
1

Exploring the Rationale of Design Decisions in
Open-Source Software Mailing Lists and their

Relationship to Architectural Issues
MSc. CS Research Internship (2021–2022) – W. Meijer (s4509412)

Supervisors: dr. M. Soliman and prof. dr. ir. P. Avgeriou
University of Groningen – August 30, 2022

Abstract—In open-source software, architectural knowledge
(AK) is incoherently spread across various platforms such as issue
tracking systems, source code and mailing lists. Previous research
has explored AK concepts discussed in issue tracking systems and
blogs. However, no similar exploration has been performed on
mailing lists yet. Similarly, the relationship between issue tracking
systems and mailing lists is not yet done. This study attempts
to bridge this gap by exploring what decision rationale types
are used in mailing lists and by identifying how architectural
issues are used in mailing lists. To identify rationale types and
architectural email-issue relationships, thematic analysis is used
on emails sampled from six Apache projects: Cassandra, Tajo,
and the four sub-projects of Hadoop: Hadoop-common, HDFS,
MapReduce, and Yarn. To determine what decision rationale is
used in mailing lists and what its relationship is with decision
types, an analysis is performed on 156 architectural emails,
identifying nine types of decision rationale, six relationships
between rationale types and three relationships between decision
types and rationale types. To identify architectural email-issue
relationships an analysis is performed on 482 architectural
emails, identifying three relationship superclasses, six relationship
subclasses and 14 relationships between relationship types. The
findings of this work create a better understanding of how mailing
lists complement other sources of AK. This allows practitioners
to better navigate the vast amount of AK spread across these
sources and opens up paths for researchers regarding automated
AK identification and synthesis.

Keywords—Architectural Knowledge, Decision Rationale,
Open-Source Software, Mailing Lists, Issue Tracking Systems,
Deductive Thematic Analysis, Inductive Thematic Analysis.

I. INTRODUCTION

Architectural knowledge (AK) is defined as the different
structures and components used in the concrete architecture of
software, combined with the decisions and rationale used to acquire
these structures [1], which is commonly manifested in the early
design decisions of a development process [2]. AK can therefore be
considered as the cornerstone of any software system, as this contains
the most important information of any given architecture. However,
due to a lack of resources, a lack of urge or simple oversight,
a lot of architecturally relevant information goes undocumented
for which it remains tacit in the heads of software architects [3].
This is an especially important problem in open-source systems as
participants of these systems are very commonly distributed across
geographical and temporal zones for which direct communication is
often very difficult. Even though documentation is very important,
Ding et al. [4] found that only 5% of all open-source systems have
some form of architecture documentation – in other words, the vast
majority of open-source systems do not.

In these systems, various sources of information exist, such as
issue tracking systems, mailing lists, or source code. Potentially, these

different sources can be used to retrieve valuable pieces of AK that
could be used during software evolution or when creating completely
new systems. Developers attempt to use these sources, combined
with forums and general-purpose search engines, to retrieve AK,
however, they find it difficult to locate AK like decisions and quality
concerns [5]. Therefore, finding better alternatives that can be used
to answer architectural issues remains an important topic of research.

The work performed by Mannan et al. [6] showed that 89% of
all decisions made in open-source software were made on their
respective mailing list. Therefore, mailing lists are a potential
gold mine containing insights into the decision-making process of
open-source software. Whereas other sources of information have
been explored to some extent already [7], [8], mailing lists remain
relatively unexplored in literature. The work presented here is an
exploratory study, attempting to gain deeper insights into the AK
shared in mailing lists of open-source systems. This work extends
the work of Lalis [9], who identified decision types [1] in mailing
lists, by identifying what decision rationale types are used to make
architectural decisions. Additionally, the work performed by Soliman
et al. [7] and Faroghi [10] will be extended by identifying how
architectural issues are used in architectural emails. Therefore, the
goal of this research is defined as follows:

The goal of this work is to identify what rationale types are
used for architectural decisions in mailing lists of open-source
software and what the relationship is between architectural emails
and architectural issues in open-source software.

The rest of this document is organised as follows. First, the
necessary theoretical background and related work are discussed in
section II. Section III introduces the posed research questions, the
data that is analysed, and the used research methodology. The results
of this study are presented in section IV, followed by a discussion
of these accompanied by their implications on practitioners and
researchers in section V. Section VI introduces a number of threats
to the validity of this study as well as how these were mitigated.
Finally, section VII describes the conclusions that can be drawn from
this work.

II. THEORETICAL BACKGROUND

The field of AK management has existed for over a decade already,
for which several related studies have been performed already. Sec-
tion II-A sheds light on the fundamental theory of AK, emphasising
architectural decisions and decision rationale. This is followed by
section II-B, describing how mailing lists can be used as a data
source. Finally, section II-C introduces several related studies on
AK classification and issue relationships, elaborating how this work
complements those studies.

A. Architectural Knowledge
Software architecture is commonly considered to be the sum

of the architecture itself (i.e. the product) and the architectural

2

decisions that lead to the creation of that architecture (i.e. the
process of generating the product) [1]. The architecture alone cannot
be considered sufficient information as the reason for a solution
could explain whether change is allowed or if that will introduce
system regressions. Much of the rationale behind the architecture is
tacit and evaporates over time, introducing the risk of architectural
decay [11]. Because of this, architectural decision-making has grown
as a separate field of research and various models have been created
to capture the different components of such a decision. The works
of Zimmermann et al. [12], [13] describe architectural decisions in
three distinct components: an issue, solution alternatives, and an
outcome. Here, the issue describes a problem within the system,
solution alternatives provide a means of solving that issue, and
outcomes describe what the chosen solution is combined with
the rationale for that decision. Although this model captures core
components of architectural decision-making, reality shows that
architectural decisions are commonly not documented in such a
systematic manner [4].

Decisions are made on different abstraction levels [14], use
different levels of cognitive effort [15], and address different
types of problems [1]. The work of Ven et al. [14] describes
that high-level decisions commonly address general issues such
as the general architecture of the system (e.g. service-oriented
architectures) and low-level decisions are generally so specific that
they have no significant impact on the system as a whole. They
argue that medium-level decisions have the highest influence as they
generally discuss components, frameworks, or solution patterns.
Decisions can be made naturalistic and rationalistic [15], describing
the level of cognitive effort put into making decisions. Whereas
rational decision-making attempts to explore all solution factors
and commonly multiple alternatives, naturalistic decision-making
commonly relies on previous experience, making it vulnerable to
biases and fallacies.

The work of Kruchten et al. [1] provides insights into different
types of decisions. In their work, four fundamental decision
categories are described: Existence, Non-Existence (Bans), Property,
and Executive Decisions. Existence decisions address the components
of a solution and can be subdivided into Structural and Behavioural
decisions, respectively describing the structure of the architecture
and the behaviour between components. Non-existence decisions are
the inverse of this class, describing the structure and behaviour the
system will not have. Property Decisions indicate what properties
the system fulfils such as quality requirements or quality attribute
prioritisation. Finally, Executive Decisions describe the development
process and are subdivided into Process, Technology, and Tool
Decisions. Respectively, these address the development process
(e.g. agile development), what technologies are used (e.g. Java
libraries), or what development tools are used (e.g. an IDE). The
work of Soliman et al. [8], [16] expands on the definition of
decisions, introducing Decision Recommendations. Rather than
being a conclusive decision, decision recommendations merely
suggest a preference for a solution alternative. In environments with
a more democratic structure (like projects analysed in this study), the
various recommendations can eventually lead to a binding decision.
Although decision recommendations are not included in the works
of Kruchten et al. [1] and Zimmermann et al. [12], [13], it is a
natural extension of these works as a decision recommendation is
simply a non-binding variant of a decision.

Decision rationale, the reason why a decision is made, has
been explored in the literature as well. Tang et al. [17] present
a means to systematically address design reasoning by describing
why someone should be concerned about this and how they can do
this. Additionally, they identify various types of rationale that are
relevant to this study: Constraints, Benefits, Trade-offs, Risks, and
Assumptions.

Within software architecture, Constraints are defined as a limiting
factor that specifies what conditions a new solution must adhere to
for it to be considered a viable option [17]–[20]. Constraints can
arise from requirements or previously made decisions. Constraints
can be both soft and hard in nature, meaning that although they
should be fulfilled, it is not always a necessity that it is. An example
of this is a user requirement versus the compatibility constraints
imposed by an adopted technology – one could choose to ignore the
former whereas the latter must be respected.

Benefits describe the strengths of a solution alternative and
commonly go hand-in-hand with Drawbacks because the benefit
of one solution is commonly the drawback of another [7], [16],
[21]. Trade-offs describe how solutions balance each other out
in terms of their qualities. Commonly, trade-offs are weighted
according to their priority within the system. An example of this
is implementing an encryption algorithm, which improves security
but reduces performance because security has a higher priority than
performance. Trade-offs can be made on both a high and a low
level. High-level trade-offs indicate the general prioritisation of
system qualities, while low-level trade-offs describe the benefits and
drawbacks of a concrete solution. Consequently, high-level trade-offs
do not always directly imply a concrete benefit or drawback.

The work of Yang et al. [22] expands on Assumptions as rationale,
defining it as “AK taken for granted, or accepted as true without
evidence”. Various literature has introduced definitions for Risks [2],
[17], [23]–[25]. Based on these definitions, this work defines Risks
as follows: “Risks are potential undesirable consequences on the
software architecture of a system in light of stated quality attribute
requirements. Risks have characteristics such as impact, probability,
mitigation time frame, coupling, and uncertainty”. A commonly
used counterpart of Risks is Non-Risks, which are Risks that are
deemed safe after observation. Assumptions and Risks share the
component of uncertainty, making them similar classes. However,
the subtle difference between these is that it is unclear whether
Assumptions are true, whereas Risks are true but simply not always
active.

Although the list of Tang et al. [17] is comprehensive, various
other types of rationale, relevant to this study, have been defined in
the literature. The work of Soliman et al. [8], [21] introduces Solution
Evaluation, which describes how solution alternatives are or should
be evaluated (e.g. a time performance benchmark). In their ontology
Soliman et al. [21] also introduce Solution Comparison, describing
a comparison between two architectural solutions based on their
architecturally relevant capabilities. Finally, Soliman et al. [16]
expand on rationale concepts again, introducing Decision Rules.
Such rules take the form of “if A then B” where A is a condition,
and B is a consequence. These rules impose specific requirements
on a solution alternative, specifying what a solution should adhere to.

In some cases, the fact that a given problem is tackled is deemed
as sufficient rationale to make changes to the system. This is
particularly the case when Quality Issues are addressed. Quality
Issues are a special type of issue that address a problem related to a
quality attribute (e.g. performance). Various Quality Attributes have
been defined in the literature (e.g. ISO/IEC-25010 [26]), however,
any system can define quality attributes at its discretion [2], for
which there exists no exhaustive list of them. Because Quality Issues
describe a problem within the system, their mere existence can be
used to apply changes to the system (as a system benefits from
having fewer problems).

Currently, no exhaustive and widely-accepted ontology for ratio-
nale types exists yet and not all of the established rationale types
are relevant to this study, the list of rationale types that is used in
this study is composed of various pieces of literature [2], [7], [8],
[16]–[25].

3

B. Mailing Lists and Issue Tracking Systems
Open-source software has many potential sources of AK. Together

with issue tracking systems and blogs, mailing lists are one of
these sources. In open-source systems, mailing lists are used to
share various types of information related to the system, such
as release announcements, new solution proposals, or interesting
events. Because of this, mailing lists contain many different emails,
discussing many different topics, wildly varying in architectural
relevance. Emails consist of some components: a subject (the title),
a body (the actual message), the sender/receiver, and the date on
which it was sent. Information shared inside emails is generally not
structured according to any given format, it is not clear what type
of information is shared in them.

Mailing lists can be observed in two ways: a set of individual
emails, and a set of email threads. Mailing threads differ from
individual emails as it considers an email and all of the replies
to it to be one entity. This is somewhat analogous to an entire
conversation (a mailing thread) versus observing individual remarks
(an individual email). It is intuitive to say that emails contained in
the same mailing thread are more likely to discuss the same topic
than two randomly picked emails, for which it is much easier to
understand the topics that are discussed.

Within the Apache community, mailing lists are most commonly
used to ask questions, initiate discussions, provide updates, cast
votes, or make higher-level decisions. Conclusions reached in these
conversations commonly continue in issues stored in issue tracking
systems (e.g. Jira or Github), where lower-level details are discussed.
Concrete solutions discussed here are then implemented, after which
they are evaluated through pull requests. One of the benefits of using
mailing lists is that, compared to issues on issue tracking systems,
many more people receive these emails which is why (generally)
more important topics are discussed in mailing lists.

Issue tracking systems are a popular tool to track a software’s
health, by tracking all of its issues. An issue can describe tasks,
new features, bugs, or user stories, generally described using natural
language. Similar to emails, issues are outfitted with a title, a body,
and a creation date. However, differently compared to emails, issues
identify a reporter, an assignee (experts related to this issue), as well
as tags (e.g. “bug” or “improvement”), their status (e.g. “solved”),
and an ID. This ID is commonly used in other communication
platforms to establish a link with the respective issue. An example
of this is “I’d like to talk about CASSANDRA-10993”, where the
Issue ID is referenced in an email on the Cassandra mailing list.

Throughout this work, the notion of Architectural Emails is used
various times. Architectural Emails are emails in which AK [1] is
shared. Although this is a rather straightforward definition, identifying
whether an email is architectural is difficult. To simplify this, the
definition of Architectural Email used in this work is “Emails that
shed light on architectural components or architectural decisions
(such as used technologies or structural changes) [1], giving concrete
insights into decision components (such as the problem description or
solution rationale) [12], [13], including recommendations for design
decisions [16], are considered to contain architectural significant
information”.

