for the respective best threshold, which is 0.99, except
for the random approach. As shown in Figure 15, our method outperforms the baseline in term
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Label LCM10 40 LEM10 40 furthest random unidirectional
Threshold 0.99 0.99 0.99 0.97 0.99

Avg class acc 0.9021 0.8996 0.898 0.8951 0.8782
std 0.0865 0.0878 0.0935 0.0932 0.1084

Avg instance acc 0.9067 0.9056 0.9024 0.8988 0.8829
Avg class travel 3.4095 3.6659 7.4623 4.2816 1.8169

std 0.5421 0.4357 1.5967 0.8063 0.356
Avg instance travel 3.7414 3.7889 8.5512 4.8447 2.0848

std 2.3576 2.3662 5.427 3.2717 1.2145

Table 5: Classification performance and travel distance for five NBV approaches tested on Model-
Net10.

of a classification performance. In the table we can also see the travel distance is lower for our
methods compared to the baselines, where we disregard the unidirectional method, because it has by
definition the lowest travel time and because its performance is so much worse compared to the other
methods. The travel distance per class for the model tested on ModelNet10 is shown in Appendix
A.10. On average and for all the classes, the travel distance is lower for our methods compared to
the baselines.

Figures 16 and 17 show an example trajectory for both the depth-entropy and confidence ap-
proach. The confidence follows a uni-directional trajectory but the other way around than the base-
line. The depth-entropy approach has a different trajectory but also follows a uni-directional trajec-
tory at some point. Appendix A.12 show the trajectories resulting from the baseline approaches. All
five examples predict the class correctly but with a variant confidence score.

In Figure 18 the results for all the methods tested on the ModelNet40 dataset are shown. Our
methods outperform the random and unidirectional baselines, but the furthest baseline performs best
and outperforms our methods.
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Figure 16: Viewpoint trajectory for using local-depth-entropy map NBV selection on table 0444.
The trajectory goes through viewpoints 13, 12, 11, 10, and 9. The object is correctly predicted with
a confidence score of 0.9954. The starting point (viewpoint 13), is indicated by the red circle.
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Figure 17: Viewpoint trajectory for using local confidence map NBV selection on table 0444. The
trajectory goes through viewpoints 13, 4, 5, 6, and 14. The object is correctly predicted with a
confidence score of 0.8464. The starting point (viewpoint 13), is indicated by the red circle.
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Figure 18: Class accuracy for each NBV method per threshold tested on ModelNet40. The test set
consists of 12311 objects.
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7 Conclusion
In this thesis, we tried to solve the next-best-view problem by training a system that can predict the
goodness of neighboring views. The goodness of a view is determined by either the prediction of
the depth-entropy or the prediction of the classification performance of the neighboring views. We
developed a learning algorithm that can predict a map of these measures given a point cloud. We
have proven that the prediction of the maps works reasonably well for the classes in ModelNet10.
The model can also predict maps for the unseen classes in ModelNet40 with reasonable accuracy.
This also indicates that a partial point cloud from a specific view holds enough information about its
neighboring views to predict some of its properties, like depth-entropy.

Both our next-best-view methods outperform the baselines regarding classification accuracy and
travel distance on the ModelNet10 dataset. We have seen that the classification model is very good
at predicting some of the classes, with an accuracy between 0.97 and 1. Thus, the improvement
on those classes is very limited or non-existent compared to the baselines. For the classes that are
harder to predict, like table, dresser, and desk, our methods do significantly increase the classification
performance compared to the baselines. Furthermore, the performance method outperforms the
depth-entropy method by a small margin in classification accuracy and travel distance. Looking at
the five worst performing classes (table, dresser, desk, night stand, and bathtub), we have to note that
bathtub and night stand perform better on the baselines random and furthest, respectively. Thus for
these models, the depth-entropy does not tell us anything about the information in a view regarding
object recognition. One of the flaws of our current depth-entropy model is that flat surfaces viewed
at an angle will produce a high depth-entropy, which in some cases does not represent a lot of
information, as in the table class.

We tested or models trained on ModelNet10 on ModelNet40 and determined that our methods
outperform the baselines in terms of travel distance when tested on this unseen data, but not in
classification accuracy. We have to note that the ModelNet40 dataset is not very good since some
objects are very easy to classify and some objects have only a few object instances. Thus it would
be much more interesting to test models on a more evenly distributed dataset in terms of object
instances and classification performance.

