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Abstract
During the second year of the BSc Computing Science at the University of Groningen, students take
a course called “Languages and Machines”. During this course students learn the fundamentals of
Automata Theory, which is an active research area in Computer Science.

Unsurprisingly, there is a gap between the course’s content and recent developments in Automata
Theory. There are extensions to classical Automata Theory that involve reactive systems which rep-
resent the reactive behavior of modern computing systems. This Bachelor project aims to help intro-
duce “Languages and Machines” students to the recent reactive developments in Automata Theory by
creating educational material.
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1 Introduction
“Languages and Machines” is a course taught in the second year of the BSc Computing Science. This
course provides an introduction to classical results in Automata Theory. Understandably, there is a
gap between the course’s content and recent developments in Automata Theory. We are interested in
developments connecting Automata Theory and concurrency and interaction, which are two predom-
inant phenomena in computing practice nowadays.

There are extensions to classical Automata Theory that go in the direction of mimicking the reac-
tive behaviour of modern computing systems. Such extensions consider reactive systems which can
be represented by abstract machines capable of performing non-terminating, interactive computa-
tions, rather than just terminating, non-interactive computations. These extensions bear a stronger
resemblance to the computers we have nowadays. Of particular interest are Reactive Turing machines
(RTMs), i.e., Turing machines (TMs) [1] that can interact with their environment by performing ac-
tions [2]. RTMs conservatively extend usual TMs; that is, usual TMs correspond to the class of RTMs
that do not interact with their environment.

These newer reactive developments in Automata Theory come at a price: the features that allow
interaction are more involved, and so they require more advanced knowledge to be understood. In-
deed, most recent developments are still showcased solely in research papers that are written in tech-
nical language, which is inaccessible to BSc and MSc students. This means that if a second year
“Languages and Machines” student would want to know more about the new and exciting concepts
regarding reactive systems, they would struggle to grasp and appreciate these advanced models of
computation.

1.1 Research Question

This Bachelor project is focused on bridging the gap between the “Languages and Machine” course’s
content and recent reactive developments in Automata Theory:

Therefore, the research question of this Bachelor Project is:

• How to introduce models of reactive systems to second-year Computing Science students?

1.2 Solution

Let us continue by presenting the solution that we found to the research question posed earlier. We
believe that second-year Computing Science students can be introduced to models of reactive systems
by extending the course lecture notes [3] (also known as the reader of the course) with a new chapter
devoted to introducing notions about reactive systems, with a focus on RTMs.

RTMs stood out as a great choice for introducing the newer Automata Theory to second year Com-
puting Science students, because they clearly showcase the recent direction that Automata Theory is
taking, which involves a stronger focus on interaction. Furthermore, RTMs are an appropriate com-
plement for students who have taken the “Languages and Machines” course because they bear many
similarities to the TMs seen in the course.
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The new chapter for the course’s lecture notes was written for educational purposes, in a beginner-
friendly way. It has the same style as other chapters in the reader, meaning that it includes: clear
explanations and definitions, several examples with a gradual increase in difficulty, description of the
main properties of reactive systems, a number of exercises to help consolidate the newly learned con-
tent, and solutions to the exercises.

Moreover, the new chapter about reactive systems is supplemented by a set of associated slides,
to be used in the lectures. The slides contain a few animated examples of representation of reactive
systems, such as RTMs. This will help present reactive systems in a dynamic and engaging way.

1.3 Thesis outline
In this paper, we will analyze the contributions created for the purpose of introducing models of reac-
tive systems to second-year Computing Science students. After the introduction, we will move on to
presenting a fair amount of background information. This includes some prerequisite knowledge, a
general introduction of reactive systems, a state of the art analysis, and information about the key con-
cepts that are involved in this project, such as RTMs, parallel composition and branching bisimulation.