C. Related Work
Multiple studies related to this work have been performed in the

past. This section introduces some studies related to manual and
automated AK classification, issue relationships, and how this work
diversifies itself from these studies.

1) AK Classification:
The work of Soliman et al. [7] performed an exploratory

study on architectural decisions made in issue tracking systems.

Through deductive thematic analysis, using AK concepts introduced
in previous literature, they were able to identify three types of
concepts: decision factors, architectural solutions, and decision
rationale. Their results showed that architectural issues most
commonly contain solution descriptions with corresponding decision
rationale, rather than decision factors. In turn, solution descriptions
most commonly address component behaviour and component
configuration, and the rationale most commonly described benefits
and drawbacks and assumptions. Furthermore, they explored the
co-occurrence of AK concepts in architectural issues, identifying
various relationships between them. Another work of Soliman et
al. [8] explores technology decisions in StackOverflow. They find
that AK in developer communities consists of two dimensions: the
purpose and solution dimensions. Here, the purpose describes the
functionality of the discussed technologies, attempting to determine
whether said technology matches the required functionalities. In
turn, the solution type emphasises the feature set of the different
technologies, the purpose of the technology, or how the discussed
system’s component configuration can account for a specific
technology.

The work performed by Xiong et al. [27] explores the types of
assumptions made inside the Hibernate mailing list. They classified
these assumptions into four different assumption types: Requirement
Assumption, Design Assumption, Construction Assumption, and
Testing Assumption, which are subclassified into ten different
subclasses. Their results show that over 80% of the made
assumptions are design and requirement assumptions. Finally, the
work performed by Li et al. [28] explores decision-making in mailing
lists, identifying the decision type and decision rationale. They
found that the decisions made in mailing lists are of five different
categories: design, requirement, management, construction, and
testing. Additionally, they found that non-functional requirements,
functional requirements, and management requirements are the three
rationale types used for decision-making.

The work presented here diversifies itself from the described
studies by exploring more general decision rationale in mailing lists.
This differs from the work of Soliman et al. [7], [8] as a novel data
source is explored. The works of Xiong et al. [27] and Li et al. [28]
already explore decision rationale in mailing lists. However, due to
the limited scope of these works (Assumptions and Requirements,
respectively), the work presented here complements their work by
generating a wider view of the rationale used in mailing lists.

2) Automated AK Classification:
Several studies have been performed introducing automatic means

of classifying AK. These studies differ from those discussed in
the previous paragraph as classification is generally performed
and documented with a coarser level of detail. Sharma et al. [29]
introduce a tool that extracts decision consensus from mailing lists of
The Python Project, using a manually built ground truth using eleven
different consensus types (e.g. full consensus or partial consensus).
The work of Kleebaum et al. [30] proposes a tool that also derives
decision rationale, however, from issue tracking systems and version
control systems. Their ground truth consists of the high-level classes:
the issue, decision, alternative, pro-, and con-argument. The work
performed by Li et al. [31] and its replication study performed by
Fu et al. [32] both explore means to automatically identify decision
and non-decision sentences in mailing lists using natural language
processing models. Similarly, Li et al. [33] explored automatic
identification of assumption and non-assumption sentences in
mailing lists using natural language processing. In the work of Bhat
et al. [34], an automatic classification of design decisions inside
issue tracking systems using the ontology of Kruchten et al. [1] is
proposed.

Although the work presented here does not address automated
classification, it is important that it is reflected against studies that

4

do as automated classification is a natural application for this work’s
results. The work performed in these studies [31]–[34] classifies AK
concepts on a relatively low level of detail as these only identify one
specific type of AK (decisions and assumptions) without addressing
these in a larger level of detail. Because the goal of this work is
to classify decision rationale on a higher level of detail (addressing
multiple types of rationale), future automated classification studies
can build upon this fine-grained information, allowing them to
classify more information than these previous studies. Although
the work performed by Sharma et al. [29] is able to classify a
larger group of rationale types, their model currently only identifies
different types of consensus. The work presented here complements
their work by attaching meaning to the made decisions. Currently,
the work performed by Kleebaum et al. [30] seems to be able to
classify on the greatest level of detail, also being able to identify
pros and cons (supporting vs opposing arguments). However, similar
to Sharma et al. [29], the data presented here can contribute to an
even finer level of classification. Therefore, although this work itself
does not propose an automated AK classification model, it does
provide directions for future classifiers.

3) Issue Relationships:
As described in section II-B, no other study has yet explored

the relationship between architectural emails and architectural
issues, for which there is no other work directly related to this
one. However, several other studies have been performed that
gained insights into other relationships that issues have or into
information-sharing behaviours – topics that could be a source of
inspiration for this study. Lüders et al. [35] explored relationships
between issues attempting to automatically classify these. Their
work identified 30 different link types (e.g. dependencies or epics)
which they were able to group into 5 super types: General Relation,
Duplication, Temporal/Causal, Composition, and Workflow. Licorish
et al. [36] explore the information-sharing behaviour of prominent
developers in open-source systems. They identified 13 different
types of information sharing behaviours, including discussion
initiation, instructing contributors, reflection, and information
sharing. Finally, a small study performed by Rath et al. [37]
identified relationships between issues and their respective comment
section. They identified three conversation patterns: Monologues,
Feedback, and Collaboration, each describing different levels of
involvement that other people have in the issues.

These three studies each identified how any issue has been used
in different contexts, providing some context for this work. The
work presented here complements all of these by addressing how
architectural issues relate to architectural emails in the mailing lists

of open-source systems, providing a larger foundation for future work
in this direction.

III. METHODOLOGY

This section introduces the used research methodology. First, the
posed research questions are elaborated on in section III-A. Sec-
tion III-B describes what data collections are used and how these are
used. Finally, section III-C elaborates on the used analysis methods.
Figure 1 provides a visual overview of the described methodology.

A. Research Questions
The goal of this research is to identify what types of decision

rationale are used in mailing lists and what the relationship is
between architectural issues. To complete the goal of this research,
a number of research questions are defined.

RQ1 What types of decision rationale are used in mailing lists of
open-source software?

Answering this question provides insights into the first half of
the research goal. Prior research found that software developers
share different types of decision rationale in different locations
like issue tracking systems [7] and Stack Overflow [8]. An answer
to this research question gives insights into the specific types
of decision rationale types used in mailing lists. Accordingly, it
can be determined what decision rationale types are exclusively
or predominantly discussed in mailing lists compared to other
sources. If different types of decision rationale are shared in mailing
lists, compared to issue tracking systems or forums such as Stack
Overflow, this data source might provide a new perspective on
software architecture decision-making.

RQ2 What types of decision rationale co-occur with decision types
in mailing lists of open-source software?

This research question appends RQ1 by exploring the contextual
relationships between different rationale types in mailing lists.
Multiple types of decisions can be made in architectural emails,
like choosing a technology, or a system property [1]. To make these
decisions, different types of rationale can be used. However, it is yet
unknown what types of rationale are commonly used for different
types of decisions. Understanding what decision types and rationale
types frequently co-occur (and infrequently co-occur), might suggest
effective means for extracting rationale concepts from mailing lists.

RQ3 What is the relationship between architectural emails and
architectural issues of open-source software?

±40K Emails

Mailing
Lists

Issue
Tracking
Systems

Select Issue
Referencing

Emails

482
Referencing,
Architectural

Emails

Filter
Architecturally

Irrelevant
Emails

731
Referencing

Emails

619
Architectural

Emails

Select Emails
with Decision

Types

156
Architectural

Emails

Take
Stratified,
Random
Sample

Classify
Decision
Rationale

Classify
Email-Issue

Relationships

RQ3:
Architectural
Email-Issue

Relationships

RQ1:
Decision Rationale

in Mailing Lists

RQ2:
Co-Occurrence

Decision Type and
Rationale

950
Architectural
Issues [8], [9]

1919
Architectural

Emails [7]

Fig. 1: The methodology used in this work.

5

Commonly, issues stored in issue tracking systems are referenced
inside emails. Issues commonly discuss bugs, feature requests, or con-
tain a description of the current software architecture. Although the
literature has explored issue tracking systems in isolation (e.g. [7]),
software development commonly uses multiple information sources
in parallel, making cross-referencing almost inevitable. Identifying
in what context cross-references occur and how these references are
done will therefore give deeper insights into the relationship between
these different data sources. Understanding these relationships allows
developers to see the complete picture, and shows how different
sources of information complement each other. Of course, the term
“relationship” can be interpreted very broadly. In this study, this
is specified by exclusively addressing relationships of architectural
relevance; i.e. relationships from which AK can be derived.

B. Data Collection
In order to answer the posed research questions, six Apache

projects have been selected: Cassandra, Tajo, and the four sub-
projects of Hadoop: Hadoop-common, HDFS, MapReduce, and
Yarn. These projects have been selected as previous research has
identified architectural discussions on its issue tracking systems [7],
[9], [10] and these projects have publically available mailing lists1.
The results generated in these studies have been taken as a starting
point for the work presented here.

1) Decision Rationale:
To answer RQ1 and RQ2 the dataset built by Lalis [9] is used.

Their dataset classified architectural emails of the above-mentioned
projects, classifying them using the ontology of Kruchten et al. [1]
as well as some inductively found classes. In total, their dataset
contains 1919 emails spread across 188 mailing threads, of which
619 emails spread across 122 mailing threads contain Kruchten et
al. [1]’s decision types. From this latter selection, 25 mailing threads
containing 153 architectural emails have been randomly sampled
to be further analysed and identify architectural decision rationale.
Decision types are not equally present in mailing lists, posing a risk to
the validity of this work as the sample taken might not well represent
the actual data. Therefore, to minimise this risk, a stratified sample
is taken that has approximately the same decision type distribution
as the complete dataset (see table I for the distribution). Although
the work of Lalis includes Existence Decisions, Executive Decisions
and Bans, these have been ignored as the first two are represented
by their respective subtypes and only a very limited number of Bans
was detected.

Type Total Sample ∆

Behavioural 126 (16.89%) 30 (15.79%) -1.10%
Structural 178 (23.86%) 41 (21.58%) -2.28%
Technology 146 (19.57%) 34 (17.89%) -1.68%

Property 76 (10.19%) 24 (12.63%) +2.44%
Process 220 (29.49%) 61 (32.11%) +2.61%

TABLE I: Comparison of the decision type distribution in the
original dataset [9] and the taken sample.

2) Architectural Email-Issue Relationship:
To answer RQ3 use is made of the data sample generated in

the works of Soliman et al. [7] and Faroghi [10], who classified
architectural issues contained in issue tracking systems using the
ontology of Kruchten et al. [1]. In total, their dataset contains
950 issues each of which is classified as one or multiple decision
types. The architectural issues contained in this dataset have been
used to identify the relationship between architectural issues and
architectural emails. Currently, there exists no right starting point
for identifying architectural email-issue relationships yet. However,
it is relatively common for emails contained in the mailing list

1All Apache mailing lists can be found at: lists.apache.org

to reference issues. Therefore, within this study, these references
have been taken as a starting point for establishing architectural
email-issue relationships.

Although the original intention of this study was to classify
entire mailing threads, during the analysis phase, it became apparent
that architectural issues are only sparsely discussed throughout
mailing lists. To maximise the number of considered architectural
issues, and therefore make the found results more generalisable
for all architectural issues, without creating significant overhead
of to-be-analysed emails, only emails that explicitly reference
the architectural issue ID have been considered in this analysis.
This includes references like “CASSANDRA-8844”, “C-8844”
and “C8844”, however, excludes references such as “#8844” or
“8844” as including these resulted in a substantially larger number
of unrelated results. This list of references arose by manually
reading emails, adding new reference types to the list as they were
found. To determine whether a reference type introduces a lot
of irrelevant emails, a sample of the yielded mails was checked
whether they actually reference an issue or reference something
else (e.g. referencing an error code, line number, or a benchmark
result). If the majority of emails had errors like these, the reference
type was disregarded in future iterations. Additionally, automatically
generated messages (such as pull-request messages generated by
Github) are ignored as well, as the information contained in these
emails is a literal copy of these other data sources.

To speed up the process of finding such references, an automated
approach is used for this process, searching for all issue IDs
contained in the dataset of Soliman et al. [7] and Faroghi [10]2. This
resulted in a total of 731 emails spread across 416 mailing threads,
referencing 284 unique architectural issues. Because this study
specifically searches for the relationship between architectural emails
(as defined in section II-A) and architectural issues, all emails that
reference architectural issues but have no architectural significance
are disregarded. Although a definition of architectural emails is
used to do this, marking emails as such remains a non-trivial task.
Therefore, this is performed in cooperation between researchers,
reducing the chance of incorrect classifications.

The used data sample dataset used to answer RQ3 consists of 482
architectural emails spread across 287 mailing threads, referencing
228 unique architectural issues contained in the dataset of Soliman
et al. [7] and Faroghi [10]. Throughout this work, these emails are
referred to as referencing emails. The number of referenced archi-
tectural issues is much lower than the total number of architectural
issues contained in the dataset (950). Firstly, it is likely that not
all architectural emails are discussed in mailing lists or architectural
emails. Secondly, the automated search used to find references might
have simply missed some, as there does not exist a standardised
means of referencing architectural issues.

C. Data Analysis
1) Qualitative Analysis:

During the email classification phase for RQ1, the types of
decision rationale that are present in mailing lists are identified.
To do this, deductive thematic analysis [38] is used, classifying
emails using decision rationale types priorly defined in the literature.
Classification of emails is performed at a text level, meaning that
individual pieces of text are classified as one or multiple rationale
types, instead of on an email level (i.e. classifying emails as a
whole) as performing this analysis on a sentence level gives a
finer-grained understanding of the emails in question. Additionally,
this level of granularity opens up more avenues for future work.

