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Abstract

The α-tree algorithm is used for image segmentation by comparing and grouping adjacent pixels in
an image based on a dissimilarity measure. This paper expands on previous research by investigating
the Manhattan distance, the Euclidean distance, and the cosine dissimilarity as dissimilarity measures
for images in the RGB color space. The dissimilarity measures are first tested on synthetic test images
and then used to segment four satellite images. For the synthetic images a quantitative comparison is
used to predict results on the satellite data. The resulting segmentation images of the satellite data are
compared by eye to ground truth segmentation images with different detail levels at multiple α levels.
Appropriate α levels were in the range of [60, 80] for the Manhattan distance, [70, 110] for the Euclidean
distance, and [3, 15] for the cosine dissimilarity.
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1 Introduction & Motivation

Segmenting certain regions according to predefined criteria is integral to image processing [4]. The analysis
of remote images is a practical tool to improve and fasten processes like finding diseases in crops [11],
focusing herbicide usage [3], rapid impact assessment for tsunamis, forest fire mapping, earthquake-damage
assessment, and landslide extent mapping in disaster management [15] and air- and ocean pollution detection
[8, 6]. Images are often represented as a collection of pixels, which do not carry immediate information about
connected regions to a computer. Therefore, rules based on the pixel’s similarity have to be defined under
which the pixels can be connected into humanly understandable areas.
One way of solving this problem is the α-tree algorithm proposed in [7]: Pixels in an image I are grouped into
α-connected-components (α-CC) based on some dissimilarity score d between them. Two pixels, x, y ∈ I,
belong to the same α-CC if there exists a path of pixels

P = {p1, p2, ..., pi}

where p1 = x, pi = y, each pair {pk, pk+1} is adjacent and d(pk, pk+1) <= α. Adjacency on a pixel grid is
defined as horizontal and vertical neighbors or horizontal, vertical, and diagonal neighbors. Hence, there is
a distinction between 4-α-connected-neighborhoods (4-α-CN) and 8-α-connected-neighborhoods (8-α-CN).
The α hyper-parameter defines the dissimilarity threshold to group pixels into the same α-CC. Different
hierarchical segmentations can be observed for different α values (Figure 1). Generally, higher α levels
result in coarser segmentation (larger α-CCs) but also in lower computation times [7]. Thus, for the α-tree
algorithm, it is important to address issues that occur when increasing the α levels to improve performance
without losing significant information about the image segmentation.

Figure 1: Example of α-trees at different α levels for a 4-α-CN (a) and a 8-α-CN (b). Figure from [17].

Previous research has focused on exploring the α-tree algorithm for gray-scale images. This research will
expand on this by investigating three different dissimilarity measures for colored images from the RGB spec-
trum. These measures will be the Manhattan distance, the Euclidean distance, and the cosine dissimilarity.
To improve the performance of the segmentation, we will also use a simple edge detection method. Using
these methods, we will answer the research question ”What are appropriate α-levels for the three dissimilarity
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measures, and how well can they be used for detecting relevant sections in colored images?”
The aforementioned sections of agriculture, disaster control, and pollution detection can significantly benefit
from this research. Raw satellite image data is often colored; therefore, information is lost when they are
converted to gray-scale images for further processing. Furthermore, new avenues of research open up by
investigating the α-tree approach for colored images.

2 State of the Art

The α-tree algorithm has been studied well for gray-scale images. The problem of dissimilar regions being
connected for low α levels is known as the chaining effect. Previous research showed that using different edge
detection techniques can reduce this problem of the α-tree algorithm [13, 17]. In this section, we will first
explain the chaining effect in more detail and then present two effective solutions for the chaining effect in
gray-scale images.

2.1 The Chaining Effect

Chaining is a major problem for the α-tree algorithm when increasing the α levels. Chaining occurs when
two regions with high dissimilarity are connected by a transition region. The transition region is a chain of
pixels C = {p1, p2, ..., pi} with increasing dissimilarity scores such that d(pj , pj+1) ≤ α while d(p1, pi) > α
[14]. A gray-scale image with a transition region can be seen in Figure 2. The two very dissimilar regions are
sorted into one α-CC even though they represent two different flat zones. There have been multiple proposed
solutions for the chaining effect on gray-scale images [12, 13, 14, 17].

Figure 2: Example of an image that would be subject to the chaining effect. Note the transition region along
the y-axis at the center of the x-axis. This image would be classified as one region for lower α levels. Figure
from [17].

2.1.1 Contrast-based α-Trees

One way to solve this issue is the contrast-based α-ω-tree based on α-ω-CC [14]. Here, the ω parameter
defines the maximal dissimilarity within one α-CC. Although this method reduces the chaining effect, the α-
ω-trees only contain a subset of the underlying α-tree’s nodes. Due to this reduction of nodes, contrast-based
α-trees were proposed in [13]. They work by increasing the dissimilarity along detected edges in the base
image. The edges are detected by comparing the absolute difference between pixels at the start and end of a
given path. The morphological gradient describes this contrast if the pixel is a transition pixel. Otherwise,
the contrast is 0.
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2.1.2 Odd Gabor Filters

Another proposed solution is the usage of odd Gabor Filters (GF) which have been shown to perform well in
reducing the chaining effect in gray-scale images [17]. The filters detect edges in an image by applying the
kernel in a convolution in multiple directions. The kernel can be seen in Figure 3. The angle at which the
kernel is applied depends on the α-CN. The directions are θ = {0, π

2 } for the 4-α-CN and θ = {0, π
4 ,

π
2 ,

3π
4 }

for the 8-α-CN. The edge detection works best when the GF is applied in parallel to the transition region and
worst when applied at a right angle. The improvement in chaining prevention using odd GF was consistent
among 4-α-CN and 8-α-CN. While the orientation of the transition region did not seem to impact clean
synthetic or noisy images when using odd GF, it did impact the performance on blurry images. Although the
odd GF method showed significant improvements for 4-α-CN, it was not performing better than contrast-
based α-trees for 8-α-CN when applied to real images.

Figure 3: 2D Gabor Filter Kernel. Figure from [17]

3 Methods

This research investigates three different dissimilarity measures for color vectors in the RGB feature space:
the Manhattan distance, the Euclidean distance, and the cosine dissimilarity. Other research on α-trees has
focused primarily on gray-scale images. However, this approach for image segmentation could also be helpful
for colored images. Thus, exploring how the algorithm can be adjusted to be applied to colored images
is essential. In this research, the focus will lay on changing the used dissimilarity measure so that it can
compare color vectors in the RGB color space. Furthermore, we will examine appropriate α values for the
three dissimilarity measures.
RGB color vectors have three components, the red, green, and blue channels. Each channel has a value
x : 0 ≤ x ≤ 255 [5]. Different colors can be created based on the three color channels’ composition. Figure 4
illustrates the RGB color spectrum.

3.1 Dissimilarity measures

To determine the dissimilarity between two colors, we can treat them as vectors in a 3-dimensional space
and use appropriate dissimilarity measures. Based on the results by [2, 9, 10] I have decided to inspect the
following three dissimilarity measures. The three dissimilarity measures are visualized in Figure 5.

1. Manhattan Distance:
The Manhattan describes the distance between two points on a grid, measured along the axes at right
angles. Let #»x , #»y be two vectors of the same dimension n and elements xi, yi : 0 < i ≤ n, then we can
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determine their Manhattan distance by the following equation:

DM( #»x , #»y ) =

n∑
i=1

|xi − yi| (1)

We see that the vectors are more similar when more of their features are equal. As RGB vectors have
3 dimensions and values in the range [0, 255], we obtain an integer value as the dissimilarity score d for
which 0 ≤ d ≤ 3 ∗ 255.

