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1 Overview

Abstract

As prospect of the next hardware revolution looms, attending to un-
conventional computing paradigms becomes more important than ever.
Recurrent spiking neural networks (RSNNs) are highly suitable for neuro-
morphic hardware and come ready with an actionable reservoir comput-
ing scheme known as the Liquid State Machine (LSM). An LSM employs
an RSNN “reservoir” to process input such that meaningful features can
be learned with a simple linear readout map trained on reservoir states.
LSMs have garnered success in a number of domains, such as speech, im-
age, and even video recognition. However, the hyper-parameter space for
reservoir design is prohibitively large and all of these above mentioned
successes make use of specialized LSMs, often with significant design-
and-tuning overhead. Therefore, a pertinent task for the advancement of
LSM literature is the development of an increasingly robust playbook for
good reservoir design. To this end, we here survey LSMs in their many
forms, both prominent and novel, with particular attention to learning
rules and topologies. In terms of learning rules, Short Term Synaptic
Plasticity (STSP), Spike Timing Dependent Plasticity (STDP), and their
combination Long Short-Term Plasticity (LSTP) are investigated, along
with non-learning simple Leaky-Integrate-and-Fire (LIF) neurons. For
topologies, random, geometric, and small-world are tested. We character-
ize reservoir quality as a balance between diverse computational efficacy
on two input modalities (image and speech) and coherent dynamics in
representational state space. In doing so, we aim to distill favorable reser-
voir attributes and therefore better equip the state-of-the-art for LSMs
that may exhibit the sort of versatility we would hope for in our artificial
systems. Our findings indicate that the STSP learning rule paired with
small-world topology is the most robust in terms of performance and fa-
vorable dynamics across input modalities and given other hyperparameter
settings. We also observe a tentative relationship of high classification per-
formance with certain representational dynamics in Principal-Component
space. A correlation is found in full-dimensional space with the proposed
representation-distance measure of coherent separation and performance
(around a certain threshold). Therefore in total we conclude that reser-
voirs with STSP and small-world topologies merit further investigation
and moreover that representational dynamics may be a viable option for
reservoir quality assessment. Finally, these findings set the stage for pro-
posed future research on adaptive reservoirs, synthetic learning rules, and
semantically continuous representational spaces.

Summary

The experimental design of the here presented research is straightforward. A
variety of liquid state machine configurations are explored by testing their per-
formance on two simple classification tasks–image and speech recognition. LSMs
are varied by hyperparameters effecting their input, reservoirs, and output lay-
ers. Special attention is given to reservoir variations on the basis of learning
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rules and topologies. In the main parameter sweep, four learning rules are
tested: leaky-integrate and fire (LIF), short-term synaptic plasticity (STSP),
spike timing-dependent plasticity (STDP), and the novel long short-term plas-
ticity (LSTP). LIF neurons technically do not learn, but we will still group this
setting in under learning rules. Three topologies are tested: random, geometric,
and small-world. Additionally, different balances of input and reservoir sparsity
are tested, as well as toggling inhibitory synaptic behaviour (we call this the EI
setting). Lastly, both re-initialized and continuous input feed for each sample
are included in the sweep. All combinations of the above parameters are tested
for classification performance in each input domain.

While procedurally simple methods are employed, empirical gain is multi-
dimensional. As a function of classification performance, we observe the role of
many LSM design considerations in terms of two input modalities and therefore
many conclusions can be drawn about the relationship of different LSM infor-
mation processing mechanisms to different input types. Not only are we here
accomplishing the engineering results of classification performance, but more-
over gaining insight on the fundamental properties of reservoirs themselves.
To this end, we extend our reservoir analysis by applying Principal Component
Anaylsis (PCA) to better characterize reservoir dynamics in terms of input type
and performance. We also consider relative euclidean distances (and therefore
representational organization) in full-dimensional space.

Our findings show that one learning rule in particular, Short-Term Synaptic
Plasticity (STSP), is most favorable in all domains, but with the caveat that
it’s perfromance comes with higher variance than STDP and LSTP. Topological
reservoir design is marginally in favor of small-world topology. Furthermore, we
find the novel learning rule LSTP to be competitive with STDP, which typically
stands as the strongest learning rule in LSM literature [17]. However, we are
careful to contextualize these results in the understanding that computing with
dynamical systems is highly sensitive to small changes in experimental design
and therefore draw no further conclusions outside our specific classification task
arenas and experimental conditions.

In terms of dynamics in PCA space, we find that high-performing reservoirs
often have a coherent organization of input representation whereby intra-class
input patterns are more closely grouped in PCA space than inter-class patterns.
This suggests that even when reduced to the first three dimensions of maximum
variance, linear classification is possible. We lend the term coherent separation
to moments when input representations are organized well with respect to classes
defined by the classification task.

To observe dynamical behaviour across time, average class PC positions are
traced across the duration of each trial and several archetypes of representation
behaviours are found: psuedo-noise, perfect cyclical, evolving cyclical, and dy-
namic encoding. We believe attending to representational dynamics may benefit
future research in reservoir design and we here only lay a typological groundwork
for doing so.

In full dimensional space, we find a relationship with a proposed mathemat-
ical definition of coherent separation (defined by relative eudlidean distances of
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state-vectors) and performance.
Finally, we propose future research in deliberately constructed semantically

continuous representational spaces, self-adjusting reservoirs, synthetic learning
rules, and hierarchies of variable design for more complex concept embeddings.
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2 Introduction

Any given state in any given system contains information. If it is a dynamical
system, it will change states as a function of time such that information is
processed. The universe itself occupies one of many (infinite?) possible states
at any given moment, and transitions to its next state in the next moment via
a set of update rules, which humanity has done its best to describe in terms of
the laws of physics. This natural flow of information processing shares certain
overlap with the aim of modern computers. Where a computer is fed specific
input information, and performs an explicit and well-defined function on that
input thereby producing an output in the desired form, the universe is processed
according to the laws of physics (known and unknown) and thereby transitions
from the past (input) to the future (output). The essential difference here, is
that in the case of computers the entire procedure is predefined as determined
by the user, whereas in the case of the universe, we have no such agency over the
states and processing mechanisms that occur. To this end, modern computers
have benefitted humanity greatly, but nonetheless there begs the question, might
we better harness the innate complexities of reality for more powerful and natural
computation?

In answer to this question, a viable approach is to introduce reservoir com-
puting (RC), which incorporates a loosely defined reservoir of natural complexity
in its otherwise explicit computational paradigm. In this way, like traditional
computing, specific input results in a desired output, but the intermediate layer
is a dynamical system that need not be controlled or even fully understood.

RC was invented simultaneously and separately in two distinct brands that
still stand as the most common implementations today, each using its own flavor
of artificial reservoirs. While Echo State Networks (ESNs) [2] use sigmoidal
activation-based neurons akin to what is found in deep learning, Liquid State
Machines (LSMs) [1] opt for more biologically plausible spiking neurons. In both
cases, neurons are structured in a recurrent neural network, which allows for
better information processing in the temporal domain [29]. While ESNs benefit
from the continuous mathematics of activation-based neurons, LSMs stand to
better exploit lessons from neuroscience for computational gain and often do
so, for example, by implementing cortical-column-like reservoir structures [1],
biologically plausible synaptic learning rules [17,18,22], and even discoveries in
neuroscience as recent as astrocytes [21].

The advantages of biological plausibility do not stop at algorithms, and
there has been a steady, growing push for neuromorphic hardware over the last
thirty years [9], that has recently accelerated to an abundance of emerging novel
hardware paradigms that are specifically tailored to expound on the natural
advantages of the brain in terms of speed, energy efficiency, and performance.
Many of these approaches are natively spiking [10–12] and therefore may viably
host LSM computation, as has already been explored by [3, 5–7].

Thus, out of an interest for neuro-inspired algorithms that would be suitable
to implement on promising new hardware paradigms, we here focus our research
efforts on this latter brand of RC–The Liquid State Machine.
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This deceptively simple paradigm carries surprising computational force,
achieving state-of-the art performance on canonical machine learning tasks such
as speech recognition [14, 16–18], image classification [18, 21], and even video
event recognition and prediction [19, 20]. However, all of the above mentioned
papers employ different reservoir schemes and readout mechanisms. The com-
binatoric explosion of possible architectures (when considering the nuances of
learning rules, topologies, hyperparameters, and hierarchies) is gigantic and
therefore LSMs come with significant overhead in the form of design and tun-
ing. The question then becomes, how best to efficiently select for good LSM
architectures? We here attempt to distill this inquiry to what sorts of reservoir
features (if any) result in generally effective liquid state machines?

However, because inputs, reservoirs, and readout maps are inextricably en-
tangled in the LSM paradigm, we must first preface the role of each before
delving specifically into reservoir design and dynamics (see sections 3, 4, 5). A
simple classification task is designed to observe computational efficacy of dif-
ferent reservoir configurations (section 7). Just two training samples of three
classes are shown to the LSM before asking it to classify unseen samples from
each class. This procedure is repeated for two input modalities–image, and
speech–which allows us to draw more general conclusions about favorable reser-
voir properties. In total, 1008 experiments are run with unique combinations of
meta-parameters (like how to feed in the input) and reservoir hyper-parameters
(especially learning rules and topologies). A simple readout mapping (logistic
regression on reservoir firing activity) is designed to achieve sufficiently gener-
ous performance such that fundamental information processing mechanisms of
reservoirs should be well-represented rather than specific harmony with more
elaborate readout maps. High-performing reservoirs of the most favored configu-
rations are rerun 100 times for each learning rule to assess performance variance
and temporal certainty (classification confidence over the duration of the trial).

Given the context of what sorts of reservoirs are performing well, represen-
tational dynamics (how different inputs are encoded into the firing activity of
a reservoir) are analyzed using Principle Component Analysis (sections 6, 9),
visualizing behaviour in 3-dimensions using the first three principle components.
Considerations are made as to how these behaviors relate to performance. To
extend this analytical approach to full-dimensionality, relative euclidean dis-
tances are measured to test for the correlation between the coherent separation
of input representations with performance.