2The code can be found at: github.com/wmeijer221/msc internship

https://lists.apache.org
https://github.com/wmeijer221/msc_internship

6

To identify the relationships between architectural emails and
architectural issues (RQ3), use is made of inductive thematic
analysis [38], as the existing literature has not yet identified
such relationships. Differently from the analysis done to answer
RQ1, this classification is performed on an email level. This
means that every individual email is classified as one or multiple
classes. For example, when an email mentions that the referenced
issue is part of a Release Group, the entire email is classified as
such. To do this, the tool built as part of the work of Lalis [9] is used3

As qualitative evaluation is inherently subject to bias, a sample
of approximately 100 emails was iteratively analysed in cooperation
between researchers until a stable set of definitions was created.
The identified list of classes was later refined by iterating over the
different data samples of the final data set, as suggested in the work
of Mayring [38].

2) Quantitative Analysis:
To answer RQ1, the frequency of the found rationale types is

shown, giving an indication of what rationale types are prominent in
mailing lists (and which are not). This is performed both on a text
level (how many pieces of text are marked as a rationale type) and an
email level (how many emails have a given rationale type in them).
To deepen the acquired insights, the co-occurrence of rationale types
is elaborated as well. Instead of doing this on both a text level and
an email level, this is only performed on an email level. The reason
for this is that quotations commonly only have one type of decision
rationale, for which co-occurrences happen infrequently. To answer
RQ2, the co-occurrence of decision types [9] and the rationale types
found in the same emails are measured. Similarly to RQ1, this is
done only at an email level as rationale is commonly widely spread
throughout a single email, creating many annotations in the process.
Therefore, performing this analysis on a text level would give a
skewed perspective on the actual co-occurrence.

To answer RQ3, the frequency of relationship types is presented,
giving an indication of how frequently relationships appear in the
dataset. As architectural email-issue relationships are classified
on an email level, the results are presented in this fashion. The
co-occurrence of these relationships is also measured, to gain a
deeper understanding of how different email-issue relationships
interact with each other.

The results of this work will be statistically elaborated using
frequency analysis and co-occurrence. Frequency analysis indicates
how frequent classes appear in the analysed dataset, indicating
prominence. Co-occurrence is used to identify relationships between
classes, indicating how connected they are. In total, three types of
tests are performed: 1) co-occurrence of rationale types in emails, 2)
co-occurrence of rationale types and decision types in emails and 3)
co-occurrence of architectural email-issue relationships in emails. To
quantify the co-occurrence of classes, the Fisher’s Exact Test [39]
is used, using a significance threshold of p < 0.05. Fisher’s Exact
Test is chosen over other tests (e.g. Chi-Square) to account for the
relatively low number of observations in the final dataset as other tests
become less accurate with a smaller sample (similar to other studies;
e.g. [40] and [41]). This test is applied pair-wise for all possible
combinations of classes, such that the used contingency table is a
2 × 2 matrix containing the number of observations in which the
compared classes are present versus when they are not. Per pair-wise
comparison that is performed, three hypotheses are defined:
H∅ There is no relationship between the two classes.
H1 There is a positive relationship between the two classes.
H2 There is a negative relationship between the two classes.

Where a positive relationship means that the two classes do
frequently co-occur (they attract), while a negative relationship

3The Github repository can be found at:
github.com/ArchitecturalKnowledgeAnalysis/EmailDatasetBrowser

means they do not frequently co-occur (they repel). Here, H∅ can
be refuted with the calculated two-tailed p-value. H1 and H2 can be
refuted using the calculated one-tailed p-values in either direction.
Here, “either direction” means the probability of an arbitrary
contingency table having a greater separation between the two
tested classes versus an arbitrary table having a smaller separation
between the two tested classes; i.e. the direction of the one-tailed test.

To illustrate how Fisher’s Exact Test is applied, the relationship
between Assumptions and Benefits and Drawbacks is taken as an
example. This relationship can be visualised using the following
contingency matrix, where each cell shows the number of emails
(not) containing Benefits and Drawbacks (B&D) and Assumptions:

B&D No B&D
No Assumption 72 38

Assumption 41 2

Applying Fisher’s Exact Test on this table, yields a two-tailed p-
value of 0.00007, which is well below 0.05 for which H∅ can be
refused and the direction of the relationship is tested. The one-tailed
p-values returned by the test are 0.00004 and 1, respectively the
probability of a relationship being positive (attracting) or negative
(repelling). The former is well below 0.05 whereas the latter is not
below 0.05 for which H2 can be refused and H1 cannot, suggesting
that the relationship is attractive.

IV. RESULTS

As explained in section III, this research has two distinct goals:
1) identify decision rationale, and 2) identify relationships between
architectural issues and architectural emails. Therefore, the results4

shown in this section are displayed in a similar fashion, first, by
elaborating the results found on decision rationale (RQ1 and RQ2)
in section IV-A and then by describing the results found on the
relationships (RQ3) in section IV-B.

A. Decision Rationale
The findings of the deductive thematic analysis consist of

557 quotations classified into nine classes: Solution Benefits and
Drawbacks, Constraints, Assumptions, Quality Issues, Solution Risks,
Solution Trade-off, Solution Comparison, Decision Rule, and Solution
Evaluation. A number of times rationale was found that did not fit
any of these classes, for which they are marked Other. Section IV-A1
introduces the various definitions of these classes, accompanied
by various examples. Section IV-A2 describes the quantitative results.

1) Qualitative Results:
The following section describes the qualitative results generated

to answer RQ1. It should be noted that the level of detail used
to elaborate on the various classes is strongly influenced by the
frequency with which they occur in the dataset. Therefore, the
initial paragraphs of this section are relatively large whereas the
elaboration of the latter classes is shorter.

Solution Benefits and Drawbacks are the most commonly
found rationale type used in architectural emails which describes
the benefits and drawbacks (i.e. strengths and weaknesses) of a
solution alternative [21], such as their effect on quality attributes
(e.g. performance, stability, simplicity, or future-proofness), the
features that are supported, or the opportunities that are created as
a consequence of an alternative. Sometimes, but not always, such
benefits are described in the form of a list, like, “The benefits are:
1) ..., 2) ..., 3) ...”.

4The complete results can be found at:
drive.google.com/drive/folders/16paYYiYv2sa2f6xClcCJRnum0XyeU5st

https://github.com/ArchitecturalKnowledgeAnalysis/EmailDatasetBrowser
https://drive.google.com/drive/folders/16paYYiYv2sa2f6xClcCJRnum0XyeU5st

7

An example of a benefit that addresses quality attributes
is “allow pluggable new authentication methods for UGI, in
modular, manageable and maintainable manner”, which states an
improvement of the pluggability of the system in a manner that
respects the manageability and maintainability of the system. A
more subtle example of this is “This means that bugs won’t pile
up and compound each other”, which is used as an argument for
a release schedule, indicating that it improves how bug-prone the
system is (an improvement to the functional correctness of the
system). An example of functional benefits that a solution alternative
offers is “allow multiple login sessions/contexts and authentication
methods to be used in the same Java application/process without
conflicts, providing good isolation by getting rid of globals and
statics”, which describes a functional improvement that the solution
offers. Finally, an example of a benefit that allows for future change
is “The proposal supports using custom memtable implementations
to support development and testing of improved alternatives, but
also enables a broader definition of ‘memtable’ to better support
more advanced use cases like persistent memory”, in which the
broadened definition of “memtable” creates the opportunity for
advanced use-cases of the system.

Similarly, drawbacks can address quality attributes, supported
functionalities and opportunities as well (however, negatively). An
example of drawbacks affecting quality attributes is “it doesn’t
seem to add anything else than tight coupling of components,
reducing reuse and making things unnecessarily complicated”,
describing the negative impact a solution alternative will have on the
reusability and complexity of the system. An example of drawbacks
regarding opportunities is “CircleCI doesn’t cover everything, and
with ci-cassandra there are a few things still to do”, describing
the functionalities that are currently still lacking in the described
technologies. An example of drawbacks addressing a reduced
opportunity for new features would be “but pushing this strategy
to memtable would prevent many features”. On top of these types
of drawbacks, commonly, the impact a solution has on the user
experience is addressed as well. An example of such a scenario is
“We waited for so long that we had some assurance JDK6 was on
the outs. Multiple distros also already had bumped their min version
to JDK7. This is not true this time around. Bumping the JDK version
is hugely impactful on the end user”, where the negative impact on
the user is highlighted.

In this class “plain” benefits and drawbacks, statements that
explicitly mention a strength or weakness, are used most commonly.
However, people also state non-drawbacks (statements in which they
refute drawbacks) or point out the lack of benefits that a solution
offers as well. An example of a non-drawback is “I don’t think
labelling features is going to kill the user <–> developer feedback
loop”, where something that was initially presented as a drawback
is refuted. Another example of this is “I personally don’t think the
productivity hit of adopting a new build tool will be very noticeable
(nothing that you can’t catch up in a couple of weeks)”, describing
the limited impact changing the build tool will have on the developer
productivity. An example of a lack of benefits is “It’s yet another
line onto which to cherry-pick, and I don’t see why we need to add
this overhead at such an early phase”, implying that the drawback
introduced as part of the discussed solution is not outweighed by
the benefits it gives.

Constraints are the second most commonly found rationale type
and are defined as a limiting factor that specifies what conditions a
new solution must adhere to for it to be considered a viable option
[17]–[20]. Within architectural emails, constraints are imposed in
a number of manners: 1) by the developer community, 2) through
requirements, 3) by previous decisions, 4) through technology
adoption, and 5) by the existing system.

An example of constraints imposed by the developer community

is “as soon as we’re (collectively) confident in a feature’s behavior
- at least correctness, if not performance”, where a decision is
bound by the confidence that developers have in the behaviour of
the solution. Another example is “as our community bandwidth is
precious and we should focus on very limited mainstream branches
to develop, test and deployment”, indicating that the developer
community has limited time to spend on new tasks, for which
only a limited number of release branches can be managed at the
same time. A variant of this is a constraint imposed by the release
schedule. An example of this is “we don’t plan on executing on this
until after C* 4.0 releases in order to avoid delaying the release”,
where the scope of a feature is reduced to not delay the Cassandra
4.0 release.

New decisions are commonly constrained by various requirements
and previously made decisions as well. An example of a user-
imposed requirement is “While the performance impact of migration
(if any) could be neglectable to some users, other users could be
very sensitive and wish to roll back if it happens on their production
cluster”, where the user requirements in terms of performance
are considered to constrain the benefits and drawbacks of the
proposed solution. An example of previous decisions influencing
the decision-making process is “we previously agreed limit features
in a minor version, as per the release lifecycle (and I continue
to endorse this decision)”, imposing constraints on changes to
Cassandra’s release process. Another example of this is “First,
classpath isolation being done at HADOOP-11656, which has been a
long-standing request from many downstreams and Hadoop users”,
where the long-standing request of users is used as an argument for
including an issue into the Hadoop 3.x release, indicating that the
decision-making processes are influenced by user requirements.

In some cases, the rate with which users adopt new releases
constrains the decision-making process as well. An example of this
is “I know of at least a few major installations, including ours,
who are just now able to finish upgrades to 3.0 in production”,
where dropping support for Cassandra 3 is constrained by the
rate with which major users are willing to adopt newer versions.
Finally, decision-making is constrained by the architecture that is
currently present in the system. An example of this is “We feel
this scheme is too different from Cassandra’s current distribution
model to be a viable target for incremental development” where
incremental development cannot be used as an approach as the
current architecture does not allow for incremental changes.

Assumptions are defined as AK taken for granted or accepted
as true without evidence [22]. There is no particular type of AK
associated with assumptions, for which it always co-occurs with e.g.
benefits, drawbacks, or constraints. Assumptions can be recognised
by statements such as “I’m pretty sure”, “I can’t help but think”,
or “it should be”; i.e. statements that introduce a certain level of
uncertainty about whatever follows. It should be noted that this
uncertainty is different from the uncertainty that is part of Risks, as
with Risks the posed threat is certain but not always active whereas
with assumptions it is uncertain but posed as always active.

In certain cases, the statement explicitly mentions that an
assumption is made, like “Assuming major versions will not be
released every 6 months/1 year, ...”, which literally states an
assumption is made. Another example of this is “The danger I’m
anecdotally seeing is that ...”, where they explicitly state their point
is based on anecdotes.

An example of an assumed benefit is “It is particularly aimed at
large clusters, but as a side-effect should improve the small cluster
experience as well”, where the proposed solution “should” benefit
small clusters as well. Another example of an assumption is “I
think Maven has turned-off some contributors from those language
ecosystems who don’t know the JVM”, where the author “thinks”

8

a technology decision has negatively affected people’s involvement
in the project (i.e a drawback). Finally, an example of an assumed
constraint is “I don’t see people rushing to do it until the layers
above are all qualified (HBase, Hive, Spark, ...)”, where the rate of
technology adoption is assumed.

Quality Issues are a type of issue that negatively affect a system
quality [12], [13], such as performance or maintainability, worsening
the overall quality of a system. Because of this, quality issues can
be used as a driving factor and rationale to make changes to the
system, as removing a negative quality improves the overall system.
The analysed emails predominantly used quality issues as an initial
driving factor for change, however, occasionally also referenced
past and present quality issues to keep in mind when designing new
solutions.

Quality issues are relatively easy to recognise as they point out
some flawed aspects of the current system, commonly described
using some quality attribute. An example of this is “A single
Cassandra process does not scale well beyond 12 physical cores”,
which comments on the scalability of the system. Another example
of this is “Our most common reducer failure is running out of
disk space during sort, and this is caused by imbalanced block
allocation”, which sheds light on the insufficient capacity of the
system. However, not all quality issues follow this pattern of
explicitly referencing quality attributes. An example of this is “A
lot of code has changed between 2.0 and trunk today. The code has
diverged to the point that if you write something for 2.0, merging
it forward to 3.0 or after generally means rewriting it”, which is
used as an argument to change the release process of Cassandra.
This example points out that the current release branches have
diverted to such an extent that code is no longer easy to port to a
different version, affecting the Reusability of newly built artefacts.
Although it does not explicitly mention Reusability, it does introduce
a problem that directly relates to this quality attribute. Finally,
an example of taking quality issues in mind when creating new
solution alternatives is “Once a cluster grows sufficiently large,
even with topologically aware locality, you eventually want to avoid
the everybody-talks-to-everybody situation of current Cassandra, for
network efficiency reasons”, where the proposed solution should
take in mind the current “everybody-talks-to-everybody” efficiency
issue.