2. Euclidean Distance:
The Euclidean distance describes the direct distance between two points. It can also measure dissimi-
larity between two vectors by treating them as points in the feature space. Let #»x , #»y be two vectors of
the same dimension n and elements xi, yi : 0 < i ≤ n, then we can calculate their Euclidean distance
with following equation:

DE(
#»x , #»y ) =

√√√√ n∑
i=1

(xi − yi)2 (2)

Similarly to DM, we can see that vectors with a higher difference in their features (color channels) will
have a higher DE score. But for this dissimilarity measure, differences are weighted more heavily as
they are squared. Note that we obtain a floating point value as the dissimilarity score d for which
0 ≤ d ≤

√
3 ∗ 2552.

3. Cosine Similarity:
This measure has been shown to work effectively in information retrieval applications [9, 10]. In
information retrieval, feature vectors are created from text documents and compared using the cosine
value between the two vectors to obtain a similarity score s. In this paper, we will investigate the
effectiveness of this approach for RGB color vectors. As we want to obtain a dissimilarity score, we
will define the cosine dissimilarity as DC = 1− |s| since the maximum value of the cosine function is 1.
The cosine of the angle between two vectors can be calculated using the dot product of the vectors and
dividing it by the product of the vectors’ lengths [1, 9]. Let #»x , #»y be two vectors of the same dimension
n and elements xi, yi : 0 < i ≤ n with angle θ between them, then:

cos(θ) =
#»x · #»y

| #»x || #»y |
(3)

Hence, we can calculate the dissimilarity score DC using:

DC(
#»x , #»y ) = 1− | cos(θ)| = 1−

∣∣∣∣ #»x · #»y

| #»x || #»y |

∣∣∣∣ (4)

We can see that vectors with similar features (color channels) will have a lower DC score as the cosine
value between them will be higher. Note that we obtain a floating point dissimilarity score DC for
which 0 ≤ d ≤ 1.

As the three similarity measures all produce different ranges of values, their output will be normalized. This
will help compare the measures at the same α levels. The output of the similarity measures will be mapped
onto the range [0, 10000].
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Figure 4: RGB Spectrum visualised on a Color Wheel. Figure from [5]

Figure 5: Dissimilarity measures visualised in a 2-dimensional space. DM is the sum of the red components,
normalized. DE is seen in orange. DC can be calculated using θ.

3.2 Edge detection

To prevent the chaining effect in our research, we will use a simple method for edge detection. We will
investigate the immediate neighborhood for each pixel to determine whether the pixel is on or around an
edge. By looking at the dissimilarity scores between the pixel we are currently investigating and its neighbors
along a direction, we can strengthen the dissimilarity between the said pixel and its neighbors or leave it
the same. This concept can be illustrated with the following example in the 4-α-CN. Take the pixel p0 at
coordinates (x, y). Then we would investigate the dissimilarity between the pixels p1, p2 at (x − 1, y) and
(x + 1, y) as well as p3, p4 at (x, y − 1) and (x, y + 1) respectively. We would now increase d(p0, p1) and
d(p0, p2) based on d(p1, p2). We assume that d(p1, p2) would increase if the chain p3, p0, p4 represents an
edge between two regions. Hence, this edge detection increases dissimilarity along edges. This example is
visualized in Figure 6. We can see that d(p1, p2) is relatively high, while d(p3, p4) is relatively low. This
would mean the edge detector will increase d(p0, p1) and d(p0, p2) as it treats the chain p3, p0, p4 as an edge.
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Figure 6: Visualization of the simple edge detector in an 4-α-CN. Here the chain p3, p0, p4 represents an edge
between the left and right region.

4 Data Set

This section will describe the data set on which the three dissimilarity measures have been tested. First,
we will show how the selection of the synthetic data has been performed. Then we will present the actual
satellite data provided for this project.

4.1 Synthetic Test Data

We will first test the different dissimilarity measures on synthetic images. It is essential to decide the colors
we will investigate in this preliminary analysis. Theoretically, we can choose between 2563 colors as each
channel has 256 different possible values. Testing this amount of colors is not feasible for this experiment.
Hence, we will decide on a subset of colors to test the dissimilarity measures.

4.1.1 Color Pair Selection

By definition, the dissimilarity measures DM and DE do not differentiate between differences in differ-
ent color channels. We will test this by investigating the segmentation of regions for the color pairs
P1 = {(200, 55, 0), (0, 55, 200)} and P2 = {(120, 50, 50), (20, 255, 145)}. We see that for these pairs, the
sum of the differences in the color channels is the same. Therefore, we assume that DH(P1) = DH(P2). As
DE is based on the square root of the difference in color channels we assume that DE(P1) ≈ DE(P2). The
dissimilarity measure DC does not depend on the difference in color channels.
An interesting property of DC is that two colors that are a multiple of each other are evaluated as the same
color. This is because the cosine computation of the vector does not account for the length of a vector but only
for its direction. An example for this would be an arbitrary color c1 = (r, g, b) and two colors c2 = (5, 10, 50)
and c3 = 4 ∗ c2 = (10, 20, 100). Using the described property we know that DC(c1, c2) = DC(c1, c3) thus,
the segmentation between these pairs should be the same using DC. We will investigate the two color pairs
P3 = {(20, 128, 90), c2} and P4 = {(20, 128, 90), c3} using the three dissimilarity measures to see how they
perform.
Furthermore, we will investigate how the measures fair on colors that some humans have trouble distinguish-
ing. There are three main categories of color blindness red-green, blue-yellow and complete color blindness
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[16]. As the names suggest, people with red-green (Deuteranomaly, Protanomaly, Protanopia, and Deutera-
nopia) and blue-yellow (Tritanomaly, Tritanopia) color blindness have a hard time or are unable to distinguish
between the two colors. To test how the three dissimilarity measures perform with these colors we will test
them on the color pairs P5 = {(255, 0, 0), (0, 255, 0)} and P6 = {(0, 0, 255), (255, 255, 0)}. These represent
red-green and blue-yellow, respectively.
This gives us the following color pairs to test with the synthetic images:

1. P1 = {(200, 55, 0), (0, 55, 200)}

2. P2 = {(120, 50, 50), (20, 255, 145)}

3. P3 = {(20, 128, 90), (5, 10, 50)}

4. P4 = {(20, 128, 90), (20, 40, 200)}

5. P5 = {(255, 0, 0), (0, 255, 0)}

6. P6 = {(0, 0, 255), (255, 255, 0)}

(a) Colors of pair 1. (b) Colors of pair 2. (c) Colors of pair 3.

(d) Colors of pair 4. (e) Colors of pair 5. (f) Colors of pair 6.

Figure 7: Visualization of the 6 chosen color pairs.

4.1.2 Resulting Synthetic Images

To test the algorithm on the described color pairs, we have created a selection of images in which it is easy
to see the correct separation. The images represent splits along the θ = {0, π

4 ,
π
2 ,

3π
4 } directions. For each

direction, we created two images, one with a transition region of thickness two along the segmentation line,
and one without the transition region. The images using color pair P1 can be seen in Figure 8. All other
images can be found in section 7.
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(a) Horizontal split (θ = 0) without transition region. (b) Horizontal split (θ = 0) with transition region.