The literature research already gave us an indication that entropy is a good indicator of the
goodness of a view. In this thesis, we also show that for some object classes the depth-entropy
determines the goodness of a view in terms of object classification. It does differ between classes
whether high or low depth-entropy is a good indicator of the goodness of a view.
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8 Discussion and Future Work
One of our main goals was to develop a next-best-view selection model for object classification. We
believe that the model we developed has the potential to be used in real-world applications when
optimized. We do have to note that a more elaborate statistical approach in training and testing is
needed to have a stronger belief in the current model. Such as multiple training attempts of the
model with random weight initiation. Nonetheless, the current results do give enough belief to fur-
ther investigate the model. The model can be optimized by training the learning algorithm on a
different, potentially more challenging dataset concerning classification. The ModelNet10 dataset
is in hindsight, not the best because about half the classes already have an excellent performance on
classification using any view. Thus, there is almost nothing to improve.

We believe that the depth-entropy prediction model for neighboring views can be used on un-
seen data. Therefore, more tests on unseen and different data would be interesting. One of the most
exciting things to see in future work would be the performance of the depth-entropy model in a
real-life situation. Like using data directly from a depth camera to choose the next-best-viewpoint
and physically move to that next viewpoint. Additionally, it would be interesting to see it being
used in an active vision approach, meaning the distribution of viewpoints around the object is not
predefined. But, the sensor is allowed to move to any point around the object. Another good test for
generalization of the depth-entropy model would be to test it on a different task, like grasp synthesis
or object reconstruction.

In our next-best-view prediction model, we used either high or low depth-entropy values for
choosing the best view. It would be interesting to use a selection method with one definition for the
next-best-view, so a higher value would always hold more information. A suggestion would be to
take the direction of the gradient of the depth values into account so that we can detect flat surfaces
such as a tabletop.

Lastly, since the performance of the confidence approach is better than the depth-entropy ap-
proach, it would be interesting to test if the confidence approach also works on a different dataset
and on a different classification model without retraining. If it does work, it means the confidence
approach learns a general measure for the goodness of a view that is not defined by a mathematical
calculation such as depth-entropy.
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A Appendix

A.1 Modelnet10 class distribution

Figure 19: The number of objects for each class in the ModelNet10 dataset
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A.2 Loss curves for the depth-entropy approach on ModelNet10

Figure 20: Loss curves for LEM PointNet trained on ModelNet10
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A.3 ResNet training results

model classes viewpoints batch size accuracy
ResNet18 10 12 32 89.01%
ResNet18 10 40 4 85.88%
ResNet34 10 40 4 85.99%
ResNet50 10 40 4 84.44%

ResNet101 10 40 4 85.23%
ResNet152 10 40 4 86.20%
ResNet34 10 40 4 85.88%
ResNet34 10 40 8 86.42%
ResNet34 10 40 16 86.62%
ResNet34 10 40 32 87.10%
ResNet34 10 40 64 87.04%
ResNet18 40 12 32 86.29%
ResNet34 40 12 32 87.03%
ResNet50 40 12 32 86.87%

ResNet101 40 12 32 86.61%
ResNet152 40 12 32 86.73%
ResNet34 40 40 32 83.45%

Table 6: Instance classification performance for several ResNet models
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A.4 Spherical coordinate system viewpoint distribution

Figure 21: The spherical coordinate frame used to create the viewpoint distribution
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A.5 Map indices

Figure 22: The index corresponding to every view in a map.
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A.6 Confusion matrix for ModelNet40

Figure 23: Confusion matrix for ResNet34 trained on ModelNet40 with 40 views
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A.7 Confidence map table 0399

Figure 24: Confidence map of table 0399 with the images shown of the views with the lowest and
highest confidence score in the map.
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A.8 Map prediction performance per class for depth-entropy approach on
ModelNet10

labels d = 0 d <= 1 d < 2 avg loss
bathtub 0.2560 0.7305 0.8080 0.0166

bed 0.3590 0.7618 0.8905 0.0109
chair 0.4400 0.7808 0.8430 0.0245
desk 0.2157 0.5959 0.6709 0.0319

dresser 0.6273 0.9410 0.9692 0.0104
monitor 0.5573 0.9323 0.9830 0.0468

night stand 0.3919 0.7651 0.8238 0.0197
sofa 0.3105 0.6825 0.8127 0.0153
table 0.3222 0.9655 0.9712 0.0208
toilet 0.5080 0.8552 0.9050 0.0216

