
S K E L E TA L S E M A N T I C S F O R M E S S A G E - PA S S I N G
C O N C U R R E N C Y

miguel bartelsman mejía

From Actors to Channels and Back

July 2022 – version 3

Miguel Bartelsman Mejía: Skeletal Semantics for Message-Passing Con-
currency, From Actors to Channels and Back, © July 2022

A B S T R A C T

This project aims to stand at the junction between two needs in com-
puting science: the need for easier and more portable concurrency,
and the need for more universal formal specifications of program-
ming languages. Making use of skeletal semantics—a novel frame-
work for describing programming language semantics—we present
two concurrent programming languages, one for the actor model and
one for the channel model of process communication, along with
their interpreters and two utilities for translating programs between
the two languages. The goal is to test the capabilities of skeletal se-
mantics in the context of message-passing concurrent programming
languages.

iii

A C K N O W L E D G M E N T S

This project would not have been possible without the support of my
friends and colleagues.

In particular, I want to thank Chingiz Dadashov-Khandan for his
support throughout the project and for his help in proofreading this
document. I want to thank my supervisors, Dan Frumin and Jorge A.
Pérez, for their patience and assistance during this process. And, last
but not least, I want to thank my family for their constant support
over the years; I would not have made it this far without them.

v

C O N T E N T S

1 introduction 1

1.1 Skeletal semantics 2

1.2 Concurrent programming 5

1.3 Goals 7

2 languages 9

2.1 Base language 9

2.2 Actor-based language 11

2.3 Channel-based language 11

3 development 13

3.1 Semantics in Skel 13

3.2 Describing the semantics 14

3.3 OCaml workflow 17

3.4 Common language details 18

3.5 Actors implementation 20

3.6 Channels implementation 21

3.7 Translators 21

4 architecture and results 23

5 conclusion 25

bibliography 27

6 bibliography 27

vii

L I S T O F F I G U R E S

Figure 1 Example semantics for an if-expression of an
unspecified language 4

Figure 2 Example program in the base language 9

Figure 3 Example program avoiding the use of Let 10

Figure 4 A simple actor-based program. This program
spawns a new actor and sends it the integer
value 7. 11

Figure 5 A simple channel-based program. This program
creates a process and a channel to send it the
integer value 7. 12

Figure 6 Types in Skel 13

Figure 7 Filters and skeletons in Skel 14

Figure 8 Heuristic for translating from operational to
skeletal semantics 15

Figure 9 Heuristic for combining skeletons 16

Figure 10 Example of variable mapping 17

Figure 11 Diagram showcasing concurrent process schedul-
ing and evaluation. 20

Figure 12 Public project structure. Modules in purple, con-
structors in orange, functions in blue. 23

Figure 13 Process diagram for the use of the four tools 24

Figure 14 Example of the process and results for one of
the interpreters. Orange are expression nodes,
red are value nodes, green are values. 24

L I S T O F TA B L E S

Table 1 Base language terms. e stands for terms, v stands
for values, n stands for names 10

Table 2 Actor-based language exclusive terms. 11

Table 3 Channel-based language exclusive terms. 12

viii

1
I N T R O D U C T I O N

Never before has concurrent computation been more important for
our daily lives: the internet of things promises networks of devices in
constant communication; cellphones and other wireless devices tap
into global communication networks; cloud computing makes simul-
taneous use of devices around the globe to provide advanced and
powerful capabilities to individual terminals; modern personal com-
puters are powered by CPUs hosting several parallel cores, aided by
GPUs with hundreds more; and data-centres must operate hundreds
to thousands of servers harmoniously and concurrently to provide
satisfactory services to their clients. This trend towards a concurrent
future shows no sign of stopping. Moore’s law—the empirical ob-
servation stating that the density of transistors within an integrated
circuit double every two years (Moore, 1998)—is becoming increas-
ingly difficult to maintain due to the physical limitations of nano-
scale technology. Instead, much effort is being invested into comput-
ers using transistors more efficiently. An effort that relies, in no small
part, on the parallelization of computations and the speedups that
this achieves.

Concurrency is not cheap, however. Programming, even without
the use of concurrency, is already notorious for its difficulty and the
impact that its errors can have. A small bug present in a widely used
library can be the source for multi-million dollar outages or vulner-
abilities, such was the case with the infamous Heartbleed OpenSSL
vulnerability, which affected between 24 and 55% of all HTTPS sites
(Durumeric et al., 2014). Concurrency compounds the complexity of
producing correct software: it brings to the table a whole set of poten-
tial pitfalls to avoid—such as deadlocks, livelocks, data and condition
races, among others—and it makes programs significantly more diffi-
cult to test, debug, and reason about. Concurrency is expensive and
its price is paid by the developers who must ensure that their soft-
ware is correct.

As such, there is a great need to research methods that ensure
the safety of concurrent software. Many theoretical frameworks have
been developed to this end: Process-calculi formalize concurrent com-
putations under a strict mathematical framework; session types allow
for the verification and manipulation of complex communication pro-
tocols; and new data structures, schemes, and algorithms are con-
stantly being developed for the purpose of building safer and faster
concurrent applications.

1

2 introduction

However, many of such efforts are only possible when the founda-
tions upon which they are built can be reasoned about and trusted. To
establish those solid foundations for research—ones that ensure that
theory aligns with reality—researchers must understand how their
tools work, and their tools must behave according to the expectations
of their users. In the realm of programming languages, this means
that a language’s behaviour must be clear and well-specified, and the
interpreters and compilers for such languages must correctly abide
by such specification.

This presents a problem: writing software that has been verified
to be correct, according to a rigorous specification, requires a great
amount of effort and resources that might be better used to further
other goals. Skeletal semantics (Bodin et al., 2019) alongside Necro (Courant,
Crance, and Schmitt, 2020; Necro Library 2019) are two tools that aim
to solve this problem. Skeletal semantics provides a more scalable
and reusable means of describing the semantics of programming lan-
guages, and Necro offers a partly-automated means of implementing
a correct language interpreter based on such specifications.