Finally, in section 10, tentative conclusions are drawn on the basis of these
results and contextualized with current LSM literature. This preempts propo-
sitions for future works.
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3 Liquid State Machines

The original LSM paper “Real-Time Computing Without Stable States: A New
Framework for Neural Computation Based on Perturbations,” [1] was published
over 20 years ago. Since then, significant and diverse contributions have been
made to the literature. Here, a conceptual overview of the LSM paradigm is
presented in the form of a toy example. Then the original paper is summa-
rized before notable achievements in the state-of-the-art are presented. Finally
challenges are discussed.

3.1 A Toy Example

Consider the toy example of having three 3-dimensional geometric objects–a
cube, sphere, and pyramid (see Fig. 1). The task is to classify these objects
based on shape. These objects are therefore the inputs of the system. In
order to compute features about these objects, they must be processed by some
function. For this, an excitable medium–even a bucket of water–may be used
as a reservoir. If any one of the objects is dropped into the bucket, the water
is excited from its resting state. These perturbations are observable in the
form of ripples on the surface of the water. It is reasonable to expect that for
objects of different shapes and sizes, there would be different sorts or ripples
that occur in response to them being dropped into the water. Moreover, it
may also be expected that for all spheres, there may be a unique signature
set of consequent ripples that are associated with the fundamental property of
sphericalness and that this signature may be learned through observation. If
enough cubes, spheres, and pyramids are dropped into the bucket, eventually
one might learn which sorts of ripples are associated with which sorts of objects.
In this way, a readout map is learned to compute salient input features through
the dynamics of the reservoir. What is especially interesting, is that multiple
features may be learned from the same sets of ripples–size, shape, mass, etc–
and therefore multi-task is straightforward to obtain. In all cases, the pipeline
is the same: input, reservoir, output. While this illustrative example could, in
theory, be implemented, one might rather avoid wetware for the reservoir layer
and instead implement an artificially generated dynamical system.
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Figure 1: Toy example of an LSM.

3.2 A Paradigm Shift

What the advent of reservoir computing brought to artificial intelligence that
was fundamentally new is the decoupling of an RNN from training via backprop-
agation. RC allows for RNNs to process information (with all of their temporal
advantages) without the sometimes prohibitively complex task of backpropagat-
ing error through them [29]. The only supervised learning required for reservoir
computing is on the weights connecting the RNN to a single readout layer, which
circumvents the need to send error through the complex RNN. This allows for
increasingly complex RNNs to be implemented without the usual training con-
straints. In the case of LSMs, a spiking (LIF) RNN (see Fig. 2) is employed,
which would otherwise be difficult to train with backpropagation. The LSM
pipeline adopts poisson spike trains as input which is processed by an RSNN
reservoir and read out by a linear mapping, spiking or otherwise.

Figure 2: Intructive graphic of LSM architecture, reprinted with permission
from [8].
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Because RNNs have recurrent connections, information induced by input
interacts with information of recently seen input that is still resonating in the
activity of the RNN and therefore these RNNs are especially powerful in the time
domain. RC allows for the straightforward exploitation of this advantage with-
out the detriment of recurrent backpropagation. A consequence is that LSMs
are universal real-time computers for analog functions of continuous time [1].
This statement implies that under idealized conditions, an LSM can approxi-
mate any function on continuous time series data. This is in contrast to Turing
Machines that are universal approximators for discrete computations that must
be offline, linear, and synchronized. An LSM has no requirement for linearity
or synchronization (specific ordering of processing mechanisms) because the dy-
namical system used for the reservoir layer need not be stable or understood. In
fact, it is the non-linear complexity of the reservoir itself that allows for a simple
linear readout map to compute difficult functions on the input. This is because
information is essentially expanded in the high-dimensional (and more complex)
space of the reservoir and therefore it is easy to distinguish subtle differences
of input. The greater the input differences are expanded by the reservoir, the
greater the separation property. The better these differences can be learned
with a readout map, the better the approximation property. These are the two
canonical reservoir quality assessment metrics posed in the original paper [1],
which will be discussed in greater detail in section 6, along with generally what
is meant by representational spaces.

3.3 The State of The Art

While the original paper already managed to tackle a smorgasbord of abstract
spatio-temporal classification and prediction tasks, and even included success
in multi-task learning (multiple readout maps learned on same liquid states)
and multi-reservoir architectures [1], the varieties of LSMs have nonetheless
grown steadily in the interim of 20 years. We will here only sample from this
large body of literature papers that exemplify unique additions to the original
LSM paradigm that our relevant to our here presented research. Therefore our
introduction should be sparse but still representative of the state-of-the-art and
supportive of this work. Contributions will be grouped by the three main LSM
domains: input, reservoir, and readout.

3.3.1 Inputs

Because LSMs can natively process spatio-temporal input, myriad domains have
been explored. Naturally, sound and vision are go-to real world tasks. As
aformentioned, LSMs have managed high-performance on speech recognition
[14, 16–18], image recognition [18, 21], and even video event recognition and
prediction [19, 20]. What is here important to realize is that arbitrary spatio-
temporal information can be encoded into poisson spike trains which essentially
emulate firing activity of a neuron population that is presynaptically connected
to the reservoir. These input spike trains then evoke unique reservoir firing
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activity.
The conversion of image data to spiking input simply associates an input

neuron with every pixel and defines its spiking rate according to that pixel
intensity value via a poission distribution given by

Pois(λ) =
λke−λ

k!
(1)

where λ is the rate and k is the number of occurrences. Simply put, the higher
the number λ, the more spiking events will occur over a period of time. This is
the method employed by [18,21] for LSM input, and by [32] for general spiking
image input.

Speech recognition, on the other hand, innately occupies the temporal do-
main, and therefore it need not be spreadout over time via poisson rates, but
rather can associate spikes with loudness thresholds at every moment in time
(temporal) to a spectrum of neurons associated with different frequency ranges
(spatial). This is the same way the brain encodes sounds into neuronal fir-
ing [33], and both [17,18] use a preprocessing filter [34] to convert regular audio
to this spiking format.

While the the temporal domain is native to speech, and artificially added to
images, video recognition is naturally spatio-temporal and is therefore suitable
to spike encoding, which can be accomplished in several ways. For video event
recognition in [20] a pre-trained ResNet-50 neural network is used to extract
features at each frame, which are then reduced to 100-dimensions using PCA
before finally being fed as spiking input to the LSM. For video event prediction,
[19] uses a real-time dynamic vision sensor (DVS) [35], which is itself designed
to record visual data in terms of spatio-temporal events that are equivalent to
spikes.

3.3.2 Reservoirs

A liquid state reservoir is no more than a RSNN and is therefore defined by is
topological structure, its information processing rules, and a number of other
minor hyperparameters like thresholds, baselines, refractory and delay periods,
etc. Structure (section 4) defines the architecture of synaptic connections be-
tween neurons in the reservoir network and processing rules (section 5) refers
to how information is transmitted around the network and whether or not the
network itself changes in response to these transmissions.

At their inception, LSMs were implemented with a 15x3x3 cortical col-
umn geometric topology [1] with dynamic synapses [44] that included a 4:1
ratio of excitatory and inhibitory neurons that had their own respective sub-
hyperparameters (see sections 5 and 7 for details). Excitation means that a
firing neuron will encourage the firing of other neurons it feeds into, and inhi-
bition means the opposite. This original proposed geometric structure is often
repeated in literature either precisely or nearly so, [14–17, 19], along with the
inhibitory/excitatory behavior. However, alternative structures such as ran-
dom [25] and small-world [23] have been explored, both of which may improve
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performance with careful optimization for a given task. Processing rules, on
the other hand, have been the subject of prolific research, especially (section
5.3) [13, 17, 20, 24], and less-so STSP (section 5.2) [22]. The prior implements
long-term learning through synaptic weight change and the latter short-term
attention through ephemeral changes in synaptic variables.

Honing in on the perfect reservoir for a given task has been approached
with evolutionary algorithms [25, 27] and through Separation Driven Synaptic
Modification (SDSM) [26] where weight changes are made based on separability
of state vectors as related to distances of input vectors. While these methods
produce improved performance, they are by no means generic and again come
with overhead to tune for any given task. This characterizes an overall trend in
LSM literature on reservoir refinement–that improvements can always be made
for any given task in many clever ways, but these methods of improvements do
not necessarily organize themselves into a generalizable playbook for reservoir
design. Some resounding attention on certain methods may indicate robustness,
such as STDP and cortical-based topologies.

3.3.3 Readout Maps

While the ability to learn a linear mapping from a non-linear dynamical system
is a key revelation of reservoir computing, this in no way limits the variety
readouts of that can be utilized. Essentially any form of supervised learning
can be applied at the readout layer.

In [1], parallel perceptrons are used in the form of the parallel-delta rule [46],
whereby universal continuous functions in the range [0, 1] can be approximated
by the fraction of active perceptrons in response to incoming reservoir liquid
states, with learning through gradient descent. However, it has since been
found that straightforward logistic regression on single liquid states extracted
at regular intervals can already improve performance [14]. Similarly, linear
regression can be employed for the approximation of continuous functions, such
as for the object trajectory prediction of [19]. Single or multilayer activation-
based neural networks can as well be used for learning with backpropagation.
This is the technique used in [20] for video event classification, where liquid
states from multiple sequentially connected reservoirs are first filtered through
an attention learning mechanism for a single layer neural network.

In all the aforementioned cases, external mechanisms are exploited for learn-
ing, whereas [16] uses a secondary population of spiking neurons with a simple
Hebbian learning rule for winner-take-all classification on speech recognition
(one neuron per class, with whatever neuron spikes most as the winner), which
is also used in [17]. By using spiking neurons for the readout layer, advantages
of neuromorphic hardware can be gained by implementing the entire system in
spikes [8, 17].
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3.3.4 Other Considerations

Aside from vanilla implementations of LSMs, more specialized and complex
architectures may be implemented. It has been shown that by stringing together
reservoirs in hierarchical series, temporal characteristics at different time scales
may be captured [20]. Ensembles of many small reservoirs (as little as 4 neurons
each) have been effectively implemented by [18].