Table 7: Performance per class for each threshold for LEM10 tested on ModelNet10

A.9 Prediction accuracy per class and NBV method for ModelNet10

Label LCM10 LEM10 furthest random unidirectional
bathtub 0.912 0.89 0.92 0.922 0.888

bed 0.978 0.976 0.984 0.975 0.969
chair 0.989 0.988 0.99 0.985 0.989
desk 0.7779 0.7674 0.764 0.7651 0.757

dresser 0.8256 0.8058 0.7663 0.793 0.7907
monitor 0.976 0.977 0.974 0.982 0.976

night stand 0.7709 0.7698 0.7977 0.7884 0.7419
sofa 0.966 0.965 0.968 0.955 0.96
table 0.832 0.864 0.822 0.788 0.716
toilet 0.994 0.993 0.994 0.997 0.994

Avg class acc 0.9021 0.8996 0.898 0.8951 0.8782
Class std 0.0865 0.0878 0.0935 0.0932 0.1084

Avg instance acc 0.9067 0.9056 0.9024 0.8988 0.8829

Table 8: NBV accuracy per class with best confidence threshold for each method tested on Model-
Net10.
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A.10 Travel distance per class and NBV method for ModelNet10

Label LCM10 LEM10 furthest random unidirectional
bathtub 3.6434

(1.9235)
3.3333

(1.8215)
7.1318

(4.4518)
3.9853

(2.5618)
1.9767

(1.1889)
bed 3.2881

(1.6207)
3.1017

(1.9831)
6.4294

(3.8327)
3.878

(2.7621)
1.565

(0.9871)
chair 2.4306

(1.0724)
3.4444

(1.7753)
4.7917

(3.1217)
2.6377
(1.894)

1.1806
(0.5393)

desk 3.2279
(1.8413)

3.5318
(2.1666)

7.7906
(4.8607)

4.5301
(2.8978)

1.8727
(1.0963)

dresser 4.259
(2.7736)

3.8648
(2.6441)

10.1059
(6.0374)

5.4762
(3.6025)

2.2443
(1.1991)

monitor 3.1864
(2.232)

4.661
(3.6037)

8.4407
(5.3988)

4.7667
(3.1319)

1.6102
(1.0003)

night stand 4.5689
(3.0796)

4.3502
(2.7167)

10.0475
(5.561)

5.4505
(3.5442)

2.3281
(1.2719)

sofa 3.1846
(1.2927)

3.2385
(1.6973)

5.6308
(3.1107)

3.4094
(2.4924)

1.6385
(1.0268)

table 3.335
(1.5317)

3.7512
(1.8403)

8.3284
(5.3652)

4.9325
(3.1251)

2.3416
(1.2796)

toilet 2.9706
(1.496)

3.3824
(2.6147)

5.9265
(4.2683)

3.7500
(2.8251)

1.4118
(0.8679)

Avg class
travel

3.4095
(0.5421)

3.6659
(0.4357)

7.4623
(1.5967)

4.2816
(0.8063)

1.8169
(0.356)

Avg instance
travel

3.7414
(2.3576)

3.7889
(2.3662)

8.5512
(5.427)

4.8447
(3.2717)

2.0848
(1.2145)

Table 9: NBV average travel distance per method tested with their respective best thresholds. The
travel is calculated when there is traveled during a prediction run. It is the accumulated travel
distance for traveling to multiple views with a maximum of five views.
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A.11 Map prediction examples for ModelNet10

Figure 25: Ground truth and predicted depth-entropy map for bed 0595 in ModelNet10 with a low
loss.
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Figure 26: Ground truth and predicted depth-entropy map for chair 0938 in ModelNet10 with a
medium loss.
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Figure 27: Ground truth and predicted depth-entropy map for airplane 0652 in ModelNet40 with a
low loss.
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Figure 28: Ground truth and predicted depth-entropy map for airplane 0627 in ModelNet40 with a
medium loss.
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A.12 Examples of NBV baseline trajectories

Figure 29: Viewpoint trajectory for using furthest NBV selection on table 0444. The trajectory goes
through viewpoints 13, 38, 7, 0, and 33. The object is correctly predicted with a confidence score of
0.7817. The starting point (viewpoint 13), is indicated by the red circle.
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Figure 30: Viewpoint trajectory for using random NBV selection on table 0444. The trajectory goes
through viewpoints 13, 28, 35, 12, and 4. The object is correctly predicted with a confidence score
of 0.9719. The starting point (viewpoint 13), is indicated by the red circle.
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Figure 31: Viewpoint trajectory for using uni-directional NBV selection on table 0444. The trajec-
tory goes through viewpoints 13, 14, 15, 8, and 9. The object is correctly predicted with a confidence
score of 0.8877. The starting point (viewpoint 13), is indicated by the red circle.
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A.13 Prediction accuracy per class and NBV method for ModelNet40