(c) Vertical split (θ = π
2
) without transition region. (d) Vertical split (θ = π

2
) with transition region.

(e) Diagonal split from bottom left to top right (θ = π
4
)

without transition region.
(f) Diagonal split from bottom left to top right (θ = π

4
)

with transition region.

(g) Diagonal split from top left to bottom right (θ = 3π
4
)

without transition region.
(h) Diagonal split from top left to bottom (θ = 3π

4
) right

with transition region.

Figure 8: Synthetic images created for color pair P1.
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4.2 Real Satellite Data

To test the dissimilarity measures on real data, we used four images of the Zernike campus of the University
of Groningen. These images show different campus regions (Figure 9). We can see that the images contain
buildings, fields, trees, and roads. Hence, the data contains some high-detail structures and larger, more
homogeneous, low-detail structures.
We will use ground truth images to see how well the dissimilarity measures perform on this data. These
images were created by hand and show the different regions in the data in different colors. There are three
different levels of detail in which these ground truth images have been created, all of which can be seen in
Figure 10, Figure 11, Figure 12 and Figure 13. Depending on the level of detail, we can see that regions
are either connected more broadly or separated at a lower level. We will compare the segmentation images
produced using the different dissimilarity measures using subjective judgment, meaning we will compare
them by eye. While this is not the most empiric method of determining the performance of the dissimilarity
measures, it will give a useful insight into the performance trends of the measures. Implementing an objective,
numerical measure that compares the segmentation images with the ground truth is beyond the scope of this
research.

(a) Test image a. (b) Test image b.

(c) Test image c. (d) Test image d.

Figure 9: Satellite images of the Zernike campus used for testing the dissimilarity measures.
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(a) High-level detail image. (b) Medium-level detail image. (c) Low-level detail image.

Figure 10: Ground truth images for test image a.

(a) High-level detail image. (b) Medium-level detail image. (c) Low-level detail image.

Figure 11: Ground truth images for test image b.

(a) High-level detail image. (b) Medium-level detail image. (c) Low-level detail image.

Figure 12: Ground truth images for test image c.
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(a) High-level detail image. (b) Medium-level detail image. (c) Low-level detail image.

Figure 13: Ground truth images for test image d.

5 Results

In this section, we will present the segmentation of the three dissimilarity measures at a selection of alpha
levels. First, we will show the results of the synthetic images. Second, we will show the results on the campus
satellite data.

5.1 Synthetic Test Data

Before showing the algorithm’s results on the synthetic data, we will list the distances between the used color
pairs. We can see the raw dissimilarity scores in Table 1. Table 2 shows the dissimilarity scores mapped onto
the range [0, 10000] as defined in section 3.

Pair DM DE DC

P1 400 282.84 0.9297
P2 400 247.08 0.4530
P3 173 125.50 0.2725
P4 198 140.87 0.2725
P5 510 360.62 1
P6 765 441.67 1

Table 1: Non-normalized dissimilarity scores for the different color pairs.

Pair DM DE DC

P1 5229 6403 9297
P2 5229 5594 4530
P3 2261 2841 2725
P4 2588 3189 2725
P5 6667 8165 10000
P6 10000 10000 10000

Table 2: Normalized dissimilarity scores for the different color pairs.

5.1.1 Manhattan Distance

Based on the distances we have computed for the synthetic images, we expect the most accurate separation
for color pair P6. Color pairs P3 and P4 should have the least accurate segmentation and P1, P2 and P5

should lie in between. As we can easily tell when the image is not segmented correctly anymore, we will
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present the highest alpha value we can provide so that the images are still correctly separated. The results
for each color pair can be seen in Table 3. The resulting segmentation images can be found in section 7.

Angle of Split Transition Region No Transition Region

θ = 0 2627 5228
θ = π

2 2627 5228
θ = π

4 104 5228
θ = 3π

4 104 5228

(a) Maximum α value with successful separation for color
pair P1.

Angle of Split Transition Region No Transition Region

θ = 0 2627 5228
θ = π

2 2627 5228
θ = π

4 104 5228
θ = 3π

4 104 5228

(b) Maximum α value with successful separation for color
pair P2.

Angle of Split Transition Region No Transition Region

θ = 0 1137 2261
θ = π

2 1137 2261
θ = π

4 78 2261
θ = 3π

4 78 2261

(c) Maximum α value with successful separation for color
pair P3.

Angle of Split Transition Region No Transition Region

θ = 0 2627 2588
θ = π

2 2627 2588
θ = π

4 52 2588
θ = 3π

4 52 2588

(d) Maximum α value with successful separation for color
pair P4.

Angle of Split Transition Region No Transition Region

θ = 0 3359 6666
θ = π

2 3359 6666
θ = π

4 104 6666
θ = 3π

4 104 6666

(e) Maximum α value with successful separation for color
pair P5.

Angle of Split Transition Region No Transition Region

θ = 0 5032 10000
θ = π

2 5032 10000
θ = π

4 156 10000
θ = 3π

4 156 10000

(f) Maximum α value with successful separation for color
pair P6.

Table 3: Maximum α value with successful separation for each color pair using DM.

As a general observation, we can see that when no transition region is present, then the angle of the split
does not influence the maximum α value that can be used for successful separation; the maximum α value is
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equal to the distance of the used colors. The segmented images for input images without transition regions
look equal to the input images.

For input images with a transition region, we see that the separation works better along the angles θ = 0
and θ = π

2 . The maximum α value for these splits is significantly higher than for the angles θ = π
4 and

θ = 3π
4 . Furthermore, we can see that the values with transition region for the pair θ = 0, θ = π

2 and the pair
θ = π

4 , θ = 3π
4 are equal. It is likely that this result stems from us using the 4-α-CN and not the 8-α-CN, as

the separation works well along the two angles used in the 4-α-CN approach.
When looking at the vertical and horizontal splits, all pairs have been segmented by assigning half of the

transition region to one color and the other half to the other. For the diagonal splits the pairs P1, P2, P4,
P5, P6 have a segmentation in line with the gradient of the transition region. The segmented images have
almost the same transition region as the original. An example for P1 can be seen in Figure 14. Interestingly,
for P3 the transition region has been split into five equally sized parts that gradually transition from one
color to the next for diagonal splits (Figure 15a, Figure 15b). Furthermore, we can see that P4 is the only
color where a split with a transition region has a higher α value than the split without a transition region
(for the non-diagonal splits). Additionally, the α value for segmentation is higher or equal when the distance
between the colors is higher, except for the diagonal split with transition region, where P3 has a higher value
than P4 even though DM(P3) < DM(P4).

(a) Diagonal split (θ = π
4
) at α = 104. (b) Diagonal split (θ = 3π

4
) at α = 104.

(c) Horizontal split (θ = 0) at α = 2627. (d) Vertical split (θ = π
2
) at α = 2627.

Figure 14: Resulting segmentation images for P1 at maximal α value with transition regions using DM.
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(a) Diagonal split (θ = π
4
) at α = 78. (b) Diagonal split (θ = 3π

4
) at α = 78.

(c) Horizontal split (θ = 0) at α = 1137. (d) Vertical split (θ = π
2
) at α = 1137.

Figure 15: Resulting segmentation images for P3 at maximal α value with transition regions using DM.