Solution Risks are potential undesirable consequences on the
software architecture of a system in light of stated quality attribute

requirements [2], [17], [23]–[25]. Therefore, Solution Risks can be
observed as a special type of drawback, having a potential outcome
rather than a certain one. In certain cases Solution Risks might look
very similar to Constraints, however, differentiates from this class
as Constraints always have a certain effect whereas Solution Risks
do not. Solution Risks can be recognised by phrases like “there is
a chance”, “could cause”, “it might”, or “probability” followed
by some negative effect on the system (e.g. performance issues).
Similar to Assumptions, Solution Risks are sometimes called out
explicitly, using phrases like “there is a risk that ...”.

An example of a risk affecting system reliability is “One design
concern is that replicas of a key range are not stored on the same
physical host, as failure of that host could cause the loss of more
than one replica of the data” where the discussed design introduces
the risk of data loss during certain circumstances. Solution Risks
are not limited to the solution domain, as development processes
can also introduce risks, for example, “By consequence, it might
slow down the on-boarding of newcomers which we want to make
as smooth as possible”, where not changing the current build tool
imposes the risk to reduce the ease with which new developers can
join the community. An example of a risk that looks very similar to a
Constraint is “I had a similar concern when we were doing 2.8 and
3.0 in parallel, but the impending possibility of spreading too thin is
much worse IMO”, where they introduce the possibility of running
out of resources (developers). Although developer throughput can
impose constraints on the system, its effect is only introduced as a
possibility. Finally, an example of an explicit risk statement is “I
think refactoring APIs as a pure reflection of what the DB is doing
today just risks ossifying something that grew up organically and
probably isn’t going to do us any favors”.

Solution Trade-offs are a description of two or more system
qualities that are affected by the same architectural decision,
improving some while degrading others (e.g. reduction of
performance to improve security) [2], [17]. In the analysed
data, low-level and high-level trade-offs were found. Similar to
Assumptions, low-level Trade-offs generally do not appear alone, as
they are generally accompanied by Benefits and Drawbacks.

An example of a low-level trade-off is “Our calculations lead
us to believe that in fact the shorter rebuild window more than
compensates for the increased probability of multiple failure”, clearly
stating that a calculated trade-off is made between the decreased
rebuild window and the increased failure chance. Although trade-offs

0

25

50

75

100

125

0

100

200

300

Assumption Constraints Decision
Rule

Quality Issue Solution
Benefits and
Drawbacks

Solution
Evaluation

Solution
Risks

Solution
Trade-off

Solution
Comparison

Other

Emails Quotes

Fig. 2: Frequency distribution of rationale types, emphasising the frequency of rationale types per quote and per email.

9

must be weighed by the time an architectural decision is made,
during the conversation, this is commonly not the case. An example
of this is “Both approaches have pluses and minuses (the usual
trade-offs of code-generation vs reflection)”, introducing trade-offs
without stating a specific preference for either direction. Trade-offs
are not exclusive to new solutions, as they are also made for the
development process. An example of this is “if we keep doing
what we’ve been doing, our choices are to either delay 3.0 further
while we finish and stabilize these, or we wait nine months to a
year for the next release. Either way, one of our constituencies gets
disappointed”, where a trade-off is made between the two types of
user. High-level trade-offs are the least commonly found trade-offs.
An example of such a trade-off is “We prioritized our goals as
(1) Reliability (which includes Recoverability and Availability) (2)
Scalability (3) Functionality (4) Performance (5) other But then
gave higher priority to some features like the append functionality”,
introducing an overall prioritisation of quality attributes as well as
an exception to that prioritisation.

Solution Comparisons represent statements in which one or
multiple solution alternatives are compared to each other, elaborating
their functional or quality differences [21]. Consequently, this leads
to solution comparisons commonly being combined with classes such
as Benefits and Drawbacks, comparing the benefits and drawbacks
of different solutions. Because of this, solution comparisons are
similar to Assumptions as it cannot appear alone – statements always
compare something. This class should not be confused with Solution
Trade-offs as solution comparisons require two solution alternatives
to be discussed, whereas Solution Trade-offs can be made within a
single solution. Two different solutions can, of course, make inverse
trade-offs, for which such statements can be assigned to both classes.

An example of a solution comparison is “Has there been
consideration given to the idea of a supporting a single token range
for a node? While not theoretically as capable as vnodes, it seems
to me to be more practical as it would have a significantly lower
impact on the codebase and provides a much clearer migration
path”, where a solution using “virtual nodes” is compared with
“single token ranges”, introducing a drawback of the latter in
comparison with the first. Beyond being compared for their benefits,
solution alternatives can be compared for their compatibilities. An
example of this is “I think ’UDT indexings (at any depth)’ can be
added because there is no architectural limitation on SAI or SASI”,
where the alternatives are compared in terms of support for a new
feature. An example of a comparison between process solutions is
“I suppose in practice all this wouldn’t be too different to tick-tock,
just with a better state of QA, a higher bar to merge and (perhaps)
no fixed release cadence”, comparing two release strategies. This
class does not only compare the Benefits and Drawbacks of different
solutions, as it compares solutions on a more objective level as well.
An example of this is “this does kind of look like what we tried
for tick/tock, but it is not the same”, comparing the two process
solutions of the previous example, without shedding light on their
benefits or drawbacks.

Decision Rules are a composite AK concept taking the form of
an if-then statement [16]. Decision rules can be subdivided into

two components Condition and Consequence, such that the rule
consequence must apply if the rule condition is met. Such rules can
be recognised by phrases such as “if X then Y ”, “Y unless X”, or
“Y as long as X”, where X is a condition and Y a consequence.
Decision rules can be used in various manners, like the effect of
a decision factor on a quality attribute, possibilities of a solution
alternative, or to indicate the limitation of a solution. An example
of the first is “Once MVs reach a point where they’re usable in
production, we can remove the flag”, where the usability of a new
feature is set as a condition for removing its “experimental flag”.
An example of a decision rule being used to explore the options of
a solution alternative is “Especially if we go the mono-repo route,
then it would make sense to move towards releasing everything
together”, introducing the “mono-repo route” as a condition for
releasing multiple Cassandra drivers at the same time. An example
of the limitations of a solution is “it should be possible for every
major feature that we develop to be a opt in, unless the change is
so great and users can balance out the incompatibilities for the new
stuff they are getting”, stating that the proposed solution alternative
will work up until “the change is too great”.

Solution Evaluations is the least observed class in the dataset
and describes statements that give a quantifiable evaluation of a
proposed solution or suggest such evaluation is performed [21].
This class is different from Solution Benefits and Drawbacks and
Constraints as a solution evaluation itself does draw a conclusion
or constrain decision-making as the evaluation itself does not draw
any conclusions from the results. Solution evaluation instances
can commonly be recognised by describing or requesting some
property of a newly proposed solution, such as their test coverage
or complexity.

The majority of the solution evaluation instances address how
a solution is tested in some form. An example of this is “We
have been running a QJM-based HA setup on a 100-node test
cluster for several weeks with no new issues in quite some time”,
describing a production-scale test. Another example of this is “given
that we’ve successfully tested rolling upgrade from 2.x to 3.0.0”,
using the successful evaluation of “rolling upgrades” to vouch
for a proposed solution alternative. A third example of evaluation
using tests “Unit/functional test coverage is pretty high. As a
rough measure, there are 2300 lines of test code vs 3300 lines of
non-test code”, describing the unit tests written as part of a new
solution. Other solution evaluation instances consist of anticipated
evaluations, theoretical evaluations, the maturity of a solution, or
a recommendation to perform a solution, though to a very limited
extent. An example of the last is “But this needs to be tested in
your cluster to understand the impact”, recommending to perform a
cluster test.

2) Quantitative Results:
The quantitative results gathered to answer RQ1 consist of a

total of 153 analysed architectural emails, yielding 557 unique
quotations. The frequency distribution (visualised in fig. 2) clearly
shows that Solution Benefits and Drawbacks are the most commonly
found type of rationale, with 312 quotes and 113 emails related
to it. This is followed by Constraints, Assumptions, and Quality

Assumption Constraints Decision
Rule

Quality
Issue

Solution
Benefits

and
Drawbacks

Solution
Evaluation

Solution
Risks

Solution
Trade-off

Solution
Compari-

son

Behavioural 7 (11.9%) 14 (15.6%) 3 (15.0%) 9 (18.8%) 26 (17.8%) 5 (31.3%) 9 (23.7%) 6 (22.2%) 4 (21.1%)
Structural 12 (20.3%) 20 (22.2%) 3 (15.0%) 11 (22.9%) 30 (20.5%) 5 (31.3%) 9 (23.7%) 5 (18.5%) 1 (5.3%)
Process 21 (35.6%) 33 (36.7%) 8 (40.0%) 14 (29.2%) 46 (31.5%) 0 (0.0%) 12 (31.6%) 7 (25.9%) 7 (36.8%)
Property 9 (15.3%) 13 (14.4%) 3 (15.0%) 6 (12.5%) 17 (11.6%) 3 (18.8%) 7 (18.4%) 5 (18.5%) 0 (0.0%)
Technology 10 (16.9%) 10 (11.1%) 3 (15.0%) 8 (16.7%) 27 (18.5%) 3 (18.8%) 1 (2.6%) 4 (14.8%) 7 (36.8%)

TABLE II: Frequency distribution of rationale types emphasising the distribution of rationale types across decision types.

10

Issues, each being present in over 30 emails. Finally, Solution
Risks and Non-Risks, Solution Trade-offs, Solution Comparisons
and Decision Rules occurred less than 30 times. Observing these
types of rationale, it can be seen that almost all of them are used
in emails of any given decision type (visualised in table II). The
only exceptions to this are Solution Evaluation which is not present
in Process related emails, and Solution Comparison which is not
present in Property related emails. To gain a deeper understanding
of the relationships between rationale types, the co-occurrence of
rationale types in emails is analysed. For seven of the explored
relationships, the calculated two-tailed p-values yielded a significant
result (p < 0.05) for which the null hypothesis could be rejected.
For all of these, using the one-tailed p-values, hypothesis two could
be rejected, meaning that the established relationship was of a
positive nature and these rationale types tend to co-occur.

To answer RQ2, the results generated to answer RQ1 have been
used. In three of the performed comparisons (shown in table IV),
the established relationships were significant (p < 0.05), for which
the null hypothesis could be refused. Using the respective one-
tailed p-values, hypothesis 1 could be refused for each established
relationship, suggesting that the established relationship is of a
negative nature, suggesting they repel.

Rationale Type Rationale Type p Dir.
Assumption Benefits and Drawbacks < 0.0001 +
Constraints Decision Rules 0.0098 +
Constraints Solution Risks 0.0290 +
Solution Trade-offs Benefits and Drawbacks 0.0262 +
Solution Trade-offs Solution Risks 0.0003 +
Quality Issue Solution Risks 0.0186 +

TABLE III: Established significant relationships between Ra-
tionale Types, accompanied with their Two-Tailed Fisher’s
Exact Test p-values and the Direction of their relationship:
positive (+) or negative (−). Only positive relationships were
identified.

Decision Type Rationale Type p Dir.
Process Solution Evaluations 0.0034 −
Structural Solution Comparisons 0.0428 −
Technology Solution Risks 0.0169 −

TABLE IV: Established significant relationships between De-
cision Type and Rationale Types, accompanied with their
Two-Tailed Fisher’s Exact Test p-value and the Direction of
their relationship: positive (+) or negative (−). Only negative
relationships were identified.

B. Architectural Email-Issue Relationships
The findings of the inductive thematic analysis consist of

482 emails classified into three superclasses: Issue Group, Issue
Reference, and Issue Elaboration. Of these Issue Reference is
further split into three subclasses Resource, Discussion Venue, and
Issue Impact, and Issue Group into three subclasses Release Group,
Feature Group and Quality Group.

In cases where the observed relationship types did not fit any
of the created classes, emails have been marked as Other. Emails
classified as such usually provide too little context for them to be
classified accurately, requiring some auxiliary data source for this
to be done. Although these emails are not immediately classifiable,
they are not excluded from the study as they do contain AK in
them and future studies might benefit from including these emails.
Alternatively, architectural issues were referenced as an example,
as a feature that is back-ported or as a potential source of a new

quality issue. However, none of these occurred frequent enough to
warrant creating an independent class.

1) Qualitative Results – Superclasses:
Issue Elaboration is the most commonly found class in the data

set and is defined as any architectural email that provides insights into
the problem or solution domain of the referenced architectural issue.
As the name implies, this class is quite broad as architectural issues
can be elaborated in a great number of manners. Emails classified
as Issue Elaboration commonly describe the tackled problem
and its importance, rationale for or against solution alternatives
or a description of the solution (e.g. impact analysis, component
behaviour, or how the described solution is tested). Although intuitive
to assume, such emails are not necessarily a lengthy exposition of
the ins and outs of the solution alternatives. Many emails simply
mention the goal of an architectural issue as a one-liner or share a
critique on the discussed solution. An example of this is the phrase
“HADOOP-14556 does it fairly well, supporting session and role
tokens”. An example of the latter is “In my opinion, this feature of
short circuit reads (HDFS-347 or HDFS-2246) is not a desirable
feature for HDFS. We should be working towards removing this
feature instead of enhancing it and making it popular”. Although not
exclusively, some architectural emails do elaborate on architectural
issues in great detail. An example of this is the root email of
“CASSANDRA-10993 Approaches”, which does the following: 1)
it states the goal of the architectural issue “I’d like to talk about
CASSANDRA-10993, the first step in the ‘thread per core’ work”,
2) it introduces two solution alternatives “The first approach models
each request as a state machine” and “The second approach utilizes
RxJava and the Observable pattern”, and 3) it describes benefits
and drawbacks of the two solutions “The state machines are very
explicit (an upside), but also very verbose and somewhat disjointed”.