We will continue by addressing the development process of this project which involved several differ-
ent parts. We will address the learning process, as well as the process of developing the educational
material. We will conclude with a summary of the contributions brought by this project and the
possibilities of future work in this area.
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2 Background
In this chapter we will start by presenting some prerequisite knowledge. Then, we will introduce
reactive systems. Later, we will showcase a state of the art analysis regarding RTMs. We will continue
by introducing the most important pieces of knowledge that are presented in the new reader chapter,
such as RTMs, configurations, transitions systems, parallel composition, and branching bisimulation.

2.1 Prerequisites
Let us introduce some prerequisite knowledge which is needed in order to read the rest of this thesis.
These notions are presented here with the assumption that the reader has some familiarity with finite
state machines.

2.1.1 Turing Machines

We will start with a short introduction about TMs [1]. A TM is a finite state machine that is equipped
with a tape that is divided into squares. A TM can write on the squares on the tape during a transition
from a state to another state. The head of the machine can move to the right or to the left on the tape,
which allows it to read and manipulate the input as desired. A TM is allowed to access and modify
any memory position and it has no limitation on the space or the time available for a computation.

q0start q1

[a/b]R

[b/.]R

[b/.]R

[a/b]R

Figure 1: A TM that turns all a characters into b characters.

The TM shown in Figure 1 will have an input string on its tape formed out of a and b characters
prior to starting its computation. The self-loop in state q0 allows it to read a characters, replace them
with b characters whilst the head of the machine moves to the right. If the machine encounters a b
character on the tape, it will leave it unchanged whilst the head of the machine moves to the right and
the machine transitions to state q1.

In state q1 there is a self-loop during which the machine can read a characters and replace them
with b characters whilst the head of the machine moves to the right. If the machine encounters a b
character on the tape, it will leave it unchanged whilst the head of the machine moves to the right and
the machine transitions back to the starting state q0. The machine will terminate when it reaches the
end of the input string formed out of a and b characters on the tape.

2.1.2 Labelled transition systems

Labelled transition systems represent another piece of prerequisite knowledge. A labelled transition
system is a useful type of notation that abstracts the structure of state based systems. It usually
involves just the states and the transitions of the system, as well as the labels of the transitions. This
notation is frequently used in Theoretical Computing Science.
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q0 q1

send(0)

send(1)

Figure 2: A labelled transition systems that sends 0 and 1 characters.

In Figure 2, the labelled transition system sends a 0 character during a transition from state q0 to state
q1. When transitioning from state q1 to state q0 this labelled transition system sends a 1 character.

2.2 Reactive systems
Since reactive systems are a pivotal part of this project, we will address what reactive behavior means
by taking a look at an example of a real-life reactive system. Then, we will continue by analyzing the
importance of reactivity.

2.2.1 Example of a real-life reactive system

Figure 3
Example of a real-life reactive system: a

vending machine

A simple example that can illustrate reactive be-
havior is a vending machine. A vending ma-
chine can interact with its users by reacting to
some stimuli. For example, a vending ma-
chine can be informed of a user’s particular
snack choice when the user presses the button
that signifies the desired snack. The vending
machine will react to the user’s choice by giv-
ing the chosen snack to the user, after the user
pays.

Moreover, a vending machine is a non-terminating
system because it does not close after it finishes an
interaction with a user, it stays open so that it can be
ready when another user to comes along.

2.2.2 The importance of reactivity

Now that we have touched upon the meaning of reac-
tive behaviour, it is important to peruse the question:

• Why should BSc Computing Science students
learn about models of reactive systems?

First of all, reactivity is a relevant topic nowadays
because the majority of modern technology exhibits reactive behaviour. For example, technology
that a lot of people have had some experience with, such as computers and smartphones, are reactive
systems.

Students are introduced to TMs [1] during the “Languages and Machines” course. Although TMs
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have been regarded as the fundamental paradigm for computing ever since Alan Turing developed
the concept of machine computation, computing in the modern day encompasses much more than it
used to. For example, not all of the input might be available prior to the beginning of computation,
and some systems can operate indefinitely, whilst still acting correctly. TMs are not capable of such
behaviour and as a result, they are not suitable for representing interaction. Since the interaction avail-
able in technology nowadays goes beyond the models presented in the “Languages and Machines”
course, it is important to introduce students to the expressiveness of more recent reactive models.