5.1.2 Euclidean Distance

For the Euclidean distance we have seen that the relative distance of the color pairs is the same as for
the Manhattan distance (Table 2), with the exception that DE(P1) > DE(P2) while DM(P1) = DM(P2).
Consequently, we expect a similar order of segmentation quality for this dissimilarity measure. The maximum
α values are expected to be higher than for DM, as the distance of the colors in each color pair is consistently
higher for DE than for DM. Again we will present the maximum α value for which the images have been
successfully separated. The results for each color pair can be seen in Table 4. The resulting segmentation
images can be found in section 7.
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Angle of Split Transition Region No Transition Region

θ = 0 3217 6403
θ = π

2 3217 6403
θ = π

4 128 6403
θ = 3π

4 128 6403

(a) Maximum α value with successful separation for color
pair P1.

Angle of Split Transition Region No Transition Region

θ = 0 2811 5594
θ = π

2 2811 5594
θ = π

4 110 5594
θ = 3π

4 110 5594

(b) Maximum α value with successful separation for color
pair P2.

Angle of Split Transition Region No Transition Region

θ = 0 1422 2841
θ = π

2 1422 2841
θ = π

4 78 2841
θ = 3π

4 78 2841

(c) Maximum α value with successful separation for color
pair P3.

Angle of Split Transition Region No Transition Region

θ = 0 1608 3189
θ = π

2 1608 3189
θ = π

4 64 3189
θ = 3π

4 64 3189

(d) Maximum α value with successful separation for color
pair P4.

Angle of Split Transition Region No Transition Region

θ = 0 4114 8164
θ = π

2 4114 8164
θ = π

4 128 8164
θ = 3π

4 128 8164

(e) Maximum α value with successful separation for color
pair P5.

Angle of Split Transition Region No Transition Region

θ = 0 5032 10000
θ = π

2 5032 10000
θ = π

4 156 10000
θ = 3π

4 156 10000

(f) Maximum α value with successful separation for color
pair P6.

Table 4: Maximum α value with successful separation for each color pair using DE.

Similarly to DM, we see that for images not containing a transition region, the maximum α value is equal
to the distance between the colors in the color pair. This is consistent across the four tested angles. The
segmentation images without transition regions are identical to the input images.

Regarding the images with a transition region, we can again see that the performance was significantly
better for the vertical and horizontal split than the diagonal split. When compared to DM the α value is
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either higher or equal for DE. The segmentation images for the input images with transitions regions are
split equally as for DM. The horizontal and vertical transition regions are assigned one color for one half
and the other color for the other half. This is consistent across all color pairs. For the diagonal splits we
can again observe the split similar to the input image transition region for the color pairs P1, P2, P4, P5, P6,
while color pair P3 again shows the five discrete regions. This is again visualized for P1 and P3 in Figure 16
and Figure 17.

(a) Diagonal split (θ = π
4
) at α = 128. (b) Diagonal split (θ = 3π

4
) at α = 128.

(c) Horizontal split (θ = 0) at α = 3217. (d) Vertical split (θ = π
2
) at α = 3217.

Figure 16: Resulting segmentation images for P1 at maximal α value with transition regions using DE.
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(a) Diagonal split (θ = π
4
) at α = 78. (b) Diagonal split (θ = 3π

4
) at α = 78.

(c) Horizontal split (θ = 0) at α = 1422. (d) Vertical split (θ = π
2
) at α = 1422.

Figure 17: Resulting segmentation images for P3 at maximal α value with transition regions using DE.

5.1.3 Cosine Dissimilarity

For DC we have seen a different relative distance of the different color pairs when compared to DM and DE.
We expect the most accurate separation for P5 and P6, closely followed by P1. P3 and P4 should have the
least accurate separation and equal values because the color pairs have the same distance using DC. DC

should perform better for P2 then for P3 and P4 but worse than for the other three color pairs. As we can
easily tell when the image is not segmented correctly anymore, we will present the highest alpha value we
can provide so that the images are still correctly separated. The results for each color pair can be seen in
Table 5. The resulting segmentation images can be found in section 7.
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Angle of Split Transition Region No Transition Region

θ = 0 2653 9296
θ = π

2 2653 9296
θ = π

4 3 9296
θ = 3π

4 3 9296

(a) Maximum α value with successful separation for color
pair P1.

Angle of Split Transition Region No Transition Region

θ = 0 1167 4530
θ = π

2 1167 4530
θ = π

4 2 4530
θ = 3π

4 2 4530

(b) Maximum α value with successful separation for color
pair P2.

Angle of Split Transition Region No Transition Region

θ = 0 682 2724
θ = π

2 682 2724
θ = π

4 3 2724
θ = 3π

4 3 2724

(c) Maximum α value with successful separation for color
pair P3.

Angle of Split Transition Region No Transition Region

θ = 0 690 2724
θ = π

2 690 2724
θ = π

4 0 2724
θ = 3π

4 0 2724

(d) Maximum α value with successful separation for color
pair P4.

Angle of Split Transition Region No Transition Region

θ = 0 2861 10000
θ = π

2 2861 10000
θ = π

4 2 10000
θ = 3π

4 2 10000

(e) Maximum α value with successful separation for color
pair P5.

Angle of Split Transition Region No Transition Region

θ = 0 2861 10000
θ = π

2 2861 10000
θ = π

4 2 10000
θ = 3π

4 2 10000

(f) Maximum α value with successful separation for color
pair P6.

Table 5: Maximum α value with successful separation for each color pair using DC.

Just like for the other two dissimilarity measures, we can see that for the images that do not have a
transition region, the maximum α value corresponds to the distance value for the colors of the color pair.
The segmentation images are again equal to the input images.

Surprisingly, this dissimilarity measure performed notably worse than the other two for the images with
a diagonal split and a transition region. The maximum α value lies in the range [0, 3] for all six color
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pairs. Furthermore, the resulting segmentation images are different from the ones obtained using DM and
DE. Instead of having a smooth transition between the colors, as for P1, P2, P4, P5 and P6, and the 5
static transition regions, as for P3, we obtained four different type of splits. For P4, the image has the same
transition region as the original image; this is expected, as the maximum α is zero, meaning that the image
has no segmentation. For P3, the transition region was separated into two solid strips of the two colors of
the color pair, but the distribution of the colors is unequal. For both P1 and P5, the transition region was
split into three equally sized parts. Two of them are the colors of the pair, while the middle section is the
same as the original transition region at that point. For P2 and P5, the transition region was split into two
sections. One of them has one of the colors of the pair, while the other is the same as the original transition
region. The diagonal segmentation images for θ = π

4 can be seen in Figure 18. The horizontal split images
with a transition region have lower α values than the other two dissimilarity measures. The α values are
in the order predicted for this dissimilarity measure, only that P4 has a slightly higher value than P3. The
resulting images for θ = 0 can be found in Figure 19, where we can see that the transition region was split
into two sections, having either of the colors of the pair. These sections are only equally sized for P1 and P5.
The separation is the same for θ = π

2 only rotated.

(a) Diagonal split (θ = π
4
) at α = 3

and P1.
(b) Diagonal split (θ = π

4
) at α = 2

and P2.
(c) Diagonal split (θ = π

4
) at α = 3

and P3.

(d) Diagonal split (θ = π
4
) at α = 0

and P4.
(e) Diagonal split (θ = π

4
) at α = 2

and P5.
(f) Diagonal split (θ = π

4
) at α = 2

and P6.

Figure 18: Segmentation for the six color pairs at θ = π
4 for different α values.
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(a) Horizontal split (θ = 0) at α =
2653 and P1.

(b) Horizontal split (θ = 0) at α =
1167 and P1.