Issue Group is the second most commonly found superclass
used when referenced architectural issues are put in groups that
address a similar topic. This class is subdivided into Release Group,
Feature Group, and Quality Group (elaborated in section IV-B2).
These groups are commonly made to create an overview of issues
that will be or are tackled together and in some cases affect each
other. Non-architectural issues are commonly included in these
groups too. An example of this is “Proposed 11.3” in which several
architectural issues (and non-architectural issues) are grouped as part
of a specific release, indicated by the phrase “I’d like to propose
a 11.3 release which is basically a pre-12 with bug fixes added.
We are in the middle of testing it and would like to make official
tomorrow, if tonight’s testing goes well. Here is the list:”, which is
followed by a list of issues, indicating that all those issues should
be part of version 11.3.

Issue Reference is a class that is assigned to emails that reference
information that is contained inside architectural issues, providing
context for the discussion inside the mailing thread itself. This
class is subdivided into three subclasses Discussion Venue, Issue
Impact, and Resource (elaborated in section IV-B3). An example of
this is the email “[DISCUSS] Tracing in the Hadoop ecosystem”
containing the phrase “There is a healthy discussion going on
over in HADOOP-15566 on tracing in the Hadoop ecosystem. It
would sit better on a mailing list than in comments up on JIRA so
here’s an attempt at porting the chat here”. Here, the discussion
in “HADOOP-15566” is referenced to provide context for the
discussion that is to follow inside the mailing list. Although in some
scenarios the rest of the email elaborates on the referenced issue,
this is not always the case as these references are also made to
circumvent having to describe the same thing twice (i.e. describing
it inside the architectural issue as well as in the mailing list). An
example of this part of the conversation in “row tombstones as a
separate sstable citizen” where one participant says “Have you taken
a look at the new stuff introduced by CASSANDRA-7019? I think it
may go a ways to reducing the need for something complicated like

11

this”, referencing “CASSANDRA-7019” as a potential solution to
the problem discussed in the email thread.

2) Qualitative Results – Issue Group Subclasses:
Release Group is the most commonly found subclass of Issue

Group, and is defined as an email in which a decision or a
recommendation is given to include or exclude an architectural issue
in a specific release (e.g. “Cassandra 4.0” or “the next release”).
These emails commonly describe the status of the grouped issues,
their importance, dependencies and their impact. An example of this
is the thread “2.7.3 release plan”, in which contributors debate why
“HDFS-8791” should (not) be included in Hadoop 2.7.3, shedding
light on the benefits and drawbacks in the meantime, as well as
the development processes of Hadoop. An exemplary snippet of
this discussion is “As I expressed on HDFS-8791, I do not want to
include this JIRA in a maintenance release. I’ve only seen it crop up
on a handful of our customer’s clusters, and large users like Twitter
and Yahoo that seem to be more affected are also the most able to
patch this change in themselves”.

Emails classified as a Release Group generally take one of
two forms: 1) an initial proposal in which a (large) list of issues
is grouped and 2) a reply to the root email where a new issue
ID or its respective URL is shared with the intention of it being
included/excluded in a release. An example of an initial proposal
is the root email “[DISCUSS] Looking to Apache Hadoop 3.1
release”, in which a group is created using the phrase “Following
is a list of features on my radar which could be candidates for
a 3.1 release:”, which is followed by a list of candidate issues,
including multiple architectural issues. One of the replies to this
email is an example of the second type, a brief recommendation
to include an architectural issue: “One YARN feature I’d like to
add to 3.1.0 is YARN Oversubscription (YARN-1011)”. Whereas a
reply generally provides very little insights, emails with the initial
proposal commonly explain the status of given issues (e.g. whether
they are completed, have open tasks, or have been assigned to a
contributor).

Feature Group is a subclass of Issue Group assigned to emails
in which issues are grouped because of similarities in the features
they address. When architectural issues are grouped for this reason,
it is generally done for three reasons: 1) the issues are subtasks
of a greater feature, 2) the issues are alternative solutions to the
same problem, or 3) the issues address similar features without

directly affecting each other. An example of the first is the root
email of “[YARN-2928] first drop on trunk” describing the status
of some subtasks of “YARN-2928”. This email includes the phrase
“I think the theme is essentially a basic but complete end-to-end
flow that includes the write path and the read path and some UI.
These are the key major things we may want to complete before we
consider merging the first milestone:” which is followed by a list of
issues including the architectural issue “YARN-3816”. An example
of the second is the root email of “[DISCUSS] Hadoop RPC
encryption performance improvements” where “HADOOP-10768”
and “HADOOP-13836” are described as alternative solutions to
a specific performance issue: “There have been some attempts to
address this, most notably, HADOOP-10768 (Optimize Hadoop RPC
encryption performance) and HADOOP-13836 (Securing Hadoop
RPC using SSL)”. An example of the third is the root email of
“[VOTE] Merge Resource Types (YARN-3926) to branch-3.0” with
the statement “In summary, resource types adds the ability to
declaratively configure new resource types in addition to CPU and
memory and request them when submitting resource requests. The
resource-types branch currently represents 32 patches from trunk
drawn from the resource types umbrella JIRAs: YARN-3926 and
YARN-7069”. This email groups and elaborates the architectural
email “YARN-3926” with “YARN-7069” as these both address
resource types.

Quality Group is the third and smallest subclass of Issue Group
in which issues are grouped to address some quality attribute (like
performance or security). An example of this is the root email of
“Performance tickets” which starts with the phrase “I’d like to spend
some effort in 2.1 improving our performance story for non-io-bound
workloads. Here are some of the ideas we have floating around:”
followed by a list of issues, including three architectural issues.
These issues are specifically grouped to generate an overview of
issues related to performance, in an attempt to improve it. Another
example is the mailing thread “Code quality, principles and rules”,
in which the coding principles used within the Cassandra project
are discussed. Among others, the quote “I agree with the suggestion
that it’s time to revisit CASSANDRA-7837 and CASSANDRA-10283”
groups the architectural issue “CASSANDRA-7837” and another
issue “CASSANDRA-10283” as part of an endeavour to address
these coding practices.

3) Qualitative Results – Issue Reference Subclasses:

0

100

200

300

Issue
Elaboration

Issue Group Release
Group

Feature
Group

Quality
Group

Issue
Reference

Discussion
Venue

Issue Impact Resource Other
Reference

Other

Fig. 3: Frequency distribution of email-issue relationship types per email, including the parent classes Issue Group and Issue
Reference. Frequencies of parent classes are not the sum of the child classes as emails can be classified as multiple relationship
types.

12

Discussion Venue is the most commonly found subclass of Issue
Reference and is used in mailing lists to reference a discussion
that has previously occurred (or is currently occurring) on the
referenced issue. In multiple cases, information that was previously
shared in the discussion of the architectural issue (e.g. raised
concerns, feedback on the proposed solution, or the description of
a solution alternative) are referenced and then further elaborated,
summarised, or repeated in the referencing email. An example of
this is a reply contained in the “[DISCUSS] Docker build process”
mailing thread, where the email author writes “As shown from my
comments on YARN-7129, I have particular concerns that resonate
other posters on this thread”, referencing the feedback previously
given on the issue itself, followed by an elaboration. An example of
referencing a previously discussed solution alternative is used in the
“Design for security in Hadoop” email thread, containing “Have
you looked at HADOOP-4359? In that JIRA, we discussed the idea
of using public-key signed capabilities and dismissed it in favor of
symmetric-key based capabilities”.

In other cases, the discussion had in the architectural issue
is simply referenced to make a new point, like a design
recommendation. An example of this is the “[VOTE] Merge
HDFS-3077 (QuorumJournalManager) branch to trunk” mailing
thread, where the discussion in “HDFS-3077” is referenced as the
rationale for postponing voting to merge the branch: “As I indicated
in my comments on the jira, I think some of the design discussions
and further simplification of design should happen before the merge.
See [link to comment on issue]”. Finally, in some cases, architectural
emails attempt to move the discussion location to or from the issue
to the mailing list, of which the root email of “[DISCUSS] Tracing
in the Hadoop ecosystem” is exemplary, containing the phrase
“There is a healthy discussion going on over in HADOOP-15566 on
tracing in the Hadoop ecosystem. It would sit better on a mailing
list than in comments up on JIRA so here’s an attempt at porting
the chat here”.

Issue Impact is the second most commonly found subclass of
Issue Reference and is used in mailing lists to address the influence
that the referenced architectural issue has on new design solutions.
Most commonly, the positive impact of an architectural issue is
described, as it allows new features to be implemented, or can be
used as a solution for new problems. An example of this is the root
email of “[VOTE] Merge YARN-3926 (resource profile) to trunk”,
stating “Briefly, YARN-3926 can extend resource model of YARN
to support resource types other than CPU and memory, so it will
be a cornerstone of features like”, followed by a list of features
it unlocks. An example of architectural issues being a solution to
new issues is a reply in the “row tombstones as a separate sstable
citizen” mailing thread: “Have you taken a look at the new stuff
introduced by CASSANDRA-7019? I think it may go a ways to
reducing the need for something complicated like this”, referencing
“CASSANDRA-7019” as a potential solution for the discussed
problem. Additionally, architectural issues marked as Issue Impact
are referenced as a leading example of future solutions. An example
of this is “proposed new repository for hadoop/ozone docker images
(+update on docker works)”, stating “We would like to follow the
existing practice which is established in HADOOP-14898”.

The influence of architectural issues is not always positive as
they can impose new constraints or additional requirements as
well. An example of the former is a reply on the email thread
“Supporting multiple JDKs” where the constraints imposed by
“CASSANDRA-9608” are referenced to evaluate the feasibility
of another solution alternative by stating “Some of our java8
code will not compile under java11 (see CASSANDRA-9608);
the symbols have literally been removed (Unsafe.monitorEnter() /
Unsafe.monitorExit()). Setting -source to ‘8’ will not help. Thus, we
need two compilers for the foreseeable future”.

Resource is a subclass of Issue Reference that addresses
architectural emails in which an architectural issue is referenced
for the information that is shared in it (e.g. design documents,
benchmarks, code, trade-offs, subtasks, or examples). Although
this information is not necessarily elaborated in the email, it is
used to provide context for the rest of the information discussed.
Although these are commonly made to simply share information
without replicating it, in some cases, issues are referenced to share
fundamental knowledge of understanding the content discussed
in the rest of the email. An example of the former is a reply
in the “Consistent vs inconsistent range movements” thread,
stating “Definitely read CASSANDRA-2434. That’s probably the
best documentation of this feature”. Another example of this is
“CASSANDRA-10993 Approaches”, containing the quote, “I think
I outlined the tradeoffs I see between the roll our own vs use
a reactive framework in CASSANDRA-10528”, pointing to the
trade-offs of the discussed solution alternatives. An example of the
latter is “[DISCUSSION]: Future of Hadoop system testing” in
which “HADOOP-6332” is referenced as prerequisite knowledge
for the rest of the email. In this email, the author states “As many
of you know recent development effort from a number of Hadoop
developers brought to the existence new system test framework
codename Herriot. If you never heard about it please check
HADOOP-6332”, after which they thoroughly elaborate on its future
within Hadoop.

4) Quantitative Results:

In total, the quantitative results generated to answer RQ3 consist
of 482 architectural emails. The frequency analysis (visualised in
fig. 3) shows that Issue Elaboration is the most commonly found
class, occurring in 263 emails, followed by the other superclass
Issue Group which is present in 219 emails. The third superclass,
Issue Reference is present in 93 emails, however, is not the third
most common relationship type. Instead, Release Group and Feature
Group, two subclasses of Issue Group, are more commonly present,
occurring in 172 and 125 emails, respectively. The third subclass of
Issue Group, Quality Group, is the overall least represented class,
with only 15 occurrences. The three subclasses of Issue Reference,
occur an approximately equal number of times, Discussion Venue
being present in 46 emails, and Issue Impact and Resource both
being present in 44 emails.

Similar to the approach taken to answer RQ1, to gain a deeper
understanding of the relationship between the various classes, pair-
wise comparisons are performed, observing what relationship types
commonly co-occur in the same architectural emails (visualised in
table V). In this analysis, all classes (excluding “Other” classes

Relationship Type Relationship Type p Dir.
Discussion Venue Resource 0.0418 +
Feature Group Issue Elaboration < 0.0001 +
Feature Group Issue Impact 0.0142 −
Feature Group Resource 0.0363 +
Issue Elaboration Discussion Venue 0.0096 +
Issue Elaboration Resource < 0.0001 +
Issue Elaboration Issue Reference < 0.0001 +
Issue Group Issue Elaboration 0.0253 +
Issue Group Issue Impact 0.0115 −
Issue Group Issue Reference 0.0035 −
Release Group Quality Group 0.0004 +
Release Group Issue Elaboration 0.0003 −
Release Group Issue Reference 0.0019 −
Release Group Resource 0.0171 −

TABLE V: Established significant relationships between Re-
lationship Types, accompanied with their Two-Tailed Fisher’s
Exact Test p-value and the Direction of their relationship:
positive (+) or negative (−).

13

but including the superclasses) have been pair-wise compared for
co-occurrence, ignoring relationships between subclasses and their
respective superclasses. In a total of 14 instances, the calculated p-
value of a relationship was of significant strength (p < 0.05), for
which the null hypothesis could be rejected. Of these, the one-tailed
p-values of 8 relationships could be used to reject hypothesis 2, for
which these results suggest a positive relationship between the pairs.
In 6 cases, the one-tailed p-values could be used to reject hypothesis
1, for which these results suggest a negative relationship between the
pairs.