1.1 skeletal semantics

To understand how skeletal semantics work, we first introduce the
concept of semantics within the context of Computing Science and
programming languages. Semantics can refer to either the field of
study that deals with the rigorous description of the behaviour and
properties of programming languages or to the concrete language de-
scriptions produced in this field. There are three major schools for
describing the semantics of a language: operational semantics, deno-
tational semantics, and axiomatic semantics.

This project focuses exclusively on operational semantics because,
out of the three approaches, it is the most commonly used, it is
the approach that skeletal semantics takes, and it is the only ap-
proach considered for this project. Operational semantics describes
languages through sets of reduction or evaluation rules that are re-
peatedly applied to the constructs within a program. These rules can
be applied iteratively, evaluating programs step by step until they
have been fully reduced (or until reduction is no longer possible), or
they can be applied recursively by evaluating programs as a series of
nested computations of decreasing complexity. The former approach
is called structural or small-step operational semantics, while the lat-
ter is known as natural or big-step semantics. There are other, more
elaborate schemes for describing operational semantics, but small-
and big-step styles are the dominant ones. (Nielson and Nielson, 2007;
Pierce, 2002)

Skeletal semantics is a theoretical framework for describing the op-
erational semantics of a programming language. It is capable of rep-

1.1 skeletal semantics 3

resenting small-step and big-step semantics1 but it is primarily de-
signed to be recursive in nature and, thus, is better suited to big-step
semantics style. The skeletal semantics of a language is composed of
a series of rules known as skeletons in skeletal semantics jargon. Each
skeleton is described by a series of bones—computations—which can
be arranged either in sequence or in a branching structure.

Bones can be of two types: skeletons (where the recursive nature
of the framework stems from) and filters. Filters are abstractions that
serve a dual purpose: they can play the role of functions—mapping
an input to an output—or that of predicates—capable of failing and
halting the branch of execution they appear in. Filters are particularly
useful for applied language development, as they can describe be-
haviours that cannot be effectively described by the semantics alone.2

All of these can be represented by filters without the need for ad-hoc
notation or novel mathematical definitions. Bones must be well-typed
and can be used in combination with pattern-matching and name-
binding. The types used for these skeletons can be either base-types—
which, much like filters, are abstractions—or program-types—which
are composite types that build upon other program-types and base-
types (Bodin et al., 2019). Figure 1 shows a simple comparison be-
tween traditional operational semantics and skeletal semantics, high-
lighting the different components of the latter.

Skeletons, by themselves, are not sufficient for a complete seman-
tics; an interpretation is also required. Interpretations are a set of defi-
nitions that are used to describe how skeletons in a language’s seman-
tics should evaluate a program. Skeletal semantics and their interpreta-
tions, by Bodin et al. (2019), introduces three example interpretations:
a concrete interpretation, an abstract one, and a well-formedness one.
The concrete interpretation evaluates a program by following a single
branch of execution within the semantics, even if multiple branches
would be successful. Abstract interpretations, instead, accept all suc-
cessful branches, yielding the set of all possible results for each eval-
uated program. Lastly, the well-formedness interpretation evaluates
whether a program is valid (well-formed) or not, according to the
types described by the semantics.

One of the primary advantages of skeletal semantics over other
frameworks is that it is defined such that the semantics can be mapped
to a correct language interpreter implementation. Necro is a tool that
automates that very task. By taking as input a textual encoding of the
semantics in a language called Skel, Necro is capable of producing a
partial implementation of a language interpreter that abides by the
semantics. As of the writing of this document, Necro can target both
OCaml and the Coq proof assistant, both of which require the user to

1 More niche schemes, such as Pretty-Big-Step semantics are also supported, but they
may require creative approaches to incorporate.

2 Things that filters can interface with include: system calls, I/O, special and propri-
etary encodings and programs, foreign-library functions, among others.

4 introduction

If-true

t1 ⇓ true t2 ⇓ v2
if (t1) then (t2) else (t3) ⇓ v2

If-false

t1 ⇓ false t3 ⇓ v3
if (t1) then (t2) else (t3) ⇓ v3

(a) A rule in traditional operational semantics

If (if (t1) then (t2) else (t3)) :=[
is_bool(t1) ;

(
H(xσ, t1, xf) ? ▷ true ; H(xf, t2, xo)

H(xσ, t1, xf) ? ▷ false ; H(xf, t3, xo)

)]

(b) A skeleton in skeletal semantics. Legend: filter, branches, pattern-matching, re-
cursion. Semicolons declare sequencing.

val eval_if (input: expression): value =

let If (t1, t2, t3) = input in

is_bool t1 ;

branch

let True = eval t1 in

eval t3

or

let False = eval t1 in

eval t3

end

(c) Skeletal semantics in Skel

Figure 1: Example semantics for an if-expression of an unspecified language

1.2 concurrent programming 5

supply implementations for all abstractions defined in the semantics.
Other targets are also potentially possible, but no others are currently
available. (Courant, Crance, and Schmitt, 2020; Necro Library 2019)

The automation provided by Necro has the potential to greatly re-
duce the effort that language developers must invest into creating
a correct interpreter for a language. With Necro, rather than focus-
ing on the development of tooling, efforts can instead be redirected
into researching the applications for, and behaviour of the relevant
languages, atop solid foundations.

With regards to concurrency, skeletal semantics is still a recent de-
velopment; many of its potential applications have yet to be discov-
ered or explored in-depth. Concurrent programming, especially, is
almost entirely neglected—barring the implementation of co-routines
in Jskel, an ECMAScript implementation made using Necro (Khayam,
2020). This presents an opportunity for research projects to delve into
possible concurrent applications for skeletal semantics.

