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Abstract

We provide explicit constructions of extremal rational elliptic sur-
faces with at least one additive fiber over an algebraically closed
field. We also provide blow-downs to its different minimal models,
namely P2, F0 and F2. Where found we exhibit pencils of cubics
where blowing-up at the base points results in the particular extremal
rational elliptic surface.
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Introduction

An elliptic curve E is a nonsingular curve of genus 1 over a field k, together with a point on
the curve with coordinates in k. It can be proven that an elliptic curve can be written as

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, where ai ∈ k.

The topic of elliptic curves has been of interest for mathematical research for decades, with
the proof of Fermat’s Last Theorem as its most famous use. One of their most prominent
properties is that their rational points form a finitely generated abelian group whenever k
is a number field. This has structural implications for elliptic curves themselves as well as
surfaces containing them. In the preliminaries this will be illustrated with the introduction
of elliptic surfaces.

An elliptic surface is a surface with an elliptic fibration over a curve. Each point on the
curve corresponds to a fiber of the surface. Moreover, almost every fiber on the surface is an
elliptic curve. The finite set of fibers that are not elliptic are the singular fibers. All singular
fibers were discovered and classified by Kunihiko Kodaira [12].

One of the main tools in this thesis is the blow-up. Not like the chemical explosion pro-
cess, but more in a mathematical inflating kind of sense. In short, the blow-up of a point is
an isomorphism everywhere, except at the point. The blow-up replaces the point by a line.
By blowing up the base points of a 1-dimensional family of cubic curves, a rational elliptic
surfaces can be constructed. These surfaces are extremal if the rank of the group of rational
points is zero. Reversing the blow-up process turns lines into points, and can be used to go
from rational elliptic surfaces to P2, or other types of surfaces.

The main goal of this thesis is to explicitly construct the blow-down of extremal rational
elliptic surfaces with at least one additive fiber over an algebraically closed field to the min-
imal surfaces P2, F0 and F2. The construction of extremal rational elliptic surfaces from a
pencil of cubics in P2 can be found in literature (see for instance [13],[2]), but, to the writer’s
knowledge, their explicit blow-down cannot. Moreover, the blow-downs to the other surfaces
are not described in literature, to the extend of the writer’s knowledge.

The minimal model of elliptic surfaces provides a tool to study elliptic surfaces. For
instance, strict transforms of curves and singular fibers can be described in an explicit way
in the minimal model. Therefore, the construction and study of these minimal models is
proven to be relevant to the field of Algebraic Geometry.

The idea for this thesis came from my supervisor Prof. Dr. Cećılia Salgado. She taught
the Master’s course Caput Algebra and Geometry on Algebraic Curves, of which I attended
some lectures. These sessions inspired my interest in this topic, and she came up with the
idea to study extremal rational elliptic surfaces with additive fibers. Anna de Bruijn has
done a similar project, studying the surfaces with multiplicative fibers. Her thesis is com-
plementary to this study, and is highly recommended to read.
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This thesis is organized as follows. The first chapter will cover introductory topics in
algebraic geometry. Elliptic surfaces and in particular extremal rational elliptic surfaces
are introduced in the second chapter. The third chapter focuses on the construction of the
minimal surface P2 of extremal rational elliptic surfaces with at least one additive fiber. The
constructions of the same elliptic surfaces to a minimal surface called the Hirzebruch surface
Fn are discussed in Chapter 4.
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1 GENERAL PRELIMINARIES

1 General Preliminaries

The object of study in this thesis are extremal rational elliptic surfaces with at least one
additive fiber. To aid the understanding of this topic, this chapter introduces relevant basic
topics in algebraic geometry. Excellent references regarding algebraic geometry are written
by Hartshorne [11], Gathmann [8] and Shafarevich [21]. For a more thorough study of the
concepts treated in this chapter, these references are highly recommended. A more advanced
reader is advised to skip this preliminary chapter.

1.1 Affine and Projective Space

During this thesis projective and affine spaces and their respective varieties come up fre-
quently. To ensure that all concepts are clear to the reader, they are clarified in a compact
manner below. Whenever k is mentioned, it is always considered to be a field. Moreover, k̄
denotes a fixed algebraic closure of the field k.

For n ∈ N, An
k denotes the affine n-space over a field k. An element of An

k is of the form
(a1, ..., an), with ai ∈ k. The subscript k in An

k denotes the dependence of the affine space
on the field k and is omitted when the field is clear from the context. The affine space will
be the workplace for the set of solutions of polynomials.

Definition 1.1. For a subset F ⊂ k [X1, ..., Xn] of polynomials, we define the zero locus of
F as

V (F ) := {P ∈ An | f(P ) = 0, ∀f ∈ F}.
A subset V (F ) of An of this form is called an affine algebraic set.

An algebraic set is reducible if it can be expressed as V (F ) = V (G) ∪ V (H) for some
proper algebraic subsets V (G), V (H) ⊂ V (F ). Otherwise, it is irreducible. An irreducible
affine algebraic set V (F ) is called an affine variety.

From affine spaces projective spaces can be constructed. In projective spaces some use-
ful properties hold, for instance with regard to intersections between curves. This will be
discussed in Bézout’s theorem in section 1.2.1.

Definition 1.2. The projective space Pn over a field k is the set of 1-dimensional linear
subspaces through (0, ..., 0) ∈ An+1.

Pn consists of elements of the form (x1, ..., xn+1) with xi ∈ k, subject to the following
equivalence relation:

(x1, ..., xn+1) ∼ (λx1, ..., λxn+1) , where λ ∈ k∗.

A point in projective space [x1 : ... : xn+1] denotes the equivalence class of (x1, ..., xn+1), and
the individual x0, ..., xn are called the homogeneous coordinates for the corresponding point
in Pn. The projective space Pn may be identified with the equivalence class of points in
An+1 \ {0, ..., 0}.

6



1.1 Affine and Projective Space 1 GENERAL PRELIMINARIES

This thesis will also encounter projective product spaces Pn × ...× Pm. A product space
Pn × Pm can be defined as the quotient of {An+1 \ 0} × {Am+1 \ 0} by the product of the
multiplicative group k∗.

Definition 1.3. A polynomial F ∈ k [X1, ..., Xn] of the form

F =
∑

i1,...,in∈N

ai1,...,inX
i1
1 · ... ·X in

n

is homogeneous of degree d if all its terms have the same degree d = i1 + ...+ in.

Polynomials in affine space An can be transformed into homogeneous polynomials in Pn

and vice versa. These processes are called homogenization and dehomogenization respecively.
A non-homogeneous polynomial f(x1, ..., xn) ∈ k[X] of degree d can be homogenized to
f(x0, ..., xn) by introducing the variable x0 in the polynomial as follows:

f(x0, x1, ..., xn) = xd0f

(
x1
x0
, ...,

xn
x0

)
.

Replacing a homogeneous polynomial f(x0, ..., xn) ∈ k[X] by f(y1, ..., yi−1, 1, yi+1, ..., yn)
is called dehomogenization with respect to xi.

By replacing polynomials by homogeneous polynomials, projective algebraic sets can be
defined.

Definition 1.4. To a homogeneous ideal F ⊂ k̄ [X1, ..., Xn] generated by homogeneous poly-
nomials, we associate a subset of Pn−1 by the rule

V (F ) := {P ∈ Pn−1 | f(P ) = 0, for all homogeneous f ∈ F}.

A subset V (F ) of Pn−1 of this form is called a projective algebraic set.

A projective algebraic set V (F ) is irreducible if it cannot be expressed as V (F ) = V (G)∪
V (H) for some proper projective algebraic subsets V (G), V (H) ⊂ V (F ). An irreducible
projective algebraic set V (F ) is called a projective variety.

Definition 1.5. If V is a projective algebraic set, the (homogeneous) ideal of V , denoted
I(V ), is the ideal of k̄ [X] generated by

I(V ) := {f ∈ k̄ [X] | f is homogeneous and f(P ) = 0 for all P ∈ V }.

A projective algebraic set V (F ) is a projective variety if and only if I(V ) is a prime ideal in
k̄ [X].

Definition 1.6. A subset Y of a variety X is a subvariety of X if Y is itself a variety.

Definition 1.7. The dimension of a variety V , denoted dim(V ), is the integer n such that
the largest nesting of distinct proper subvarieties of V consists of n subvarieties:

V0 ⊂ V1 ⊂ ... ⊂ Vn−1 ⊂ V.

The codimension of a closed subvariety W of V is equal to codim(W ) = dim(V )− dim(W ).

7



1.1 Affine and Projective Space 1 GENERAL PRELIMINARIES

1.1.1 Maps between Varieties

There are different types of maps between varieties. The maps are given coordinate wise by
rational functions in a function field. Chapter I.3 in Silverman [23] is recommended for a
more elaborate discussion of algebraic maps between projective varieties.

Definition 1.8. Let V be a variety defined over a field k. The coordinate ring of V is

k [V ] =
k [X]

I(V )
.

The field of fractions of k [V ] is called the function field of V , denoted k(V ).

Considering that I(Pn) = {f ∈ k̄[X] | f is homogeneous and f(P ) = 0, for all P ∈
Pn} = {0}, the function field of Pn is k̄(X0, ..., Xn). For a projective variety V ⊂ Pn its

function field k(V ) is defined by f(X0,...,Xn)
g(X0,...,Xn)

, with g(X0, ..., Xn) ̸∈ I(V ) and f, g ∈ k̄[X0, ..., Xn]
homogeneous polynomials of the same degree.

Definition 1.9. Let V1, V2 ⊂ Pn be two projective varieties. A rational map ϕ : V1 −→ V2 is
a map of the form

fi : V1 −→ V2, ϕ = [f0, ..., fn]

where the rational functions fi ∈ k̄(V1) have the property that for every P ∈ V1 at which all
functions fi are defined,

ϕ(P ) = [f0(P ), ..., fn(P )] ∈ V2.

Remark. A rational map ϕ is not necessarily defined at every point of V1. In case that a
rational function fi is not defined at P ∈ V1, the map ϕ might still be defined at P . This is
done by replacing fi by gfi for an appropriate g ∈ k̄(V1).

Definition 1.10. A rational map ϕ = [f0, ..., fn] : V1 −→ V2 is regular or defined at a point
P ∈ V1 if there is a function g ∈ k̄(V1) such that

1. each gfi is regular at P .

2. there is some j for which (gfj)(P ) ̸= 0.

If such a function g exists, we set ϕ(P ) = [(gf1)(P ), ..., (gfn)(P )].

A rational map ϕ : X −→ Y is birational if there exists a rational map ψ : Y −→ X such
that ϕ ◦ ψ = idY and ψ ◦ ϕ = idX as rational maps. In this case the varieties X, Y are said
to be birational.