3.4 Challenges

Despite promising performance on a number of machine learning tasks, the issue
remains that for any given task, and given the specific circumstances in which
that task is entrenched, there exists no generally optimal reservoir, as is dictated
by the “no free lunch principle” [28, 29]. However, this is not to say that some
reservoirs are not generally better than others for common machine learning,
especially given that specialized reservoirs may employ learning rules that allow
for favorable adaptation to new tasks.
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4 Structure - Network Topology

The connective architecture of a network defines its topology. There are a
number of common methods for generating certain types of connectivity, and
within each of these methods there exist a high number of unique possible
networks on the order of 2n(n−1)/2 [36]. Reservoir computing already performs
well with random connectivity [2], but there is still much research to be done
in terms of optimizing reservoir dynamics as a function of topology, taking
information from biology and network theory.

4.1 Random Topology

Figure 3: Example of a random graph topology, reprinted with permission from
[42]

Random graphs (Fig. 3) essentially sample from all possible graphs with a
uniform distribution defined by pm(1 − p)N−m where N =

(
n
2

)
. For Gilbert

random graphs [37], any two nodes (or neurons) ni and nj have some probability
p of being connected, including self-connection.

for i in range(neurons) do

for j in range(neurons) do

P (p)· connect(ni,nj)

This p value may therefore determine the internal density (or sparsity) of a
reservoir simply by virtue of it defining the frequency with which connections are
made. An Erdős-Rényi random graph has a similar effect, but rather constrains
the total connections to the defined density [40], rather than allowing for some
variance around this value.
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In terms of using random graphs to determine synaptic connectivity for
reservoirs, it should be noted this approach results in no particular adherence to
spatial aspects of input. This is to say that spatial-temporal properties simply
become temporal properties in a random reservoir. Adjacency of features in
input channels are dispersed randomly across the graph and do not remain
grouped in their original order.

4.2 Geometric Topology

Unlike random graphs, geometric topologies maintain a certain amount of spatio-
topic coherence to the input. This is accomplished by first generating a geo-
metric structure of nodes in Euclidean space, such as a cube (see Fig. 4) or
the canonical 15× 3× 3 neo-cortical column [1,15], and creating edges between
nodes on the basis of an exponential decay as a function of distance, such that
the probability of any two neurons being connected is defined by

P (a, b) = C · exp−(
D(a,b)

λ )2 (2)

where C is a connectivity coefficient, D(a, b) the Euclidean distance between
a and b, and λ the connectivity parameter defining the typical distance and
frequency of connected neurons. Such is the topological approach in LSM’s
founding paper [1].

Figure 4: Example of 4x4x4 geometric topology

Geometric topologies are by far the most ubiquitous in LSM literature [1,8,
14–17,26]. Ostensibly, this is because of the biological plausibility of this struc-
ture in the cortical column [1]. Note, however, this spatio-topic method typically
constrains information flow locally in terms of neuron location, although this
may be moderated with the λ parameter. For certain types of information pro-
cessing, it is imaginable that one would want some ratio of information (such
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as spiking events) to reach across the network at length, thereby distributing
essential features across a greater network area.

4.3 Small-World Topology

Figure 5: Example of ring lattice connectivity for small world topology of β =
0.25

Whereas random graphs implement no spatial consideration and geometric graphs
bias toward local spatial properties, small-world topologies (Fig. 5), here con-
sidered in the flavor of the revised Watts-Strogatz model [38], provide a network
generation method by which the prevalence of local and long distance connec-
tions may be moderated with the parameter β via

ps =
k

k + β(N − 1− k)
(3)

pl = β · ps (4)

for a ring-lattice graph. When β = 0, k is the number of neighbors a node is
connected to symmetrically on either side. As β increases, local connections
defined by ps untether to make random long distance connections defined by
pl, until eventually, at β = 1 an Erdős-Rényi random graph emerges very much
akin to the aforementioned Gilbert random graph.

It is important to here realize that between the locally connected graph at
β = 0 and the random graph at β = 1, there exists a spectrum of connectiv-
ity ranges, which may result in scale-free network properties where statistical
outcomes at local scales may be as well observable at global scales [39]. This is
because the geometry of local firing patterns may resonate at greater scales, due
to a certain percentage of long range-connections. It may be expected that in
some cases, this would be advantageous for the representational abilities of an
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LSM reservoir and has been investigated by [23]. However, significant analysis
on this subject remains to be done.
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5 Rules - Information Processing

The nature by which information may propagate through a reservoir structure
(or any structure for that matter) must be defined by some set of rules. Typi-
cally, spiking neural networks run on leaky integrate and fire (LIF) neurons, and
sometimes incorporate plasticity rules that may evoke temporary or permanent
change in the synaptic connections or neurons themselves.

5.1 Leaky Integrate and Fire Neurons

At any given moment, a neuron may have some membrane potential v(t) which
is constantly leaking and integrating according to

dv

dt
=
−v
τmem

+
∑
i

δ(t− ti) (5)

v ← wji · s(nj) (6)

where τ is the membrane time constant that defines the rate of decrease for the
membrane potential v, nj is the jth neuron in a population (i is the ith), and
the Dirac term in equation 5 simply describes a presynaptic spiking event that
will increase the value of v by an approximately discrete jump in proportion
to the weighting coefficient of that synapse (equation 6), as described in the
above update rule (see also Fig. 6). All incoming spikes are integrated into the
membrane potential. If spikes coming from upstream increase the membrane
potential of a neuron faster than it is leaking, and if these spikes manage to
instantiate an increase up to some threshold, the post-synaptic neuron fires,
sending spiking events moderated by unique synaptic weights to all of its own
downstream neurons.

Figure 6: Leaky-Integrate and Fire neurons, reprinted with permission from [52]

This “rule” of information processing is already sufficient (in synchrony with
a complex structure) for complex behavior with rich representational abilities.
Nonetheless, in LSM literature, LIF neurons are often only the building blocks
for more complicated neural coordination through what are commonly known
as learning rules.
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5.2 Short Term Change – STSP

The above mentioned neural parameters may be adapted over time to the benefit
of unsupervised learning. By learning, it is meant that the network is changing
in response to input, which may better equip itself to more meaningfully pro-
cess unseen input in the future. Network change is accomplished by changes in
synaptic weights or parameters, which can alter future firing patterns, and, if the
change is lasting, even change the network topology (if a weighting connection
becomes zero, this connection is essentially severed). Learning via self-change
can be a temporary or permanent affair. In the case of Short-Term Synap-
tic Plasticity (STSP) [43], the synaptic parameters of calcium buildup u and
resource availability x define a pair of coupled differential equations as follows:

dx

dt
=

1− x

τD
− ux

∑
i

δ(t− ti) (7)

du

dt
=

U − u

τF
+ U(1− u)

∑
i

δ(t− ti) (8)

v ← (w · x · u)ji
Uji

s(nj) (9)

Where x defines the fraction of resources required to fire and u is the calcium
buildup at that synapse. U is the baseline calcium value. Biologically speaking,
calcium buildup facilates neural firing by increasing the influence of spikes on
membrane potential [43, 44]. This mechanism constitutes a short term change
in synaptic (and therefore neuron) behaviour, whereby recently active synapses
are more likely to become active again as calcium increases. The calcium time
constant is greater than that of the resources. Therefore resources replenish
faster than calcium depletes and so there is a tendency toward facilitation.
However, given enough firing in a short amount of time, resource depletion
(equation 7) overrides this facilitation (equation 8). See Fig. 7 for a visualization
of this relationship. The update equation 9 for the membrane of a specific neuron
ni indicates that for any pre-synaptic firing of some neuron nj , post-synaptic
membrane potential of neuron ni is updated according to the specific synaptic
parameter values between the two. Due to their own time constants, changes
in these synaptic variables will always decay back to baseline if no firing occurs
and these changes are therefore short-term and temporary. Importantly, τF =
150ms is greater than τF = 20ms and thus calcium buildup decays more slowly
than the fraction of resources required to fire, resulting in overall facilitation.

Notably, [50] found that through these temporary synaptic update mecha-
nisms, ‘activity-silent’ information can be maintained in this ephemeral network
of facilitory connections for a short-period ( ≈1ms) of time. So great is the prim-
ing effect of calcium build-up, a network response associated to a given input
may be re-elicited with a random noise stimulus. In some sense, this results
in an attentional effect on presently seen input (anticipation of continuity) and
therefore may be useful to reservoirs in certain task domains–especially of small
feature time scales. It is also worth considering that while the original LSM pa-

19



Figure 7: The relationship of required firing resources x and calcium buildup u,
borrowed from [43]

per [1] uses similar synaptic parameters as STSP, they are implemented under
the biologically derived [44] paradigm and are mostly depressing. All-facilitory
STSP has received little to no attention from the LSM literature thus far, and
may benefit from its sharp responsivity to input.

5.3 Learning Through Long Term Change – STDP

Of course for many learning tasks, it may be useful to elicit some permanent
change in the network and in fact this has already been shown to be a beneficial
mechanism in LSMs [?,?,17], most often taking the form of Spike Timing Depen-
dent Plasticity (STDP) [45], which is best summarized by the quote “Neurons
that fire together wire together” -Donald Hebb. As seen in Fig. 8, the more
closely in time two neurons fire, the greater the change in their shared synaptic
weight. If they fire in the correct order (pre-then-post), they are assumed to
be correlated and the synaptic change is that of facilitation through an increase
in their synaptic weight. Should they fire in the wrong order, the weight is
decreased. These updates take the simple form of

∆w+ = F+(w) · exp
∆t
τ+ (10)

∆w− = F−(w) · exp
∆t
τ− (11)

Where F (·) may be additive (the generic choice for reservoirs) or multiplicative
with respect to the existing weight value. ∆t is the difference in firing time
and τ+, τ− are the respective time constants for positive and negative firing
differences.

This canonical form of Hebbian learning is biologically plausible and effective
in a number of spiking neural network domains–an elegant implementation of
unsupervised local learning. It can even be used for a spiking readout map
on reservoirs [16, 17, 20]. Note, that there are some additional choices of what
neighborhood of neurons to consider for updates, such as nearest neighbor or

20



Figure 8: Explanatory diagram of typical STDP update behavior, reprinted
with permission from [53].

even global (all pairing), the latter of which is employed in the present study on
the basis of its higher performance for reservoirs of relevant size found in [17].
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6 Representations

Implicit in liquid states that correspond to some input is a representation of that
input. Representations can be better or worse and this is a function of how well
meaningful characterstics of the input are preserved. For functional purposes,
it is also essential that these meaningful characteristics be interpretable by the
readout mechanisms of the system.