1.2 concurrent programming

There are two primary approaches to concurrent programming: shared-
state concurrency and message-passing concurrency. Shared-state con-
currency poses an approach where multiple concurrent processes can
communicate via a shared state (as the name implies). This shared
state is most often a shared memory heap, though it need not be.
Shared-state concurrency is a common approach for software running
on personal computers and similar systems as it mirrors the underly-
ing architecture of these devices: multiple cores that use a common
memory device for storing program state. This makes implementing
concurrency at a low level straightforward. (Shared State Concurrency
2005)

However, shared-state concurrency has some drawbacks that make
it difficult to reason about concurrency. The non-deterministic nature
of concurrent execution, combined with a shared, mutable state, re-
sults in processes that compete for read and write access to data
which, in turn, yields unpredictable results in the form of data races.
These races are sometimes catastrophic in nature, and thus easy to
detect. But, sometimes, visible misbehaviour is only rarely triggered,
making bugs hard to identify, track down, and fix. To prevent this,
many synchronization data structures, algorithms, and conventions
have been devised over the years; their use is often complex and intro-
duces additional pitfalls that programmers must be aware of during
the development process.

Furthermore, shared-state storage is difficult to scale to large phys-
ical distances. Even systems on the scale of a personal computer rely
on non-shared caches to keep latency low during memory-related op-
erations. These non-shared caches must store shared data, which re-

6 introduction

quires complex synchronization procedures to prevent errors caused
by parallel execution. Despite such schemes, cache misses—situations
where local synchronization has failed to keep up with process exe-
cution—occur regularly and are a major concern for the performance
of applications. With such issues arising at the centimetre scale, at the
distances that distributed systems operate at, problems are magnified
to the point of making the shared-state approach unscalable.

Message-passing concurrency sidesteps these two issues entirely
by replacing shared-state in favour of discrete immutable messages
for process communication. The channels by which these messages
are transferred are abstract, which allows for them to be scaled up or
down without affecting program design. In addition, the discrete and
immutable nature of the messages means that data races are entirely
avoided (Message Passing Concurrency 2010). This design also allows,
with the help of type theory, for the design of complex but verifiable
communication protocols to ensure the correct behaviour of concur-
rent applications.

Within the realm of message-passing, there are numerous theoreti-
cal models for reasoning about concurrency. Two of the better-known
and most influential among these are the actors and the channels mod-
els. The actors model, first described in Agha’s Actors: A Model of Con-
current Computation in Distributed Systems3 (Agha, 1986) represents
concurrent computations as performed by their namesakes, actors,
which are processes capable of sending and receiving messages to
and from one another. Each actor is associated with a mailbox where
arriving messages are queued up, which can then be processed by
the actor to execute conditional computation.

The channel model, founded by Milner with his Calculus for Com-
municating Systems (Milner, 1980), separates the concerns of computa-
tion and communication. In this model, rather than just actors, there
are processes and channels. Channels are independent mailboxes that
processes can interact with to communicate messages. Processes, un-
like actors, have no associated mailboxes and cannot communicate
directly with one another; message-passing is, instead, done via chan-
nels. Additionally, while the actor model is necessarily asynchronous,
the channel model can be either synchronous—in which case syn-
chronization is needed for communication—or asynchronous (Milner,
Parrow, and Walker, 1992a,b).

Even though the actors and channels models pose two different
ways to reason about concurrency, the two models are equivalent
when dealing with asynchronous communication. This is made clear
by Fowler, Lindley, and Wadler (2016), who have presented two trans-
lation schemes for the models, one going from the actors model to the
channels model, and the other in the opposite direction. These trans-
lation schemes show that any program described with one model can

3 Its formal semantics were described a decade later by Agha et al. (1997)

1.3 goals 7

be described in the other, thus proving their equivalence in computa-
tional capabilities. Since the synchronous channels model is not rele-
vant within the scope of this discussion, going forward, all references
to the channel model will refer to the asynchronous version.

1.3 goals

This project positions itself at the intersection point between skeletal
semantics, message-passing concurrency, and language engineering.
It stands there intending to explore the possibilities that skeletal se-
mantics offers and the limitations that constrain it in the realm of
language engineering; particularly, for languages that employ the ac-
tors and channels models of message-passing concurrency.

The hope is that the exploration that was undertaken during the
development of this project, and the resulting products, will help in
paving the way for future research into the development of concur-
rent programming languages, and tools to make this research more
easily possible. That, by providing an account of a development pro-
cess aided by skeletal semantics and Necro, future researchers and
users will be able to reference these experiences and put them to use
for their own purposes. And that, as a result of this, research in the
fields of concurrency and programming languages can be further ex-
panded.

To this end, four software tools have been developed: two inter-
preters for two programming languages, one making use of the actor
model of concurrency and the other making use of the channel model;
and two translator utilities, one translating programs from the actor
model to the channel model, and the other translating in the oppo-
site direction. All four tools have been developed by using skeletal
semantics to specify their behaviour and by leveraging Necro to auto-
matically generate a partial implementation in OCaml.

With the language interpreters, the goal is to explore the possi-
bilities of skeletal semantics for implementing concurrent languages.
The goal of the translation utilities is to evaluate the use of skeletal
semantics not just for the implementation of languages, but for their
manipulation, when guided by and compared against formal theoret-
ical propositions.

These four tools, their development process, their use, and the con-
clusions drawn from them, will be described in the following sections.

2
L A N G U A G E S

Two languages were developed for this project, one for each of the
two relevant models of concurrency: an actor-based language, and a
channel-based language. The two languages were designed around
a non-concurrent base language, allowing them to share a common
core of semantics.

The language is written using S-expressions. These are parenthet-
ical expressions that contain a token, describing an operation, fol-
lowed by a list of arguments. S-expressions were chosen as the syn-
tactic foundation for the language because they are consistent, simple
to parse and serialize, and there is extensive tooling supporting their
use in OCaml. This makes their implementation straightforward, al-
lowing the project to focus on the semantics of the languages, rather
than their grammar.

2.1 base language

There are two reasons for the use of a base language as a common
core. First, the non-concurrent aspects of the languages are not the
intended focus of the project, so minimizing efforts on this front is
beneficial. Second, the references used as a guideline for the devel-
opment of these languages (Fowler, Lindley, and Wadler, 2016) also
describe the two languages as sharing the non-concurrent aspects of
the semantics.

This base language is an extension of the typed λ-calculus, with the
addition of 2-tuples product types, Left/Right sum types, recursive
functions, simple arithmetic operations on integers, sequencing, and
fine-grained eager evaluation.