Example 1.1. Take the polynomials G : z3 = 0 and F : zy2 = x3 in k(P2). Define the
map ϕ = [F,G], ϕ : P2 99K P1 by (x : y : z) 7→ (F (x, y, z) : G(x, y, z)). At the points
p ∈ V (F ) ∩ V (G), ϕ(p) = (0 : 0) ̸∈ P1. However, F,G are defined at p. Since gF (p) =
g(zy2 − x3)(p) = 0 and gG(p) = g(z3)(p) = 0 for all g ∈ k̄(P2), ϕ is not regular at the points
p ∈ V (F ) ∩ V (G). These points are in the indeterminacy locus of the rational map ϕ.

Definition 1.11. A rational map ϕ : V1 −→ V2 between two varieties V1, V2 that is regular at
every point P ∈ V1 is called a morphism.

A morphism ϕ : V1 −→ V2 is called an isomorphism if there exists a morphism ψ : V2 −→ V1
such that ϕ ◦ ψ = idV2 and ψ ◦ ϕ = idV1 . In this case the varieties V1, V2 are said to be
isomorphic.
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1.2 Linear System of Curves 1 GENERAL PRELIMINARIES

1.2 Linear System of Curves

Using (homogeneous) polynomials, curves in affine and projective space can be defined. As
this thesis considers curves in P2, curves will be defined over this space.

1.2.1 Algebraic Curves

The aim of this subsection is to define algebraic curves and introduce two consequential
theorems regarding their points of intersection.

Definition 1.12. An affine algebraic curve is an affine variety of dimension 1. Similarly,
a projective algebraic curve is a projective variety of dimension 1.

By definition 1.12, the maps from Section 1.1.1 can also be applied to curves. An affine
algebraic plane curve is the zero locus of an irreducible polynomial in two variables. An
projective algebraic plane curve is the zero locus of an irreducible homogeneous polynomial
in three variables. The degree of a plane curve is the degree of the polynomial by which it is
defined.

In projective spaces, there are extra points on the line at infinity. For P2 these extra
points will be discussed in Section 1.5.2. Due to these extra points, a general statement can
be made regarding the number of intersections (counting multiplicity) of two curves. This
is the topic of Bézout’s theorem:

Theorem 1.1. Bézout
Let k be algebraically closed. Let X and Y be projective plane curves, with X nonsingular
and not contained in Y . Then the sum of the multiplicities of intersection of X and Y at all
points of X ∩ Y equals the product of the degrees of X and Y .

Proof. The proof can be found in [21]. ■

Our curves of interest are cubics, and another useful result about their common intersec-
tion points can be made.

Theorem 1.2. Cayley Bacharach
Given eight points P1, ..., P8 in the plane, no four colinear and no seven lying on a conic,
there is a uniquely determined point P9 (possibly an infinitely near point) such that every
cubic through P1, ..., P8 also passes through P9. This is still true if P2 is infinitely near P1,
and P8 is infinitely near any one of P1, ..., P7.

Proof. The proof can be found in Chapter V in [11]. ■

1.2.2 Linear Systems

A projective curve of degree d is the zero locus of an ideal generated by homogeneous
polynomials of degree d. A curve in P2 can be identified with a polynomial whose zero locus
defines the curve. As this thesis considers curves in P2, the term curve will henceforth also
be used to describe a polynomial.

A homogeneous polynomial of a certain degree d ≥ 1 in P2 can be systematically defined
by numbering all existing monomials M1, ...,MN of degree d. Every monomial is of the form

9



1.2 Linear System of Curves 1 GENERAL PRELIMINARIES

Mi = XpiY qiZri , where pi + qi + ri = d. The number of monomials of degree d is equal to
N = 1

2
(d + 1)(d + 2) [7]. Using the numbered monomials, any homogeneous polynomial in

P2 can be defined.

Definition 1.13. A homogeneous polynomial of degree d in P2 is of the form:

F =
∑

i∈{1,2,...,N}

aiMi,

where M1, ...,MN are the monomials of degree d and ai ∈ k.

Giving a curve of degree d is the same thing as choosing a1, ..., aN ∈ k, not all zero,
except that (a1, ..., aN) and (λa1, ..., λaN) define the same curve.

Using this convention of notation for curves, curves of degree d can be associated to a
projective space. Namely, curves of degree d form a projective space of dimension d(d+3)/2
[7]. In other words, each curve of degree d corresponds to a unique point in Pd(d+3)/2 and vice
versa. Therefore, curves can be considered as points in d(d+ 3)/2−dimensional projective
space.

Example 1.2. A projective cubic curve a1Y
3+a2Y

2Z+a3Y Z
2+a4Y

2X+a5Y X
2+a6X

3+
a7X

2Z + a8XZ
2 + a9Z

3 + a10XY Z = 0 corresponds to a point (a1, ..., a10) ∈ P9.

When putting conditions on the set of all curves of degree d, the curves that satisfy the
conditions form a subset of Pd(d+3)/2. If the subset is a linear subvariety [7], it is called a
linear system of plane curves.

One of the conditions all curves of degree d could be subject to is passing through a
given set of points. In fact, imposing all curves to pass through a certain point decreases the
dimension of the corresponding projective space Pd(d+3)/2 by one.

Proposition 1.3. Let P ∈ P2 be a fixed point. The set of curves of degree d containing the
point P forms a hyperplane in Pd(d+3)/2.

Proof. The proof can be found in Chapter 5.2 in [7]. ■

A family of cubics that contains 8 points such that no four are colinear and no seven lay
on a conic is a 1-dimensional linear system of curves, also called a pencil of cubics. Any curve
in this family corresponds to a point in P1. By the Cayley Bacharach theorem, each curve
in the family will also contain the same ninth point. The 9 common points of the family are
called the base points of the pencil.

For two projective cubic curves F,G, the family of cubic curves sharing their nine common
points is the pencil {tF (x : y : z) + uG(x : y : z) = 0 | (t : u) ∈ P1, (x : y : z) ∈ P2}. The
pencil is called a linear system of plane curves. It is linear as (t : u) ∈ P1 are linear terms.
Figure 1.a shows an example of two cubics F,G and their nine points of intersection. In
Figure 1.b another curve in the pencil is shown that also intersect the same nine points.

10



1.3 Blow-up of a Point 1 GENERAL PRELIMINARIES

(a) The cubics
F : y = 4x(x− 1)(x+ 1) and
G : x = 4y(y − 1)(y + 1).

(b) A member of the pencil
given by 2F +G = 0.

Figure 1: A pencil of cubics.

1.3 Blow-up of a Point

For two projective cubic curves F,G the rational map ϕ : P2 99K P1, defined by (x : y : z) 7→
(F (x, y, z) : G(x, y, z)) is not defined at the points of intersection of F and G, see Example
1.1. Ideally, the map ϕ would be defined everywhere, making it a morphism. In order to
achieve this, a procedure called a blow-up can be used.

A blow-up is a birational map. Its main uses are to resolve singularities and the indeter-
minacy locus of a rational map, by replacing points with a line. In the upcoming sections,
the base points of pencils of cubics will be the points that are blown-up. This section will
discuss how blowing up a point works in respectively affine and projective space. Mainly
pages 28 and 29 of [11] and Chapter 4 of [21] are referenced.

Firstly, let us take a look at the affine space An. The blow-up of the point P = (0, ..., 0) ∈
An will be constructed. It is enough to describe the procedure for a specific point, as any point
can be translated to it. Blowing up of An at P takes An to a closed subset S ⊂ An × Pn−1,
defined by the equations {xiyj = xjyi | i, j = 1, ..., n}, with x1, ..., xn the affine coordinates
of An, and y1, ..., yn the projective coordinates of Pn−1.

S An×Pn−1

π

An

There exists a natural morphism π : S −→ An by restriction to the first factor. This map
allows for some useful properties:

11



1.3 Blow-up of a Point 1 GENERAL PRELIMINARIES

1. π gives an isomorphism between S \π−1(P ) and An \ {P}. This can be seen by letting
Q = (a1, ..., an) ∈ An\{P}, where at least one ai ̸= 0. LetQ×(y1, ..., yn) ∈ π−1(Q) ⊂ S,
for some (y1, ..., yn) ∈ Pn−1. In S we are subject to the condition aiyj = ajyi. This
means that yj =

aj
ai
yi, and hence (y1, ..., yn) is uniquely defined by Q. Moreover, we

can set yj = aj, meaning we can take (y1, ..., yn) = (a1, ..., an). Thus π−1(Q) consists
of a single point (a1, ..., an)× (a1, ..., an).

There is an inverse morphism to π between An\{P} and S\π−1(P ) given by Ψ(a1, ..., an) =
(a1, ..., an)× (a1, ..., an), showing the isomorphism between An \ {P} and S \ π−1(P ).

2. π−1(P ) ∼= Pn−1. By definition, π−1(P ) consists of all points P × (y1, ..., yn), with
(y1, ..., yn) ∈ Pn−1. Since P = (0, ..., 0), the condition xiyj = xjyi is satisfied for all
(y1, ..., yn) ∈ Pn−1.

3. Points of π−1(P ) correspond to the lines through P in An. For the explicit 1-1 corre-
spondence see page 28 in [11].

When we wish to blow-up a point P of a closed subvariety C ⊂ An, we simply define the
blow up as S = (π−1(C \ {P})), with π : S −→ An the blow-up as defined above.

This thesis mainly considers blow-ups in P2. The blow-up of a point in P2 is defined as
follows:

Definition 1.14. Blow-up of a point in P2

Let S be a surface and p ∈ S. Then there exist a surface S̃ and a morphism π : S̃ −→ S,
which are unique up to isomorphism, such that

1. the restriction of π to π−1(S \ {P}) is an isomorphism onto S \ {P};

2. π−1(P ) = E, say, is isomorphic to P1.

π is the blow-up of S at p, and E is called the exceptional divisor or exceptional curve of
the blow-up. The self-intersection of an exceptional divisor is E2 = −1. The intersection
number of divisors will be discussed in Section 1.4.

Projective blow-ups have a similar construction to affine blow-ups. Take two projective
spaces Pn and Pn−1, with homogeneous coordinates [x0 : ... : xn] and [y1 : ... : yn] respectively.
A point in Pn × Pn−1 is denoted P = [x : y] = [x0 : ... : xn : y1 : ... : yn]. Similar to the
affine case, the blow up at P = [1 : 0 : ... : 0] ∈ Pn is defined by the map π : Π −→ Pn, where
Π ⊂ Pn × Pn−1 is the closed subvariety defined by xiyj = xjyi, where i, j = 1, ..., n. Again
the map π allows for useful properties:

1. π gives an isomorphism between Pn \ {P} and Π \ ({P} × Pn−1), given by the inverse
π−1 : Pn \ {P} −→ Π \ ({P}×Pn−1), where [x0 : ... : xn] 7→ ((x0 : ... : xn), (x1 : ... : xn)).