6.1 Separation and Approximation Properties

Returning to separation and approximation, the viability of an LSM for a clas-
sification task is entirely defined by its ability to separate input into the correct
categories. To accomplish this, categories of different classes should be rep-
resented separately in different regions of state space. Moreover, a readout
mechanism should be able to approximate these separations through its linear
supervised learning procedure. To help illustrate this, Fig. 10 demonstrates how
three classes might be organized in a 3-dimensional state space. This may be
equivalent using only three neurons and their firing rates for a given time window
to represent each input at a given moment in time. Clearly, if a linear classifier is
to be used, it stands to benefit from different classes occupying different regions
in state space. Thus, this illustration embodies well-organized representations
of input in terms of this classification task. Different task-defined classes occupy
different linearly separable regions in state space. Separation and approxima-
tion properties would be high here because classes are separately represented
and linearly separable.
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Figure 9: Instructive representation example of well organized representations
of three classes. Letters are classed inputs, dots are centroids, and colors are
clusters.

On the other hand, if input is highly separate, but not organized by class,
as in Fig. ??, then the coherent separation property is low because a linear
classifier cannot be learned. Another way of phrasing this, is that intra-class
clustering must be greater than inter-class clustering. Items from the same class
should be closer to one another than items of another class. Thus an organized
state space should emerge that is isomorphic to the organization of the input
classes. This is a phenomena explored by [1, 15,17,18,26].
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Figure 10: Instructive representation example of poorly organized representa-
tions of three classes. Letters are classed inputs, dots are centroids, and colors
are clusters.

6.2 Distance Measures

While these low dimensional examples are instructive, LSMs usually use dimen-
sionality much greater than what can be visually imagined for representation.
As soon as more than three neurons are in play, visualizability is lost. However,
in higher dimensions, more complex sets of features can be used to define sepa-
rability [29]. To assess the quality of separation and approximation properties
in higher dimensions, relative euclidean distances of representations in the full
dimensionality can be considered, such as [15], where separability is defined by

SepΨ(O) =

N∑
m=1

N∑
n=1

||µ(Om)− µ(On)||2
N2

(12)

or the refined version of [26]

SepΨ(O) =

N∑
m=1

N∑
n=1

||µ(Om)− µ(On)||2
N2 +N

∑N
m=1 ρ(O)m

(13)

Where SepΨ(O) is the separation of representations across input samples at
a given moment in time. N is the number of classes. µ(Om) is a average
(centroid) state vector at that time for class m. So essentially for equation 12,
the total separation is defined by the sum of differences between class centroids,
divided by the number of classes squared. While equation 12 only makes use of
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class-centroid spread (inter-class separation), equation 13 better encaspulates
the clusterization of same-class representations (intra-class spread) by inversely
correlating the variance ρ(O)m of positions for same-classed items in reservoir
quality assessment.

6.3 PCA

Aside from blindly working in higher dimensions, dimensional reduction through
principal Component Analysis (PCA) [?] can as well be applied to both visual-
ized high-dimensional data and distill the most significantly defining featured by
focusing only on the dimensions of maximum variance. This technique has been
used to assess reservoir quality and performance in [17,18]. In both cases it has
been found that reservoirs which demonstrate separability best in PCA space
tend to perform better for classifications tasks such as spoken letter recognition
and image recognition.

Figure 11: Example of dimensional reduction through PCA, adapted from tu-
torial [48].

Intuitively, PCA reduces the dimensionality of data to its directions of max-
imum variance. Therefore, ideally, the remaining compressed directions are not
linearly dependent. In some sense, this impresses the most informative possible
representation of the high-dimensional data to lower dimensions. Referring to
Fig. 11 (left), it can be seen that the directions of maximum variance are defined
by the red and blue arrow and therefore these define the plane onto which the
date is compressively projected on to in 11 (right). This is accomplished by first
centering (normalizing) the data about the origin by subtracting from all points
the mean of the data. Next, the singular value decomposition SVD is computed
and only the desired number of principal components are extracted from the
first columns of the matrix. Apply these columns to the normalized cloud of
high dimensional dataRn to transform it the desired dimensionality Rm, such
that the transformation

Rn ⇒ Rm (14)
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is achieved via the mapping

x⇒ f1(x), ..., fm(x) (15)

where fi(x) is the the corresponding column of the SVD matrix Ui acting on
the the normalized data x̄.

In the case of [17], PCA is applied to an a spoken letter speech recognition
task by reducing all state-vectors for a given moment in time across all input
responses to 3-dimensions as visualized in Fig. 12, where si(t) is the liquid state
response vector at time t for input i and R(t) is the collection of these responses
across all samples. A random moment in time is selected and PCA preserv-
ing only the first three components of maximum variance across all samples is
executed such that representations can be visualized in three dimensions.

Figure 12: Example of PCA procedure on liquid state responses for speech
recognition, reprinted with permission from [17].
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7 Methods

We here try to focus on a few key inquiries with a strict experimental design.
An informed sampling of the large space of possible liquid state reservoirs is
made by testing different combinations of learning rules, topologies, and other
hyperparameters on two classification tasks–image and spoken digit recognition.
The quality of these many different reservoirs are assessed in two ways.

• How well do they perform on these tasks in terms of correct classification?

• How well are their representations in state space organized?

Based on these results, the correlation of representational dynamics to perfor-
mance may be considered. In summary, the procedure is as follows:

1. Generate X amount of unique LSMs (varying meta and hyperparameters)

2. Test on classification tasks in both visual and audio domains

3. Assess classification performance

4. Assess representational dynamics

5. Consider how dynamics and performance are related

It should be noted that the most substantial aspect of this experimental design
are the performance results, as they can straightforwardly apply to the appli-
cations of new reservoir configurations on real tasks. Dynamical behaviors and
their relationship to performance is a more tentative investigation that may only
yield indications of where further attention may be directed in terms of reservoir
quality assessment. In a sense, performance assessment entails an engineering
experiment, while dynamical considerations relate more to an undercurrent of
reservoir theory, for which results would have less explicit applications.

7.1 Experimental Design

All LSM simulations are coded from scratch using the Brian Neural Simulator
[49]. Python packages are used for logistic regression (SciPy) and for small-
world node pairing. Everything else is hand-crafted and can be found in the
project repository (NeuroMachines).

The visual domain is tested with the MNIST handwriting dataset [30] and
the auditory with the Heidelberg spoken digit dataset [31]. For both input
modalities, two training samples from three class are shown to reservoir neu-
ral populations of only 135 neurons before testing classification performance
on single examples from each class. The amount of training data and reser-
voir population size both function as ways of moderating task difficulty. The
prior is essentially and axiom of all machine learning (that performance betters
with more training data) and the latter of specifically reservoir computing [17].
These knobs can be intuitively ‘tuned’ to produce results that spread out per-
formance of unique reservoir configurations sufficiently to meaningfully rank
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performance as a function of reservoir properties. Because simple image and
speech recognition are not particularly difficult for LSMs, limited training data
and medium-small reservoirs (in terms of literature standards) are used. These
are tuned to the speech recognition task (the more difficult of the two, due to
more complex temporal properties) and carried over to image recognition.

This approach had a secondary benefit of being more computationally cheap
than using large reservoirs on many hundreds of examples. MNIST trials lasted
140ms and Heidelberg 700ms. It is reiterated here that our primary interest is
in the more spatio-temporally rich spoken digit dataset, and the MNIST only
serves as a point of reference.

It should also be note that two “meta-parameters” are explored. Input feed
can either be reset or continuous, meaning that input samples can be fed to
freshly re-initialized reservoir conditions each time, or all samples are fed to
the reservoir in a continuous stream. X-atory behaviour refers to whether
the network is randomly initialized with all positive weights, or if the exci-
tatory/inhibitory parameters of [19] are adopted, which employ specified initial
weighting assignments that include negative values. In this latter case, each
neuron is associated with either an excitatory or inhibitory tag. Excitatory-to-
excitatory connections (EE) have a synaptic weighting value of 0.5, EI 2.5, IE -2,
and II -2. Transmission delay for all connections is 0.8ms, except for EE which
is 1.5ms. Refractory period for spiking is 2ms for all but EE, which is 3ms. We
will generally refer to this group of parameter settings as EI parameters. These
parameters are biologically plausible [44] and allow for more symmetrical mem-
brane potentials around zero because in many cases, the potential is brought to
negative values through inhibition. This naturally results in less spiking (and
therefore more sparsity), which may be more energy efficient. This may also
result in more unique firing activity by preventing saturation.

This experimental design comes with a number of particular consequences.
Firstly, it can be found which reservoir configurations perform the very best in
terms of classification. Secondly, it can be found which key parameters (like
learning rules) are most commonly found among the top performers given other
parameter settings, which may indicate general robustness. Finally, it can be
seen how these findings hold across both modalities of input.

7.1.1 Neuromorphic MNIST Handwriting Dataset

We test on the computer vision task of image recognition for hand-written digits.
Note, this task is primarily defined by spatial features. Images are converted
in accordance to the procedure found in [32]. 28x28 pixel images are unraveled
into an input vector ∈ R784 defined by the pixel intensity value at each index.
This vector determines the Poisson spiking rates across 784 input channels (see
Fig. 13). However, now there is spatial structure defined by the original image
incorporated into the arrangement of these spike trains. Running the simulation
with these spike train inputs for some amount of time loosely simulates light-
intensity spiking data being processed by the brain [32] and in this way a static
image can be impressed on the reservoir over a period of time.
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Figure 13: Raster plot for the handwritten digits 0, 1, and 8 (left-to-right).
Note, these are three unlabled raster plots, where the y-axis are the 784 input
channels and the x-axis is time. Dots indicate a spiking event at that channel
for a given moment in time. Notice features of the digits are discernable even
to the human eye. The digits 0 and 8 involve more markings when written and
therefore can be seen to have more spiking events. The gap in the center of the
number 0 is as well visible in its firing pattern.

7.1.2 Heidelberg Spoken Digit Dataset

Figure 14: Cochlear implant recordings of spoken digits ”zero”, ”one”, and
”two.” Note, these are three unlabled raster plots, where the y-axis are the
input channels (ordered in terms of frequency) and the x-axis is time. Dots
indicate a spiking event at that channel for a given moment in time.