(c) Horizontal split (θ = 0) at α =
682 and P1.

(d) Horizontal split (θ = 0) at α =
690 and P4.

(e) Horizontal split (θ = 0) at α =
2874 and P5.

(f) Horizontal split (θ = 0) at α =
2861 and P6.

Figure 19: Segmentation for the six color pairs at θ = 0 for different α values.

5.2 Satellite Data

We have seen that the diagonal splits with a transition region had the least accurate segmentation for all six
color pairs we chose in the preliminary analysis. However, we expect these results to be the best predictors
for appropriate α values in the satellite data, as it is likely that the real-life test data contains transition
regions and that the separation of two colors will not lie along the x-axis or y-axis. The average α value for
the synthetic images with a diagonal transition region are α = 100 for DM, α = 111 for DE and α = 2 for
DC. We expect the appropriate α values of the three dissimilarity measures to lie around these averages.
The segmentation images presented in this section result from assigning a random color to every flat region
identified by the α-tree algorithm. Furthermore, all flat regions containing less than ten pixels have been
colored black, so they can easily be identified. We will mostly ignore these small regions and focus on the
more significant flat regions identified by the algorithm.

5.2.1 General Trends

There are a few observations that are consistent across all four example pictures. Firstly, for all dissimilarity
measures, we can see that setting the α value too low or too high results in segmentation images with either
too many small flat regions or one large region. Either of these outcomes is not wanted. If the α value is too
low, as seen in Figure 20, we observe that most of the image is black as most flat regions contain less than ten
pixels. If the α value is too high, as seen in Figure 21, we observe that most of the image is one color. Having
one large flat region like this removes most information about the structures we want to extract from the
image. Therefore, we had to find an appropriate α value for each dissimilarity measure. It became apparent
that DC needed a significantly lower α value for achieving similar segmentation images as DE and DM, as
predicted by the preliminary analysis.
Furthermore, the segmentation images using DC were more sensitive to changes in α. Meanwhile, using DM

multiple α levels resulted in the same segmentation images. We compared the results to all ground truth
images available and tried to find similarities between the ground truth images and the segmentation images.
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(a) Segmentation image using DC at α = 1. (b) Segmentation image using DE at α = 20.

(c) Segmentation image using DM at α = 20.

Figure 20: Segmentation images using an α value that is too low on test image a.
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(a) Segmentation image using DC at α = 100. (b) Segmentation image using DE at α = 600.

(c) Segmentation image using DE at α = 600.

Figure 21: Segmentation images using an α value that is too high on test image a.

5.2.2 Test Image a

For this test image the best segmentation was achieved at α = 5 for DC, α = 105 for DE, and α = 80 for
DM. The resulting segmentation images and the ground truth images can be seen in Figure 22.
Regarding the results of DC (Figure 22a), we see that a large section of the right side of the image has been
combined into one flat region (muted purple), which does not correspond to any region in any of the ground
truth images. At the top left of the image, we can see that four fields have been separated into different flat
regions corresponding to section 1 in the high-detail ground truth image. At the bottom left of the image,
we can see a green region corresponding to section 4 in the high-detail ground truth image. Additionally, we
can see that three of the four sports fields have been separated, like in section 5 in the high-detail ground
truth image. Lastly, we can see that the two buildings in sections 2 and 3 of the high-detail ground truth
image have been segmented correctly as well.
When observing the results of DE (Figure 22c), we see that the four fields at the top left of the image have
been connected to one flat region, as can be seen in section 1 of the medium-detail ground truth image.
However, section 2 of the medium-detail ground truth image was added to the region while being separate in
all ground truth images. In the left half of the image, we can see three larger regions. The pink region at the
top left corresponds reasonably well to section 3 of the medium-detail ground truth image. At the bottom
left of the image, we can see a separation similar to sections 1 and 2 in the low-detail ground truth image.
Sections 2 and 3 of the high-detail ground truth image have been segmented correctly. The rest of the image
roughly matches section 6 of the high-detail ground truth image.

24



The results of DM (Figure 22e) are very similar to the ones of DE. However, section 2 of the medium-detail
ground truth image has been correctly separated from section 1 of the medium-detail ground truth image.
Additionally, the region that corresponds to section 2 of the low-detail ground truth image for DE is more
like section 4 of the medium-detail ground truth image for DM. The rest of the image has roughly the same
segmentation as DE.
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(a) Segmentation image using DC at α = 5. (b) Ground truth at high-detail level.

(c) Segmentation image using DE at α = 105. (d) Ground truth at medium-detail level.

(e) Segmentation image using DM at α = 80. (f) Ground truth at low-detail level.

Figure 22: Segmentation images using the three dissimilarity measures at different alpha levels and ground
truth images for test image a.
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5.2.3 Test Image b

For this test image the best segmentation was achieved at α = 12 for DC, α = 85 for DE, and α = 65 for
DM. The resulting segmentation images and the ground truth images can be seen in Figure 23.
The results of DC (Figure 23a) have only a few similarities to the ground truth images. We see a yellow
section roughly corresponding to section 1 of the medium-detail ground truth image. Furthermore, one of
the buildings in section 1 of the high-detail ground truth image has been identified. Lastly, a pink region
corresponds to section 6 of the medium-detail ground truth image, but it is too large. Other than that, no
regions correspond well to the sections in the ground truth images.
The segmentation image using DE (Figure 23c) has more similarities to the ground truth images. We can
see that the green part of section 2 of the high-detail ground truth image has been well segmented. Also, at
the bottom left of the image, we can see a purple region corresponding to section 3 of the low-detail ground
truth image. On the right side of the image, we see a light blue region that combines sections 1 and 2 of the
low-detail ground truth image. Moreover, we can see two regions corresponding to section 5 and section 6 of
the medium-detail ground truth image. Similarly to DC we see a green region that combines section 1 and
section 3 of the medium-detail ground truth image.
For DM (Figure 23e) we can again see many similarities to DE but with a bit more detail. We can see a
region combining section 2 of the medium-detail ground truth image and section 2 of the low-detail ground
truth image. Section 2 and section 3 of the high-detail ground truth image and section 5 of the medium-detail
ground truth image have been clearly segmented. We again observe a region that combines section 1 and
section 3 of the medium-detail ground truth image, but it is more similar to the ground truth than the region
for DE as we can also see section 5 of the high-detail ground truth image. At the bottom left, we can see
two regions roughly corresponding to section 4 of the high-detail ground truth image and section 4 of the
medium-detail ground truth image.
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(a) Segmentation image using DC at α = 12. (b) Ground truth at high-detail level.

(c) Segmentation image using DE at α = 85. (d) Ground truth at medium-detail level.

(e) Segmentation image using DM at α = 65. (f) Ground truth at low-detail level.