2. π−1(P ) ∼= P × Pn−1 and since P = [1 : 0 : ... : 0], the condition xiyj = xjyi is satisfied
for all (y1, ..., yn) ∈ Pn−1, so π−1(P ) ∼= Pn−1.

3. Again, points of π−1(P ) correspond to lines through the point P ∈ Pn. For an elaborate
construction of this correspondence, see page 114 of [21].
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1.3 Blow-up of a Point 1 GENERAL PRELIMINARIES

Let π : Ŝ −→ S be the blow-up of a point p, and consider an irreducible curve C on S that
passes through p with multiplicity1 m. The closure of π−1(C \ {P}) in Ŝ is an irreducible
curve Ĉ on Ŝ, which we call the strict transform of C [3].

Proposition 1.4. Let π : Ŝ −→ S be the blow-up of a point p, and consider an irreducible
curve C on S that passes through p with multiplicity m. The proper transform of C is

π∗(C) = Ĉ +mE,

where Ĉ is the strict transform of C.

Proof. The proof can be found in [3]. ■

Example 1.3. Consider two cubics F,G ∈ P2, intersecting in 9 distinct points. In order
to resolve the indeterminacy locus of the rational map ϕ mentioned at the beginning of this
section, we blow up at the points of intersection P1, ..., P9. When blowing up at a point P1, F
and G are separated at P1 and the point is replaced by the exceptional divisor E1 (see Figure
2). The proper transform of the cubic F is π∗(F ) = F̃ +E1, where F̃ is the strict transform
of F . After repeating the blow-up process for the other 8 points P2, ..., P9 the two curves have
no more points of intersection, meaning that the indeterminacy locus of ϕ has been resolved.

Figure 2: The blow-up of at the intersection points of two cubics.

Example 1.4. In order to illustrate a blow-up at the base points of a pencil of cubics, let
S : y2z = x3 + tz3 be a pencil of cubics, G : zy2 = x3 and F : z3 = 0. The map ϕ : P2 99K P1,
defined by (x : y : z) 7→ (F (x, y, z) : G(x, y, z)) is not defined at the basepoints of S. The
point P = [1 : 0 : 0] is such a point. In order to resolve the indeterminacy locus of ϕ, this
example will blow-up at P .

In order to illustrate the blow-up, we dehomogenise to y2 = x3 + t. At t = 0, the pencil
has a singular point at P = (0, 0). To resolve this singularity, we blow up at P . The result
is visible in Figure 3. The blow-up is defined by the equations y2 = x3 and xu = yv, for
(v : u) ∈ P1.

1Intersection multiplicity is discussed in Chapter 2 of [9].
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1.4 Divisors 1 GENERAL PRELIMINARIES

To see what the strict transform Ŝ of S looks like, we look along different points of E.
We have E ∼= P1 by Definition 1.14. For (v : u) ∈ P1, it always holds that either v ̸= 0
and/or u ̸= 0. Let us consider the case where v ̸= 0. Then we can set u = u

v
and v = 1. The

equations describing the blow-up become y2 = x3 and xu = y. Substituting for y results in
x2u2 = x3. This gives two irreducible components, the first one being E described by x = 0
and y = 0, where u can be chosen arbitrarily.

The second irreducible component is the strict transform Ŝ, given by x = u2 and y = u3.
Ŝ meets the exceptional curve in u = 0. Consequently, the strict transform tangentially
intersects the exceptional curve at u = 0, see Figure 3.

Figure 3: Blowing up2 y2 = x3 + t at t = 0 and v ̸= 0.

As previously mentioned, a blow-up is a birational map, with as inverse a blow-down. A
blow-down takes a (−1)−curve isomorphic to P1 and replaces it with a point, according to
the reverse process of a blow-up.

1.4 Divisors

In this section divisors are studied. More precisely, a divisor is a formal sum of subvari-
eties of codimension 1 in a variety. Furthermore, this section includes a proof that the self
intersection of the exceptional divisor E of a blow-up is −1.

Definition 1.15. Let X be an irreducible variety. A collection of distinct irreducible closed3

subvarieties C1, ..., Cr of codimension 1 in X with assigned integer multiplicities k1, ..., kr will
be called a divisor on X. A divisor is written

D = k1C1 + ...+ krCr.

The support of a divisor D = k1C1+ ...+krCr with all k1 ̸= 0 is the variety C1∪ ...∪Cr,
denoted Supp(D). A divisor D = Ci is called a prime divisor.

3The algebraic subvarieties are the closed sets the Zariski topology. For a more detailed discussion of the
Zariski topology see [15].
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1.4 Divisors 1 GENERAL PRELIMINARIES

The addition of two divisors D = k1C1 + ...+ krCr, D
′ = k′1C1 + ...+ k′rCr, provided we

allow the coefficients ki to take the value zero, is defined as

D +D′ = (k1 + k′1)C1 + ...+ (kr + k′r)Cr.

The set of divisors on X form a group under this operation, denoted Div(X), generated by
the prime divisors.

Example 1.5. Let X be a curve. A divisor D in Div(X) is a finite formal sum of points
in X, e.g. D = P1 +3P2, or D = 2P3 − 4P5. In case X is a surface, a divisor D in Div(X)
is a finite formal sum of curves over X, e.g. D = C1, or D = 3E −B.

For a nonzero rational function f ∈ k(X), its divisor is defined as:

div(f) =
∑
Ci

vCi
(f) · Ci

Where vCi
(f) corresponds to the order of the zero/pole of f along prime divisor Ci. Divisors

of this form are called principal divisors [3].

Result 1.1. [21] Let f, l ∈ k(X). There exist g, h ∈ k [X] such that f = g
h
. Two properties

of principal divisors are

i. div(f · l) = div(f) + div(l)

ii. div(f) = div(g)− div(h)

The principal divisors form a subgroup of the group of all divisors, denoted PDiv(X).
Using this subgroup, the Picard group can be defined.

Definition 1.16. The Picard group is the quotient group given by Pic(X) = Div(X)/PDiv(X).
The equivalence between D1, D2 ∈ Pic(X) is defined by:

D1 ∼ D2 if D1 = D2 + div(f) for some f ∈ k(X).

In case D1 ∼ D2, D1 and D2 are said to be linearly equivalent.

The following theorem defines the intersection product between two divisors.

Theorem 1.5. Intersection Number
There is a unique pairing Div(X) × Div(X) −→ Z, denoted by C · D for any two divisors
C,D, such that

i. if C and D are nonsingular curves meeting transversally, then C ·D = #(C ∩D).

ii. it is symmetric: C ·D = D · C

iii. it is additive: (C1 + C2) ·D = C1 ·D + C2 ·D

iv. it depends only on the linear equivalence classes: if C ∼ C ′, then C · D = C ′ · D for
all D ∈ Div(X).
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1.4 Divisors 1 GENERAL PRELIMINARIES

Proof. The proof of this theorem can be found in Chapter V in [11]. ■

In what follows a proposition will be stated that relates the genus of a curve with its
self-intersection and its intersection with the canonical divisor of the variety. For a definition
of the canonical divisor, see [11].

Proposition 1.6. Adjunction Formula
If C is a nonsingular curve of genus g(C) on the surface X, and K is the canonical divisor
on X, then

2g(C)− 2 = C · (C +K)

Proof. The proof of the Adjunction formula can be found in Chapter V in [11]. ■

As the intersection product only depends on linear equivalence classes of the divisors, the
self-intersection of divisors can also be computed by calculating the intersection product of
the divisor with a divisor in its equivalence class.

Example 1.6. In this example the self-intersection of a line L ∈ P2 will be determined.
Calculating (L·L) = L2 is not trivial, as one cannot simply count the number of intersections
with multiplicity. Fortunately the adjunction formula in Proposition 1.6 can be used. The
canonical divisor K in P2 is −3H, where H is any line in P2 (page 361 in [11]). Note since
a line has degree d = 1, its genus according to the genus degree formula in Section 1.5.1 is
g(L) = 0. Therefore

2g(L)− 2 = L · (L− 3H)

−2 = L2 − 3(L ·H)

Since two lines with no common components intersect in one point by Bézout’s theorem, we
have that (L ·H) = 1.

−2 = L2 − 3

L2 = 1

Therefore, all lines in P2 have self intersection 1.

In order to debate the self intersection of exceptional divisors, the pull-back map of a
divisor needs to be discussed.

Proposition 1.7. Let ϕ : X −→ Y be a regular map of non-singular irreducible varieties, and
D a divisor on Y . In particular, if ϕ(X) is dense in Y then the pullback ϕ∗ of any divisor
D ∈ Div(Y ) defines a homomorphism

ϕ∗ : Div(Y ) −→ Div(X).

The pullback of a principal divisor f ∈ K(X) is

ϕ∗(div(f)) = div(ϕ∗f). (1)

As a result, ϕ∗ also maps the principal divisors of Y to the principal divisors of X. Therefore
ϕ∗ defines a homomorphism ϕ∗ : Pic(Y ) −→ Pic(X).
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1.5 Elliptic Curves 1 GENERAL PRELIMINARIES

Proof. The proof can be found in [21]. ■

Proposition 1.8. Let S, S ′ be surfaces, ϕ : S −→ S ′ a generically finite morphism of degree4

d, D and D′ divisors on S. Then ϕ∗D · ϕ∗D = d(D ·D′).

Proof. The proof can be found in [3]. ■

Finally, the self intersection of the exceptional divisor E can be determined.

Proposition 1.9. The exceptional divisor E as in Definition 1.14 has self-intersection

(E · E) = E2 = −1.

Proof. Let π : S −→ X be the blow up of a point P on a nonsingular variety X. By Theorem
3.1 in Chapter 3.1.3 in [21] we can take curves c, c′ ∈ X, such that we have a point P ∈ c
(with multiplicity m), but P ̸∈ c′, while c ∼ c′. Hence we can say c′ = c + div(f) for some
f ∈ K(X). As a result,

π∗c′ = π∗c+ π∗(div(f))
eq. (1)
= π∗c+ div(π∗f)

=⇒ π∗c′ ∼ π∗c

Since π is an isomorphism outside of P , and E = π−1(P ), we have E · π∗(c′) = 0. Since
π∗c′ ∼ π∗c, by Definition 1.5.ii we have

E · π∗(c) = 0. (2)

Moreover, we have that π∗c = c̃+mE (see Proposition 1.4), and E · c̃ = m. Then

c̃ = π∗(c)−mE

E · c̃ = E · (π∗c−mE)

m = E · π∗c−mE2

m
eq. (2)
= −mE2

=⇒ E2 = −1

■

1.5 Elliptic Curves

An elliptic curve is a smooth projective curve of genus 1, defined over a field k together with
a k−rational point. This is a point whose coordinates are elements of k. This section will
define elliptic curves, and discuss the group structure of the k−rational points.