Moreover, reactivity is important because it is a concept that is familiar for many people, includ-
ing students. This is due to not only the fact that a lot of people are getting used to interacting with
technology, but also due to people being used to interacting with each other. It is common for human
interaction to involve one person reacting to another person [4].

Lastly, notions about reactive systems can be gradually introduced from the concepts that are al-
ready taught in the “Languages and Machines” course. In our opinion, learning about reactivity by
focusing on RTMs will not represent a huge leap in knowledge for the students because RTMs bear
many similarities to the TMs which are already featured in the course.

2.3 State of the Art
Let us continue by briefly exploring the state of the art regarding RTMs. RTMs were proposed as an
extension to TMs in a research paper in 2011 by Jos Baeten, Bas Luttik, and Paul van Tilburg [5] and
more thoroughly analyzed by them in a later paper in 2013 [2].

RTMs have been touched upon in a research paper that involves subjects within Automata Theory
such as Context-Free Grammars and Pushdown Automata [6]. RTMs were also mentioned in a paper
that aims to provide a uniform study about different notions regarding effectful state machines [7].
Moreover, RTMs have been compared to another type of TM called an Interactive Turing machine in
paper [8].

RTMs have been analyzed in a paper that discusses the π-calculus [9]. The π-calculus is a formalism
for expressing reactive and concurrent computation. The reason why π-calculus and RTMs were pe-
rused together is that π-calculus can act as a sort of programming language counterpart to RTMs [2].
RTMs are the sole focus of only two research papers: [5], and [2], where the explanations about them
are not written in a way that would be easily accessible to BSc students.

All in all, the state of the art analysis shows that even though a number of papers have touched
upon RTMs, none of the information available about them is presented in a way that could be easily
grasped by BSc students. As a result, it seemed to be of value to create educational material that
involves RTMs.

2.4 Reactive Turing machines
We will continue by introducing some of the key notions that are presented in the new reader chapter
and the set of associated slides. We will start by presenting RTMs [2]. As stated beforehand, RTMs
are an extension to TMs which is capable of interaction and non-termination.
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An RTM is a reactive system that is able to operate just as a TM would whilst also having the ability
to perform an action during each transition. An RTM can perform two different types of actions:

• observable actions that involve reacting to its environment or other RTMs

• actions that are unobservable to its environment or other RTMs. Such actions entail solely the
internal computations that a TM is also capable of doing during each transition.

A TM can perform only unobservable actions. As a result, a TM is an RTM where all the transitions
are unobservable. Unobservable actions are denoted by the Greek letter τ.

In Figure 4 we will show how the TM from Figure 1 would look like with the notation used for
an RTM:

q0start q1

τ[a/b]R

τ[b/.]R

τ[b/.]R

τ[a/b]R

Figure 4: The TM from Figure 1 shown with the notation used for an RTM. As before, this machine
turns all a characters into b characters.

An RTM can perform both observable and unobservable actions. Let us dive deeper into how ob-
servable actions work. Observable actions involve communication between RTMs or RTMs and their
environment. This communication is done via designated data transferring channels. The following
notation is used for observable actions:

• c!d signifies that an RTM sends some data d via channel c to its environment or another RTM

• c?d signifies that an RTM receives some data d via channel c from its environment or another
RTM

Let us take a look at a small example of an RTM that performs the same internal computations
as the TM from Figure 1, as well as two observable actions in which it sends a characters via the
communication channel i.

q0start q1

i!a[a/b]R

τ[b/.]R

τ[b/.]R

i!a[a/b]R

Figure 5: An example of an RTM that turns all a characters into b characters and sends all a characters
from the tape via channel i. We will name this RTM RT M1.

The RTM shown in Figure 5 will have an input string on its tape formed out of a and b characters
prior to starting its computation. The self-loop in state q0 allows it to read a characters, replace them
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with b characters whilst the head of the machine moves to the right, as well as perform the observable
action of sending a characters via channel i. If the machine encounters a b character on the tape, it
will leave it unchanged whilst the head of the machine moves to the right and the machine makes an
unobservable transition to state q1.