Finally, our system is tested on the Heidelberg Spoken Digit Dataset [31] where
spoken digits are recorded via a cochlear implant in a spiking form similar to
how the brain might receive audio information. Neuron indices correspond to
increasing frequency values. If a certain decibel intensity is reached for a given
frequency, the associated neuron will spike. Of course, any sound could in theory
be preprocessed to adopt a spiking form, such as done in [17].

Importantly, the above mentioned input modalities are spatio-temporal tasks,
for which RSNNs have a native advantage due to their time-embedded spiking
nature [1, 19]. By providing the reservoir network with information that has
structure in both the time and space domains, reservoir information process-
ing abilities can be more thoroughly assessed. While the neuromorphic MNIST
dataset is really defined by its spatial features that are stretched out over time,
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the spoken digits have spatial grouping defined by frequency adjacency in the
recordings, and temporal continuity defined by the duration of the different
phonemes in the spoken digit. Thus we can think of the tasks in the following
way:

• Spiking MNIST → Mostly spatial

• Spoken digit → Spatio-temporal

Therefore we can contextualize the results accordingly for each of these do-
mains. Our representational dynamics will be exclusively characterized in terms
of the Heidelberg dataset because it is the more spatio-temporally rich of the
three.

7.2 Reservoirs

In total, 1008 different experiments are run for each dataset, varying hyper
(table 2) and meta (table 3) parameter settings, given a set of static parameters
(table 1). ‘Neurons’ refers to the number of neurons in the reservoir population
τmem refers the leaking rate from equation 5. The remaining table 1 parameters
are self-explanatory and moreover, detailed in the LIF subsection in section 5.

Parameter Value

Neurons 135
τmem 30ms
Baseline 13.5 mV
Threshold 15 mV
Refractory 0ms
Delay 1.5ms

Table 1: Static Parameters

Table 2 includes a number of nuances, here explained. Input density defines
the probability of connection between any input channel to any reservoir neuron.
In total, there should be roughly that percentage of connections made out of
all possible input-to-reservoir connections. Similarly, reservoir density defines
the probability of any two reservoir neurons making a recurrent connection (in-
cluding self-connection). It is important to here realize the the reservoir density
parameter is equivalent to the random topology prandom parameter. Therefore,
while the β and dimensions parameters are only varied when their respective
topologies are in play (small-world and geometric) the prandom is varied for all
topologies, because it also defines reservoir-density. In some sense, geometric
and small world topologies can be thought of as levels of organization used to
wire a random topology in a non-random way. For every three random topology
experiments run, there are nine small-world and nine geometric topology exper-
iments. For example, each β parameter is run for each of the reservoir-density
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(and therefore prandom) parameter. Results for random topology are normalized
to ×3 for fair comparison.

Parameter Values

Input density 0.1, 0.2, 0.3
Reservoir density 0.1, 0.2, 0.3
Learning LIF, STDP, STSP, LSTP
Topology random, geometric, small-world
prandom 0.1, 0.2, 0.3
β 0.0, 0.33, 0.66
Dimensions 15 ×15× 3

9 ×5× 3
27 ×3× 1

Table 2: Hyperparameters. prandom, β, and dimensions are specific to their re-
spective topologies of random, small-world and geometric. prandom is equivalent
to reservoir density and therefore for every three random topology experiments,
there are nine small world and geometric experiments.

Finally, the meta-parameters simply refer to those settings that apply to the
whole LSM. EI includes excitatory and inhibitory behavior. Input feed toggles
between resetting and continuous input sample feeding to the LSM.

Parameter Values

EI True, False
Input feed reset, continuous

Table 3: Meta-parameters

7.2.1 Learning Rules

STSP is implemented with the typical time constant parameters from section
5.2. STDP is adapted in accordance to the Brian simulator guidelines [49], such
that instead of explicitly calculating an exponential function on every spike-
timing difference for every neuron pairing, firing traces a are used as synaptic
parameters between each pair,

dapre
dt

=
−apre
τpre

(16)

dapost
dt

=
−apost
τpre

(17)
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which are constantly decaying. τpre = τpost = 20ms. However, updates are
made for pre and post-synaptic firing such that

apre ← Apre (18)

apost ← Apost (19)

where Apre = 0.01 and Apre = −Apre ∗τpre/τpost ∗1.05 = −.0105. At each firing
event, the weight between that neuron and any other is updated according to

w ← Apre (20)

w ← Apost (21)

where weight values are clipped between 0 and 0.01 to prevent saturation. This
is a common technique, recommended by [49] and similarly employed by [16,17].

In addition to previously described learning rules, a novel rule that combines
STSP and STDP dynamics for long and short term learning is also tested under
the name Long Short-term Plasticity (LSTP). Because the dynamics of STSP
and STDP do not directly interfere with each other, the above mentioned formu-
lations for STSP and STDP are simply applied together in one all-encompassing
learning rule, which may draw advantages from both short and long-term learn-
ing, though with some added update complexity.

Given the other most favorable settings, additional ivestigations are executed
for each learning rule. The role of synaptic parameters (calcium buildup, firing
traces, etc) are observed for different performance levels and firing behaviours.
To test reproducibility, 100 reruns of the experiments are performed for each
learning rule with new random initializations, therefore testing for performance
variance. Moreover, temporal certainty (classification confidence over time) is
tested for each of these settings.

7.3 Readout

As aforementioned, the present research is concerned with better understand-
ing reservoir dynamics in order to characterize reservoir quality. That being
said, a generous readout map is designed, such that we can assume a sufficient
amount of information is being consumed from the liquid states to approach
some pseudo-ideal classification performance. This is in contrast to the many
clever spiking readout maps found in the literature, such as [16], that are native
to fully spiking hardware and therefore more energy efficient and much faster.
By instead opting for an external logistic regression model similar to [14, 19],
we reduce our bias toward reservoirs that may simply be better suited for some
lean readout map in particular.

In order to implement an external readout map using the classical machine
learning logistic regression algorithm, spikes must first be translated into nu-
merical data. This is achieved by one-hot encoding spikes in 1ms time windows
for a given liquid state across all neurons, as shown in Fig. 15. If a neuron i
spikes in some window [t, t + 1ms] then its neuron index is assigned the value
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of 1 at the time t window index

S[i,t] ← 1 (22)

x(t) = [x0(t), x1(t), ..., xN (T )] (23)

S = [x(0), x(1), ..., x(T )] (24)

where S is the response matrix for the entire sample, x is the state vector for
all neuron indices [1, ..., N ] at some time t, and T is the length of the sample.
If multiple spikes occur for that neuron in that window, the value is simply
incremented by that amount again and therefore the data is not strictly one-
hot-encoded, but rather binned.

Figure 15: Example of counting spikes within a given 1ms time window (at t
= 20ms) at each neuron index. Note the raster plot in the background is an
example of a liquid state response to Heidelberg speech input.

Now ready with prototypical machine learning data, an even further advan-
tage is given to the system by partitioning the data into groups of 20 windows
(each 1ms) and then feeding them into a generic logistic regression algorithm
with the appropriate labels. Once weights are learned for these “chunks,” future
unseen chunks may be classified appropriately. Chunk size can be used to mod-
erated performance efficacy. The larger the chunks, the easier the classification
task.
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7.4 Representation Analysis

7.4.1 PCA

In order to navigate the unseeably high-dimensional representation state space,
PCA is applied. This allows for the visualization of higher-dimensional spaces
at a palpable and familiar 3D scale,

x(t) ∈ R135 → s(t) ∈ R3 (25)

but it must be said that these are not necessarily lower-resolution versions
of the full-dimensionality. Fundamental nuances of the data may be lost and
we therefore use this technique here with tentative caution, drawing conclusions
only about the relative compressed dynamics–not inherent characteristics–of the
full data. We are not alone in this approach, however, and PCA for reservoir
analysis can be found in [17, 18]. This approach allows for the characterization
of different dynamical patterns in PCA space, which may be related to per-
formance measurements and could give insight as to how dynamics relate to
reservoir quality for our classification task of interest (The Heidelberg spoken
digit dataset).

7.4.2 Separation Measures

Similar to [15,26], relative euclidean distances are used to assess separation and
representational organization in full-dimensional state-space. This is accom-
plished by summing the distances of class-centroids and subtracting from that
the average within-class distances according to

Seporg(X) =

T∑
t=1

C∑
c=1

Rc∑
r=1

||µ(xc(t))− µ(xr(t))||2 (26)

Where X is the response tensor across all time T and samples. Each sample
makes one of nine total one-hot-encoded response matrices S from equation 24.
C is the number of classes and R is the number of replicas in each class. xi(t)
refers to a response state-vector for some sample i. Thus, Seporg(X) describes
the average inter-class distance minus intra-class distance over the entire trial.
In this way, not only is separation considered, but also coherent organization
(how well inputs of the same class are represented more similarly than those
of other classes). We use the term coherent separation to refer to the degree
to which inter-class separation supercedes intra-class separation as defined by
Seporg(X) in equation 26. This can also refer to such instances in PC space.
This method is selected over equation 12 and 13 because we found it to correlate
more with performance and because it sums over the entire trial, allowing for
easier comparison across experiments.
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8 Classification Performance Results

As a pure machine learning task, performance on correct classification of input
patterns for image and speech data are recorded and compared. Remember
that the LSM paradigm used here employs aggregate classification, whereby
at any given moment, the class that has been guessed the most so far is the
classification at that moment. Performance is determined by the classification
at the final time step for a given trial. A useful way of tracking performance
over time is to measure the certainty, whereby the ratio of the current number of
correct class-guesses to the most-guessed class is taken. When the most-guessed
class is the correct class, this number is one.

C(t) =
Correct guesses so far at time t

Most guessed class so far at time t
(27)

Ties are given favor of correctness. To compare performance across reservoirs,
the final certainty across all classes is taken.