4Meaning that the pre-image at almost all points in S′ consists of d points, except for the points on a
Zariski closed set.
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1.5 Elliptic Curves 1 GENERAL PRELIMINARIES

1.5.1 Definition of Elliptic Curves

This thesis studies cubic curves in two variables over a field. Cubic curves with a point over
k are elliptic curves.

Definition 1.17. An elliptic curve E over a field k is a nonsingular cubic curve, together
with a k-rational point. A k-rational point is a point on the curve where (x, y) ∈ k2.

Proposition 1.10. An elliptic curve can be given by

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, where ai ∈ k.

Proof. The proof can be found in Chapter III.3 of [23]. ■

An elliptic curve over a field of Char(k) ̸= 2 can be written as

E : y2 = x3 + ax2 + bx+ c, where a, b, c ∈ k.

Moreover, in the case that Char(k) ̸= 2, 3, any elliptic curve over a field k can be written
in the shorter Weierstrass normal form: y2 = x3 − 27c4x− 54c6. How this can be achieved
is shown in Chapter 3.1 in [23]. It uses two substitutions, respectively

y 7→ 1

2
(y − a1x− a3), (x, y) 7→

(
x− 3b2

36
,
y

108

)
,

where b2 = 4a2+a
2
1, b4 = 2a4+a3a1, b6 = 4a6+a

2
3, c4 = b22−24b4, c6 = −b23+36b2b4−216b6.

From these substitutions it is visible that the Weierstrass normal form can only be attained
in fields of characteristic unequal to 2 or 3, as in fields of characteristic 2 or 3 x and y would
be substituted by 0.

In order to see all intersection points of elliptic curves this thesis considers elliptic curves
in the projective space P2. Therefore, the affine coordinates must be transformed to homo-
geneous coordinates. To this end, the following substitution is used:

x =
X

Z
, y =

Y

Z
.

This gives the general expression for a projective elliptic curve:

ZY 2 + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3, where ai ∈ k. (3)

Definition 1.3 shows that projective elliptic curves are defined by homogeneous polynomials
of degree 3 in three variables. The fact that every elliptic curve has genus 1 is a consequence
of the genus-degree formula.

Proposition 1.11. Genus-Degree Formula
The genus g(C) of a smooth irreducible projective plane curve C of degree d is equal to
g(C) = 1

2
(d− 2)(d− 1).

Proof. See Hartshorne’s book Algebraic Geometry [11]. ■
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1.5 Elliptic Curves 1 GENERAL PRELIMINARIES

In Figure 4 two examples of elliptic curves over Q are shown. Elliptic curves over Q(t)
will be relevant for this thesis. An elliptic curve over Q(t) is of the form

E : y2 = x3 + A(t)x+B(t),

where A(t), B(t) ∈ Q(t).These type of elliptic curves resurface in Section 2.1 on elliptic sur-
faces.

(a) y2 = x3 − x+ 3 (b) y2 = (x+ 4)(x− 1)(x− 2)

Figure 4: Two elliptic curves over Q with corresponding polynomial.

1.5.2 Group Law on Elliptic Curves

This section defines an action on the set of points on an elliptic curve. It is shown that these
points form an abelian group under this action together with the unit element O.

Using the coordinate transformation in Section 1.5.1, the Weierstrass normal form in
projective space becomes

Y 2Z = X3 + aXZ2 + bZ3, a, b ∈ k.

A point on the curve is given by [X : Y : Z] ∈ P2. Now the unit element O mentioned at the
beginning of this section can be defined. This element is called the point at infinity of P2,
because it is not in the dehomogenized affine model when taking Z = 1. In P2 the points at
infinity are the lines through (0,0,0) and the plane where Z = 0. Substituting Z = 0 in the
general expression of a plane curve in equation 3 gives X3 = 0, hence the point at infinity
O is [0 : 1 : 0]. A more thorough discussion of the point at infinity in Pn can be found in
Chapter 4 of [7].

The pointO can be thought of as the point where all vertical linesX = ameet. Moreover,
O is counted as a rational point. Addition on elliptic curves can be geometrically defined by
setting O as the origin.
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1.5 Elliptic Curves 1 GENERAL PRELIMINARIES

By Bézout’s theorem, there are always three intersections between a line and an elliptic
curve in P2, counting multiplicity. As shown in Figure 4.a, by taking the line defined by
P and Q for any two points P and Q on our curve, one can find a third intersection point
which is denoted P ∗ Q. The case for Q = P is shown in Figure 4.b. There, drawing the
tangent line to the curve at the point P gives the third intersection P ∗ P . This procedure
defines the group law on the points of an elliptic curve.

(a) (b)

Figure 5: Intersection of the line through points on an elliptic curve

Definition 1.18. The addition of two points P and Q on an elliptic curve is defined as
P +Q = O ∗ (P ∗Q).

An exemplary addition can be found in Figure 6. The lines X = a meet in O hence
the line intersecting O and P ∗ Q is a vertical line through P ∗ Q. In case that the third
intersection point of the line through P and Q is O we have P +Q = O.

From P ∗Q = Q ∗ P , it follows that the addition of points on a curve is commutative:

P +Q = O ∗ (P ∗Q) = O ∗ (Q ∗ P ) = Q+ P.

Figure 6: The addition of two points P , Q on an elliptic curve
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1.6 Good and Bad reduction 1 GENERAL PRELIMINARIES

Addition on elliptic curves turns the points of an elliptic curve into a commutative group,
as shown in Chapter III of [23].

Example 1.7. To illustrate how the addition of points on a curve precisely works, consider
the elliptic curve E : y2 = x3 + 3x + 4. Two points on this curve are P = (−1, 0) and
Q = (0, 2). In order to calculate P +Q, we first determine P ∗Q. The line through P,Q is
y = 2−0

0−(−1)
x + b = 2x + b. Filling in one of the points gives y = 2x + 2. The intersection

between this line and E is equal to P ∗ Q. It turns out that P ∗ Q = (5, 12). Now, we can
calculate P + Q = (P ∗ Q) ∗ O by finding the second intersection of the elliptic curve and
X = 5. By the symmetry of E, we find that P +Q = (5,−12).

Definition 1.19. A point P on an elliptic curve E over k is a torsion point of order n if
n is the smallest positive integer for which nP = O. If no such n exists, P is not a torsion
point.

In fact, the rational points of an elliptic curve defined over a number field are a finitely
generated abelian group.

Theorem 1.12. Mordell-Weil
Let k be a number field. The set E(k) consisting of k-rational points of an elliptic curve E
over k is a finitely generated abelian group, the Mordell-Weil group. In particular, it can be
written as

E(k) ∼= Tor(E(k))⊕ Zr,

where r is the rank of E(k) and Tor(E(K)) is the torsion group of E(k), consisting of all
k-rational points of finite order.

Proof. The proof of the Mordell-Weil theorem is given by Silverman in Chapter 8 of his book
Arithmetic of Elliptic Curves [23]. It uses a weak statement of the theorem, which states
that for m ≥ 2 the quotient group E(k)/mE(k) is a finite group. Moreover, the height of
a point P = [x0, ..., xn] in projective space is used. This notion is expanded to points on
elliptic curves. Using these tools, Silverman proves the Mordell-Weil theorem. ■

1.6 Good and Bad reduction

As seen in Section 1.5.1, any elliptic curve can be put into the Weierstrass normal form
y2 = x3 + Ax + B, for some A,B ∈ k, Char(k) ̸= 2, 3. The discriminant ∆ of an elliptic
curve E in Weierstrass normal form is

∆(E) = −16(4A3 + 27B2).

Definition 1.20. A curve E is non-singular if and only if the discriminant ∆(E) is non-zero.
Any curve that has a singular point is a singular curve.

Definition 1.21. A point P = (x0, x1, x2) ∈ P2 on a curve defined by the homogeneous
polynomial F ∈ k [X, Y, Z] is singular if all partial derivatives vanish at that point, e.g.

dF

dX
(P ) = 0,

dF

dY
(P ) = 0,

dF

dZ
(P ) = 0.
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(a) y2 = x3 + x2 (b) y2 = x3

Figure 7: Two singular curves with a node and a cusp, respectively.

A singular point is a node if the tangent lines to the curve at P have different slopes,
while it is a cusp if the slopes are equal. An example of a node and cusp are given in Figure
7.

Based on its singularity after reducing A and B, a non-singular plane curve either has
good or bad reduction at a particular local parameter. In order to thoroughly discuss re-
duction, the notion of valuation and discrete valuation rings over a field will be defined,
according to the definitions by Altman and Kleiman in Chapter 23 of [1].

Definition 1.22. Let k be a field. A discrete valuation of k is a surjective function v : k× −→
Z such that, for every x, y ∈ k×

1. v(x · y) = v(x) + v(y)

2. v(x+ y) ≥ min{v(x), v(y)} if x ̸= −y

As per convention, v(0) = ∞.

In order to define the discrete valuation with respect to a local parameter t, notions
regarding local rings will be defined according to [9].

Definition 1.23. Let F be an irreducible non-singular affine curve over an algebraically
closed field k. The coordinate ring of F is defined as

A(F ) :=
k[x, y]

⟨F ⟩
.

Definition 1.24. Let F be an affine curve. The local ring of F at a point P ∈ F is denoted
by

OF,P :=

{
f

g
| f, g ∈ A(F ) with g(P ) ̸= 0

}
.

In particular, OF,P is a discrete valuation ring.
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There is a well-defined evaluation map from the local ring to the field k, given by

OF,P −→ k,
f

g
7→ f(P )

g(P )
.

The kernel of this evaluation map is

IF,P :=

{
f

g
| f, g ∈ A(F ) with f(P ) = 0 and g(P ) ̸= 0

}
.

Definition 1.25. The ideal IF,P can be written as IF,P = ⟨t⟩ for some t ∈ OF,P . We call t
a local parameter for F at P .

Given a local parameter t for F at P , any x ∈ k× has a unique factorization related
to the local parameter t, given by x = utn, where u ∈ k satisfies v(u) = 0. Furthermore
it is assumed that the valuation is normalized, i.e. v(t) = 1. Hence, v(x) = v(utn) =
v(u) + v(tn) = v(tn) := n.