V. DISCUSSION

Using the results elaborated in section IV, an initial answer can be
given to the posted research questions in section III-A. In this chapter,
the results of each of the three research questions are discussed and
answered in section V-A, section V-B and section V-C, followed by
the implications on practitioners and researchers in section V-D and
section V-E.

A. What types of decision rationale are used in mailing lists
of open-source software?

To answer this RQ1, 153 architectural emails acquired from the
work of Lalis [9] were used, yielding 557 quotations classified
into nine types of decision rationale: Benefits and Drawbacks,
Constraints, Assumptions, Quality Issues, Risks and Non-Risks,
Solution Trade-off, Solution Comparison, Decision Rule, and
Solution Evaluation. Of these, Solution Benefits and Drawbacks
was the most commonly found type of decision rationale, being
present in 1.6× more emails, and having 2.8× as many quotations,
compared to the second most common rationale type, Constraints.
This is a result that points in the same direction as the results of
Soliman et al. [7] who identified that benefits and drawbacks are a
common AK concept in architectural issues. Being present in more
emails could suggest that the decision-making in architectural emails
are largely based on the benefits and drawbacks of the discussed
solution alternatives.

Although it is not surprising that the number of quotations is
larger than the number of architectural emails, it should be pointed
out that the difference between these for Benefits and Drawbacks
is not comparable with any of the other results. For Benefits and
Drawbacks, the number of quotations is 2.8× larger than the
number of architectural emails, whereas other classes have at most
a 1.6× difference. This suggests that in architectural emails in
which Benefits and Drawbacks are discussed, a multitude of these is
discussed or these are discussed in greater detail – to a larger extent
than other classes.

Two other rationale types that occurred in over 25% of the
analysed emails were Constraints and Assumptions, respectively
being present in 68 and 40 architectural emails. This could suggest
that although Constraints are not disregarded, they are not frequently
used to drive the direction of a decision. Similarly, although
Assumptions are present in this many architectural emails, the
majority of the emails support their statements to some extent.
Finally, the other rationale types were found in fewer than 25% of
the analysed architectural emails, suggesting that they are not as
prevalent as others.

Interestingly, the results show that all of the relationships between
rationale types are attractive. These results suggest that the most
commonly made Assumption is one about Benefits and Drawbacks,
and that Solution Benefits and Drawbacks Solution Risks are com-
monly part of Solution Trade-offs. Beyond that, emails describing
Constraints are more likely to also address Solution Risks and
Decision Rules. Finally, Quality Issues tend to co-occur with Solution
Risks.

B. What types of decision rationale co-occur with decision
types in mailing lists of open-source software?

To answer RQ2, the results generated to answer RQ1 and the
results presented in the work of Lalis [9] have been combined, gener-
ating an initial overview of the relationship between decision rationale
and the decision types defined by Kruchten et al. [1]. The results
showed that almost all rationale types occur in all decision types (with
the exclusion of Solution Evaluation and Solution Comparison). After
performing a deeper exploration of these co-occurrences, three re-
pelling relationships and no attracting relationships were established.
The results suggest that Process emails repel Solution Evaluations,
Structural emails repel Solution Comparisons and Technology emails
repel Solutions Risks. Although significant, these results must be
interpreted with a level of care as both Solution Evaluation and
Solution Comparison are infrequently observed classes. This is not
the case for the relationship between Technology emails and Solution
Risks.

C. What is the relationship between architectural emails and
architectural issues of open-source software?

The data filter step performed to RQ3 showed that approximately
two-thirds of the emails that reference architectural issues are
Architecturally Relevant. Therefore, although the referenced issues
are architecturally relevant, it is not inherently true that referencing
emails are architecturally relevant as well. The results generated
after further analysing the emails that were deemed architecturally
relevant, three superclasses were identified: Issue Elaboration, Issue
Group, and Issue Reference, of which Issue Group is subdivided
into Release Group, Feature Group, and Quality Group, and
Issue Reference is subdivided into Discussion Venue, Influence of
Architectural Issue, and Resource.

Of these, Issue Elaboration was most commonly found, shedding
light on details within the problem domain, the solution domain, or
other outcomes of a design decision. Because this class is the one
most frequently found, it is suggested that mailing lists could indeed
be a rich source of architectural information that can complement
the information shared in architectural issues. The classes Release
Group and Feature Group elaborate on architectural issues in a
different fashion. These classes describe architectural issues on a
meta-level, respectively specifying when the issue is included in a
release (and when not) and how the issue relates to others based on
its overarching goal, like a feature or a quality attribute. Potentially,
these groups can extend the relationships between issues that are
already established in issue tracking systems (Lüders et al. [35]
presents an extensive list of such relationships).

In this study, Issue Reference was subdivided into three additional
subclasses. These classes indicate that architectural emails do not
merely expand on the information shared on architectural issues.
Instead, it showed that architectural issues are commonly referenced
to either quickly share the discussions that were priorly had or to
reference AK such as the solution design. Additionally, architectural
issues were referenced, indicating the influence that architectural
issues have. These take the form of additional requirements or
constraints, however, also the opportunities architectural issues
provide when creating new solutions.

To further understand the established email-issue relationships,
their co-occurrence was explored as well. The analysis performed
established 14 relationships, of which 8 are attracting and 6 repelling.
Of these, 10 relationships involved Issue Group or one of its sub-
classes. When observing these relationships in detail, some things
stand out:

• Although Issue Group and Feature Group tend to attract Issue
Elaboration, Release Group does not.

• Issue Group and Feature Group seem to share their repelling
relation with Issue Impact.

14

• Issue Group and Release Group seem to share their repelling
relationship with Issue Reference.

• Although Feature Group attracts Resource, Release Group at-
tracts it.

• Release Group has an attractive relationship with Quality
Group.

These various contradictions show, that although Feature Group and
Release Group share the same superclass Issue Group, there are
noticeable differences between the relationships of these subclasses.

These results also show that Issue Elaboration has a significant
relationship with all other classes except Quality Group. What stands
out here is that although most of them are attractive, Issue Elaboration
tends to be repelled by Feature Groups. This suggests that regardless
of the type of reference used, frequently some elaboration of the
referenced issue is given. Finally, The results show that Discussion
Venue and Resource commonly co-occur; i.e. when someone refer-
ences the discussion in an email, they are more likely to refer to a
resource as well.

D. Implications for Practitioners
The results of this work have various implications for practitioners.

Understanding the types of rationale and architectural issue
references used in architectural emails helps practitioners to
differentiate between information sources. As software architecture
is discussed in various platforms (e.g. mailing lists, issue tracking
systems or source code), understanding what these sources contain
can help practitioners navigate through the vast amount of AK
contained in open-source systems. An example of this is that
although Solution Benefits and Drawbacks are commonly discussed
in mailing lists, rationale types such as Solution Trade-offs or
Solution Comparisons are less frequently discussed. Therefore,
looking for these in mailing lists might be less beneficial compared
to looking for this AK in other data sources. Similarly, the identified
issue-email relationships suggest that many referencing emails
contain some form of elaboration of the architectural issue, making
mailing lists a potentially valuable source of information.

By establishing relationships between rationale types and between
email-issue relationships, practitioners can further improve their AK
searching strategies as these relationships can be used to further sieve
the AK contained in mailing lists. An example of this is that searching
for Constraints in architectural emails increases the chances of finding
e.g. Decision Rules. Similarly, by establishing repelling relationships
between decision types and rationale types, practitioners can better
manage their expectations regarding what they can find on mailing
lists. An example of this is the reduced likelihood to find solution
comparisons in emails discussing structural solutions.

E. Implications for Researchers
The work presented in this work allows future research to

continue in an array of different directions. This work presented
an exploratory study on the decision rationale used in mailing lists
and the relationships between architectural emails and architectural
issues. Because this work is of an exploratory nature, a data
sample of a relatively limited size has been analysed. Therefore, to
strengthen or refute the conclusions drawn in this paper, future work
could expand the data sample used, generating results of greater
significance. This same statement stands for the work performed by
Lalis [9], Soliman et al. [7], and Faroghi [10], as their datasets are
the foundation of this work, consequently limiting the amount of
data that could be processed in this study. This especially holds for
the dataset of Faroghi [10] as of all 950 architectural issues only
284 were referenced in architectural emails.

Beyond simply increasing the amount of data to strengthen the
conclusions of this work, the results posed here can already be

used for new endeavours. Although this work resulted in exploring
decision rationale in architectural emails, the original goal was to
explore all AK concepts. Therefore, various knowledge concepts,
such as those explained in the works of Kruchten et al. [1],
Zimmermann et al. [12], [13], and Soliman et al. [16], have been
included as part of this work’s sample study, indicating other AK
(non-rationale) that remains hidden in mailing lists. Such a study
could also shed light on the inverse of rationale types such as Benefits
(i.e. Non-Benefits) as decision rationale introduced by contributors
is occasionally debunked by others. If a future endeavour were
to synthesise information contained in mailing lists (or any other
data source), such contradictions might prove helpful. Finally, the
results of the architectural email-issue relationships identified a
large number of emails elaborating on architectural issues. Future
work could explore these specific emails in close comparison to
their respective architectural issues, identifying precisely how the
knowledge contained in them differs.

Of course, as is already attempted by various studies described
in section II-C, various researchers have (successfully) attempted
to automate the detection of AK in issue tracking systems and
mailing lists. By expanding the dataset generated as part of this study,
similar models to those present in the literature could be trained for
automated data collection and synthesis. Such synthesis technologies
could reuse past AK to facilitate future decision-making processes or
to recover AK that is not well-documented. In turn, the established
relationships between classes could be used to improve these search
engines as e.g. Solution Risks seem to co-occur frequently with
Constraints, for which search engines can search for Constraints to
find Solution Risks.

VI. THREATS TO VALIDITY

This section describes the threats to the validity of our research
and the steps taken to mitigate these threats.

A. Construct Validity
The primary research method used in this work is thematic

analysis. This method is inherently affected by researcher bias as
they need to interpret text and decide if it should be classified
and as what it should be classified. To mitigate this threat, the
iterative process suggested by Mayring [38] is followed, iterating
multiple times over the same data, involving multiple researchers.
Furthermore, before performing the complete study, a sample study
is performed during which stable class definitions were created,
allowing further analysis to be performed in a more systematic and
reliable manner.

Secondly, to answer RQ3, an automated means is used to identify
referencing emails, potentially missing references that should be
included. To mitigate this threat, other means of referencing issues
were later included in this method. However, this is not completely
fault-proof as references such as “8844” and “#8844” yield a lot
of unrelated results and are therefore references might have been
missed. Although this technically threatens the validity of this work,
it is considered to be of a very minor extent, as it seems unlikely
that how an issue is referenced will affect why it is referenced
(though, this remains an assumption).

B. External Validity
Because this study is of an exploratory nature, the amount of

data remained relatively limited, limiting the generalisability of the
results. To account for this problem to some extent, the Fisher’s
Exact Test [39] is used instead of other tests. Another element that
might affect the conclusion validity of this work is the used mailing
lists. As all of the analysed projects are Apache projects, it is hard
to say how generalisable the found results are. Additionally, Projects

15

such as Cassandra are very large, containing many architectural
emails, for which the results of smaller projects (such as Tajo) might
have been overshadowed.

The method used to answer RQ1 and RQ2 used the dataset
generated in the works of Lalis [9]. Instead of analysing their entire
data sample, only a subset of this data is analysed, for which the
analysed dataset might misrepresent the actual data. To minimise
this risk, a stratified sample is taken, having an approximately equal
distribution of decision types compared to the original dataset.

VII. CONCLUSIONS

The goal of this work was to identify what rationale types
are used for architectural decisions and what the relationship is
between architectural emails and architectural issues, using emails
sampled from six Apache projects: Cassandra, Tajo, and the four
sub-projects of Hadoop: Hadoop-common, HDFS, MapReduce, and
Yarn. Using deductive thematic analysis [38] on the architectural
emails identified by Lalis [9], a total of 153 emails were classified,
yielding 557 unique quotations spread across nine different types
of decision rationale. When exploring these rationale types on a
deeper level, seven of these relationships have shown to frequently
co-occur. Similarly, by comparing the identified rationale types with
the decision types identified by Lalis [9], three repelling relationships
were discovered. These results give a clear insight into the types of
rationale used in architectural emails and how these relate to the
decision types of Kruchten et al. [1]. Furthermore, the relationship
between architectural emails and architectural issues was explored.
To do this, 482 emails sampled from the various mailing lists that
reference one of the architectural issues identified by Soliman et
al. [7] and Faroghi [10] have been analysed. Approximately two-
thirds of these emails were considered architecturally relevant and
were therefore explored in greater detail. Using inductive thematic
analysis [38], seven relationship types were identified, suggesting
that architectural emails commonly elaborate on architectural issues,
group them, or simply reference them. To further understand these
classes, their co-occurrence was measured, yielding eight commonly
co-occurring pairs and six repelling pairs. The results generated in
this study provide an exploratory overview of decision rationale and
architectural issue-email relationships, allowing practitioners to better
utilize mailing lists as a source of AK and opening up new avenues
for future research.

VIII. ACKNOWLEDGEMENTS

I would like to thank dr. Mohamed Soliman for his continued
guidance throughout this master’s internship. Additionally, I would
like to thank Andrew Lalis for the development of the email search
engine, as well as his feedback and opinions on the various pull
requests I submitted during this project.

REFERENCES

[1] P. Kruchten, P. Lago, and H. van Vliet, “Building Up
and Reasoning About Architectural Knowledge,” en,
in Quality of Software Architectures, C. Hofmeister,
I. Crnkovic, and R. Reussner, Eds., Berlin, Heidelberg:
Springer, 2006, pp. 43–58, ISBN: 9783540488200. DOI:
10.1007/11921998 8.