Recursion, sum types and product types are necessary for the trans-
lation schemes; arithmetic was included to allow for easily identi-
fiable computation results; finally, sequencing (Seq) and fine-grained
eager evaluation (Let) were included to make programs easier to read
and write, which is exemplified by comparing Figure 2 and Figure 3.

(Let (

(x) (Ret (IntVal 32))

(Add (

(Var x)

(Ret (IntVal 10))))))

Figure 2: Example program in the base language

9

10 languages

(Call (

(Fun (

(x)

(Add (

(Var x)

(Ret (IntVal 10))))))

(Ret (IntVal 32))))

Figure 3: Example program avoiding the use of Let

Table 1 lists all the possible operations that the expression nodes
can take in the base language. Each of the two concurrent languages
extends this list with additional concurrent and communication oper-
ations.

(Call ef ev) Calls function ef with ev

(Func n e) Binds variable n in e

(RecFunc nf nv e) Binds itself to nf and nv in e

(Let n ev ef) Binds ev to n in ef

(Seq ea eb) Evaluates ea then eb

(Ret v) Returns value v

(Var n) Returns the value of variable n

(Neg ei) Negates ei

(Add ei ej) Adds ei and ej

(Sub ei ej) Subtracts ej from ei

(Mul ei ej) Multiplies ei and ej

(Div ei ej) Divides ei by ej

(Pair ea eb) Makes a pair with ea and eb

(Fst e) Takes first value of pair e

(Snd e) Takes second value of pair e

(Left e) Makes a left variant with e

(Right e) Makes a right variant with e

(Match ev el er) Conditionally calls el or er with the contents

of ev depending on its variant: left or right

Table 1: Base language terms. e stands for terms, v stands for values, n

stands for names

For the base language, all reducible expressions are reduced to
values of one of the following types: IntVal for integers, PairVal

for pairs, EitherVal for left-right variants, FuncVal for functions and
RecFuncVal for recursive functions. The language expects the appro-

2.2 actor-based language 11

priate types for each expression but does not enforce this, as type-
checking fall outside of the scope of the project.

2.2 actor-based language

The actor-based language makes use of the actor model of concur-
rency. In this model, concurrent communication occurs directly be-
tween actors, which can identify one another via their process id
(PIDs). To recreate this model, it is necessary to be able to create new
actors, send and receive messages, and discover an actor’s own PIDs.
To this end, four syntactic constructs, detailed in Table 2, were added
to the base language.

In addition to these syntactic constructs, the actor-based language
also sees PIDs utilized and communicated within and across pro-
cesses, so a new PidVal was added to the list of possible values.

A small example program making use of the features of the lan-
gauge can be seen in Figure 4.

(Self) Returns the actor’s own PIDs

(Send ev ea) Sends the value of ev to actor ea
(Receive) Dequeues a message from the actor’s own mailbox

(Spawn e) Spawns a new actor with program e and returns

that actor’s PIDs

Table 2: Actor-based language exclusive terms.

(Let (

(act_1) (Spawn (Receive))

(Send ((Ret (IntVal 7)) (Var act_1)))

))

Figure 4: A simple actor-based program. This program spawns a new actor
and sends it the integer value 7.

2.3 channel-based language

In the channel model, communication occurs via globally accessible
mailboxes called channels. The channel model requires a means for
processes to interact with said channels and a way for creating new
channels and processes.

There’s also a need to be able to address channels, so the value type
ChanIdVal has been added. The necessary additions to the language’s
syntax can be seen in Table 3.

12 languages

A small example program making use of the features of the lan-
gauge can be seen in Figure 5.

(NewCh) Creates new channel, returns its ID

(Give ec ev) Enqueues ev in channel ec
(Take e) Dequeues a value from channel e

(Fork e) Creates a new process evaluating e

Table 3: Channel-based language exclusive terms.

(Let (

(ch) (NewCh)

(Seq (

(Give ((Var ch) (Ret (IntVal 7))))

(Fork ((Take (Var ch))))

))

))

Figure 5: A simple channel-based program. This program creates a process
and a channel to send it the integer value 7.

3
D E V E L O P M E N T

3.1 semantics in skel

For a language interpreter to be generated by Necro, its semantics
must be described in Skel, an explicitly typed, declarative language
designed for describing skeletal semantics. There are two main top-
level statements in Skel: types and values.

Type statements can be declarations, definitions, or aliases. Type
declarations start with type and are followed by a type name; they
do not list an implementation for the type. These declarations are
interpreted as base-types when compiled and will be left unimple-
mented in the generated OCaml module so that the user can provide
a suitable OCaml implementation for them. Type definitions describe
automatically implemented program-types; they use the same key-
word but are followed by = after the name, along with one or more
constructors naming the possible variants for the type. Finally, with a
slightly different syntax that uses := instead of =, type aliases can be
declared. Alias syntax can also be appropriated for defining named
product types. Examples for each of these can be seen in Figure 6.

(* Base type *)

type base

(* Sum type *)

type sum =

| VarA

| VarB (base)

(* Type alias *)

type alias := base

(* Named product type *)

type prod := (base, sum)

Figure 6: Types in Skel

Values encompass both filters and skeletons. Value declarations
that list no implementation in Skel are compiled as filters, and their
implementation is expected to be provided in OCaml for the inter-
preter to function correctly. Value definitions, those that directly pro-
vide an implementation, are treated as skeletons and their code is
automatically generated during compilation. Skeletons are limited
to pattern-matching declarations that make use of filters and other

13

14 development

skeletons, sequencing, and branching. For both filters and skeletons,
a complete type signature must be explicitly provided. See Figure 7

for examples.