8.1 Image

Hyperparameter Value: Occurrences

Learning LIF: 26, STSP: 64, STDP: 46, LSTP: 46
Topology rnd: 25, geo: 77, smw: 80
Input density 0.1: 45, 0.2: 67, 0.3: 70
Reservoir density 0.1: 69, 0.2: 57, 0.3: 56
prand 0.1: 8, 0.2: 11, 0.3: 6
Dimensions [15, 3, 3]: 26, [9, 5, 3]: 23, [27, 5, 1]: 28
β 0.0: 22, 0.33: 26, 0.66: 32
EI False: 114, True: 68
Input feed reset: 61, continuous: 121

Table 4: Hyper Parameter Occurrences in Top 182 Performers for image recog-
nition. Random topology and all values for prand should be normalized to ×3 for
a fair comparison to other parameters. This is because prand essentially defines
reservoir density and was varied for the other two topologies as well. Note that
the top 182 performers are considered here because they all achieved perfect
classification across the entire sample (a 182-way tie for first-place).

LSMs performed extremely well on the spiking MNIST image classification task.
Over 500 configurations achieve correct final classification for all three classes
by the final time step, and 182 configurations achieve 100% certainty for the
entire trial (see Table 4). Experimental design could have been altered to better
tease apart performance, but it was decided for comparison purposes to keep
parameters the same as for speech recognition, as this was the principle task of
interest.
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Figure 16: All configurations that achieved perfect certainty across entire trial
for MNIST handwriting recognition computer vision task

Fig. 16 displays the quantity of learning rules and topologies that achieve
correct classification by accross the whole trial. It can be seen that STSP is
the most commonly occurring learning rule and it’s most commonly combined
topology is that of small-world. However, preferred topology varies per learning
rule. Interestingly, LSTP, which contains the same short-term synaptic learning
as STSP, also pairs best with small-world. Random topologies are noticeably
preferred by STDP and rejected by LIF.

8.2 Speech

As the spatio-temporal Heidelberg spoken digit dataset is our primary classifi-
cation task of interest, more in depth results are presented here. Firstly, raw
performance is given, followed by synaptic dynamics, temporal certainty, firing
totals, and reproducibility.

8.2.1 Performance

By design, performance is well spread out for the Heidelberg spoken-digit recog-
nition task. Many reservoirs perform well and even achieve perfect classification
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with as little as two training examples per class. Examples of liquid state re-
sponses for reservoirs that achieve perfect classification can be seen in Fig. 17. A
typical high performance plot can be seen in Fig. 18, where we can see after an
initial wash-out period, during which time the reservoir is getting “acquainted”
with its testing sample (moving away from its random voltage and/or weight
initializations), the readout quickly becomes certain which sample is which (in
this case the spoken digits “zero”, “one”, and “two”).

Figure 17: Four perfectly-classifying reservoir configurations and their liquid
state responses for each class of the Heidelberg dataset. Columns = [”Zero”,
”One”, ”Two”] input classes, rows = [LSTP, LIF, STDP, STSP] learning rules
from top to bottom. Note the LIF configuration includes inhibitory behavior.
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Figure 18: An example of a high performing reservoir for speech recognition.
During the 700ms trial (70 moments of classification), certainty increases to
100% even after several brief periods of decrease.

Hyperparameter Value: Occurrences

Learning LIF: 17, STSP: 37, STDP: 23, LSTP: 23
Topology rnd: 6, geo: 46, smw: 48
Input density 0.1: 50, 0.2: 26, 0.3: 24
Reservoir density 0.1: 42, 0.2: 30, 0.3: 28
prandom 0.1: 2, 0.2: 2, 0.3: 2
Dimensions [15, 3, 3]: 20, [9, 5, 3]: 14, [27, 5, 1]: 12
β 0.0: 19, 0.33: 16, 0.66: 13
EI False: 65, True: 35
Input feed reset: 28, continuous: 72

Table 5: Hyper Parameter Occurrences in Top 100 Performers for speech recog-
nition. Note that rnd topology and all values for rndp should be normalized to
×3 for a fair comparison to other parameters. This is because rndp essentially
defines reservoir density and was varied for the other two topologies as well.

However, not all reservoir configurations performed so effectively. As shown
in Fig. 19, there is significant diversity in reservoir performance. This is a virtue
of the task difficulty, limited training examples, and limited neuron population
sizes. This performance spread is a favorable outcome, because it allows for a
clean analysis of performance rankings so as to better understand what sort of
hyperparameters might contribute to effectiveness.
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Figure 19: The certainty performance of all 1008 reservoir configurations. Note
that most reservoirs perform better than random, while some are worse than
guess, and a considerable number achieve perfect classification.

Through this large hyperparameter sweep, we can glean certain favorable
configuration types. Analyzing the top 100 performers (see Fig. 20 (left) and
Table. 5) in terms of final average certainty across all classes, we see which
combinations of learning rules and topologies perform best given the other re-
maining parameters of the sweep (density, input feed, and excitatory/inhibitory
behaviour). We find that STSP notably outperforms other learning rules in
terms of functioning with a greater variety of other hyper-parameters, espe-
cially in combination with a small-world topology. It is also notable that the
novel LSTP learning rule performs competitively well with the typical choice of
STDP, though it involves more complex learning behavior.

With respect to the influence of inhibitory behaviour and input feed type on
different learning rules and topologies, we can refer to Fig. 20 (right). It can be
seen that STSP better exploits all meta conditions, where as LIF configurations
are indifferent to these changes. All learning rules prefer a continuous input
feed. This is also the case for all topologies (not shown). Small-world topologies
better exploit all meta-conditions such that performance is more robust to all
permutations of these conditions than other topologies.
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Figure 20: Occurrences of reservoir configurations of specified combinations for
learning rules with topologies (left) and meta-parameters (right) in the top 100
out of 1008 LSM configurations.

8.3 Synaptic Dynamics and Firing

As described in section 5, (learning) rules define the behaviour of a system
over some structure. We here visualize the connection of synaptic parameters
to system behaviour (firing). Because we have already seen that small-world
is a consistently performing topology across learning rules, and that continu-
ous input feed and non-EI settings are generally favored, we will here isolate
our investigation of synaptic parameters to these settings over each learning
rule for high (randomly selected above 90% final certainty, table 6) and low
(randomly selected below 50% final certainty, 6) performing configurations, in
search of what constitutes good performance. Because learning rules displayed
the most varied performance, they become our primary variable of interest. Fig.
21 displays reservoir firing, mean voltage, and synaptic parameter change, all
in response to input for high and low-performing small-world continuous non-
EI configurations over different learning rules. The values have been heavily
normalized to superimpose to the range of 135 reservoir neurons on the y-axis.
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Learning Rule β Input density Reservoir Density Performance (%)

High-Performing

LIF 0.66 0.3 0.1 96
STSP 0.66 0.2 0.2 100
STDP 0.0 0.1 0.3 98
LSTP 0.33 0.1 0.2 92

Low-Performing

LIF 0.0 0.2 0.1 52
STSP 0.66 0.3 0.1 60
STDP 0.33 0.3 0.2 54
LSTP 0.0 0.3 0.2 55

Table 6: High and low-performing small-world continuous non-EI configurations
for each learning rule and their respective performances.

The relevance of input signal (purple) can here be seen. All input samples are
700ms, but the time that the stimuli of the spoken digit causes firing is shorter,
usually in the range of about 100-600ms. The way different reservoirs respond
to the non-firing ‘down-time’ in an input signal varies. High-performing LIF has
some response to input (slight drops in firing between signals, greater voltage-
change amplitude, some shuffling in firing pattern), but is fairly repetitive and
constant. Low-performing LIF appears to essentially fire constantly and without
change. Voltage-change amplitude is less and there is no discernable change in
firing pattern (which groups of neurons are firing). High-Performing STSP
maintains firing even during the interim time between input signals, most likely
due to its calcium buildup and residual voltage levels. The firing is dynamic
and still changes during the input transitions. Low-performing STSP does not
maintain firing between input signals and the firing during the input signal is
repetitive (non-dynamic). High-performing STDP and LSTP also have dynamic
firing (changing over time and in response to input), but do not maintain firing
between input signals). The apre and apost synaptic parameters from equations
18 and 19 result in dynamic weight change that is clearly correlated with the
presence of an input signal. Low performing STDP and LSTP have repetitive,
non-dynamic firing, with less dynamic weight-updates and more sudden changes
in apre and apost that only appear to respond to the presence/absence of input
and not the subtle within-input changes.
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Figure 21: High (left) and low (right) performing configurations for continu-
ous non-EI trials over entire 6300ms trials. Top-to-bottom: LIF, STSP, STDP,
LSTP. Values have been heavily normalized (by factors show in legend) to super-
impose to the range of 135 reservoir neurons on the y-axis. Purple dots indicate
spoken digit input firing (normalized by a factor of 0.19286 to fit 700 input chan-
nels over 134 reservoir neurons), black dots indicate reservoir response firing.
Dark blue is always mean membrane potential in mV for the whole reservoir
and orange is always the mean weighting values.
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To formalize differences in total firing as a function of learning rules, we here
include Fig. 22. It becomes apparent that LIF configurations tend toward only
two extremes (saturation and sparsity) in a bi-modal distribution. While STSP
is second both in terms of highest and lowest firing amount, it is also distributed
across the entire range of total firing. STDP and LSTP tend toward a much
tighter range between about 150000 and 250000 spikes. These results cohere
to Fig. 21, where it can be seen that only STSP and LIF configurations fire
between input stimuli.

Figure 22: Total firing in response to all input for all reservoir configurations
over total firing rankings. Because of the strong correlation of firing between
STDP and LSTP, their yellow and green performance markers may be difficult
to distinguish.