Label LCM10 LEM10 LEM40 furthest random unidirectional
airplane 1.0 1.0 1.0 1.0 1.0 1.0
bathtub 0.872 0.876 0.876 0.876 0.86 0.84
bed 0.974 0.972 0.976 0.974 0.984 0.968
bench 0.83 0.84 0.83 0.81 0.8 0.81
bookshelf 0.9 0.896 0.894 0.908 0.904 0.908
bottle 0.932 0.942 0.94 0.936 0.928 0.936
bowl 0.85 0.8 0.8 0.86 0.81 0.83
car 0.99 0.994 0.988 0.992 0.99 0.994
chair 0.956 0.954 0.96 0.96 0.944 0.958
cone 0.95 0.94 0.94 0.95 0.94 0.95
cup 0.71 0.67 0.69 0.69 0.75 0.71
curtain 0.95 0.94 0.94 0.95 0.93 0.95
desk 0.7558 0.7326 0.7419 0.7465 0.7419 0.7326
door 0.92 0.93 0.93 0.91 0.96 0.91
dresser 0.7186 0.7209 0.7326 0.7279 0.7186 0.7419
flower pot 0.18 0.18 0.2 0.23 0.17 0.24
glass box 0.932 0.924 0.918 0.92 0.918 0.93
guitar 0.976 0.978 0.978 0.974 0.968 0.978
keyboard 1.0 1.0 1.0 1.0 1.0 1.0
lamp 0.82 0.84 0.83 0.85 0.86 0.81
laptop 1.0 1.0 1.0 1.0 1.0 1.0
mantel 0.908 0.916 0.91 0.914 0.93 0.91
monitor 0.932 0.946 0.946 0.944 0.936 0.946
night stand 0.707 0.7163 0.7326 0.6953 0.7186 0.6977
person 0.98 1.0 1.0 1.0 0.98 0.99
piano 0.94 0.94 0.934 0.93 0.926 0.934
plant 0.89 0.892 0.89 0.896 0.9 0.88
radio 0.71 0.73 0.67 0.77 0.71 0.68
range hood 0.894 0.884 0.896 0.892 0.904 0.894
sink 0.86 0.82 0.83 0.89 0.83 0.83
sofa 0.962 0.96 0.964 0.96 0.952 0.954
stairs 0.86 0.83 0.84 0.82 0.84 0.83
stool 0.73 0.67 0.74 0.73 0.68 0.67
table 0.688 0.762 0.778 0.744 0.714 0.73
tent 0.91 0.89 0.87 0.9 0.89 0.9
toilet 0.988 0.99 0.992 0.99 0.984 0.986
tv stand 0.784 0.75 0.786 0.766 0.78 0.78
vase 0.798 0.8 0.78 0.812 0.806 0.79
wardrobe 0.46 0.45 0.45 0.45 0.42 0.48
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xbox 0.64 0.65 0.66 0.66 0.61 0.64
Avg class acc +
(std)

0.8464
(0.16)

0.8431
(0.1619)

0.8458
(0.1576)

0.8507
(0.1542)

0.8422
(0.1641)

0.843
(0.1544)

Avg instance acc 0.8763 0.8768 0.8797 0.8797 0.8755 0.8756

Table 10: Accuracies per class for different NBV methods tested on the Modelnet40 dataset
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A.14 Travel distance per class and NBV method for ModelNet40

Label LCM10 LEM10 LEM40 furthest random unidirectional
airplane 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)
bathtub 2.85

(1.6655)
2.7667
(1.7209)

3.0167
(1.4786)

6.35
(3.6677)

3.0185
(1.9666)

1.5667
(0.9088)

bed 2.36
(0.9424)

2.98
(1.4497)

2.58
(1.3716)

4.86
(2.0801)

3.3793
(1.9897)

1.26
(0.7231)

bench 3.4167
(2.3204)

3.5
(2.2842)

3.0417
(1.459)

6.0 (3.73) 2.9615
(1.5616)

1.5417
(0.9771)

bookshelf 3.1277
(1.8621)

3.3085
(2.0947)

2.3404
(1.1963)

6.6489
(4.4546)

3.5
(2.6576)

1.5426
(0.9)

bottle 2.45
(1.1972)