[2] L. Bass, P. Clements, R. Kazman, and a. O. M. C.
Safari, Software Architecture in Practice, 4th Edi-
tion, English. 2021, OCLC: 1247847006, ISBN:
9780136885979.

[3] R. Capilla, A. Jansen, A. Tang, P. Avgeriou, and M. A.
Babar, “10 years of software architecture knowledge
management: Practice and future,” en, Journal of Sys-
tems and Software, vol. 116, pp. 191–205, Jun. 2016,
ISSN: 0164-1212. DOI: 10.1016/j.jss.2015.08.054.

[4] W. Ding, P. Liang, A. Tang, H. Van Vliet, and M.
Shahin, “How Do Open Source Communities Document
Software Architecture: An Exploratory Survey,” in 2014
19th International Conference on Engineering of Com-
plex Computer Systems, Aug. 2014, pp. 136–145. DOI:
10.1109/ICECCS.2014.26.

[5] M. J. de Dieu, P. Liang, and M. Shahin, “How Do De-
velopers Search for Architectural Information? An In-
dustrial Survey,” in 2022 IEEE 19th International Con-
ference on Software Architecture (ICSA), Los Alamitos,
CA, USA: IEEE Computer Society, 2022, pp. 58–68.
DOI: 10.1109/ICSA53651.2022.00014.

[6] U. A. Mannan, I. Ahmed, C. Jensen, and A. Sarma,
“On the relationship between design discussions and
design quality: A case study of Apache projects,” in
Proceedings of the 28th ACM Joint Meeting on Euro-
pean Software Engineering Conference and Symposium
on the Foundations of Software Engineering, New York,
NY, USA: Association for Computing Machinery, Nov.
2020, pp. 543–555, ISBN: 9781450370431.

[7] M. Soliman, M. Galster, and P. Avgeriou, “An Ex-
ploratory Study on Architectural Knowledge in Issue
Tracking Systems,” en, in Software Architecture, S.
Biffl, E. Navarro, W. Löwe, M. Sirjani, R. Mirandola,
and D. Weyns, Eds., Cham: Springer International Pub-
lishing, 2021, pp. 117–133, ISBN: 9783030860448. DOI:
10.1007/978-3-030-86044-8 8.

[8] M. Soliman, M. Galster, A. R. Salama, and M. Riebisch,
“Architectural Knowledge for Technology Decisions in
Developer Communities: An Exploratory Study with
StackOverflow,” in 2016 13th Working IEEE/IFIP Con-
ference on Software Architecture (WICSA), Apr. 2016,
pp. 128–133. DOI: 10.1109/WICSA.2016.13.

[9] A. Lalis, “On the Efficacy of Keyword Searches to Find
Meaningful Architectural Knowledge in Open-Source
Software Mailing Lists,” Bachelor’s Thesis, University
of Groningen, 2022.

[10] S. Faroghi, “Mining Architectural Knowledge in Issue
Tracking Systems,” Bachelor’s Thesis, University of
Groningen, 2022.

[11] M. Bhat, K. Shumaiev, U. Hohenstein, A. Biesdorf, and
F. Matthes, “The Evolution of Architectural Decision
Making as a Key Focus Area of Software Architecture
Research: A Semi-Systematic Literature Study,” in 2020
IEEE International Conference on Software Architec-
ture (ICSA), Mar. 2020, pp. 69–80. DOI: 10 . 1109 /
ICSA47634.2020.00015.

[12] O. Zimmermann, T. Gschwind, J. Küster, F. Leymann,
and N. Schuster, “Reusable Architectural Decision
Models for Enterprise Application Development,” en,
in Software Architectures, Components, and Applica-
tions, S. Overhage, C. A. Szyperski, R. Reussner, and
J. A. Stafford, Eds., Berlin, Heidelberg: Springer, 2007,

https://doi.org/10.1007/11921998_8
https://doi.org/10.1016/j.jss.2015.08.054
https://doi.org/10.1109/ICECCS.2014.26
https://doi.org/10.1109/ICSA53651.2022.00014
https://doi.org/10.1007/978-3-030-86044-8_8
https://doi.org/10.1109/WICSA.2016.13
https://doi.org/10.1109/ICSA47634.2020.00015
https://doi.org/10.1109/ICSA47634.2020.00015

16

pp. 15–32, ISBN: 9783540776192. DOI: 10.1007/978-
3-540-77619-2 2.

[13] O. Zimmermann, J. Koehler, F. Leymann, R. Polley, and
N. Schuster, “Managing architectural decision models
with dependency relations, integrity constraints, and
production rules,” en, Journal of Systems and Software,
SI: Architectural Decisions and Rationale, vol. 82, no. 8,
pp. 1249–1267, Aug. 2009, ISSN: 0164-1212. DOI: 10.
1016/j.jss.2009.01.039.

[14] J. S. v. d. Ven and J. Bosch, Agile Software Architecture:
Chapter 5. Architecture Decisions: Who, How, and
When? en. Elsevier Inc. Chapters, Nov. 2013, Google-
Books-ID: 0kJ1DAAAQBAJ, ISBN: 9780128070253.

[15] H. van Vliet and A. Tang, “Decision making in software
architecture,” en, Journal of Systems and Software,
vol. 117, pp. 638–644, Jul. 2016, ISSN: 0164-1212. DOI:
10.1016/j.jss.2016.01.017.

[16] M. Soliman, M. Galster, and M. Riebisch, “Devel-
oping an Ontology for Architecture Knowledge from
Developer Communities,” in 2017 IEEE International
Conference on Software Architecture (ICSA), Apr. 2017,
pp. 89–92. DOI: 10.1109/ICSA.2017.31.

[17] A. Tang and H. van Vliet, “Software Architecture
Design Reasoning,” en, in Software Architecture Knowl-
edge Management: Theory and Practice, M. Ali
Babar, T. Dingsøyr, P. Lago, and H. van Vliet, Eds.,
Berlin, Heidelberg: Springer, 2009, pp. 155–174, ISBN:
9783642023743. DOI: 10.1007/978-3-642-02374-3 9.

[18] P. Meseguer, N. Bouhmala, T. Bouzoubaa, M. Irgens,
and M. Sánchez, “Current Approaches for Solving
Over-Constrained Problems,” en, Constraints, vol. 8,
no. 1, pp. 9–39, Jan. 2003, ISSN: 1572-9354. DOI: 10.
1023/A:1021902812784.

[19] R. Roeller, P. Lago, and H. van Vliet, “Recovering
architectural assumptions,” en, Journal of Systems and
Software, vol. 79, no. 4, pp. 552–573, Apr. 2006, ISSN:
0164-1212. DOI: 10.1016/j.jss.2005.10.017.

[20] M. van den Berg, A. Tang, and R. Farenhorst, “A
Constraint-Oriented Approach to Software Architec-
ture Design,” in 2009 Ninth International Conference
on Quality Software, ISSN: 2332-662X, Aug. 2009,
pp. 396–405. DOI: 10.1109/QSIC.2009.59.

[21] M. Soliman, M. Riebisch, and U. Zdun, “Enriching
Architecture Knowledge with Technology Design De-
cisions,” in 2015 12th Working IEEE/IFIP Conference
on Software Architecture, May 2015, pp. 135–144. DOI:
10.1109/WICSA.2015.14.

[22] C. Yang, P. Liang, P. Avgeriou, et al., “An industrial
case study on an architectural assumption documenta-
tion framework,” en, Journal of Systems and Software,
vol. 134, pp. 190–210, Dec. 2017, ISSN: 0164-1212.
DOI: 10.1016/j.jss.2017.09.007.

[23] O. P. N. Slyngstad, R. Conradi, M. A. Babar, V. Clerc,
and H. van Vliet, “Risks and Risk Management in
Software Architecture Evolution: An Industrial Survey,”
in 2008 15th Asia-Pacific Software Engineering Confer-
ence, ISSN: 1530-1362, Dec. 2008, pp. 101–108. DOI:
10.1109/APSEC.2008.70.

[24] J. Ropponen and K. Lyytinen, “Components of software
development risk: How to address them? A project
manager survey,” IEEE Transactions on Software En-
gineering, vol. 26, no. 2, pp. 98–112, Feb. 2000, ISSN:
1939-3520. DOI: 10.1109/32.841112.

[25] A. Gemmer, “Risk management: Moving beyond pro-
cess,” Computer, vol. 30, no. 5, pp. 33–43, May 1997,
ISSN: 1558-0814. DOI: 10.1109/2.589908.

[26] ISO/IEC-25010, “Systems and Software Engineering:
Systems and Software Quality Requirements and Eval-
uation (SQuaRE) – System and Software Quality Mod-
els,” International Organization for Standardization,
Geneva, CH, Standard, 2011.

[27] Z. Xiong, P. Liang, C. Yang, and T. Liu, “Assumptions
in OSS Development: An Exploratory Study through the
Hibernate Developer Mailing List,” in 2018 25th Asia-
Pacific Software Engineering Conference (APSEC),
ISSN: 2640-0715, Dec. 2018, pp. 455–464. DOI: 10 .
1109/APSEC.2018.00060.

[28] X. Li, P. Liang, and T. Liu, “Decisions and Their
Making in OSS Development: An Exploratory Study
Using the Hibernate Developer Mailing List,” in 2019
26th Asia-Pacific Software Engineering Conference
(APSEC), ISSN: 2640-0715, Dec. 2019, pp. 323–330.
DOI: 10.1109/APSEC48747.2019.00051.

[29] P. N. Sharma, B. T. R. Savarimuthu, and N. Stanger,
“Extracting Rationale for Open Source Software De-
velopment Decisions — A Study of Python Email
Archives,” in 2021 IEEE/ACM 43rd International Con-
ference on Software Engineering (ICSE), ISSN: 1558-
1225, May 2021, pp. 1008–1019. DOI: 10 . 1109 /
ICSE43902.2021.00095.

[30] A. Kleebaum, B. Paech, J. O. Johanssen, and B. Brügge,
“Continuous Rationale Identification in Issue Tracking
and Version Control Systems,” in REFSQ Workshops,
2021.

[31] X. Li, P. Liang, and Z. Li, “Automatic Identification
of Decisions from the Hibernate Developer Mailing
List,” in Proceedings of the Evaluation and Assessment
in Software Engineering, ser. EASE ’20, New York,
NY, USA: Association for Computing Machinery, Apr.
2020, pp. 51–60, ISBN: 9781450377317. DOI: 10.1145/
3383219.3383225.

[32] L. Fu, P. Liang, X. Li, and C. Yang, “Will Data
Influence the Experiment Results?: A Replication Study
of Automatic Identification of Decisions,” in 2021 IEEE
International Conference on Software Analysis, Evo-
lution and Reengineering (SANER), ISSN: 1534-5351,
Mar. 2021, pp. 614–617. DOI: 10.1109/SANER50967.
2021.00076.

[33] R. Li, P. Liang, C. Yang, G. Digkas, A. Chatzige-
orgiou, and Z. Xiong, “Automatic Identification of
Assumptions from the Hibernate Developer Mailing
List,” in 2019 26th Asia-Pacific Software Engineering
Conference (APSEC), ISSN: 2640-0715, Dec. 2019,
pp. 394–401. DOI: 10.1109/APSEC48747.2019.00060.

[34] M. Bhat, K. Shumaiev, A. Biesdorf, U. Hohenstein, and
F. Matthes, “Automatic Extraction of Design Decisions

https://doi.org/10.1007/978-3-540-77619-2_2
https://doi.org/10.1007/978-3-540-77619-2_2
https://doi.org/10.1016/j.jss.2009.01.039
https://doi.org/10.1016/j.jss.2009.01.039
https://doi.org/10.1016/j.jss.2016.01.017
https://doi.org/10.1109/ICSA.2017.31
https://doi.org/10.1007/978-3-642-02374-3_9
https://doi.org/10.1023/A:1021902812784
https://doi.org/10.1023/A:1021902812784
https://doi.org/10.1016/j.jss.2005.10.017
https://doi.org/10.1109/QSIC.2009.59
https://doi.org/10.1109/WICSA.2015.14
https://doi.org/10.1016/j.jss.2017.09.007
https://doi.org/10.1109/APSEC.2008.70
https://doi.org/10.1109/32.841112
https://doi.org/10.1109/2.589908
https://doi.org/10.1109/APSEC.2018.00060
https://doi.org/10.1109/APSEC.2018.00060
https://doi.org/10.1109/APSEC48747.2019.00051
https://doi.org/10.1109/ICSE43902.2021.00095
https://doi.org/10.1109/ICSE43902.2021.00095
https://doi.org/10.1145/3383219.3383225
https://doi.org/10.1145/3383219.3383225
https://doi.org/10.1109/SANER50967.2021.00076
https://doi.org/10.1109/SANER50967.2021.00076
https://doi.org/10.1109/APSEC48747.2019.00060

17

from Issue Management Systems: A Machine Learn-
ing Based Approach,” en, in Software Architecture,
A. Lopes and R. de Lemos, Eds., Cham: Springer
International Publishing, 2017, pp. 138–154, ISBN:
9783319658315. DOI: 10.1007/978-3-319-65831-5 10.

[35] C. M. Lüders, A. Bouraffa, and W. Maalej, “Beyond
Duplicates: Towards Understanding and Predicting Link
Types in Issue Tracking Systems,” arXiv:2204.12893
[cs], Apr. 2022, arXiv: 2204.12893. DOI: 10 . 1145 /
3524842.3528457.

[36] S. A. Licorish and S. G. MacDonell, “Understanding
the attitudes, knowledge sharing behaviors and task
performance of core developers: A longitudinal study,”
en, Information and Software Technology, Special is-
sue: Human Factors in Software Development, vol. 56,
no. 12, pp. 1578–1596, Dec. 2014, ISSN: 0950-5849.
DOI: 10 . 1016 / j . infsof . 2014 . 02 . 004. (visited on
05/27/2022).