Figure 23: Segmentation images using the three dissimilarity measures at different alpha levels and ground
truth images for test image b.
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5.2.4 Test Image c

For this test image the best segmentation was achieved at α = 3 for DC, α = 75 for DE, and α = 65 for DM.
The resulting segmentation images and the ground truth images can be seen in Figure 24.
In the results of DC (Figure 24a) for this test image, we see that the fields from section 1 in the high-detail
ground truth image have been relatively well segmented. Some are connected into one flat region, but they
are mostly recognizable. Furthermore, we can see that section 3 and section 5 of the high-detail ground truth
image have been well segmented. Additionally, many details of section 4 of the high-detail ground truth
image have been preserved. The primarily black regions, which were forests in the original image, are not
marked as one coherent region.
Regarding DE (Figure 24c), we can again see fairly well-segmented regions for section 1 of the high-detail
ground truth image. However, there are more merged fields, and some regions that should be connected are
not. Section 5 of the high-detail ground truth image has again been segmented well. The detail in section
4 of the high-detail ground truth image can still be seen but is not as well reproduced. In contrast to DC

using this measure, we found a region fairly well encapsulating section 1 of the medium-detail ground truth
image and a region corresponding to section 2 of the high-detail ground truth image. Nevertheless, the region
that corresponded to section 3 of the high-detail ground truth image for DC now has its regions merged and
corresponds more to section 2 of the medium-detail ground truth image, and the region has a fairly large
error on the right.
The results of DM (Figure 24e) again show some segmentation of the fields of section 1 of the high-detail
ground truth image. However, many disruptions in the fields can be seen as the least accurate segmentation
of that section between the three measures. Section 2 and section 5 of the high-detail ground truth image
have been clearly segmented from the rest of the image. As for DE, section 2 of the medium-detail ground
truth image has been segmented, but it does not contain the large error. The level of detail for section 4 of
the high-detail ground truth image is roughly the same as for DE.
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(a) Segmentation image using DC at α = 3. (b) Ground truth at high-detail level.

(c) Segmentation image using DE at α = 75. (d) Ground truth at medium-detail level.

(e) Segmentation image using DM at α = 65. (f) Ground truth at low-detail level.

Figure 24: Segmentation images using the three dissimilarity measures at different alpha levels and ground
truth images for test image c.
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5.2.5 Test Image d

For this test image the best segmentation was achieved at α = 11 for DC, α = 90 for DE, and α = 75 for
DM. The resulting segmentation images and the ground truth images can be seen in Figure 25.
One prominent region we can see in yellow for the results of DC (Figure 25a) combines sections 2, 3, and 4 of
the low-detail ground truth image. We can also see that this measure segmented section 1 from the low-detail
image while merging the larger and smaller part of that section into one region. In the bottom half of the
image, we can see that there is one region in dark blue that corresponds to section 4 of the medium-detail
ground truth image. Also, we see that section 3 of the medium-detail ground truth image has been split into
two regions. Some of the detail in section 2 of the high-detail ground truth image has been preserved, but a
few larger regions can be seen in the results but not in the ground truth image.
The segmentation using DE (Figure 25c) found one region that accurately corresponds to section 2 of the
low-detail ground truth image. Furthermore, we can see that sections 1 and 2 of the medium-detail ground
truth image have been segmented well. Sections 3 and 4 have been combined into one larger region. We
can also observe that most of the detail of sections 1 and 2 of the high-detail ground truth image has been
preserved.
Once more we can see that the results of DE and DM (Figure 25e) are quite similar. The region that
corresponds to section 2 of the low-detail ground truth image has been split into one larger and two smaller
regions. Additionally, sections 3 and 4 are separately segmented using this dissimilarity measure. Finally, we
see that sections 1 and 2 of the medium-detail ground truth image and sections 1 and 2 of the high-detail
ground truth image have been well segmented.
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(a) Segmentation image using DC at α = 11. (b) Ground truth at high-detail level.

(c) Segmentation image using DE at α = 90. (d) Ground truth at medium-detail level.

(e) Segmentation image using DM at α = 75. (f) Ground truth at low-detail level.

Figure 25: Segmentation images using the three dissimilarity measures at different alpha levels and ground
truth images for test image d.
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6 Discussion

The goal of this research is to establish appropriate α values for the three dissimilarity measures; the Man-
hattan distance DM, the Euclidean distance DE and the cosine distance DC that can be used for image
segmentation. Furthermore, it should be assessed how well the dissimilarity measures can detect relevant
sections in the provided sample images. Evaluating the dissimilarity measures is beneficial to apply the α-tree
algorithm to colored images, which can be used in agriculture, disaster management, and pollution detection.

For DM we have found that the most appropriate images were created at an α level in the range of [60, 80].
This range is lower than the predicted value of 100 but reasonably close. The segmentation images were most
similar to the medium detail ground truth images. In addition to identifying these medium-sized structures,
the dissimilarity measure was able to segment buildings in a building complex, as in test images a and d.
DM did not seem appropriate to identify coarse regions, like in the low-detail ground truth images.

Regarding DE an α level in the range of [70, 110] produced appropriate segmentation images. This range
corresponds well to the predicted value of 110. The segmentation images were most similar to the medium
detail ground truth images. As for DM, the segmentation images were most similar to the medium detail
ground truth images while still able to segment detailed structures as buildings. However, the segmentation
images using DE had a little bit less detail and were more likely to connect neighboring sections into one,
compared to DM.

The dissimilarity measure DC had a considerably lower appropriate α level range of [3, 15]. The predicted
value of 2 is close to this range but lower. It also became apparent that a change in α value had a more
considerable impact on the resulting segmentation image for DC than this exact change would have for the
other two dissimilarity measures. We expect the colors in the test images to be an explanation for this
difference. The test images primarily show fields, buildings, roads, and trees. Hence, they contain many
shades of green and gray. One property of DC is that given two shades of the same color, such as (1, 1, 1) and
(100, 100, 100), then these shades are evaluated as the same color using DC. On the contrary, the other two
dissimilarity measures would detect a difference between these colors. Therefore, given sample images with
multiple shades of the same colors, a slight change in α would significantly increase the size of connected
components in the segmentation images for DC.

Generally, we observed that the appropriate α levels are low for all dissimilarity measures compared to
the possible range of [0, 10000]. We could observe that the α values of the synthetic images with diagonal
transition regions served well as a predictor of appropriate α values in the satellite data. The α values are
possibly so low since we used the RGB color space. As described before, the test images contain many shades
of green and gray. Using the three dissimilarity measures, different shades of the same color are relatively
close in the RGB color space. Due to this proximity, the α levels needed to be relatively low to differentiate
between similar colors correctly. An exciting venture for future research would be to represent the images in
different color spaces and see how that influences the appropriate α value range.
Interestingly, none of the dissimilarity measures correctly identified the forest section in test image c. While
the trees seem similar in color, their high variance in structure might have hindered the algorithm from
correctly identifying them as one region. Future research could focus on adding steps in the algorithm that
connects structurally similar regions. This could be done by adjusting a pixel’s neighborhood in the algo-
rithm’s comparison phase or applying a different or adjusted dissimilarity measure.
Furthermore, future research should employ objective, numerical measures to assess the similarity between
the segmentation created by the algorithm and the ground truth images. A numerical value would allow
us to compare the performance of different dissimilarity measures. Two measures that could be used for
this task are precision and recall of overlapping regions between the ground truth images and the created
segmentation images.
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7 Appendix

7.1 Synthetic Test Images

(a) Horizontal split (θ = 0) without transition region. (b) Horizontal split (θ = 0) with transition region.

(c) Vertical split (θ = π
2
) without transition region. (d) Vertical split (θ = π

2
) with transition region.

(e) Diagonal split from bottom left to top right (θ = π
4
)

without transition region.
(f) Diagonal split from bottom left to top right (θ = π

4
)

with transition region.

(g) Diagonal split from top left to bottom right (θ = 3π
4
)

without transition region.
(h) Diagonal split from top left to bottom (θ = 3π

4
) right

with transition region.

Figure 26: Synthetic images created for color pair P2.
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(a) Horizontal split (θ = 0) without transition region. (b) Horizontal split (θ = 0) with transition region.

