Javascript must be enabled for the correct page display

Detecting self-admitted technical debt in an industrial setting

Haan, Eize de (2022) Detecting self-admitted technical debt in an industrial setting. Bachelor's Thesis, Computing Science.

[img] Text
bCS_2022_deHaanE.pdf
Restricted to Registered users only

Download (10MB)

Abstract

De begeleider en/of auteur heeft geen toestemming gegeven tot het openbaar maken van de scriptie. The supervisor and/or the author did not authorize public publication of the thesis.

Item Type: Thesis (Bachelor's Thesis)
Supervisor name: Avgeriou, P. and Soliman, M.A.M. and Li, Y.
Degree programme: Computing Science
Thesis type: Bachelor's Thesis
Language: English
Date Deposited: 26 Aug 2022 12:31
Last Modified: 26 Aug 2022 12:31
URI: https://fse.studenttheses.ub.rug.nl/id/eprint/28520

Actions (login required)

View Item View Item