2.95
(2.0248)

3.4
(2.2165)

5.7
(3.5388)

3.3125
(2.4155)

1.65
(0.9213)

bowl 3.1667
(1.9262)

3.3333
(2.0359)

3.2917
(1.5737)

7.4167
(5.6331)

3.4231
(2.4195)

2.1667
(1.274)

car 2.5263
(1.0203)

2.9474
(1.6824)

2.4211
(1.6437)

4.7895
(1.9316)

2.8462
(1.2142)

1.3158
(0.5824)

chair 2.7561
(1.3375)

3.0732
(1.2921)

4.6098
(2.4482)

5.6585
(3.6511)

3.2826
(2.3727)

1.4634
(0.8688)

cone 3.0 (1.0) 3.6
(1.5166)

2.8
(1.3038)

11.0
(6.442)

2.2
(1.0328)

2.0
(1.2247)

cup 2.0
(1.1304)

4.3514
(3.1904)

3.7027
(2.2094)

5.1622
(2.4778)

3.5862
(2.1633)

1.7838
(1.2502)

curtain 3.2
(1.7809)

3.7333
(1.9445)

5.2
(3.7455)

6.8
(5.1297)

2.8824
(2.571)

1.7333
(0.9612)

desk 3.3202
(2.0485)

3.5112
(2.2379)

3.1404
(1.6866)

6.4494
(3.5985)

4.0276
(2.9391)

1.7753
(0.9538)

door 2.7143
(1.496)

3.1429
(2.1157)

2.4286
(1.1339)

6.1429
(3.6253)

2.125
(0.991)

1.4286
(1.1339)

dresser 4.0169
(2.628)

4.3586
(2.5911)

3.0338
(1.7415)

8.4684
(5.1193)

5.038
(3.1947)

2.0675
(1.1841)

flower pot 3.9091
(1.9979)

3.1136
(2.1697)

4.5227
(1.9107)

7.8636
(5.3812)

4.9286
(2.8915)

2.1364
(1.1732)

glass box 3.9041
(2.3403)

3.8356
(1.9792)

3.1644
(1.4241)

10.3288
(6.2161)

4.7711
(3.198)

2.1507
(1.2323)

guitar 2.875
(1.9621)

3.125
(1.9279)

2.8125
(1.9738)

5.625
(2.9183)

3.2143
(1.6257)

1.125
(0.3416)

keyboard 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)
lamp 3.0

(1.1767)
3.8571
(1.8337)

3.0714
(1.859)

7.0714
(4.0661)

2.75
(1.4222)

2.0
(1.4142)
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laptop 2.5714
(1.2724)

3.1429
(1.069)

2.7143
(1.2536)

4.5714
(0.5345)

3.0
(1.5275)

1.0 (0.0)

mantel 3.4327
(2.1305)

5.0962
(3.1113)

6.9231
(3.7822)

7.4135
(5.0041)

4.4623
(3.1658)

1.5962
(0.8979)

monitor 3.0612
(1.6634)

4.0408
(2.2542)

4.6327
(2.7439)

4.8163
(2.0683)

3.0208
(1.4364)

1.551
(0.8912)

night stand 4.0615
(2.6516)

4.1423
(2.4191)

3.1923
(1.9634)

8.5577
(5.0862)

4.8893
(3.1592)

2.0769
(1.1019)

person 2.5
(1.1785)

3.8
(2.3944)

3.0
(1.4142)

5.0
(1.8257)

3.0 (1.0) 1.2
(0.4216)

piano 3.15
(1.684)

3.83
(2.2476)

4.82
(3.3375)

5.52
(3.4126)

3.6068
(2.3451)

1.43
(0.7688)

plant 3.1705
(1.6915)

3.8217
(2.7541)

3.6047
(1.9781)

7.6279
(5.3137)

5.1322
(3.3984)

1.907
(1.1755)

radio 3.3171
(1.8363)

2.9512
(1.5804)

2.7317
(1.9239)

6.6585
(3.985)

3.5517
(2.9831)

1.4634
(0.7777)

range hood 3.6241
(2.2817)

4.8947
(3.255)

3.4962
(2.2684)

8.2105
(5.7709)

4.4333
(2.9113)

1.9398
(1.1597)

sink 3.4348
(1.996)

3.2609
(1.8145)

4.5652
(2.0411)

5.3478
(3.588)

3.9091
(2.1802)

1.7391
(1.0098)

sofa 2.8936
(1.5912)