(c) Vertical split (θ = π
2
) without transition region. (d) Vertical split (θ = π

2
) with transition region.

(e) Diagonal split from bottom left to top right (θ = π
4
)

without transition region.
(f) Diagonal split from bottom left to top right (θ = π

4
)

with transition region.

(g) Diagonal split from top left to bottom right (θ = 3π
4
)

without transition region.
(h) Diagonal split from top left to bottom (θ = 3π

4
) right

with transition region.

Figure 27: Synthetic images created for color pair P3.
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(a) Horizontal split (θ = 0) without transition region. (b) Horizontal split (θ = 0) with transition region.

(c) Vertical split (θ = π
2
) without transition region. (d) Vertical split (θ = π

2
) with transition region.

(e) Diagonal split from bottom left to top right (θ = π
4
)

without transition region.
(f) Diagonal split from bottom left to top right (θ = π

4
)

with transition region.

(g) Diagonal split from top left to bottom right (θ = 3π
4
)

without transition region.
(h) Diagonal split from top left to bottom (θ = 3π

4
) right

with transition region.

Figure 28: Synthetic images created for color pair P4.
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(a) Horizontal split (θ = 0) without transition region. (b) Horizontal split (θ = 0) with transition region.

(c) Vertical split (θ = π
2
) without transition region. (d) Vertical split (θ = π

2
) with transition region.

(e) Diagonal split from bottom left to top right (θ = π
4
)

without transition region.
(f) Diagonal split from bottom left to top right (θ = π

4
)

with transition region.

(g) Diagonal split from top left to bottom right (θ = 3π
4
)

without transition region.
(h) Diagonal split from top left to bottom (θ = 3π

4
) right

with transition region.

Figure 29: Synthetic images created for color pair P5.
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(a) Horizontal split (θ = 0) without transition region. (b) Horizontal split (θ = 0) with transition region.

(c) Vertical split (θ = π
2
) without transition region. (d) Vertical split (θ = π

2
) with transition region.

(e) Diagonal split from bottom left to top right (θ = π
4
)

without transition region.
(f) Diagonal split from bottom left to top right (θ = π

4
)

with transition region.

(g) Diagonal split from top left to bottom right (θ = 3π
4
)

without transition region.
(h) Diagonal split from top left to bottom (θ = 3π

4
) right

with transition region.

Figure 30: Synthetic images created for color pair P6.
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7.2 Synthetic Segmentation Images

7.2.1 Manhattan Distance

(a) Segmentation image for θ = π
2
without transition region

at α = 5228.
(b) Segmentation image for θ = π

2
with transition region

at α = 2627.

(c) Segmentation image for θ = 0 without transition region
at α = 5228.

(d) Segmentation image for θ = 0 without transition region
at α = 2627.

(e) Segmentation image for θ = π
4
without transition region

at α = 5228.
(f) Segmentation image for θ = π

4
with transition region at

α = 104.

(g) Segmentation image for θ = 3π
4

without transition re-
gion at α = 5228.

(h) Segmentation image for θ = 3π
4

with transition region
at α = 104.

Figure 31: Segmentation images using DM for the color pair P1 with and without transition region.
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(a) Segmentation image for θ = π
2
without transition region

at α = 5228.
(b) Segmentation image for θ = π

2
with transition region

at α = 2627.

(c) Segmentation image for θ = 0 without transition region
at α = 5228.

(d) Segmentation image for θ = 0 without transition region
at α = 2627.

(e) Segmentation image for θ = π
4
without transition region

at α = 5228.
(f) Segmentation image for θ = π

4
with transition region at

α = 104.

(g) Segmentation image for θ = 3π
4

without transition re-
gion at α = 5228.

(h) Segmentation image for θ = 3π
4

with transition region
at α = 104.

Figure 32: Segmentation images using DM for the color pair P2 with and without transition region.
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(a) Segmentation image for θ = π
2
without transition region

at α = 2261.
(b) Segmentation image for θ = π

2
with transition region

at α = 1137.

(c) Segmentation image for θ = 0 without transition region
at α = 2261.

(d) Segmentation image for θ = 0 without transition region
at α = 1137.

(e) Segmentation image for θ = π
4
without transition region

at α = 2261.
(f) Segmentation image for θ = π

4
with transition region at

α = 78.

(g) Segmentation image for θ = 3π
4

without transition re-
gion at α = 2261.

(h) Segmentation image for θ = 3π
4

with transition region
at α = 78.

Figure 33: Segmentation images using DM for the color pair P3 with and without transition region.
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(a) Segmentation image for θ = π
2
without transition region

at α = 2588.
(b) Segmentation image for θ = π

2
with transition region

at α = 1307.

(c) Segmentation image for θ = 0 without transition region
at α = 2588.

(d) Segmentation image for θ = 0 without transition region
at α = 1307.

(e) Segmentation image for θ = π
4
without transition region

at α = 2588.
(f) Segmentation image for θ = π

4
with transition region at

α = 52.

(g) Segmentation image for θ = 3π
4

without transition re-
gion at α = 2588.

(h) Segmentation image for θ = 3π
4

with transition region
at α = 52.

Figure 34: Segmentation images using DM for the color pair P4 with and without transition region.
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(a) Segmentation image for θ = π
2
without transition region

at α = 6666.
(b) Segmentation image for θ = π

2
with transition region

at α = 3359.

(c) Segmentation image for θ = 0 without transition region
at α = 6666.

(d) Segmentation image for θ = 0 without transition region
at α = 3359.

(e) Segmentation image for θ = π
4
without transition region

at α = 6666.
(f) Segmentation image for θ = π

4
with transition region at

α = 104.

(g) Segmentation image for θ = 3π
4

without transition re-
gion at α = 6666.

(h) Segmentation image for θ = 3π
4

with transition region
at α = 104.

Figure 35: Segmentation images using DM for the color pair P5 with and without transition region.
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(a) Segmentation image for θ = π
2
without transition region

at α = 10000.
(b) Segmentation image for θ = π

2
with transition region

at α = 5032.

(c) Segmentation image for θ = 0 without transition region
at α = 10000.

(d) Segmentation image for θ = 0 without transition region
at α = 5032.

(e) Segmentation image for θ = π
4
without transition region

at α = 10000.
(f) Segmentation image for θ = π

4
with transition region at

α = 156.

(g) Segmentation image for θ = 3π
4

without transition re-
gion at α = 10000.

(h) Segmentation image for θ = 3π
4

with transition region
at α = 156.

Figure 36: Segmentation images using DM for the color pair P6 with and without transition region.
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7.2.2 Euclidean Distance

(a) Segmentation image for θ = π
2
without transition region

at α = 6403.
(b) Segmentation image for θ = π

2
with transition region

at α = 3217.

(c) Segmentation image for θ = 0 without transition region
at α = 6403.

(d) Segmentation image for θ = 0 without transition region
at α = 3217.

(e) Segmentation image for θ = π
4
without transition region

at α = 6403.
(f) Segmentation image for θ = π

4
with transition region at

α = 128.

(g) Segmentation image for θ = 3π
4

without transition re-
gion at α = 6403.

(h) Segmentation image for θ = 3π
4

with transition region
at α = 128.

Figure 37: Segmentation images using DE for the color pair P1 with and without transition region.

48



(a) Segmentation image for θ = π
2
without transition region

at α = 5594.
(b) Segmentation image for θ = π

2
with transition region

at α = 2811.