In state q1 there is a self-loop during which the machine can read a characters and replace them
with b characters whilst the head of the machine moves to the right, as well as perform the observable
action of sending a via channel i. If the machine encounters a b character on the tape, it will leave it
unchanged whilst the head of the machine moves to the right and the machine makes an unobservable
transition back to the starting state q0.

Although we have seen that the RTM from Figure 5 has some added capabilities to the TM in Figure
1, it might not fully clear at this point how exactly RTMs showcase their reactive abilities. In order to
clear this up, we will take a look at an example of another RTM that has access to the communication
channel i. The RTM shown in Figure 6 will receive the a characters sent by the RTM in Figure 5 via
channel i and place each of them on the tape followed by a ∗ character.

q0start q1

i?a[B/a]R

τ[B/∗]R

Figure 6: An example of an RTM that receives the a characters sent via channel i by RT M1 from
Figure 5. This RTM places each a character on the tape followed by a ∗ character. We will name this
RTM RT M2.

RT M2, which is shown in Figure 6 will receive as input an a character during the observable transition
from state q0 to state q1. During this transition it will place the a character it has received on a blank
spot on the tape (denoted by B), whilst the head of the machine moves to the right.

The transition from q1 to q0 is unobservable. During this transition RT M2 will place a ∗ charac-
ter to the right of the a character that was just placed on the tape in the previous transition, whilst the
head of the machine moves to the right. This transition causes the machine to reach the starting state,
which means that RT M2 is ready to receive input again. This RTM is non-terminating, it will always
be ready to receive input via channel i.

2.4.1 Configuration

The configuration of an RTM [2] is another important concept that is showcased in the new reader
chapter and the slides. This concept is relevant to RTMs so we shall continue by succinctly explaining
what a configuration represents.

The global state of an RTM can be determined by a configuration. A configuration will encode
information regarding:

1. a state of the machine

2. a tape instance
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A tape instance is responsible for encoding the contents of the tape and the position of the read/write
head. It is represented by the Greek letter δ.

An example of how a transition between two states of an RTM looks like encoded in a configura-
tion:

q1
i!a[0/1]R−−−−−→ q2 ⇔ (q1,δ1)

i!a−→ (q2,δ2), where

δ1 = δL 0̌ 2 δR and

δ2 = δL 1 2̌ δR

δ1 = δL 0̌ 2 δR signifies that the head of the machine has the symbol 0 underneath and that the symbol
to the right of 0 on the tape is 2.

δ2 = δL 1 2̌ δR signifies that the symbol 0, which was under the head of the machine in the con-
figuration δ1 has been replaced by the symbol 1 on the tape and that the head of the machine has
moved to the right. Now the symbol found to the right of 1 (which happens to be the symbol 2) is
under the head of the machine.

2.4.2 Transition system

The notion of a transition system associated with an RTM [2] is another significant notion discussed
in the new reader chapter. Let us explain in short how a transition system associated with an RTM
functions.

For an RTM M, the associated transition system is denoted by T (M). A transition system associ-
ated with an RTM is meant to highlight only the basic structure of the RTM. In order to achieve this,
configurations are used. A transition system abstracts some of the details of the transitions between
states by using configurations. The states of a T (M) are the configurations of the RTM M.

In Figure 7 we will show the transition system T (2) which is the associated transition system of
the RT M2 from Figure 6.

q0start q1

i?a

τ

Figure 7: The transition system T (2) which is the associated transition system of the RT M2 from
Figure 6

As we can see, some of the information that was found on top of the transitions of RT M2 is now
encoded in configurations.

q0
i?a[B/b]R−−−−−→ q1 becomes q0

i?a−→ q1

q1
τ[B/∗]R−−−−→ q0 becomes q1

τ−→ q0
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2.5 Parallel composition

Another notable concept that is presented in the new reader chapter is parallel composition [2]. We
will continue by giving a brief overview of how parallel composition works. Parallel composition
helps us illustrate how RTMs run in parallel and interact with each other.