(* Filters *)

val filter_value: A

val filter_function: A -> B

(* Skeleton *)

val skel (x: X): Y =

(* pattern matching *)

let Var (v) = func_a (x) in

(* sequencing *)

func_b (v) ; func_c (v) ;

(* branching *)

branch

test_a (v)

or

test_b (v)

end

Figure 7: Filters and skeletons in Skel

As previously explained, skeletal semantics also require an inter-
pretation to be complete. In the case of Necro, with OCaml as a target,
this is provided by implementing an interpretation monad in OCaml
after the semantics have been compiled. The interpretation monad
is an OCaml module fulfilling a specialized monadic interface that
determines how the interpreter evaluates branching and sequenced
semantics. The generated code is designed in such a way that a triv-
ial identity monad (one that does not modify its contents nor the
functions it binds), behaves the same way a concrete interpretation of
the semantics would.

Detailed information on using Skel with Necro can be seen in the
work of Noizet and Schmitt (2022).

3.2 describing the semantics

The first step in the development of the language interpreters is the
translation of the language specification into skeletal semantics. In the
case of this project, the specifications for the languages were partly
described as operational semantics by Fowler, Lindley, and Wadler
(2016). Much of the unspecified aspects of the language are aspects
belonging to the well-understood λ-calculus, so their specifications
were retrieved from other sources (Nielson and Nielson, 2007; Pierce,
2002).

3.2 describing the semantics 15

For translating operational semantics into Skel, some heuristics
were developed. The case where semantic rules follow a simple structure—
one consisting of various premises followed by a simple evaluation
relation as consequence—can be translated in the manner shown in
Figure 8. Translating axioms—semantic rules that have no premises—
is also done by following this same heuristic.

Premise A Premise B . . .

Input term ⇒ Output term
Rule name

(a) Operational semantics

val <Rule name> (<Input>) =

let <Input term> = <Input> in

<Premise A>

<Premise B>

...

<Output term>

(b) Skeletal semantics

Figure 8: Heuristic for translating from operational to skeletal semantics

In this heuristic, the skeleton has an initial pattern-matching expres-
sion unifying its input with the shape of the input term in the opera-
tional semantics. This expression ensures that the skeleton will only
evaluate the appropriate terms, failing execution on any others. After
that, for each premise in the operational semantics rule, a correspond-
ing expression will be added to the skeleton in sequence. The type of
expression will depend entirely on the specifics of each premise but,
generally speaking, premises that assert that a term evaluates to some
form will translate to a pattern-matching expression. Finally, after all
the premise declarations are written in the skeleton, the output state
is described as a final expression, which will then be returned by the
skeleton.

Skeletons that apply to equal initial terms can be combined with
the help of branching, to make for more succinct semantics. However,
this is not strictly necessary for the correct evaluation of the language.
This is not unlike factoring out statements from conditionals in other
programming languages. An example of this can be seen in Figure 9.

These heuristics work well for rules that describe simple reduc-
tions or rewrite operations. Many other operations, however, are sig-
nificantly more complex or have nuances that cannot be translated
in such a straightforward manner. For example, semantic rules that
rely on some sort of mapping will require those maps to be declared,
implemented, passed as arguments across the entire rule hierarchy,
and queried whenever used. Figure 10 shows a possible translation

16 development

val <Rule A> (<Input>) =

let <Input term> = <Input> in

<Expression A>

val <Rule B> (<Input>) =

let <Input term> = <Input> in

<Expression B>

(a) Separate rules applying to a common input term

val <Rule> (<Input>) =

let <Input term> = <Input> in

branch

<Expression A>

or

<Expression B>

end

(b) Rules after having been combined

Figure 9: Heuristic for combining skeletons

for a basic variable substitution rule. As can be observed, despite
most implementation details being omitted from the skeletal seman-
tics, the implementation of a seemingly simple rule is fairly complex.
This complexity compounds when translating semantics dealing with
real-world concerns: should the mappings be local or global? How
should mappings be synchronized or maintained across processes or
reductions? How should global or deferred declarations be handled?

The issue with variable mapping can be said to be part of a larger
problem affecting the translation phase, that of the handling of math-
ematical notation and its definitions. The Var rule described in Fig-
ure 10 appears simple to those familiar with the notation used, but
that notation hides a significant amount of complexity that ultimately
surfaces when the need to translate it to a universe that does not pro-
vide such abstractions arises. This is the case with Skel and Necro.

This ties in with the task of choosing which aspects of the lan-
guage should be abstracted away and which should not be. Filters
are powerful in that they can abstract away enormous portions of a
language’s semantics if so desired. However, the price for these ab-
stractions is that their implementation must either be trusted blindly
or be verified independently; the former compromising the safety of
the implementation, while the latter requires a large investment of
time and effort.

Due to these drawbacks, it is worth carefully considering whether
a particular feature is worth abstracting. However, it is important to
bear in mind that even though Skel is powerful enough to represent

3.3 ocaml workflow 17

x 7→ v ∈ Γ

Γ ⊢ x ⇒ v
Var

(a) Operational semantics

(* Mapping definitions *)

type var_map (* ... *)

val query_var_map (* ... *)

(* Environment definition *)

type env := (..., variable_map, ...)

(* Rule *)

val <Var> (<Input>, <Env>) =

let Var x = <Input> in

let v = query_var_map (x) in

Val v

(b) Skeletal semantics

Figure 10: Example of variable mapping

any computation that can be represented in other programming lan-
guages1, filters provide the only means to achieve certain things: in-
terfacing with foreign resources (such as operating system calls), us-
ing high performance, close-to-the-metal implementations (such as
binary integer representations and operations), and, more humbly,
reducing the effort required to implement specific functionality by
leveraging existing libraries for the target platform.

These choices in the development of the semantics play a crucial
role in the overall process of building a language interpreter using
Necro. Not only do they form the foundations for the rest of the pro-
cess, but they are also expensive to modify later on in development:
the semantics need to be recompiled after modification, and the con-
flicting code needs to be merged and updated—a process prone to
errors.

3.3 ocaml workflow

Once the semantics are complete and the OCaml code has been gen-
erated with Necro, four steps remain before a correctly-working in-
terpreter has been completed:

• Choice of the interpretation monad

• Filter and base-type implementations

• Interpreter interface implementation

1 This is made possible due to the typed λ-calculus embedded within Skel

18 development

• Testing

As explained previously, the choice of the interpretation monad
determines how the semantics are interpreted when evaluating a pro-
gram. The monad determines—in addition to the standard monadic
behaviour of binding functions and wrapping and extracting values—
how filters and skeletons are applied, how branching is executed, and
how branch failures are handled. The combination of these function-
alities can shape the type of interpretation that takes place while eval-
uating a language.