Example 1.8. In Q, we can define valuation with respect to a prime in Z. For a prime p
and α ∈ Q satisfying p ∤ α, we have vp(αp

n) = n. For instance with respect to the prime
3, the valuation of the integer 9 gives v3(9) = v3(3) + v3(3) = 2. Note that this corresponds
with 9 = 32.

Moreover, a discrete valuation gives rise to the discrete valuation ring R := {x ∈ k |
v(x) ≥ 0}, with maximal ideal M := {x ∈ k | v(x) > 0}. The residue field is defined as
kv = R \M. For a local parameter t with valuation v, any element of M is of the form utn,
n ≥ 1 and u ∈ k. Therefore, M = ⟨t⟩.

Definition 1.26. Reduction
Let E be an elliptic curve over k, and let Ẽ be the reduction modulo M of a minimal
Weierstrass equation for E.

1.) E has good reduction if Ẽ is non-singular.

2.) E has multiplicative reduction if Ẽ has a node (see Figure 7.a).

3.) E has additive reduction if Ẽ has a cusp (see Figure 7.b).

In cases 2.) and 3.) E is said to have bad reduction.

Multiplicative reduction is split if the slopes of the tangent lines at the node are in k,
otherwise the reduction is non-split.

Example 1.9. Take the elliptic curve E : y2 = x3 + t2x defined over the field Q(t). The
local parameters are of the form t− α, with α ∈ Q. Given the local parameter t, the reduced
elliptic curve is Ẽ : y2 = x3. Ẽ is a singular curve, with a cusp at the singular point (see
Figure 7.b). Hence, E has additive reduction modulo t.

Remark. Let E be an elliptic curve over a field k defined by E : y2 + a1xy + a3y =
x3 + a2x

2 + a4x + a6, where ai ∈ R for all i = 1, ..., 6. The corresponding Weierstrass form
E : y2 = x3 − 27c4x− 54c6, with c4, c6 ∈ k, is minimal if one of the following hold:
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• v(∆) < 12

• v(c4) < 4

• v(c6) < 6

For an arbitrary field k, an algorithm to determine whether a Weierstrass form is minimal
is given in [23].

Proposition 1.13. Let E be an elliptic curve over a field k, given by a minimal Weierstrass
equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

Let c4 be such that in Weierstrass form we have E : y2 = x3 − 27c4x− 54c6.

1.) E has good reduction modulo M if and only if v(∆) = 0, i.e. ∆ ∈ R∗. In this case Ẽ
is an elliptic curve over kv.

2.) E has multiplicative reduction modulo M if and only if v(∆) > 0 and v(c4) = 0, i.e.
∆ ∈ M and c4 ∈ R∗. The set of nonsingular points of Ẽ(kv) is isomorphic to the
multiplicative group k̄v

∗.

3.) E has additive reduction modulo M if and only if v(∆) > 0 and v(c4) > 0, i.e.
∆, c4 ∈ M. The set of nonsingular points of Ẽ(kv) is isomorphic to the additive group
k̄v

+.

Proof. The proof can be found in [23]. ■

Moreover, there are only finitely many primes where E/k has bad reduction, since it only
has bad reduction at the local parameters dividing the discriminant ∆.

Example 1.10. The elliptic curve E : y2 = x3 − 2x + 1 defined over Q has discriminant
∆ = 80 = 24 ∗ 5. Hence, E has bad reduction modulo the local parameters 2 and 5. E has
v5(c4) = v5(

2
27
) = 0 and v2(c4) = v2(

2
27
) = 1. Therefore, by Proposition 1.13 we find that E

has multiplicative reduction modulo 5 and additive reduction modulo 2.
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2 ELLIPTIC SURFACES

2 Elliptic Surfaces

As mentioned in the introduction on blow-ups, the rational map ϕ : P2 99K P1, given by
(x : y : z) 7→ (F (x, y, z) : G(x, y, z)) for two projective cubic curves F,G can be defined
everywhere after blowing-up the points in the base points of the pencil defined by F and G.
In particular, rational elliptic surfaces can be constructed by blowing up these base points.

2.1 Definition of Elliptic Surfaces

Definition 2.1. An elliptic surface S over a smooth projective curve C over k is a smooth
projective surface S with an elliptic fibration over C, i.e. a surjective morphism f : S −→ C,
such that

1. All but finitely many fibers are smooth curves of genus 1

2. No fiber contains an exceptional curve of the first kind

An exceptional curve of the first kind is a smooth rational curve of self-intersection -1 (also
called a (-1)-curve). A fiber is defined as f−1(t) for a point t ∈ C.

The property in Definition 2.1.2 can be assumed, since in the case that a surface f : S −→
C does contain a fiber with a (−1)−curve, the (−1)−curve can be blown down. This results
in a surface birational to the original surface.

In this thesis the assumption is made that every elliptic fibration has a singular fiber. In
particular, an elliptic surface is not isomorphic to ε× C where ε is an elliptic curve, so the
fibration is not constant. In addition, it is assumed that every elliptic surface has a section
over S.

Definition 2.2. A section of an elliptic surface f : S −→ C is a morphism π : C −→ S such
that f ◦ π = idC .

Definition 2.3. The generic curve ε of an elliptic surface f : S −→ C is an elliptic curve
over the function field k(C). We denote by ε the fiber corresponding to the generic point η,
meaning ε = f−1(η). The generic point is defined as the point whose closure in the Zariski
topology is the whole of C.

Every section of a fibration corresponds to a k(C)-rational point P on the generic fiber,
defined by the intersection π(C)∩ ε. As a matter of fact, there is a correspondence between
k(C)−rational points of the generic fiber and sections.

Proposition 2.1. Let f : S −→ C be an elliptic surface defined over k. Let ε/k(C) be the
generic fiber of the surface and denote the group of sections of the surface by π(C/k). Then
there is a group isomorphism between the k(C)−rational points on ε/k(C), denoted ε(k(C)),
and the sections of the surface:

ε(k(C)) ∼= π(C/k).

Proof. The proof can be found on page 211 of [22]. ■
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Figure 8: The points on the generic fiber ε corresponding to two sections P,O of a surface
S.

For a schematic drawing of fibers, sections and the generic fiber on an elliptic surface,
see Figure 8. The k(C)−rational points on the generic curve ε form the Mordell-Weil group
of ε, by Theorem 1.12. Therefore, one of the points is assigned as the unit element O of the
Mordell-Weil group, and because of the isomorphism from Proposition 2.1 the corresponding
section is also denoted by O.

2.1.1 Rational Elliptic Surfaces

Rational elliptic surfaces are defined by being birational to P2. Two surfaces S, S ′ are
birational if there exists a composition of birational maps between them.

Definition 2.4. A surface S is said to be rational if it is birational to P2.

As blow-ups are rational maps, blow-ups also define whether surfaces are birational.
Hence, if there exists a map f : S −→ S ′ between two surfaces S, S ′ given by the composition
of blow-ups and blow-downs, S and S ′ are birational.

Theorem 2.2. Let k be an algebraically closed field. Let π : S −→ P1 be a rational elliptic
surface. Then S is the 9-fold blow-up of the plane P2 at the base points of a pencil of
generically smooth cubics curves which induces the fibration π.

Proof. The proof can be found on page 37 in [16]. ■

In order to show the construction of a rational elliptic surface from a pencil of cubics, let
the smooth cubic curves F,G ∈ P2 have no factor in common. By Bézout, F and G have nine
points of intersection. The map ϕ : P2 99K P1, (x0 : y0 : z0) 7→ (F (x0, y0, z0) : G(x0, y0, z0))
is not defined at these base points. Blowing up these nine points results in a surface S ∼=
{(x : y : z)× (t : u) | tF + uG = 0} ⊂ P2 ×P1. Projection onto the second factor π : S −→ P1

makes S an elliptic surface. Moreover, it is a rational elliptic surface since S is birational to
P2. The diagram corresponding to this construction can be found in Figure 9.
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S

π

P1P2
ϕ

Blow up of
points in
F ∩G

Figure 9: The blow up of a pencil of cubics in P2 gives a rational elliptic surface S.

For a rational elliptic surface, Miranda and Persson [17] state that the Picard number is
ρ(S) = 10. This number is due to the blow-ups at the nine base points of a pencil of cubics.

The construction of a rational elliptic surface can also be reversed by blowing down the
sections. This gives a minimal model for the rational elliptic surface. This will be the topic
of section 4.1, where the blow-down of rational elliptic surfaces to Hirzebruch surfaces are
found.

Definition 2.5. Over an algebraically closed field k̄, any rational elliptic surface whose fibers
do not contain (−1)−curves is called relatively minimal. Over a non-algebraically closed field
k, a rational elliptic surface is called minimal if there are no curves that can be blown down
over k.

2.1.2 Reduction and Elliptic Surfaces

For u ̸= 0, a pencil of cubics {tF + uG = 0} ⊂ P2 × P1 can be written as {tF + G = 0} ⊂
P2×P1, with (t : 1) = ( t

u
: u
u
) ∈ P1. If u = 0, the point (t : u) corresponds to the point t = ∞.

From here onward, (t : 1) ∈ P1 is denoted as t, making the notation for a pencil {tF+G = 0}.

Given a point P on the curve P1, a rational elliptic surface π : S −→ P1 can have bad
reduction at local parameters t ∈ OP1,P . If the elliptic surface is the blow-up of a pencil of
cubics, the blow-up will give singular fibers at the corresponding places of bad reduction.
All singular fibers are of the form In for n > 0, I∗n for n ≥ 0, II, III, IV, II∗, III∗ or IV ∗.
They were classified by Kodaira [12] and can be found in Figure 10. When the reduction is
multiplicative, the corresponding fiber is of type In. In the case of additive reduction the
fiber type has an asterisk. Irreducible components make up a singular fiber.

Definition 2.6. A fiber is reducible if it has more than one irreducible components. A fiber
is non-reduced if is contains an irreducible component with multiplicity > 1.

Proposition 2.3. An irreducible component of a reducible fiber is a smooth rational curve
with self intersection −2.

Proof. The proof can be found on page 7 in [16]. ■
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Figure 10: All types of fibers. Multiple components have a thick line, where if no multiplicity
is indicated signifies multiplicity 2.

Using Tate’s algorithm [25], the singular fiber belonging to a local parameter t can be
determined. This algorithm gives the types of fibers a surface has based on certain properties
of the extended Weierstrass form y2 = x3+a2x

2+a4x+a6, in a given characteristic unequal
to 2 or 3.5 The discriminant of the extended Weierstrass is of the form

∆ = −27a26 + 18a2a4a6 + a22a
2
4 − 4a32a6 − 4a34. (4)

Proposition 1.13 indicates that we encounter a singular fiber at t whenever v(∆) > 0. The
valuation of a4 and a6 specify the type of singular fiber at t, according to Table 1.