With RT M1 (Figure 5) and RT M2 (Figure 6) we have seen how a simple interaction could occur
between two RTMs. We can formalize the interaction of two RTMs with the notion of parallel com-
position. Given that RT M1 and RT M2 are two RTMs that both have access to the communication
channel i then, the parallel composition of RT M1 and RT M2 on the communication channel i exhibits
the behaviour of outputting the string [a∗]m on the tape of RT M2, where m ∈ N, and m signifies the
number of a characters that RT M2 receives as input via channel i from RT M1.

Therefore, we can see that parallel composition is useful for defining the behaviour of two RTMs
that are interacting with each other.

2.6 Branching bisimulation

Branching bisimulation [2] is the last concept featured in the new reader chapter that we will ad-
dress in this thesis. The concept of a branching bisimulation is used in order to formally compare
the behaviour of transition systems. It helps in deciding if two transition systems are behaviourally
equivalent. The notion of branching bisimulation is relevant in the context of RTMs because we can
have two different RTMs whose underlying transition systems are branching bisimilar. This means
that we can compare the behaviour of RTMs by analyzing their transitions systems to see if branching
bisimilarity exists.

If two transitions systems are behaviourally equivalent they will be called branching bisimilar. A
branching bisimilarity exists between two transition systems if they both perform the same observ-
able actions overall and reach states where the same choices are possible. Only observable behaviour
is taken into consideration. We will abstract from the internal behavior. Each transition system can
have different internal computations compared to the other one.

We will take a look at two RTMs that have transition systems that are branching bisimilar.

s0start s1
i!∗ [B/∗]R

Figure 8: An RTM that performs one observable action in which it sends a ∗ character via the com-
munication channel i. We will call this RTM RT M3

We can see that RT M3 has one observable transition between state s0 and state s1 in which it sends a
∗ character via a communication channel called i while also placing a ∗ character onto the tape and
moving the head to the right.
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t0start t1 t2
τ[B/1]R i!∗ [B/∗]R

Figure 9: An RTM that performs one unobservable transition and one observable action in which it
sends a ∗ character via the communication channel i. We will call this RTM RT M4

RT M4 has an unobservable transition between state t0 and state t1 during which it places a 1 character
onto the tape and moves the head to the right. Then, RT M4 has one observable transition between
state t1 and state t2 in which it sends a ∗ character via a communication channel called i while also
placing a ∗ character onto the tape and moving the head to the right.

We can see that RT M3 (Figure 8) and RT M4 (Figure 9) perform the same observable action but
not the same unobservable actions. The fact that RT M4 performs an unobservable transition that
RT M3 does not perform, does not prevent their underlying transitions systems from being bisimilar.
What matters is that both RTMs perform the same observable action of sending a ∗ character via the
communication channel i.

Let us take a look at the two transition systems of the RTMs shown in Figure 8 and Figure 9. These
two transition systems are branching bisimilar. They will be shown in Figure 10 and 11.

s0start s1
i!∗

Figure 10: The transition system associated with RT M3 (Figure 8). This transition system performs
one observable action in which it sends a ∗ character via the communication channel i. We will call
this transition system T (3).

The transition system in Figure 10, T (3) has one observable transition between state s0 and state s1 in
which the observable action of sending a ∗ character via the communication channel i is performed.

t0start t1 t2
τ i!∗

Figure 11: The transition system associated with RT M4 (Figure 9). This transition system performs
an unobservable action, as well as one observable action in which it sends a ∗ character via the
communication channel i. We will call this transition system T (4).

The transition system in Figure 11, T (4) has a transition between state t0 and state t1 where an unob-
servable action τ is performed. Then, it has one observable transition between state t1 and state t2 in
which action a is performed.