For this project, the identity monad was used, which does not modify
values or functions. Its behaviour replicates a concrete interpretation
of a semantics, as described by Bodin et al. (2019).

The implementation of filters is a more complex matter. For this
project, filters were only used to abstract away maps, queues, strings,
and integers. All of these implementations both require significant
effort to be fully represented in Skel and have existing implementa-
tions in the target platform that can be trusted to be correct. Addition-
ally, their use in the semantics is either wrapped in a layer of native
abstractions—to ensure safe execution and reusability—or made to
have a minimal footprint—to reduce the adverse effects of potential
bugs stemming from their implementation.

It is also necessary to define interfaces and utilities by which the
interpreter can be utilized. These are not limited to just a public API,
but also include wrappers and other functionalities that can enable
complex behaviour during execution. For example, semantics written
in a small-step style—which is the case for the language interpreters
developed in this project—require an external execution loop for re-
peatedly applying reduction rules to the program until it is fully re-
duced, or until it can’t be reduced any longer. Another example is
a REPL2 for the language, which would similarly require a wrapper
around the interpreter to enable user interactivity.

Finally, testing is done to ensure that all aspects of the implementa-
tion behave as expected. An iterative process of bug-fixing followed
by more testing is also performed until the product is working as
intended.

3.4 common language details

The semantics for the base language, as described in Fowler, Lind-
ley, and Wadler (2016), are written in a small-step style. Small-step
semantics describe evaluation as an iterative series of reductions on
a program. The iterative nature of small-step semantics allows for
program execution to be paused or halted at arbitrary points. A be-

2 Also known as an interactive toplevel or language shell

3.4 common language details 19

haviour that is useful for modelling concurrency: parallel processes
can be paused, scheduled, and resumed as necessary.

Despite the usefulness of small-step semantics in describing con-
currency, their implementation with Necro requires some additional
functionality before the iterative reductions can fully evaluate a pro-
gram. Namely, a means of repeatedly evaluating an expression and
a means of halting once all concurrent expressions have been fully
reduced.

Repeated evaluation is not difficult to implement. It requires a re-
cursive function that receives and evaluates the output of the pre-
vious reduction as input. Halting poses a bigger challenge, particu-
larly in the face of programs with recursive functions or other means
of boundless looping, as it overlaps with the halting problem. This
problem, in its general form, states that writing a program that can
determine if an arbitrary program terminates is an unsolvable prob-
lem (Sipser, 1996). However, we can put in place some heuristics to
terminate execution in specific, but common cases.

The first heuristic terminates execution once all processes have
been reduced to a value. In other words, once all problems have re-
turned a final result to their computations. In practical terms, an ex-
pression is considered fully reduced when the root node of its syntax
tree is of type Ret.

The second heuristic attempts to expand the halting conditions to
include the case when processes are waiting for a message that will
never arrive. This case arises when a process receives messages in a
loop. In such situations, whenever a program is waiting for a mes-
sage3, the process in question will be marked as waiting until a mes-
sage arrives. If all processes in an active program are either in waiting
or have been fully reduced, it means that no messages will be sent in
the future and, thus, the waiting state will never be cleared. At that
point, the interpreter will judge the program to have entered a non-
reducible state and terminate.

Some of the features of the languages, such as recursive functions,
or the implementation of mailboxes, require a shared state that is ac-
cessible at arbitrary points during the evaluation of expressions. To
this end, it is necessary for all skeletons in the semantics to pass an
argument, the execution environment, that stores this information. Both
the actor- and the channel-based languages store some data in com-
mon in this structure: a table mapping recursive function names to
the expressions that make up their bodies and a queue of executing
processes storing the expressions being evaluated by all active pro-
cesses.

3 That is, whenever Take (for channels) or Receive (for actors) fails to reduce due to
an empty mailbox

20 development

Each of the two languages also stores some additional information
in their execution environments, as a means to implement their re-
spective models of concurrency.

The queue stored in the environment is the key to the concur-
rent execution of processes in both languages. This queue is used
for scheduling the evaluation of each expression. After the expres-
sion of a process has been reduced once, the expression in question
is rescheduled to the end of the queue and a new process is prepared
for reduction for the next pass of the interpreter. A diagram of this
process can be seen in Figure 11. Effectively, this results in all pro-
cesses being executed concurrently. The choice of a single reduction
or pass of the interpreter for each process is arbitrary; concurrency is
accepted to be indeterminate in terms of execution times, so, while a
computation may differ when changing the scheduling configuration,
the results would be just as valid.

Figure 11: Diagram showcasing concurrent process scheduling and evalua-
tion.

The execution environment can also be used for variable mapping.
However, for these languages, direct substitution was chosen over
variable mapping. This choice stays close to the description of the
original semantics for the two languages and reduces the footprint
that dictionaries, which are implemented via filters, have on the over-
all semantics.

As briefly mentioned before, recursive function names are an ex-
ception to this and do use an environment-stored dictionary instead
of immediate substitution.

3.5 actors implementation

Given that actors communicate by means of their PIDs, the execu-
tion environment of the actor-based language has been extended to
include process PIDs in the process scheduler, as well as a global PID-
to-mailbox mapping that is accessed during communication opera-
tions. This also necessitates that some set-up procedures instantiate
the initial actor, its PID, and its mailbox when the interpreter first
opens a program.

Beyond that, and the unique semantics for the 4 additional ex-
pression constructors—seen in Table 2—the actor-based language re-
quires no special considerations.

3.6 channels implementation 21

3.6 channels implementation

As is the case for the actor-based language, the channel-based lan-
guage modifies the evaluation environment to include information
that is necessary for concurrent communication. In this case, a Chan-
nel ID-to-mailbox mapping is included. Unlike the actor-based lan-
guage, no special initialization procedures are necessary, as the first
channel needs to be explicitly created before being instantiated.