[37] M. Rath and P. Mäder, “Request for comments: Con-
versation patterns in issue tracking systems of open-
source projects,” in Proceedings of the 35th Annual
ACM Symposium on Applied Computing, New York,
NY, USA: Association for Computing Machinery, Mar.
2020, pp. 1414–1417, ISBN: 9781450368667.

[38] P. Mayring, Qualitative content analysis: theoretical
foundation, basic procedures and software solution, en.
Klagenfurt, 2014.

[39] R. A. Fisher, “On the interpretation of χ2 from contin-
gency tables, and the calculation of p,” Journal of the
royal statistical society, vol. 85, no. 1, pp. 87–94, 1922.

[40] P. S. Kochhar, X. Xia, D. Lo, and S. Li, “Practition-
ers’ expectations on automated fault localization,” in
Proceedings of the 25th International Symposium on
Software Testing and Analysis, ser. ISSTA 2016, New
York, NY, USA: Association for Computing Machinery,
Jul. 2016, pp. 165–176, ISBN: 9781450343909. DOI:
10.1145/2931037.2931051.

[41] Z. Wan, X. Xia, A. E. Hassan, D. Lo, J. Yin, and
X. Yang, “Perceptions, Expectations, and Challenges
in Defect Prediction,” IEEE Transactions on Software
Engineering, vol. 46, no. 11, pp. 1241–1266, Nov. 2020,
ISSN: 1939-3520. DOI: 10.1109/TSE.2018.2877678.

https://doi.org/10.1007/978-3-319-65831-5_10
https://doi.org/10.1145/3524842.3528457
https://doi.org/10.1145/3524842.3528457
https://doi.org/10.1016/j.infsof.2014.02.004
https://doi.org/10.1145/2931037.2931051
https://doi.org/10.1109/TSE.2018.2877678

18

APPENDIX

19

A. Results Example Index
This appendix is added to improve traceability of the examples given in section IV. Per quote contained in a given section, its respective
email ID is provided, which can be used in the email browser (github.com/ArchitecturalKnowledgeAnalysis/EmailDatasetBrowser) or in
one of the data sheets (drive.google.com/drive/folders/16paYYiYv2sa2f6xClcCJRnum0XyeU5st). Note, in some cases the quotes are slightly
altered to improve clarity, increase brevity, fix spelling, or remove information that does not make sense without the broader context of the
email. In cases quotes match multiple emails (e.g. the first few quotes in Assumptions), an ID is picked at random. The table entries shown
here follow the order of reference in the paper as much as possible.

Quoted Text Email ID
Solution Benefits and Drawbacks
“The benefits are: 1) ..., 2) ..., 3) ...” 23443
“allow pluggable new authentication methods for UGI, in modular, manageable and maintainable manner” 23443
“This means that bugs won’t pile up and compound each other” 24006
“allow multiple login sessions/contexts and authentication methods to be used in the same Java application/process without conflicts, providing
good isolation by getting rid of globals and statics”

23443

“The proposal supports using custom memtable implementations to support development and testing of improved alternatives, but also
enables a broader definition of ‘memtable’ to better support more advanced use cases like persistent memory”

41829

“it doesn’t seem to add anything else than tight coupling of components, reducing reuse and making things unnecessarily complicated” 41838
“CircleCI doesn’t cover everything, and with ci-cassandra there are a few things still to do” 40801
“but pushing this strategy to memtable would prevent many features” 41838
“We waited for so long that we had some assurance JDK6 was on the outs. Multiple distros also already had bumped their min version to
JDK7. This is not true this time around. Bumping the JDK version is hugely impactful on the end user”

23403

“I don’t think labelling features is going to kill the user <–> developer feedback loop” 32369
“I personally don’t think the productivity hit of adopting a new build tool will be very noticeable (nothing that you can’t catch up in a
couple of weeks)”

43246

“It’s yet another line onto which to cherry-pick, and I don’t see why we need to add this overhead at such an early phase” 23471
Constraints
“as soon as we’re (collectively) confident in a feature’s behavior - at least correctness, if not performance” 32359
“as our community bandwidth is precious and we should focus on very limited mainstream branches to develop, test and deployment” 32832
“we don’t plan on executing on this until after C* 4.0 releases in order to avoid delaying the release” 38807
“While the performance impact of migration (if any) could be neglectable to some users, other users could be very sensitive and wish to
roll back if it happens on their production cluster”

32832

“we previously agreed limit features in a minor version, as per the release lifecycle (and I continue to endorse this decision)” 40807
“First, classpath isolation being done at HADOOP-11656, which has been a long-standing request from many downstreams and Hadoop
users”

23384

“I know of at least a few major installations, including ours, who are just now able to finish upgrades to 3.0 in production” 41039
“We feel this scheme is too different from Cassandra’s current distribution model to be a viable target for incremental development” 12779
Assumptions
“I’m pretty sure” 35062
“I can’t help but think” 42551
“it should be” 23469
“Assuming major versions will not be released every 6 months/1 year, ...” 23476
“The danger I’m anecdotally seeing is that ...” 39489
“It is particularly aimed at large clusters, but as a side-effect should improve the small cluster experience as well” 12787
“I think Maven has turned-off some contributors from those language ecosystems who don’t know the JVM” 38865
“I don’t see people rushing to do it until the layers above are all qualified (HBase, Hive, Spark, ...)” 32792
Quality Issues
“A single Cassandra process does not scale well beyond 12 physical cores” 15621
“Our most common reducer failure is running out of disk space during sort, and this is caused by imbalanced block allocation” 435
“A lot of code has changed between 2.0 and trunk today. The code has diverged to the point that if you write something for 2.0, merging it
forward to 3.0 or after generally means rewriting it”

23748

“Once a cluster grows sufficiently large, even with topologically aware locality, you eventually want to avoid the everybody-talks-to-everybody
situation of current Cassandra, for network efficiency reasons”

12787

Solution Risks
“there is a chance” 32832
“could cause” 12779
“it might” 43241
“probability” 12787
“there is a risk that ...” 42537
“One design concern is that replicas of a key range are not stored on the same physical host, as failure of that host could cause the loss
of more than one replica of the data”

12779

“By consequence, it might slow down the on-boarding of newcomers which we want to make as smooth as possible” 43241
“I had a similar concern when we were doing 2.8 and 3.0 in parallel, but the impending possibility of spreading too thin is much worse
IMO”

32751

“I think refactoring APIs as a pure reflection of what the DB is doing today just risks ossifying something that grew up organically and
probably isn’t going to do us any favors”

42551

https://github.com/ArchitecturalKnowledgeAnalysis/EmailDatasetBrowser
https://drive.google.com/drive/folders/16paYYiYv2sa2f6xClcCJRnum0XyeU5st

20

Quoted Text Email ID
Solution Trade-offs
“Our calculations lead us to believe that in fact the shorter rebuild window more than compensates for the increased probability of multiple
failure”

12805

“Both approaches have pluses and minuses (the usual trade-offs of code-generation vs reflection)” 2735
“if we keep doing what we’ve been doing, our choices are to either delay 3.0 further while we finish and stabilize these, or we wait nine
months to a year for the next release. Either way, one of our constituencies gets disappointed”

23717

“We prioritized our goals as (1) Reliability (which includes Recoverability and Availability) (2) Scalability (3) Functionality (4) Performance
(5) other But then gave higher priority to some features like the append functionality”

424

Solution Comparisons
“Has there been consideration given to the idea of a supporting a single token range for a node? While not theoretically as capable as
vnodes, it seems to me to be more practical as it would have a significantly lower impact on the codebase and provides a much clearer
migration path”

12810

“I think ’UDT indexings (at any depth)’ can be added because there is no architectural limitation on SAI or SASI” 39730
“I suppose in practice all this wouldn’t be too different to tick-tock, just with a better state of QA, a higher bar to merge and (perhaps) no
fixed release cadence”

40805

“this does kind of look like what we tried for tick/tock, but it is not the same” 40811
Decision Rules
“if X then Y ” 35062
“Y unless X” 23469
“Y as long as X” 23471
“Once MVs reach a point where they’re usable in production, we can remove the flag” 32341
“Especially if we go the mono-repo route, then it would make sense to move towards releasing everything together” 38872
“it should be possible for every major feature that we develop to be a opt in, unless the change is so great and users can balance out the
incompatibilities for the new stuff they are getting”

23469

Solution Evaluations
“We have been running a QJM-based HA setup on a 100-node test cluster for several weeks with no new issues in quite some time” 14300
“given that we’ve successfully tested rolling upgrade from 2.x to 3.0.0” 32829
“Unit/functional test coverage is pretty high. As a rough measure, there are 2300 lines of test code vs 3300 lines of non-test code” 14300
“But this needs to be tested in your cluster to understand the impact” 28732
Issue Elaboration
“HADOOP-14556 does it fairly well, supporting session and role tokens” 39035
“In my opinion, this feature of short circuit reads (HDFS-347 or HDFS-2246) is not a desirable feature for HDFS. We should be working
towards removing this feature instead of enhancing it and making it popular”

15645

“I’d like to talk about CASSANDRA-10993, the first step in the ‘thread per core’ work [...] The first approach models each request as a
state machine [...] The second approach utilizes RxJava and the Observable pattern [...] The state machines are very explicit (an upside),
but also very verbose and somewhat disjointed”

28985

Issue Group
“I’d like to propose a 11.3 release which is basically a pre-12 with bug fixes added. We are in the middle of testing it and would like to
make official tomorrow, if tonight’s testing goes well. Here is the list:”

952

Issue Reference
“There is a healthy discussion going on over in HADOOP-15566 on tracing in the Hadoop ecosystem. It would sit better on a mailing list
than in comments up on JIRA so here’s an attempt at porting the chat here”

34918

“Have you taken a look at the new stuff introduced by CASSANDRA-7019? I think it may go a ways to reducing the need for something
complicated like this”

33504

Release Group
“As I expressed on HDFS-8791, I do not want to include this JIRA in a maintenance release. I’ve only seen it crop up on a handful of our
customer’s clusters, and large users like Twitter and Yahoo that seem to be more affected are also the most able to patch this change in
themselves”

27387

“Following is a list of features on my radar which could be candidates for a 3.1 release:” 32146
“One YARN feature I’d like to add to 3.1.0 is YARN Oversubscription (YARN-1011)” 32163
Feature Group
“I think the theme is essentially a basic but complete end-to-end flow that includes the write path and the read path and some UI. These
are the key major things we may want to complete before we consider merging the first milestone:”

25941

“There have been some attempts to address this, most notably, HADOOP-10768 (Optimize Hadoop RPC encryption performance) and
HADOOP-13836 (Securing Hadoop RPC using SSL)”

35613

“In summary, resource types adds the ability to declaratively configure new resource types in addition to CPU and memory and request
them when submitting resource requests. The resource-types branch currently represents 32 patches from trunk drawn from the resource
types umbrella JIRAs: YARN-3926 and YARN-7069”

32650

Quality Group
“I’d like to spend some effort in 2.1 improving our performance story for non-io-bound workloads. Here are some of the ideas we have
floating around:”

20773

“I agree with the suggestion that it’s time to revisit CASSANDRA-7837 and CASSANDRA-10283” 30934

21

Quoted Text Email ID
Discussion Venue
“As shown from my comments on YARN-7129, I have particular concerns that resonate other posters on this thread” 36541
“Have you looked at HADOOP-4359? In that JIRA, we discussed the idea of using public-key signed capabilities and dismissed it in favor
of symmetric-key based capabilities”

3502

“As I indicated in my comments on the jira, I think some of the design discussions and further simplification of design should happen before
the merge. See [link to comment on issue]”

14456

“There is a healthy discussion going on over in HADOOP-15566 on tracing in the Hadoop ecosystem. It would sit better on a mailing list
than in comments up on JIRA so here’s an attempt at porting the chat here”

34918

Issue Impact
“Briefly, YARN-3926 can extend resource model of YARN to support resource types other than CPU and memory, so it will be a cornerstone
of features like”

31999

“Have you taken a look at the new stuff introduced by CASSANDRA-7019? I think it may go a ways to reducing the need for something
complicated like this”

33504

“We would like to follow the existing practice which is established in HADOOP-14898” 36199
“Some of our java8 code will not compile under java11 (see CASSANDRA-9608); the symbols have literally been removed (Un-
safe.monitorEnter() / Unsafe.monitorExit()). Setting -source to ‘8’ will not help. Thus, we need two compilers for the foreseeable future”

35090

Resource
“Definitely read CASSANDRA-2434. That’s probably the best documentation of this feature” 30769
“I think I outlined the tradeoffs I see between the roll our own vs use a reactive framework in CASSANDRA-10528” 28986
“As many of you know recent development effort from a number of Hadoop developers brought to the existence new system test framework
codename Herriot. If you never heard about it please check HADOOP-6332”

7692

	Introduction
	Theoretical Background
	Architectural Knowledge
	Mailing Lists and Issue Tracking Systems
	Related Work
	AK Classification
	Automated AK Classification
	Issue Relationships

	Methodology
	Research Questions
	Data Collection
	Decision Rationale
	Architectural Email-Issue Relationship

	Data Analysis
	Qualitative Analysis
	Quantitative Analysis

	Results
	Decision Rationale
	Qualitative Results
	Quantitative Results

	Architectural Email-Issue Relationships
	Qualitative Results – Superclasses
	Qualitative Results – Issue Group Subclasses
	Qualitative Results – Issue Reference Subclasses
	Quantitative Results

	Discussion
	What types of decision rationale are used in mailing lists of open-source software?
	What types of decision rationale co-occur with decision types in mailing lists of open-source software?
	What is the relationship between architectural emails and architectural issues of open-source software?
	Implications for Practitioners
	Implications for Researchers

	Threats to Validity
	Construct Validity
	External Validity

	Conclusions
	Acknowledgements
	Appendix
	Results Example Index