T (3) and T (4) are branching bisimilar because the observable transition i!∗ that T (3) performs is
also performed by T (4). It is alright that T (4) performs some internal computation in an unobserv-
able transition before it performs action i!∗.
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3 Development process
In this chapter we will analyze the development process of this project. We will start with the learning
part of the project and reiterate what were the most important parts of the acquired knowledge. Then,
we will discuss the process of coming up with the chapter and the set of associated slides by focusing
on the key ideas that were followed when producing the new educational material.

3.1 Learning
Before beginning to write the new reader chapter dedicated to reactive systems and creating the slides
associated to the chapter, it was necessary to thoroughly understand a lot of concepts about reactive
systems.

As stated beforehand, the recent developments in Automata Theory that involve reactivity that we
aim to present to BSc students in the new reader chapter are showcased solely in research papers that
are written in technical language, which is inaccessible to BSc students. This meant that the task at
hand quite was quite difficult and lengthy.

The starting point in the learning journey was becoming familiar with the idea of connecting Au-
tomata Theory with concurrency and interaction, which are two predominant phenomena in com-
puting practice nowadays. This was achieved by studying “Elements of interaction: Turing award
lecture” by Robin Milner [10].

The biggest milestone in the learning process was understanding the concepts presented about RTMs
in the research paper “Reactive Turing machines”[2]. Understating how RTMs are defined and sev-
eral other important concepts surrounding them, such as the transition system associated with an
RTM, parallel composition and branching bisimulation was of the utmost importance. Once this was
achieved, we could move on to approaching the creation of the new educational material.

3.2 Creating the material
In this section we will present the process of coming up with the new educational material:

• the chapter

• the slides associated with the chapter

We will also describe what were the key ideas that were followed when producing the material.

3.2.1 The chapter

After understanding the concepts about reactive automata which would be included in the new reader
chapter, it was time to approach writing it. In order to ensure that the new chapter did not feel out of
place in the reader next to the pre-existing chapters, we aimed to take a similar writing style in the
new chapter about reactive systems.

A key idea that we followed when producing new chapter was building on top of the knowledge
that the students have at the end of the “Languages and Machines” course. We pursued this because
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we believed it was crucial to slowly present the new concepts on top of the foundation of knowledge
that the students have so that they can have an enjoyable learning experience. In order to achieve this,
we did the following:

• We referred back to examples or definitions from a previous chapter in the reader [3] whenever
possible to ensure that students can easily link the old information to the new one.

• We carefully analyzed what knowledge the students have at the end of the “Languages and
Machines” course and tried to find the smoothest transition for introducing RTMs.

Let us go more in depth about how we achieved the latter. At the end of the “Languages and Ma-
chines” course students know that there are many classes of machines for recognizing strings and that
TMs are the most expressive one.

Since we wanted to introduce a new type of TM to the students, we had explain why that would
be necessary. As a result, the new chapter begins with a presentation of the shortcomings of TMs.

The chapter continues by presenting the idea of reactive systems. We thought about directly in-
troducing RTMs at this point but we decided that it would be too abrupt of a leap in knowledge. We
reached this decision especially because RTMs are defined with the help of a labelled transition sys-
tem in paper [2], which is concept that is not covered in previous chapters of the reader [3].

As a consequence, the chapter continues by introducing labelled transition systems and showcas-
ing how reactive systems can be represented by labelled transition systems. Next in the chapter is the
way in which two reactive systems represented by labelled transition systems can interact with each
other.

After this, the first section of the chapter ends. We decided to end each section of the chapter with a
subsection called “Takeaways”. In this section the key concepts from the section are reiterated in a
bullet point list. This was done to help students remember the most important parts from each section
as they go through the chapter and move on to another section. We took the inspiration of having a
“Takeaways” section from the book [11].

From this point onward, the chapter structure resembles the order in which concepts are introduced
in the paper [2]. The second section of the chapter focuses on introducing RTMs, configurations and
transition systems associated with RTMs. The central point of the third section is parallel composi-
tion. The fourth section is dedicated to presenting branching bisimulation.