Example 2.1. Let S be the pencil S : {tF +G = 0}, where G : x3− zy2 = 0, F : z3 = 0. In
affine space this is equal to the pencil y2 = x3 + t (see Example 1.4), therefore a2 = 0, a4 =
0, a6 = t. The discriminant in equation 4 becomes ∆ = −27t2. Hence, there is a singular
fiber at t = 0. As a4 = 0, a6 = t, v(a4) = ∞ and v(a6) = 1, this indicates a fiber of type II
at t = 0 according to Table 1.

5The cases where the characteristic is equal to 2 or 3 can be found in Section 4.5 in [20].

28



2.1 Definition of Elliptic Surfaces 2 ELLIPTIC SURFACES

Fiber type v(a4) v(a6)

I0

{
0 ≥ 0

≥ 0 0

In with (n > 0) 0 0
II ≥ 1 1
III 1 ≥ 2
IV ≥ 2 2
I∗0

{
2 ≥ 3

≥ 2 3

I∗n with (n > 0) 2 3
IV ∗ ≥ 3 4
III∗ 3 ≥ 5
II∗ ≥ 4 5

Table 1: Types of fiber based on valuation of Weierstrass coefficients [20]. No sign implies
an equality, a greater or equal sign implies that a greater or equal value to what is stated is
sufficient.

Moreover, the parameter at infinity has to be considered. Letting t = ∞, we can set
t = 1

s
, resulting in the local parameter s = 0. In affine space, the pencil becomes y2 = x2+ 1

s
.

Rewriting gives

s6y2 = s6x3 + s5.

Let y = s3y, x = s2x, then

y2 = x3 + s5.

Hence, we get the discriminant ∆ = −27s10. We find that a4 = 0, a6 = s5, v(a4) = ∞ and
v(a6) = 5. Table 1 indicates that we hence have a type II* fiber at t = ∞. Therefore, the
pencil of cubics S : {tF +G = 0} gives rise to the elliptic surface with the fibers II*,II. The
corresponding elliptic surface can be seen in Figure 11. At all other parameters t ̸= 0,∞,
the surface consists of nonsingular fibers.

2.1.3 Extremal Rational Elliptic Surfaces

The sections of an elliptic surface form the Mordell-Weil group of the generic fiber of the
surface by Proposition 2.1. The rank of the Mordell-Weil group determines whether an
elliptic surface is extremal.

Definition 2.7. An elliptic fibration f : S −→ C is extremal if the rank of the Mordell-Weil
group is zero.
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Figure 11: The rational elliptic surface f : S −→ C with singular fibers II∗, II at respectively
t = ∞ and t = 0.

This thesis focuses on extremal rational elliptic surfaces. By the Mordell-Weil theorem
1.12, the group of k(P1)−rational points on the generic curve ε of an extremal rational elliptic
surface is equal to

Tor(ε(k(P1)))⊕ Zr = Tor(ε(k(P1)))⊕ Z0 = Tor(ε(k(P1))).

Hence, the Mordell-Weil group of an extremal rational elliptic surface is the torsion group.
Furthermore, a rational elliptic surface being extremal has consequences for the number of
curves with negative self intersection [17].

Proposition 2.4. Let X be a rational elliptic surface. Then the following are equivalent:

i. X is extremal

ii. The number of representations as a blow-up of P2 is finite

iii. The number of rational curves C with C2 < 0 is finite

iv. The number of reduced curves C with C2 < 0 is finite

Proof. The proof can be found on page 75 in [16]. ■

As there are only finitely many curves with negative self-intersection by Proposition 2.4,
the number of blow-downs possible on an extremal rational elliptic surface is in fact finite.

In Table 2 all extremal rational elliptic surfaces and their corresponding torsion group
can be found. As follows from Section 2.1.2, the first 10 surfaces contain additive fibers.
The torsion column indicates the group structure of the set of torsion points of the generic
curve, and hence of the set of sections of the surface.

Remark. As extremal rational elliptic surfaces are a type of rational elliptic surface, an
extremal rational elliptic surface over an algebraically closed field k̄ can be constructed by
blowing up the base points of a pencil of cubics in P2.
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Fibration Rank MW Torsion
II∗, II 0 {0}
II∗, 2I2 0 {0}
I∗4 , 2I1 0 Z/2Z
III∗, III 0 Z/2Z
III∗, I2, I1 0 Z/2Z
IV ∗, IV 0 Z/3Z
IV ∗, I3, I1 0 Z/3Z
I∗2 , 2I2 0 Z/2Z× Z/2Z
I∗1 , I4, I1 0 Z/4Z

2I∗0 0 Z/2Z× Z/2Z
I9, 3I1 0 Z/3Z
I8, I2, 2I1 0 Z/4Z
I6, I3, I2, I1 0 Z/6Z
2I5, 2I1 0 Z/5Z
2I4, 2I2 0 Z/4Z× Z/2Z
4I3 0 Z/3Z× Z/3Z

Table 2: All extremal rational elliptic surfaces and their torsion [18].

Considering theorem 2.2, an extremal rational elliptic surface can always be blown-down
to P2 if the field is algebraically closed. The statement does not necessarily hold over more
general fields. Some blow-downs to P2 are not defined over general fields, as the following
example illustrates. The preliminaries on Galois actions on sections of fibers can be found
in [14].

Example 2.2. Take the pencil of cubics S : {(t2 − t + 1)y2 − x3 − x = 0}, whose blow-up
of base points gives the surface with the 2I∗0 fibers. The roots of x3 + x correspond to the
sections. As the roots are x = 0,±i, there are four sections (0, 0, 1), (i, 0, 1), (−i, 0, 1) and O.
The sections containing ±i are not defined over Q, and hence cannot be blown down over Q
individually. Therefore, the extremal rational elliptic surface constructed from S has torsion
group Z/2Z over Q. As a result, the minimal surface for this elliptic surface is not P2, but
is birational to a minimal Châtelet surface (Figure 12) [6].

A well-known formula regarding elliptic surfaces is the Shioda-Tate formula. The formula
relates the number of components of singular fibers to the rank of the elliptic surface.

Proposition 2.5. Shioda-Tate formula
The Picard number6 ρ of an elliptic surface f : S −→ C is given by

ρ(S) = rk(MW ) + 2 +
∑
v∈Σ

(mv − 1),

where Σ is the finite set of points P1, ..., Pn on C such that f−1(Pi) is a singular fiber. The
number of irreducible components of the singular fiber is denoted by mv.

6The Picard number ρ is the rank of the Néron-Severi group of an elliptic surface. More details can be
found in [16].

31



2.1 Definition of Elliptic Surfaces 2 ELLIPTIC SURFACES

(a) The extremal rational
elliptic surface defined by

S : {(t2−t+1)y2−x3−x = 0}

(b) The minimal
Châtelet surface.

Figure 12: An extremal rational elliptic surface whose minimal model contains (−1)−curves.

Proof. The proof can be found in [24] ■

As mentioned in Section 2.1.1, the Picard number of a rational elliptic surface S is
ρ(S) = 10. From this it follows that

∑
v∈Σ(mv − 1) = 8 for extremal rational elliptic

surfaces. As a result, a singular fiber on an extremal rational elliptic surface can have at
most 9 irreducible components.
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3 Blow-downs to P2

This section studies the construction of the minimal model P2 from extremal rational elliptic
surfaces with at least one additive fiber. By blowing down (−1)−curves in the surface in a
certain order, P2 will be formed. Hence, the curves in the minimal model will have a self
intersection that agrees with Bézout’s theorem. The sum of the intersection multiplicities
between these curves in the minimal model will always be nine. This is due to the fact that
each pencil in P2 whose blow-up defines the surface has nine base points, meaning there will
be nine blow-downs.

In order to properly understand the change in self intersection after a blow-down, the
following proposition will be proven.

Proposition 3.1. Take a surface S with a curve l, with self intersection l2 = n. A blow-up
π : S −→ C of a point P on l results in the self intersection of the strict transform l′ of l to
be l′2 = n− 1.

Figure 13: The blow-up of a point P on a line l.

Proof. Let l have self intersection l2 = n. As π∗(l) = l′ + Ep,

(π∗(l))2 = (l′ + Ep)
2

= l′2 + 2l′Ep + E2
p

= l′2 + 1

As a blow-up is a degree 1 map, by Proposition 1.8 we have π∗(l)2 = l2. Therefore, the self
intersection of l′ is n− 1. ■

Moreover, the type of intersection between curves corresponds to the intersection multi-
plicity. If two curves intersect transversally (Figure 14.a), then the intersection multiplicity
is 1. If two curves intersect tangentially, (Figure 14.b), then the intersection multiplicity
is ≥ 2. If two curves intersect in a point of inflection (Figure 14.c), then the intersection
multiplicity is ≥ 3 [9].

What follows are the blow-downs of extremal rational elliptic surfaces with at least one
additive fiber to P2 over the algebraically closed field Q̄. For all figures the green numbers
represent the self-intersection of the corresponding curve, the blue numbers represent the
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(a) (b) (c)

Figure 14: Intersection multiplicity by way of intersecting.

intersection multiplicity. Bold lines have multiplicity 2 or higher, in the case the line mul-
tiplicity is higher than 2 this is indicated. As the singular points of II and I1 are not one
of the base points of the pencil, their blow-down does not give any additional information
regarding the base points of the pencil. Therefore, the singular fibers II and I1 are not drawn
in the blow-downs. The pencils whose blow up generates the particular elliptic surface were
found either in a paper by Kurumadani [13], or by trial and error using the magma code in
Appendix 5.
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3.1 2I∗0

The blow down of the surface with 2I∗0 fibers is visible in Figure 15. After contracting of the
sections, there are eight exceptional curves that can be blown-down. However, keeping in
mind that in P2 lines have self-intersection 1 (Example 1.6) we must blow down such that
one of the vertical components has self intersection 1. The last blow-down is the contraction
of the other vertical component, resulting in two cubics.

A pencil whose blow-up at its base points gives an extremal rational elliptic surface with
2I∗0 is given by

S : {y2z − x3 − xz2 + ty2z = 0} [13].

Its Weierstrass form is
y2 = x3 + t2x.

The bad places of the pencil are at t = −1 and t = ∞, both corresponding to a I∗0 fiber.

Figure 15: Blow down of 2I∗0 .

3.2 I∗1 , I4, I1

The blow down of the surface with I∗1 , I4, I1 fibers is visible in Figure 16. The first four
blow-downs concern the sections. For the next series of blow-downs, one of the components
of the I4 fiber, and three components of the I∗1 fiber are contracted. Then the last blow-down
that results in all lines having self intersection (1) is done on the last remaining (−1)−curve.