2.4255
(1.4408)

2.8511
(1.4139)

5.6809
(3.9678)

4.0
(2.9683)

1.5532
(0.8799)

stairs 3.5
(2.4251)

3.5
(1.7661)

2.5455
(1.3707)

6.1818
(4.2721)

2.913
(1.4114)

1.5
(0.9129)

stool 2.6429
(1.3113)

3.0357
(1.4268)

2.7857
(1.1661)

5.5
(2.396)

3.1944
(1.4307)

1.7857
(1.0666)

table 3.765
(2.2505)

4.5385
(3.1228)

4.2137
(2.6101)

6.8248
(4.3346)

4.3205
(2.8261)

1.7949
(1.0444)

tent 3.4706
(1.8411)

3.2941
(1.6494)

4.4706
(3.3)

5.0588
(3.1518)

2.6429
(1.7368)

1.3529
(0.6063)

toilet 2.3077
(1.4358)

3.1538
(1.1897)

3.6538
(1.9171)

4.4615
(1.9438)

2.9583
(1.4885)

1.2692
(0.4523)

tv stand 3.4227
(2.4078)

3.5591
(2.2332)

2.9045
(1.5245)

7.5136
(5.1236)

4.1388
(2.8681)

1.7091
(1.01)

vase 3.1727
(2.0222)

3.8818
(2.9138)

3.6727
(2.4536)

5.6818
(4.223)

3.8085
(2.6285)

1.8182
(1.1667)

wardrobe 3.9296
(2.093)

4.6901
(2.8665)

3.2958
(1.9228)

8.5634
(5.3338)

4.6981
(3.2557)

1.8169
(1.0462)

xbox 4.1515
(2.4254)

3.4848
(1.9704)

3.3636
(2.0739)

7.4242
(4.2722)

4.8788
(2.9449)

1.8485
(1.0932)

Avg class
travel

3.0043
(0.8436)

3.4008
(0.9554)

3.3004
(1.1545)

6.2237
(2.0081)

3.6451
(0.778)

1.5765
(0.4525)

66



Avg in-
stance
travel

3.4353
(2.1688)

3.8789
(2.5267)

3.5439
(2.317)

7.109
(4.7216)

4.165
(2.8669)

1.7801
(1.054)

Table 11: Travel distance per class for with standard deviation different NBV methods tested on the
Modelnet40 dataset
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A.15 Preliminary viewpoint selection test on ModelNet40

ascending descending Best Random
airplane 1.0 1.0 1.0 1.0
bathtub 0.78 0.9 0.98 0.89

bed 0.98 1.0 1.0 1.0
bench 0.8 0.8 0.95 0.78

bookshelf 0.89 0.94 1.0 0.97
bottle 0.93 0.94 0.99 0.94
bowl 0.75 0.75 1.0 0.84
car 1.0 1.0 1.0 1.0

chair 0.97 0.94 1.0 0.96
cone 0.95 0.9 1.0 0.95
cup 0.7 0.5 0.85 0.73

curtain 1.0 0.9 1.0 0.97
desk 0.67 0.65 0.99 0.76
door 0.9 0.9 1.0 0.94

dresser 0.69 0.69 0.95 0.68
flower pot 0.2 0.25 0.5 0.22
glass box 0.88 0.94 0.98 0.94

guitar 0.99 0.96 1.0 0.98
keyboard 1.0 1.0 1.0 1.0

lamp 0.75 0.85 0.9 0.84
laptop 1.0 1.0 1.0 1.0
mantel 0.95 0.86 0.99 0.97
monitor 0.95 0.94 1.0 0.96

night stand 0.59 0.67 0.99 0.68
person 0.85 1.0 1.0 1.0
piano 0.94 0.82 0.99 0.96
plant 0.8 0.89 0.96 0.89
radio 0.7 0.75 0.95 0.77

range hood 0.88 0.89 0.98 0.91
sink 0.85 0.75 1.0 0.9
sofa 0.91 0.97 0.98 0.96
stairs 0.8 0.95 1.0 0.92
stool 0.6 0.7 0.85 0.7
table 0.84 0.42 1.0 0.8
tent 0.9 0.85 0.95 0.92

toilet 0.99 0.97 1.0 0.99
tv stand 0.74 0.82 0.98 0.85

vase 0.8 0.79 0.91 0.79
wardrobe 0.25 0.6 0.9 0.64

xbox 0.55 0.6 0.85 0.6
Table 12: Accuracy per class for four selection methods using five views
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