Another key idea that we followed when producing the new chapter was having plenty of examples
for each of the newly introduced topics. We strived to achieve this because it has been scientifically
proven that having examples for newly learned topics is a beneficial learning strategy [12]. During
each of the sections described above, there are several examples. The examples slowly increase in
difficulty so that students do not have a hard time understanding them.

Most examples are found in the parallel composition section. This is due to the fact that we felt
that the way RTMs interact by running in parallel was one of the most important notions that students
should understand after reading the chapter.
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Let us take a look at some examples of RTMs that were created in order to highlight parallel compo-
sition in the new reader chapter. We will be able to see how the examples slowly increase in size and
difficulty. We will start with the first example of parallel composition that is shown in the chapter.

q0start q1

i!a[B/b]R

τ[B/b]R

(a) RT M5

s0start s1 s2
i?a[B/.]R

o!∗ [B/.]R

o!a[B/.]R

(b) RT M6

Figure 12: The first example of parallel composition that was created for the chapter is quite small and
has a low level of difficulty. This was done in order to gently introduce students to this new concept.

The example in Figure 12 shows two RTMs interacting with each other. This example was designed
to be quite small and easy to follow. We wanted to ensure that the students are slowly introduced to
the concept of parallel composition.

In Figure 12, the RTM on the left (RT M5) continuously sends a characters via channel i. The RTM
on the right (RT M6) receives the a characters and outputs each of them followed by a ∗ character
to the environment via channel o. Therefore, given that RT M5 and RT M6 are two RTMs that both
have access to the communication channel i then, the parallel composition of RT M5 and RT M6 on
the communication channel i exhibits the behaviour of outputting the string [a∗]n on channel o, where
n ∈ N, and n signifies the number of a characters that RT M6 receives as input via channel i from
RT M5. Let us continue by taking a look at an example of parallel composition that is shown at a later
point in the chapter.

q0start q1 q2

q3q4

u?1[B/1]R,u?0[B/0]R

τ[B/.]L

τ[1/.]L,τ[0/.]L

τ[B/.]R

i!1[1/.]R, i!0[0/.]R

τ[B/.]L

τ[1/.]L,τ[0/.]L

τ[B/.]R
i!1[1/.]R, i!0[0/.]R

(a) RT M7

s0start

i?1[B/1]R, i?0[B/0]R

(b) RT M8

Figure 13: An example of parallel composition that is presented at later point in the chapter. This
example was designed to be slightly more involved and have a medium level of difficulty.

In Figure 13, the RTM on the left (RT M7) will receive input via channel u from its environment and
it will place it onto its tape. RT M7 will then go through the contents of its tape twice and both times
it will send the contents to the RTM on the right (RT M8) via channel i. RT M8 will receive the input
string twice from RT M7 and place it onto its tape. Therefore, the parallel composition of RT M7 and
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RT M8 on the communication channel i exhibits the behaviour of outputting the doubled version of the
input string on the tape of RT M8. We will move on by taking a look at the last parallel composition
example that is shown in the chapter.

q0start q1 q2

q3

q4

q5

τ[B/0]R τ[B/1]L

τ[0/.]L,τ[1/.]L

τ[B/.]R

i!0[0/.]R, i!1[1/.]R

τ[B/0]L

τ[0/.]L,τ[1/.]L

τ[B/.]R

i!0[0/.]R, i!1[1/.]R

τ[B/1]L

(a) RT M9

s0start

s1

s2 s3 s4

s5

s6

i?1[B/1]R, i?0[B/0]R

τ[B/∗]L

τ[0/.]L,τ[1/.]L

τ[B/.]R

τ[0/.]R

τ[1/.]R τ[1/.]R

τ[0/.]R

τ[0/.]R

τ[1/.]R

τ[0/.]R,τ[1/.]R

τ[∗/.]R

τ[0/B]L,τ[1/B]L

τ[∗/B]L
τ[∗/B]L

τ[∗/B]L

τ[B/.]R, [∗/.]R

(b) RT M10

Figure 14: The last example of parallel composition that is presented in the chapter is the biggest and
most involved on compared to the previous ones.
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In Figure 14 RT M9 generates strings made out of 0 and 1 characters. The first string that it sends
via channel i is 01, the next one will be 010, followed by 0101 and so on. RT M10 receives these
strings and keeps on its tape all the strings that have more than three 0 characters. Therefore, given
that RT M9 and RT M10 are RTMs that both have access to the communication channel i, the parallel
composition RT M9 and RT M10 on the communication channel i exhibits the behaviour of outputting
the string 01010∗010101∗0101010∗01010101... on the tape of RT M10.