A pencil whose blow-up at its base points gives an extremal rational elliptic surface with
I∗1 , I4, I1 is given by

S : {t(z2 + xy)(x+ y) + x2(x− y − 2z) = 0} [13].

Its Weierstrass form is

y2 = x3 + (−6912t4 + 27648t3 − 6912t2)x+ (221184t6 − 1327104t5 + 1658880t4 + 221184t3).

The bad places of the pencil are at t = 0, t = 4 and t = ∞, corresponding to the I∗1 , I1 and
I4 fibers, respectively.
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Figure 16: Blow down of I∗1 , I4, I1.

3.3 IV ∗, IV

The blow down of the surface with IV ∗, IV fibers is visible in Figure 17. The first three
blow-downs are done on the sections, and afterwards the three newly created (−1)−curves
on the IV ∗ fiber are blown down. This again creates three new (−1)−curves on the former
IV ∗ fiber. After these are blown down, the minimal surface P2 has been constructed.

A pencil whose blow-up at its base points gives an extremal rational elliptic surface with
IV ∗, IV fibers is given by

S : {tz3 + x3 − y3 = 0}.

Its Weierstrass form is

y2 = x3 − 314928

t4
.

The bad places of the pencil are at t = 0 and t = ∞, corresponding to the IV ∗ and IV
fibers, respectively.

Figure 17: Blow down of IV ∗, IV .

3.4 IV ∗, I3, I1

The blow down of the surface with IV ∗, I3, I1 fibers is visible in Figure 18. The blow down
to the minimal surface follows the same path as the blow down of IV ∗, IV .

A pencil whose blow-up at its base points gives an extremal rational elliptic surface with
IV ∗, I3, I1 fibers is given by

S : {y2z = z(x− tz)2 + x3} [13].

Its Weierstrass form is

y2 = x3 + (−2592t− 432)x+ (46656t2 + 31104t+ 3456).
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The bad places of the pencil are at t = 0, t = −4
27

and t = ∞, corresponding to the I3, I1 and
IV ∗ fibers, respectively.7

Figure 18: Blow down of IV ∗, I3, I1.

3.5 I∗4 , 2I1

The blow down of the surface with I∗4 , 2I1 fibers is visible in Figure 19. In order to blow-down
to the minimal surface P2, the two sections are contracted first. The next six blow-downs
are applied on the (−1)−curves newly created by the previous blow-down. Then, there is
a surface with four (−1)−curves. One (−1)−curve only intersecting another (−1)−curve is
blown down, followed by the blow down of the curve intersecting both a (−1)−curve and
(−2)−curve. Any other combination of blow-downs does not result in the minimal surface
P2. After the last remaining (−1)−curve has been blown-down, the minimal surface P2 is
found.

A pencil whose blow-up at its base points gives an extremal rational elliptic surface with
I∗4 , 2I1 is given by

S : {tz(x+ z)2 + y2z − x3 − x2z = 0} [13].

Its Weierstrass form is

y2 = x3 + (−432t2 − 1728t− 432)x+ (−3456t3 − 20736t2 − 25920t+ 3456).

The bad places of the pencil are at t = 0, t = −4 and t = ∞, corresponding to the two I1
and I∗4 fibers, respectively.

7For a study of the elliptic curves y2 = x3 + A(x − t) describing this surface, see the Master’s thesis of
Monique van Beek [4].
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Figure 19: Blow down of I∗4 , 2I1.

3.6 II∗, II and II∗, 2I1

The blow down of the surfaces with II∗, II and II∗, 2I1 fibers is visible in Figure 20. There
is no choice in which (−1)−curve to blow down for the first seven blow-downs. The first
blow down is of the section, followed by the blow-down of the (−1)−curve generated by the
previous blow-down. For the eighth blow-down there are two choices of exceptional curve
to blow down. However, only blowing down the (−1)−curve intersecting both the other
(−1)−curve and the (−2)−curve results in the minimal surface P2.

A pencil whose blow-up at its base points gives an extremal rational elliptic surface with
II∗, II is given by

S : {tz3 + x2 − zy2 = 0}.

Its Weierstrass form is
y2 = x3 + t.

The bad places of the pencil are at t = 0 and t = ∞, corresponding to the two II and II∗

fibers, respectively.
A pencil whose blow-up at its base points gives an extremal rational elliptic surface with

II∗, 2I1 is given by
S : {tz3 + x3 + x2z − zy2 = 0}.

Its Weierstrass form is

y2 = x3 − 432 ∗ x+ (46656 ∗ t+ 3456).

The bad places of the pencil are at t = 0, t = −4
27

and t = ∞, corresponding to the two I1
and II∗ fibers, respectively.

As previously mentioned, the fibers II and I1 are not drawn in the blow down. This is
the reason that figure 20 suffices to show the blow-down for both surfaces.
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Figure 20: Blow down of II∗, II and II∗, 2I1.

3.7 III∗, III

The blow down of the surface with III∗, III fibers is visible in Figure 21. Firstly, the sections
are blown down. This is followed by four blow downs on the former III∗ fiber. Then, one of
the two available (−1)−curves is blown-down. The component this curve intersects is blown
down next, and after blowing down the remaining (−1)−curve the minimal model P2 has
been constructed.

The minimal model contains a line of multiplicity 3, and two curves with self intersection
1 and 4. As lines are (1)−curves and conics are (4)−curves, these curves are drawn as a line
and conic.

A pencil whose blow-up at its base points gives an extremal rational elliptic surface with
III∗, III is given by

S : {tz3 + x2y − zy2 = 0}.

Its Weierstrass form is
y2 = x3 + tx.

The bad places of the pencil are at t = 0 and t = ∞, corresponding to the two III and III∗

fibers, respectively.

3.8 III∗, I2, I1

The blow down of the surface with III∗, I2, I1 fibers is visible in Figure 22. The order of
blowing down is the same as for III∗, III.

As for III∗, I2, I1, the minimal model contains a line with multiplicity 3, and two curves
with self intersection 1 and 4. As lines are (1)−curves and conics are (4)−curves, these
curves are drawn as a line and conic. The only difference in the final minimal model between
III∗, III and III∗, I2, I1 is that for the minimal model of III∗, III the conic and line are
tangent, while for III∗, I2, I1 the line intersects the conic twice transversally.
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Figure 21: Blow down of III∗, III.

A pencil whose blow-up at its base points gives an extremal rational elliptic surface with
III∗, I2, I1 is given by

S : {tz3 + x2y − zy2 + zxy = 0}.

Its Weierstrass form is

y2 = x3 + (1296t− 432)x+ (−15552t+ 3456).

The bad places of the pencil are at t = 0, t = −1
64

and t = ∞, corresponding to the two I2, I1
and III∗ fibers, respectively.

Figure 22: Blow down of III∗, I2, I1.
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3.9 I∗2 , 2I2

The blow down of the surface with I∗2 , 2I2 fibers is visible in Figure 23. As this is a more
cluttered elliptic surface, the colour scheme in Figure 23 is changed compared to the preceding
blow-downs. Each of the I2 fibers and the self intersection of their components are given
in red or orange. Moreover, to keep track of the intersection points for each component,
the intersection points and their multiplicities have been given different colours. The blow-
down itself is not that complicated. After blowing down the sections, three of the four
newly formed (−1)−curves are blown down. The only way to get to P2 is by blowing down
the (−1)−curve that intersects the (−2)−curve. For the final blow-down there is only one
(−1)−curve that can be blown down, resulting in the surface P2.

A pencil whose blow-up at its base points gives an extremal rational elliptic surface with
I∗2 , 2I2 is given by

S : {t(zx2 + xz2 − y2z) + x3 + zx2 = 0}.

Its Weierstrass form is

y2 = x3 + (−432t4 + 432t3 − 432t2)x+ (3456t6 − 5184t5 − 5184t4 + 3456t3).

The bad places of the pencil are at t = 0, t = 1 and t = ∞, corresponding to the two I∗2 , I2
and I2 fibers, respectively.

Figure 23: Blow down of I∗2 , 2I2.
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4 Hirzebruch Surfaces

Besides P2, extremal rational elliptic surfaces can also be blown down to the Hirzebruch
surfaces Fn.

Theorem 4.1. Let k be an algebraically closed field. Any minimal model of a rational
function field is isomorphic to P2 or to one of the Hirzebruch surfaces Fn, n ̸= 1.

Proof. The proof by Hartshorne can be found in [10]. ■

This theorem forms the basis for this section. The goal is to find out which order of
blow-downs results in which minimal model.

The fact that an arbitrary (−1)-curve can be blown down follows from Castelnuovo’s criterion
[19], stated in Theorem 4.2.

Theorem 4.2. Castelnuovo’s Criterion
If Y is a curve on a surface X, with Y ∼= P1 and Y 2 = −1, then there exists a morphism
f : X −→ X0 to a (nonsingular projective) surface X0, and a point P ∈ X0, such that X is
isomorphic via f to the blow-up of X0 at P , and Y is the exceptional curve.

Proof. The proof can be found in Chapter V of Hartshorne [11]. ■

As a result, any exceptional curve of the first kind can be blown down. This gives various
options for minimal models which are not P2, as in the previous chapter. By Theorem 4.1, a
different order of blowing down may result in a minimal surface Fn, the Hirzebruch surface.

Definition 4.1. [8] The Hirzebruch surface Fn is a projective bundle P(O ⊕O(−n)).

This definition is quite technical, and uses a lot a new concepts. Hence, this thesis will
focus on the two relevant Hirzebruch spaces F0,F2 and their construction. These are the
only relevant Hirzebruch surfaces due to the fact that there are no curves of self intersection
(−n), n > 2 in a rational elliptic surface, as shown in Proposition 4.3.

Figure 24: Construction of the Hirzebruch surface F2

The Hirzebruch surface Fn can be constructed from P2 using blow-ups and blow-downs.
Starting with a point P in P2 and considering all lines intersecting P , F1 is created by
blowing up at the point P , as visible in step 1 of Figure 24. This results in the exceptional
curve E of self intersection (-1), which is intersected by lines of self intersection (0) at every
point. These lines of self intersection (0) correspond to the lines through P , in line with the
definition of a blow-up.
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Moreover, F2 is constructed by selecting a point on the exceptional curve E, and doing
another blow-up at the selected point. The result is visible after step 2 in Figure 24. After-
wards, blowing down one of the (−1)−curves results in a curve with self intersection (−2),
intersected at every point by a curve of self intersection (0). This is the Hirzebruch surface
F2. This is step 3 in Figure 24. Repeating steps 2 and 3 another n − 2 times results in a
curve of self intersection (−n), intersected at every point by a curve of self intersection (0),
and is hence the Hirzebruch surface Fn.