8.4 Reproducibility and Temporal Certainty

A necessary question that follows from the above performance results is how
reproducible are they? Ideally, each configuration would be run hundreds of time
on many different training/testing sets, but for the sake of limited compute, we
here again look only the same high-performing small-world continuous non-EI
LSM configurations as seen in Fig. 21 (table 6). Each configuration is run
100 times with random, unseeded initializations of voltages, weights, and small-
world connectivity (random reconnecting via the β parameter from equations 3
and 4). Mean classification certainties (equation 27) for all test input samples
from each class over all 100 reruns are tracked over time at along with the
standard deviations. Fig. 23 illustrates an overall rise in certainty for all learning
rules as the length of time the configuration has been exposed to the input
stimuli increases. However, STDP and LSTP, which appear to be strongly
correlated in both certainty and variance, experience a dip in certainty at around
600ms, which is about the time the input stimuli is removed (when the speaking
of digit is complete, but the sample goes on for another 100ms, see Fig. 14).
Note that STDP and LSTP here have different β parameters and therefore
different connectivity, so their correlation must come from their shared long-
term learning dynamics. LIF flatlines around the end of the input stimuli,
and, interestingly, STSP continues to rise. This is not surprising because in
Fig. 21 we already saw that high-performing STSP reservoirs may continue
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to dynamically fire even after the input stimuli is withdrawn. Like with total
firing, STSP and LIF again both exhibit much higher variance than the learning
rules with long-term learning. STSP performs on average lower than STDP and
LSTP, even by the end of the trial where it has an advantage through continued
firing, but because of its greater variance, it at least sometimes performs higher
than any other configuration ever did. This would explain why STSP achieved
the highest results in the overall sweep–its variance spectrum sometimes reaches
to higher performance than what is possible for other configurations at the final
time step.

Figure 23: Mean C(t) (equation 27) for all test sample of each class for 100
reruns of high-performing small-world continuous non-EI configurations for each
learning rule.
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9 Representation Analysis

While tracking certainty is a useful metric for performance, it leaves much hid-
den about the inner-workings of a reservoir during a trial period. To gain insight
on the dynamics of the system, state-space is observed in both compressed and
full dimensionality for the Heidelberg speech recognition task.

9.1 PCA

The advantage of PCA for reservoirs is it allows the visualization of representa-
tions in three dimensions. This does not directly translate to empirical results,
but rather acts as tool to gain intuitive understanding about state space. These
results are therefore presented in this context.

9.1.1 Static Representations

At any given moment in trial time, the firing activity for a given input will oc-
cupy some position in state space. These high dimensional ∈ R135 are reduced
to three dimensions based on variance across all inputs at that time, as described
in section 7.4. Therefore, a point in 3D space corresponds to the relative rep-
resentational position of a a given input at a given time in the reservoirs’ state
space. An example of this visualized compression may be seen in Fig. 24. This
well-organized (organized by class) distribution of input samples in compressed
PC state-space is indicative of many high-performing reservoirs, but not most.
Reservoirs with this sort of organization in PC space are only found to perform
well (never poorly), but many reservoirs with seemingly scrambled organization
(not spatially organized by class) still perform well, and this is of course due to
the loss of information in PC compression: meaning that reservoirs poorly orga-
nized in PC space may still be well-organized (and therefore linearly separable)
in full-dimensions.
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Figure 24: An example of a well-organized (high coherent separation) reservoir
for speech recognition.

9.1.2 Representations Over Time

Consider the centroids (dots) from Fig. 24. These mark only the average
position of each class representation at a specific time window [t, t+1ms]. The
trials, however, last 700ms. To visualize these relative representational positions
in PC space over time, the path of these centroids throughout the the duration
of a trial may be traced. This process results in a typology of four archetypes
of dynamical behaviour, shown in Fig. 25, which we assign the following names
and qualitative definitions:

1. Pseudo-Noise: Appear to be random scribbles (may be better organized
in higher dimensions)

2. Perfect Cyclical: Precise repeating of a few representational positions

3. Evolving Cyclical: A repetition of relative state representational positions
that is drifting or wobbling in state space over time

4. Dynamic Encoding: Class representations follow distinct, non-repeating
paths

Note that pseudo-noise paths are by far the most common across all configu-
rations and performance levels. The remaining three are more rare, but tend
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to be high-performing in terms of classification, so long as their class-centroid
paths do not become entangled.

Figure 25: Archetypal PC paths of class centroids from 150ms to 700ms. Top
Left: pseudo-noise, top right: perfect cyclical bottom left: evolving cyclical,
bottom right: dynamic encoding

9.2 Organized Separation

As indicated by high-performing reservoirs that appear disorganized in terms of
both static and temporal representations in PC space, there must be far more
information in full-dimensional state space. Therefore, as detailed in sections
7.4, relative euclidean distances in full-dimensional space can be used to deter-
mine separation and organization in a more robust way. What is lost is of course
visualizability, but nonetheless we may find ways to peak into high-dimensional
behaviour. Fig. 26 demonstrates how average organized separation in terms of
equation 26 is correlated both with performance and input-density. Note the
fairly clear delineation of input density with distance, where lower-connectivity
usually equates with less coherent organization. Furthermore, it seems that
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below some threshold Seporg = 1000 that performance tends to degrade. How-
ever, above this threshold organized separation makes less of a difference, and
in fact, apparently an input density of 0.1 with slightly lower Seporg performs
most often in the top rankings. Also see that each input density seems to be
fragmented into two different distance segments. All other reservoir variables
were tested and the EI meta-parameter was found to be the culprit, as seen in
Fig. 27, where EI being set to true results in lower organized separation for a
given input density.

Figure 26: Coherent separation over performance ranking as defined by 26 for
different levels of input density. input density=0.3 indicates a 30% chance of
any input channel being connected to any reservoir neuron.
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Figure 27: Distance over performance ranking for different EI behaviour set-
tings. Brugandy dots corresponds to the EI settings [19] detailed in subsection
7.1 where inhibitory connections are included. Cobalt dots indicate all excita-
tory connections.
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10 Discussion

Here results and analysis are interpreted and contextualized in the literature. It
should be restated that due to their complexity, fundamental theory for LSMs
is a difficult and vague territory. Results must always be seen in the exact
circumstances of experimental design. We therefore here also include a caveats
section, seeking to be aware of these limitations.

10.1 Learning Rules

10.1.1 Performance

The most salient finding in terms of performance, across all other parameter
settings for both input domains, is that STSP is the strongest performing learn-
ing rule, occurring most often among the top performers for either task, given
all other parameter settings. This is the case both with and without the EI
parameters, the inclusion of which involve inhibitory behaviour that emulates
the parameters of [44] used in [1]. In fact, STSP more often performed better
without any inhibition, and thus distinguishes itself from the from the synaptic
dynamics of [1, 14,15,18–20].

It is here speculated that STSP’s efficacy is related to the time scale of
information flow for this given task. STSP can be thought of as an attention
mechanism, biasing firing activity to stay focused on a stream of related input.
By being primed to have firing patterns related to recently seen input, and
by responding very strongly to repeated input (in a short time frame), STSP
essentially focues on a given input pattern. The parameters (from equations 8
and 7) of a 150ms time constant for calcium buildup decay and a 20ms time
constant for resource replenishment are on the time scale order of both the image
and speech recognition tasks. Poisson firing rates do not change at all for the
MNIST task, and occur only for a short period of 120ms. While the Heidelberg
spoken digit task involves trials of 700ms, the changes in firing rate that comprise
the audio encoding of the digits occur more on the order of ≈20ms, as seen in
Fig. 14. It is therefore not surprising that the learning rule best equipped for
short-term change performed best on these tasks.

It may here be speculated that for a task involving greater time scales, the
long-term learning of STDP may stand to benefit. Future research may be
proposed to test whether the combined short and long-term learning of LSTP
may be more robust to changes in time scale.

10.1.2 Synaptic Dynamics

The extended investigation of the role of learning on firing behaviour and per-
formance visualized in Fig. 21 yields a number of insights.

LIF firing is sustained throughout all stimuli for low and high-performing
reservoirs, but in no obviously meaningful way. This suggests that when an LIF
reservoir performs well, it is simply a ‘lookup table’ whereby different stimuli
hit and sustain some firing pattern without adjustment until a new stimuli
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arrives. This behaviour would be represented by the ’perfect cyclical’ dynamical
behaviour in PC space. When an LIF reservoir performs poorly, it must be that
these cycles overlap in representational space and are therefore not linearly
separable. It can be seen that even sans-stimulus, the potentiation sustained
by calcium buildup for high-performing STSP is sufficient to prolong input-
related firing, allowing for more informative state vectors across the whole trial.
We here use the word informative in the sense that firing patterns that are
changing over time contain more information than firing patterns that simple
repeat and therefore may be more easily distinguished by logistic regression
learning if these patterns are unique to their respective classes. This would
correspond to ‘evolving-cyclical,’ ‘dynamic-encoding,’ or ‘pseudo-noise’ in terms
of our dynamical patterns typology because these are the dynamics that involve
continuous change as a function of input. For ‘pseudo-noise,’ it would have
to be the case that there is good coherent separation in higher dimensions of
classification to be successful. It is likely the case that these dynamic firing
patterns are unique to each input stimuli for STSP because its firing patterns
are provoked by the stimuli and then further potentiated by calcium buildup.
When STSP performs low, between-stimulus firing is absent and it is therefore
probably a consequent of insufficient calcium levels for firing-persistence. For
STDP and LSTP, between-stimulus firing is neither present in high or low-
performing reservoirs. The Hebbian correlation established by STDP does not
necessarily evoke stimulus-absent firing–only increasingly similar firing patterns
for related input. Where informational density can be observed for these long-
term learning rules is in the dynamics of the weight updates, caused by apre and
apost, which are more responsive overtime to input stimuli for high-performing
configurations. This results in liquid state responses that contain more uniquely
identifying information over the entire sample.

These observations are consistent with our performance results. STSP would
be expected to have an advantage, as it continues to fire in response to stimulus
throughout the entire input window of 700ms. For both resetting and continu-
ous input feed, this would result in more abundant legible state vectors (instead
of empty or redundant) for training the aggregate classifier. Because classifica-
tion is made by summing predictions made across the entire sample, the total
amount of information-rich state-vectors (even when there is no stimulus) will
importantly contribute to final classification performance. It could be that with
preprocessing of signals to only include the spoken-digit audio component (the
actual stimulus), STDP performance would relatively improve.

10.1.3 Reproducibility

This effect is reflected as well in Fig. 23, where we see that the STDP and
LSTP peak around the time the input stimuli stop at 600ms (note there is some
variation for each input sample), while STSP continues to improve. However, at
peak performance around 600ms, STDP and LSTP performance is comparable
to that of STSP and moreover with less variance. The top performing STSP
configurations are likely catching the higher end of the variance spectrum (this
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is bound to happen sometimes for 252 experiments), and if enough compute
were available for rerunning every experiment 100 times, then perhaps STSP
would perform less highly. It is also important to here see that LIF is unreliably
variant and may only achieve high-performance through luck-of-the-draw. It
may be the case that with the right preprocessing method (to prune away any
non-stimuli time from input samples) or recognition algorithm (to automatically
determine when a stimuli begins and ends) that STDP and LSTP would on
average outperform STSP.