The last section of the chapter is dedicated to exercises that were created with the purpose of con-
solidating the newly learned content. Each exercise tests a particular part of the key concepts that
were described in the chapter, such as labelled transition systems, RTMs, the transition system asso-
ciated with an RTM, parallel composition and branching bisimulation. The exercises were built with
a similar level of difficulty as the examples seen in the chapter. Moreover, exercises on the same topic
gradually increase in difficulty. It is also worth noting that solutions were developed for all of the
exercises.

3.2.2 The slides associated with the chapter

After finishing writing the chapter, it was time to approach creating the slides associated with it. In
this section, we will describe this process.

The first part of this process involved creating an outline of all the key topics that would be cov-
ered in the slides. This was followed by summarizing the most important concepts surrounding each
of these topics in brief bullet point lists that could be used for the slides.

Then, it was time to approach the examples for the key topics covered in the slides, such as la-
belled transition systems, RTMs, the transition system associated with an RTM, parallel composition
and branching bisimulation. It was necessary to adapt or even create new examples from scratch that
differ from the ones made for the chapter in order to ensure that the examples on the slides would be
appropriate in difficulty to be shown in a lecture. We did not want the examples to be too involved
because we our aim was for students to be able to follow the lecture without much difficulty. Conse-
quently, smaller examples were used when making the slides.

Another important feature of the examples in the slides is the fact that they are animated. The feature
of overlays from the Beamer class was used in order to create the aspect of animation when going
through the slides.

The examples in the slides were animated so that students could visualize the most difficult concepts,
in particular parallel composition which might be trickier to picture without an animation compared
to other notions since it involves picturing four different elements (two RTMs and two tapes, one for
each RTM). In the animated examples of parallel composition, two RTMs were shown side by side
with their respective tapes underneath. Both the RTMs and their tapes would appear to be animated
when going through the slides.
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4 Conclusion

4.1 Summary of Main Contributions
The goal of this bachelor thesis is to enhance the “Languages and Machines” course with notions
about reactive systems. RTMs represent a specific way of introducing concepts related to reactive
systems. The aim was to introduce students to the new and exciting parts of Automata Theory that go
in the direction of mimicking the reactive behaviour of modern computing systems. In order to meet
this goal:

• A new chapter for the “Languages and Machines” reader was written about several important
notions regarding reactive systems such as labelled transition systems, RTMs, the transition
system associated with an RTM, parallel composition and branching bisimulation. This chapter
was designed to follow the style of the other chapters from the reader.

• A set of slides associated with the new chapter was created for the purpose of being used in
the lectures. This set of slides includes animations that will help present reactive systems in a
dynamic and engaging way.

4.2 Future Work
In this section we will discuss what future work may be done in the area of this project.

It could be of value to perform some user testing on a small group of students (perhaps 5 to 10 stu-
dents) who have completed the “Languages and Machines” before introducing the new educational
material in the next academic year. After the sample group of students gets introduced to the new
material, their feedback could be incorporated by making some adjustments to the new reader chapter
and the set of associated slides before they are used in the next academic year.

Moreover, in order to ensure that the new material performs well it should be carefully assessed
according to the feedback given by the first generation of students that will be introduced to it. The
feedback given by the first generation of students exposed to the new content should be mindfully
incorporated for the following academic year.

Lastly, a re-evaluation of the state of the art in Automata Theory could be done once every few years.
This might help with ensuring that students always get introduced to valuable and relevant recent Au-
tomata Theory content alongside the fundamentals of Automata Theory during the “Languages and
Machines” course.
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