(c) Segmentation image for θ = 0 without transition region
at α = 5594.

(d) Segmentation image for θ = 0 without transition region
at α = 2811.

(e) Segmentation image for θ = π
4
without transition region

at α = 5594.
(f) Segmentation image for θ = π

4
with transition region at

α = 110.

(g) Segmentation image for θ = 3π
4

without transition re-
gion at α = 5594.

(h) Segmentation image for θ = 3π
4

with transition region
at α = 110.

Figure 38: Segmentation images using DE for the color pair P2 with and without transition region.
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(a) Segmentation image for θ = π
2
without transition region

at α = 2841.
(b) Segmentation image for θ = π

2
with transition region

at α = 1422.

(c) Segmentation image for θ = 0 without transition region
at α = 2841.

(d) Segmentation image for θ = 0 without transition region
at α = 1422.

(e) Segmentation image for θ = π
4
without transition region

at α = 2841.
(f) Segmentation image for θ = π

4
with transition region at

α = 78.

(g) Segmentation image for θ = 3π
4

without transition re-
gion at α = 2841.

(h) Segmentation image for θ = 3π
4

with transition region
at α = 78.

Figure 39: Segmentation images using DE for the color pair P3 with and without transition region.
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(a) Segmentation image for θ = π
2
without transition region

at α = 3189.
(b) Segmentation image for θ = π

2
with transition region

at α = 1608.

(c) Segmentation image for θ = 0 without transition region
at α = 3189.

(d) Segmentation image for θ = 0 without transition region
at α = 1608.

(e) Segmentation image for θ = π
4
without transition region

at α = 3189.
(f) Segmentation image for θ = π

4
with transition region at

α = 64.

(g) Segmentation image for θ = 3π
4

without transition re-
gion at α = 3189.

(h) Segmentation image for θ = 3π
4

with transition region
at α = 64.

Figure 40: Segmentation images using DE for the color pair P4 with and without transition region.
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(a) Segmentation image for θ = π
2
without transition region

at α = 8164.
(b) Segmentation image for θ = π

2
with transition region

at α = 4114.

(c) Segmentation image for θ = 0 without transition region
at α = 8164.

(d) Segmentation image for θ = 0 without transition region
at α = 4114.

(e) Segmentation image for θ = π
4
without transition region

at α = 8164.
(f) Segmentation image for θ = π

4
with transition region at

α = 128.

(g) Segmentation image for θ = 3π
4

without transition re-
gion at α = 8164.

(h) Segmentation image for θ = 3π
4

with transition region
at α = 128.

Figure 41: Segmentation images using DE for the color pair P5 with and without transition region.
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(a) Segmentation image for θ = π
2
without transition region

at α = 10000.
(b) Segmentation image for θ = π

2
with transition region

at α = 5032.

(c) Segmentation image for θ = 0 without transition region
at α = 10000.

(d) Segmentation image for θ = 0 without transition region
at α = 5032.

(e) Segmentation image for θ = π
4
without transition region

at α = 10000.
(f) Segmentation image for θ = π

4
with transition region at

α = 156.

(g) Segmentation image for θ = 3π
4

without transition re-
gion at α = 10000.

(h) Segmentation image for θ = 3π
4

with transition region
at α = 156.

Figure 42: Segmentation images using DE for the color pair P6 with and without transition region.
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7.2.3 Cosine Distance

(a) Segmentation image for θ = π
2
without transition region

at α = 9296.
(b) Segmentation image for θ = π

2
with transition region

at α = 2653.

(c) Segmentation image for θ = 0 without transition region
at α = 9296.

(d) Segmentation image for θ = 0 without transition region
at α = 2653.

(e) Segmentation image for θ = π
4
without transition region

at α = 9296.
(f) Segmentation image for θ = π

4
with transition region at

α = 3.

(g) Segmentation image for θ = 3π
4

without transition re-
gion at α = 9296.

(h) Segmentation image for θ = 3π
4

with transition region
at α = 3.

Figure 43: Segmentation images using DC for the color pair P1 with and without transition region.
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(a) Segmentation image for θ = π
2
without transition region

at α = 4530.
(b) Segmentation image for θ = π

2
with transition region

at α = 1167.

(c) Segmentation image for θ = 0 without transition region
at α = 4530.

(d) Segmentation image for θ = 0 without transition region
at α = 1167.

(e) Segmentation image for θ = π
4
without transition region

at α = 4530.
(f) Segmentation image for θ = π

4
with transition region at

α = 2.

(g) Segmentation image for θ = 3π
4

without transition re-
gion at α = 4530.

(h) Segmentation image for θ = 3π
4

with transition region
at α = 2.

Figure 44: Segmentation images using DC for the color pair P2 with and without transition region.
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(a) Segmentation image for θ = π
2
without transition region

at α = 2724.
(b) Segmentation image for θ = π

2
with transition region

at α = 682.

(c) Segmentation image for θ = 0 without transition region
at α = 2724.

(d) Segmentation image for θ = 0 without transition region
at α = 682.

(e) Segmentation image for θ = π
4
without transition region

at α = 2724.
(f) Segmentation image for θ = π

4
with transition region at

α = 3.

(g) Segmentation image for θ = 3π
4

without transition re-
gion at α = 2724.

(h) Segmentation image for θ = 3π
4

with transition region
at α = 3.

Figure 45: Segmentation images using DC for the color pair P3 with and without transition region.
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(a) Segmentation image for θ = π
2
without transition region

at α = 2724.
(b) Segmentation image for θ = π

2
with transition region

at α = 690.

(c) Segmentation image for θ = 0 without transition region
at α = 2724.

(d) Segmentation image for θ = 0 without transition region
at α = 690.

(e) Segmentation image for θ = π
4
without transition region

at α = 2724.
(f) Segmentation image for θ = π

4
with transition region at

α = 0.

(g) Segmentation image for θ = 3π
4

without transition re-
gion at α = 2724.

(h) Segmentation image for θ = 3π
4

with transition region
at α = 0.

Figure 46: Segmentation images using DC for the color pair P4 with and without transition region.
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(a) Segmentation image for θ = π
2
without transition region

at α = 10000.
(b) Segmentation image for θ = π

2
with transition region

at α = 2874.

(c) Segmentation image for θ = 0 without transition region
at α = 10000.

(d) Segmentation image for θ = 0 without transition region
at α = 2874.

(e) Segmentation image for θ = π
4
without transition region

at α = 10000.
(f) Segmentation image for θ = π

4
with transition region at

α = 2.

(g) Segmentation image for θ = 3π
4

without transition re-
gion at α = 10000.

(h) Segmentation image for θ = 3π
4

with transition region
at α = 2.

Figure 47: Segmentation images using DC for the color pair P5 with and without transition region.
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(a) Segmentation image for θ = π
2
without transition region

at α = 10000.
(b) Segmentation image for θ = π

2
with transition region

at α = 2861.

(c) Segmentation image for θ = 0 without transition region
at α = 10000.

(d) Segmentation image for θ = 0 without transition region
at α = 2861.

(e) Segmentation image for θ = π
4
without transition region

at α = 10000.
(f) Segmentation image for θ = π

4
with transition region at

α = 2.

(g) Segmentation image for θ = 3π
4

without transition re-
gion at α = 10000.

(h) Segmentation image for θ = 3π
4

with transition region
at α = 2.

Figure 48: Segmentation images using DC for the color pair P6 with and without transition region.
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