These mappings are interacted with by 3 of the 4 operations unique
to the channel-based language, seen in Table 3; Fork requires no in-
teraction with channels or mailboxes.

3.7 translators

The translators had been initially planned as stand-alone applications
developed entirely in OCaml. During the development of the seman-
tics for the two languages, it became apparent that skeletal semantics
were flexible enough for the translation procedure to be almost fully
described in Skel.

To achieve this, two distinct expression types were defined, one de-
scribing expressions in the actor-based language, and the other for ex-
pressions in the channel-based language. Skeletons then were typed
to have one of the two expression types as input and the other as
output, effectively taking expressions in language and producing ex-
pressions in the other.

As for value types across the two languages: because all values,
barring strings and integers, are instantiated at run-time, both lan-
guages were defined within the scope of the translator semantics to
use a common set of value types, which simplified the development
process.

In terms of both architecture and semantics, the translators are sim-
pler compared to the interpreters. The translation scheme, described
by Fowler, Lindley, and Wadler (2016), uses big-step style semantics
and, as such, does not require an external loop or special halting
mechanisms for proper execution. Big-step rules are also less verbose
to describe in skeletal semantics than their small-step counterparts,
due to the recursive nature of skeletons.

The translator utilities each do have certain idiosyncrasies resulting
from the nature of the translation schemes and the languages’ seman-
tics. In the case of actors-to-channels, an initial channel needs to be
created at the root of the syntax tree. This channel serves to model
the associated mailbox of the root actor, which is implicitly spawned
on program execution and thus has no explicit syntax that can be
translated.

In the case of channels-to-actors, actors are used to emulate the be-
haviour of channels. The channel-behaving actors establish a simple

22 development

communications protocol that emulates the primitive communication
operations available to actors: Send and Receive. The protocol allows
an actor to receive and queue messages from other processes, and to
relay these messages to other actors who request them.

To enable this functionality, it is necessary to establish a loop for
processing requests. This loop is defined via a series of functions that
are injected into the program via filters4. These functions make use
of recursion, sum types, and product types, and are the reason why
these constructs were included in the common core for the languages.

Manual testing was performed for both translators to review the
correctness of the implementation of the translation schemes. Auto-
mated tests are a possibility for the future, to further increase the
reliability of the tools, but their use was eschewed for this project
due to time constraints. The non-deterministic nature of concurrent
communications and the intrinsic differences in the management of
values and program execution between the two language interpreters
made it too expensive to set up appropriate testing facilities.

4 Filters are the simplest way to inject them. These functions make use of string liter-
als, which are not available at the Skel level; they are abstractions implemented in
OCaml.

4
A R C H I T E C T U R E A N D R E S U LT S

The project consists of an OCaml library that provides four modules:

• Actors, for the actor-based language interpreter

• Channels, for the channel-based language interpreter

• Act2Ch, for the translator from the actor language to the channel
language

• Ch2Act, for the translator in the opposite direction.

All four modules expose a similar API consisting of: type construc-
tors for expressions and values, a function for parsing a textual rep-
resentation of the language, a function for evaluating the syntax tree
according to the function of the module, a function for serializing a
syntax tree into a textual representation, and a function that chains
the behaviour of these last three functions. This modular structure
was chosen to allow for maximum flexibility for the user when mak-
ing use of the library, while providing shortcuts for the most basic
use-cases.

An architecture diagram of this can be seen in figure 12, and the
typical execution process of the modules can be seen in figure 13,
with a concrete example in figure 14.

Figure 12: Public project structure. Modules in purple, constructors in or-
ange, functions in blue.

The constructors provided by each of the modules are not compat-
ible with one another, as they are declared separately, so the parsing
and serializing functions can be used along with a textual representa-
tion of the language as an exchange format across modules.

The project in question, along with more detailed documentation
and usage instructions, is hosted in an online repository (Bartelsman,
2022).

23

24 architecture and results

Figure 13: Process diagram for the use of the four tools

Figure 14: Example of the process and results for one of the interpreters. Or-
ange are expression nodes, red are value nodes, green are values.

5
C O N C L U S I O N

Skeletal semantics is a versatile and powerful tool. Combined with
the automation that Necro provides, it makes it possible to signifi-
cantly speed up the development of verified interpreters for program-
ming languages. The abstraction mechanisms provided by filters and
base types can be leveraged to speed up this process even more or to
better allocate efforts into more significant aspects of programming
language research. Filters permit powerful abstractions, and could
even be used to nest entire interpreters within one another, easily
extending the functionality of languages or allowing for more modu-
lar architectures in the development process. This would enable the
rapid testing and analysis of languages with similar grammar and
semantics.

In the realm of concurrency, skeletal semantics open the doors
for rapid exploration of different models of message-passing concur-
rency, as evidenced by this very project. The ability to rigorously de-
scribe a particular concurrency model and then confidently generate
a correct language interpreter provides ample opportunity for the
practical analysis of concurrent software applications.

The flexibility of this semantics framework also allows for the ab-
straction of concurrent behaviour, permitting the use of different im-
plementations, such as those offered by foreign platforms. This would
allow for testing the behaviour of programs or algorithms, with cer-
tain properties guaranteed by the semantics, running on top of a va-
riety of different real-life platforms and architectures.

However, using skeletal semantics is not without difficulty. Choos-
ing what parts of a language should be abstracted can be a tricky sub-
ject without definite or correct answers. Especially so when a wrong
assumption or semantic definition can result in having to discard and
rewrite large portions of a code-base.

Mistakes in the skeletal semantics of a language pose a large enough
roadblock to development that research into mitigating these risks
could be of great benefit. Efforts to this end could focus on deter-
mining ways to structure the code bases for filters, base-types, and
the interpreter itself so that changes to the generated code have as
minimal an impact on development as possible.

Another promising path for research is investigating different ways
to represent concurrent operations via skeletal semantics. This project
utilizes a process queue that cycles processes after every reduction,
but other, better or more flexible, approaches might also be viable.