10.1.4 STDP and LSTP

It is also of interest that STDP and LSTP appear to be tightly coupled in per-
formance (Fig. 20), firing (Fig. 22), and temporal certainty/reproducibility
(Fig. 27). Given that LSTP contains the dynamical synaptic parameters of
both STSP and STDP, this is cause for question. It is here speculated that
the short-term mechanisms of the STSP component do not keep up with the
weight changes of the STDP component. STSP temporarily potentiates recent
firing patterns by factoring in calcium buildup contributions to the membrane
potential integration term in equation 9, but because this contribution is multi-
plicative with the weighting value at that synapse, and because that weighting
value is changing through the Hebbian mechanisms of equations 20 and 21, it
maybe be that this reinforcing mechanism does track the moving target. Col-
loquially, the attention mechanism of STSP may not be able to focus on the
moving target of a learning reservoir population. Perhaps with more careful
parameter tuning, and with differential terms that would more sensibly couple
these dynamics, that short and long-term learning could better harmonize to
the benefit of performance.

10.2 Topologies

While in total, small-world is the most commonly occurring topology in top
performing reservoirs given all other hyperparameter settings (including in com-
bination with STSP), the finding is not particularly pronounced, with 48, 46,
and 18(weighted), being the speech-recognition occurrences of small-world, geo-
metric, and random topologies in the top 100 configurations respectively. That
topology does not make a strong difference in performance is consistent with
the findings of [41] in ESN literature.

However, small-world here does perform marginally better in both input
domains, and is by far the best topology for STSP in speech recognition and
given STSP’s overall superior performance, this is a finding of interest. We here
again refer to the short-term nature of these classification tasks. Both tasks
include spatial organization and short-term temporal dynamics. Therefore, it
may be reasonable to expect that because small-world topology allows for the
immediate dissemination of information across both local and global scales, it
may have an advantage over random topologies, which do not preserve spatial
information, and geometric topologies, which only pass information on local
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spatial scales. It could be that given tasks with less spatial organization, random
topologies may perform better, or given longer tasks, that geometric topologies
may have more time to fully propagate information. It could be that small-
world topologies pair particularly well with STSP for this specific task because
it is a short-term task to which STSP can be highly responsive to, especially
with the ability to propagate information locally and globally instantly and with
preserved spatial organization.

10.3 Density

Input density (the probability p of any input channel connecting with any reser-
voir neuron) has inverse trends in the two task domains. In both cases, higher
input density (lower sparsity) results in greater coherent separation. However,
for the MNIST task, as this p increases, performance increases (see Table 4),
whereas for speech recognition it is the opposite. We here venture to say that
this is due to that the information encoded in the handwritten digits of the
MNIST occupies relatively few input channels (all blank pixels are equivalent)
and therefore a higher input density is necessary to capture the relevant features.
For the speech recognition task, which involves already dense firing across many
neurons, this may only serve to saturate the reservoir, provoking so much firing
that it is difficult to tell apart reservoir responses to different input. Home-
ostatic adaption (automatic change in threshold to keep firing within a given
range) may then benefit higher density reservoirs.

It is also of interest that for only a change in the combinations of input and
reservoir density, performance is completely changed for each learning rule in
table 6. This indicates a strong influence of density-balance on performance.
However, general formula for the balance we observed and it appear to be unique
for every reservoir configuration. There may be more subtle dynamics at play
that warrant further investigation into density-balance, as already suggested
by [18].

10.4 EI Meta-parameter

For both input domains, reservoirs that included inhibitory behaviour (EI =
True) occurred less frequently in the top performing reservoirs given all other
hyperparameters. This is in contrast to the general trend in literature to always
use inhibition [1, 14–20]. Reasons for the literature being biased in this way
may include biological plausibility [44], habit [51], or energy-saving sparsity [8].
Excluding inhibition always results in more firing by virtue of equation 5 and
therefore would be more costly for hardware implementation. Firing always
requires energy. The desired balance between energy cost and performance
accuracy will of course be case-based.
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10.5 Input Feed Meta-parameter

A constant stream of input without re-initialization proved to be the better
method for both task domains. This is consistent with the literature [1,14,17,18].
The result is logical as it allows greater divergence (and therefore more unique
firing patterns) from the initial conditions. Moreover, this embodies a more
realistic approach to online neuromorphic systems, which will not know when
one input ends and another begins. If, for whatever reason, there is some resting-
state for a system that would define some standardized initial conditions, then
it is worth noting that pure LIF neurons are here found to be ambivalent input-
feed type. This is likely because they are not learning neurons and therefore
have little to benefit by having more time with the input.

10.6 Representations

Much work is left to be done in terms of representation analysis. Findings
here serve only to say that there indeed may be a useful typology of dynami-
cal behaviour in state space and that it may be correlated with good reservoir
performance. Our PCA static plots indicate that coherent separation occurs
even in compressed dimensions. This aligns with the separability of PC rep-
resentations found in [17, 18]. The class-centroid path plots indicate that this
organization may be preserved over time to the benefit of performance. We do
here speculate that these dynamical patterns correspond to the different firing
dynamics of Fig. 21, but learning this relationship would require understanding
these dynamical patterns in high-dimensions, which should in theory be possible
to formalize.

PCA clearly leaves much mystery about behaviour in higher dimensions, but
our findings using full-dimensional state space through equation 26 are consis-
tent with the notion that coherent separation is related to better performance,
as seen in 26. Therefore, like [15, 26], our definition of separation, here called
coherent separation, does show to be related to performance, especially below
the the apparent threshold at about Seporg = 1000 below which performance
tends to fall off. This threshold may approximate the requisite organized sepa-
ration for linearly separability for the complexity of this particular task, above
which greater Seporg does not contribute to higher classification.

All said, it stands to reason that in both arenas, compressed and fully-
dimensional, future research may lead to ways of deliberately biasing toward
well-organized state space and particular dynamical behaviours that would in-
crease classification performance.

10.7 Conclusions

In total, a number of conclusions can be drawn from the here presented work
for these particular experimental conditions.

1. LSMs are suitable for both image and speech recognition, even given lim-
ited training data.
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2. STSP performs best given all other hyperparameters on both image and
speech recognition.

3. Small-world performs marginally best given all other hyperparameters on
both image and speech recognition.

4. STSP and small-world perform best together.

5. STSP and LIF are more likely to fire between input stimuli

6. STSP and LIF have a greater perfromance variance

7. STDP and LSTP peak in performance at the end of the stimuli and have
a much lower variance than STSP and LIF

8. The novel LSTP learning rule is competitive with the canonical STDP
and outperforms LIF.

9. The dynamics of STDP have a greater influence that STSP on LSTP

10. Inhibitory weight initializations have a negative impact on performance
but improve firing sparsity.

11. Continuous input feed is better for both input domains.

12. There appear to be specific archetypes of representational dynamics in
PCA space that may correlate with performance and learning rules.

13. Coherent separation appears to correlate with performance, input density,
and inhibitory/excitatory behaviour.

That all of the above listed findings hold for both the MNIST image recogni-
tion task and the Heidelberg spoken digit classification task may suggest some
generalizability and more robust confirmation of this is left to future (more
expansive) research.

10.8 Caveats

Given the complexity and sensitivity of reservoir computing, it is essential to
contextualize findings with and awareness of possible caveats, which here are
listed below.

• Results may be specific to any of the reservoir parameters held constant
(such as population size).

• Results may be specific to the particular training samples used.

• Results may be specific to time scale of these particular tasks.

• High performing reservoirs may be the ‘lucky ones’, performing at the
favorable end of their variance spectrum.
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10.9 Future Works

It may be evident to the reader that the here presented research is somewhat
sprawling in scope. The reason for this is simple: dynamical systems are not
simple. The nature and presentation of the input, the reservoir and all of its
many hyperparameters, and the particular readout mechanism employed all
contribute to an explosion of possible liquid state systems, each of which may
respond in totally different ways to any given input or reservoir initialization.
It is not surprising then, that LSM literature is filled with fruitful findings, but
without much in the way of axiomatic truths for good system design. Thus
the study of LSMs themselves is somewhat constrained to a reservoir comput-
ing approach, where many complex interactions and transformations happen
among researchers, and lessons are learned from the literature gestalt. Hope-
fully the work here has contributed something to this gestalt, especially in terms
of learning rules, topologies, and representional organization. From this work,
the author here speculates on a number of future possibilities.

• A more thorough sweep of all variables presented here, along with those
held constant (such as reservoir size, membrane time constants, and synap-
tic variables) along with a greater cross-validation scheme, and repeata-
bility of results.

• Preprocessing and/or pruning methods for input to work with only the
most active moments of input stimuli.

• Synthetic learning rule that better harmonizes short and long-term learn-
ing through the coupling of STSP and STDP dynamics.

• Implementation of here presented systems on state-of-the-art neuromor-
phic hardware.

• Work on enforcing well-organized representations to the benefit of perfor-
mance.

• Video recognition with each frame being presented on the order of 10 to
100ms as done with the image recognition task here.

• Hierarchical and modular reservoirs–it may be interesting to have the first
few reservoirs process with STSP for short-term spatio-temporal features
and with the later reservoirs using STDP for features of greater scale.

• Learning rules that learn to adapt to different task types by coming pre-
trained with certain triggers that respond to characteristics of different
modalities and spatio-temporal scales.

• A rigorous mathematical definition of dynamical archetypes in full-dimensional
space.

• Ivestigation into many-class experiments with definable and contintuous
class differences, and how this could be achieved to develop a representa-
tional space that is meaningfully continuous and isomorphic to the input.
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These above suggestions are only the most related to the work presented
here, and at a greater scale LSMs should have a rich potential for future work,
especially in the domain of video recognition, representation learning, and edge
computing. This project has created at least as many questions as it has an-
swered, and therefore it is the author’s view that there is abundance of discov-
eries left to be made for reservoir computing and liquid state machines.
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