25

26 conclusion

Furthermore, skeletal semantics offer the possibility for diverse in-
terpretations of a language via interpretation monads. Alternative in-
terpretations could, then, become powerful tools for the analysis of
languages implemented with the help of skeletal semantics. Verifica-
tion for well-formed language structures is already possible thanks to
a well-formedness interpretation. It might not be out of the realm of
possibility that interpretations could be used to verify other aspects
of a language, such as session types for concurrent communications.

6
B I B L I O G R A P H Y

Agha, Gul (1986). Actors: A Model of Concurrent Computation in Dis-
tributed Systems. MIT Press. isbn: 978-0-262-01092-4.

Agha, Gul, I.A. Mason, S.F. Smith, and C.L. Talcott (1997). “A founda-
tion for actor computation.” In: Journal of Functional Programming
7 (1), pp. 1–72. doi: 10.1017/S095679689700261X.

Bartelsman, Miguel (2022). Actors and Channels. https://github.com
/mbartelsman-rug/actors-and-channels.

Bodin, Martin, Philippa Gardner, Thomas Jensen, and Alan Schmitt
(2019). “Skeletal semantics and their interpretations.” In: Proceed-
ings of the ACM on Programming Languages 3 (POPL). issn: 24751421.
doi: 10.1145/3290357.

Courant, Nathanaël, Enzo Crance, and Alan Schmitt (June 2020). Necro:
Animating Skeletons. Tech. rep. Inria Rennes - Bretagne Atlantique.

Durumeric, Zakir et al. (2014). “The Matter of Heartbleed.” In: Pro-
ceedings of the 2014 Conference on Internet Measurement Conference.
IMC ’14. Vancouver, BC, Canada: Association for Computing Ma-
chinery, 475–488. isbn: 9781450332132. doi: 10.1145/2663716.26
63755. url: https://doi-org.proxy-ub.rug.nl/10.1145/26637
16.2663755.

Fowler, Simon, Sam Lindley, and Philip Wadler (2016). “Mixing Metaphors:
Actors as Channels and Channels as Actors.” In: CoRR abs/1611.06276.
arXiv: 1611.06276. url: http://arxiv.org/abs/1611.06276.

Khayam, Adam (2020). JSkel : A JavaScript semantics in Skeletal. url:
https://gitlab.inria.fr/skeletons/jskel.

Message Passing Concurrency (2010). url: https://wiki.c2.com/?Mes
sagePassingConcurrency.

Milner, Robin (1980). A Calculus of Communicating Systems. Ed. by
Robin Milner. Vol. 92. Springer Berlin Heidelberg. isbn: 978-3-540-
10235-9. doi: 10.1007/3-540-10235-3.

Milner, Robin, Joachim Parrow, and David Walker (1992a). “A calcu-
lus of mobile processes, I.” In: Information and Computation 100 (1).
issn: 10902651. doi: 10.1016/0890-5401(92)90008-4.

— (1992b). “A calculus of mobile processes, II.” In: Information and
Computation 100 (1). issn: 10902651. doi: 10.1016/0890-5401(92
)90009-5.

Moore, Gordon E. (1998). “Cramming more components onto inte-
grated circuits.” In: Proceedings of the IEEE 86 (1). issn: 00189219.
doi: 10.1109/JPROC.1998.658762.

Necro Library (2019). url: https://gitlab.inria.fr/skeletons/nec
ro.

27

https://doi.org/10.1017/S095679689700261X
https://github.com/mbartelsman-rug/actors-and-channels
https://github.com/mbartelsman-rug/actors-and-channels
https://doi.org/10.1145/3290357
https://doi.org/10.1145/2663716.2663755
https://doi.org/10.1145/2663716.2663755
https://doi-org.proxy-ub.rug.nl/10.1145/2663716.2663755
https://doi-org.proxy-ub.rug.nl/10.1145/2663716.2663755
https://arxiv.org/abs/1611.06276
http://arxiv.org/abs/1611.06276
https://gitlab.inria.fr/skeletons/jskel
https://wiki.c2.com/?MessagePassingConcurrency
https://wiki.c2.com/?MessagePassingConcurrency
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1016/0890-5401(92)90008-4
https://doi.org/10.1016/0890-5401(92)90009-5
https://doi.org/10.1016/0890-5401(92)90009-5
https://doi.org/10.1109/JPROC.1998.658762
https://gitlab.inria.fr/skeletons/necro
https://gitlab.inria.fr/skeletons/necro

28 bibliography

Nielson, Hanne Riis and Flemming Nielson (2007). Semantics with Ap-
plications: an Appetizer.

Noizet, Louis and Alan Schmitt (2022). Stating and Handling Semantics
with Skel and Necro. Tech. rep. Inria Rennes - Bretagne Atlantique.
url: https://hal.inria.fr/hal-03543701v1.

Pierce, Benjamin C. (2002). Types and Programming Languages. 1st. The
MIT Press. isbn: 0-262-16209-1.

Shared State Concurrency (2005). url: https://wiki.c2.com/?Shared
StateConcurrency.

Sipser, Michael (1996). “Introduction to the Theory of Computation.”
In: ACM SIGACT News 27 (1). issn: 0163-5700. doi: 10.1145/230
514.571645.

https://hal.inria.fr/hal-03543701v1
https://wiki.c2.com/?SharedStateConcurrency
https://wiki.c2.com/?SharedStateConcurrency
https://doi.org/10.1145/230514.571645
https://doi.org/10.1145/230514.571645

colophon

This document was typeset using the typographical look-and-feel
classicthesis developed by André Miede.

Final version as of July 22, 2022

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Skeletal semantics
	1.2 Concurrent programming
	1.3 Goals

	2 Languages
	2.1 Base language
	2.2 Actor-based language
	2.3 Channel-based language

	3 Development
	3.1 Semantics in Skel
	3.2 Describing the semantics
	3.3 OCaml workflow
	3.4 Common language details
	3.5 Actors implementation
	3.6 Channels implementation
	3.7 Translators

	4 Architecture and results
	5 Conclusion
	Bibliography
	6 Bibliography
	Colophon