The construction of F0 (Figure 25) differs slightly from the construction of the other
Hirzebruch surfaces. Starting again with a point P1 and the lines intersecting it in P2, a
second point P2 on one of the intersecting lines is picked. Both P1 and P2 are blown up, of
which the result is visible after step 1 of Figure 25. Subsequently, the (−1)−curve connecting
the two other (−1)−curves is blown down, resulting in a ruled surface with only lines of self
intersection (0).

Figure 25: The construction of the Hirzebruch space F0

From the above constructions it follows that F1 is isomorphic to P2 blown up at a point.
Moreover, there is the isomorphism F0

∼= P1 × P1 [8].

As previously mentioned, the only Hirzebruch surfaces of interest for minimal models of
extremal rational elliptic surfaces are F0 and F2. This follows from the following proposi-
tion:

Proposition 4.3. On a rational elliptic surface, the only curves with negative self intersec-
tion have self intersection −1 or −2.

Proof. The anti-canonical divisor −KX of a rational elliptic surface X is linearly equivalent
to a fiber F [16]. As the general fiber of an elliptic surface is smooth, only finitely many
fibers in X are not smooth. We consider a smooth fiber F . Let C be a curve in X. Then
C · F ≥ 0. Therefore, C ·KX ≤ 0.

Take a curve C on X, with negative self intersection −n, n ∈ Z+. By the adjunction
formula in Proposition 1.6:

2g(C)− 2 = C2 + C ·K
2g(C)− 2 = −n+ C ·K︸ ︷︷ ︸

<0

43



4 HIRZEBRUCH SURFACES

The genus degree formula g(C) = 1
2
(d− 1)(d− 2) implies g(C) ≥ 0. Therefore, in order for

the left hand side to be less than zero g(C) = 0 and

−2 = −n+ C ·K

And as C ·K ≤ 0, it must be that n ≤ 2, hence C can only have negative self intersection
(−1) or (−2). ■

Consequently, there are no (−n)−curves for n > 2. Since blowing down can only increase
a curve’s self-intersection, a Hirzebruch surface Fn with n > 2 can never be constructed from
blowing down rational elliptic surfaces, as the lowest self intersection of a component on a
rational elliptic surface is (−2).

Beauville provides some more technical properties of Hirzebruch spaces in Proposition
IV.1 in [3].

Proposition 4.4.

i. Pic(Fn) = Zh⊕ Zf , with f 2 = 0, f · h = 1, h2 = n.

ii. if n > 0, then there is a unique irreducible curve B on Fn with negative self-intersection.
If b denotes the class of B in Pic(Fn), then b = h− nf and satisfies b2 = −n.

iii. Fn and Fm are not isomorphic unless n = m. Fn is minimal except if n = 1.

Proof. The proof can be found in [3]. ■

In order to find pencils that correspond to the minimal model Fn, the bidegree for curves
in each Hirzebruch surface needs to be determined [3].

Definition 4.2. let F0
∼= P1×P1 have coordinates (X, Y )× (Z,W ). A curve C in P1×P1 is

bihomogeneous, meaning that it has degree m in (X, Y ) and degree n in (Z,W ). C is said
to have bidegree (m,n) and C ∼ mh+ nf .

Example 4.1. The curve C : y3zw+x2yw2+xy2z2 = 0 is bihomogeneous of bidegree (3, 2).

Proposition 4.5. For Hirzebruch surface Fn, the canonical divisor KFn is

KFn = −(n+ 2)f − 2h. (5)

Proof. The proof can be found in [5]. ■

Proposition 4.6. Genus 1 curves in the Hirzebruch surface F0 have bidegree (2, 2).

Proof. To calculate the bidegree of genus 1 curves in F0, take a curve C = mh + nf of
bidegree (m,n). By equation 5, we have KF0 = −2f − 2h. By the adjunction formula in
Proposition 1.6:

2g(C)− 2 =C · (C +KF0)

0 =(mh+ nf)2 + (mh+ nf)(−2f − 2h)

=m2h2 + 2mnfh+ n2f 2 − 2mhf

− 2mh2 − 2nf 2 − 2nhf
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As f 2 = 0, fh = 1, h2 = 0,

0 = 2mn− 2m− 2n

= mn−m− n

This implies that mn = m+ n, hence C is of bidegree (2, 2). Moreover, this means that all
curves of genus 1 in F0 have bidegree (2, 2) [11]. ■

Proposition 4.7. Genus 1 curves in the Hirzebruch surface F2 have bidegree (2, 4).

Proof. The canonical divisor in F2 isKF2 = −2h−4f , by equation 5. For a curve C ∼ mh+nf
of bidegree (m,n), Proposition 1.6 gives

2g(C)− 2 = C · (C +KF2)

0 = (mh+ nf)2 + (mh+ nf)(−2h− 4f)

0 = −2m2 + 2mn− 2n

The equation has integer solution (m,n) = (2, 4). Hence, the bidegree of any curve of genus
1 in F2 is (2, 4). ■

Knowing the bidegree of divisors in F0 and F2 allows for finding the curves whose blow-up
at the base points results in the rational elliptic surface. In the next section, some pencils
are given, whose blow-up results in the particular extremal rational elliptic surface. These
were found using the Magma code in Appendix 5.
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4.1 Blow-downs to Hirzebruch Surfaces

4.1.1 2I∗0

The blow-down of 2I∗0 to F0 and F2 can be found in Figure 26. The first four blow downs
are the same as in Section 3.1. However, to construct a (−2)−curve intersected by only
(0)−curves, the four (−1)−curves intersecting one (−2)−curve must be blown down. This
is indicated by the green blow down, which results in minimal surface F2. On the other
hand, to get to F0 each (−2)−curve must have two (−1)−curves that get blown down. This
contraction is shown by the orange blow down.

Figure 26: Blow down from 2I∗0 to Hirzebruch surfaces F0 and F2.

4.1.2 I∗1 , I4, I1

The blow-down of I∗1 , I4, I1 to F0 and F2 can be found in Figure 27. Again, the same
four curves as in 3.2 are blown down first. Then, two (−1)−curves intersecting the same
(−2)−curve are blown down. To get to the Hirzeburch surface F0, the other two (−1)−curves
intersecting the (−2)−curve are blown down, as indicated by the green components. The
minimal model F2 is constructed by blowing down the orange (−1)−curves.

Figure 27: Blow down from I∗1 , I4, I1 to Hirzebruch surface F2.
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4.1.3 IV ∗, IV

The blow-down of IV ∗, IV to F0 and F2 can be found in Figure 28. After blowing down the
sections, there is an immediate distinction between the blow downs to F0 and F2. To reach
F0, the three green (−1)−curves on the former IV ∗ fiber are blown down. Subsequently, one
of the (−1)−curves is blown down, followed by the (−1)−curve intersecting the other two
(−1)−curves. This results in the minimal model F0. To find the minimal model F2, one of
the components of the former IV fiber is blown down. This is followed by the blow-down of
the two (−1)−curves on the former IV ∗ fiber. Lastly, the two remaining (−1)−curves are
contracted, resulting in F2.

A pencil in F0 such that the blow up at its the base points results in the rational elliptic
surface with the IV ∗, IV fibers is given by

x2zw + t(xyz2 + y2w2) = 0,

where (x, y)× (w, z) ∈ P1 × P1 ∼= F0.

Figure 28: Blow down from IV ∗, IV to Hirzebruch surface F2.

4.1.4 IV ∗, I3, I1

The blow-down of IV ∗, I3, I1 to F0 and F2 can be found in Figure 29. This blow down follows
the same procedure as the blow-down from IV ∗, IV to F0 and F2.

4.1.5 I∗4 , 2I1

The blow-down of I∗4 , 2I1 to F0 and F2 can be found in Figure 30. The order of the first
six blow downs is the same as in Section 3.5. However, to get to the minimal surface F2

the orange coloured (−1)−curves are blown down. To get to F0 the green (−1)−curves are
blown down.
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Figure 29: Blow down from IV ∗, I3, I1 to Hirzebruch surface F2.

Figure 30: Blow down from I∗4 , 2I1 to Hirzebruch surfaces F2 and F0.

4.1.6 II∗, II and II∗, 2I1

The blow-down of II∗, II and II∗, 2I1 to F2 can be found in Figure 31. The first seven blow-
downs coincide with the case for the minimal model P2, in Section 3.6. However, the eighth
blow down concerns the (−1)−curve with line multiplicity 3. The result is the minimal
model F2.
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Figure 31: Blow down from II∗, II and II∗, 2I1 to Hirzebruch surface F2.

4.1.7 III∗, III

The blow-down of III∗, III to F0 and F2 can be found in Figure 32. After contracting the
sections, the blow-downs already differ from the one in Section 3.7. To get to the minimal
model F2, the orange components are contracted consecutively. After contracting the two
remaining (−1)−curves, the minimal model F2 has been constructed. To blow down to F0

instead the green (−1)−curve is contracted. The figure shows the successive blow-downs to
reach the minimal model in F0 in green.

A pencil in F0 such that the blow up at its the base points results in the rational elliptic
surface with the III∗, III fibers is given by

z2xy + y2w2 + t(x2w2) = 0,

where (x, y)× (w, z) ∈ P1 × P1 ∼= F0.

Figure 32: Blow down from III∗, III Hirzebruch surfaces F0 and F2.
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4.1.8 III∗, I2, I1

The blow-down of III∗, I2, I1 to F0 and F2 can be found in Figure 33. The blow down of
III∗, I2, I1 to F0 and F2 follows the same procedure as the blow down of III∗, III.

A pencil in F0 such that the blow up at its the base points results in the rational elliptic
surface with the III∗, I2, I1 fibers is given by

x2w2 + t(x2zw − x2z2 + y2zw) = 0,

where (x, y)× (w, z) ∈ P1 × P1 ∼= F0.

Figure 33: Blow down from III∗, I2, I1 to Hirzebruch surfaces F0 and F2.
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4.1.9 I∗2 , 2I2

The blow-down of I∗2 , 2I2 to F0 and F2 can be found in Figure 34. First, the four sections are
blown down. Then one (−1)−curve on each (−2)−curve intersecting a (−1)−curve is blown
down. This results in a model that can either become the minimal model F2 by blowing
down the green components, or the minimal model F0 by blowing down the blue components.

A pencil in F0 such that the blow up at its base points results in the rational elliptic
surface with the I∗2 , 2I2 fibers is given by

w2y2 − zwy2 + t(x2zw − x2z2 + y2zw) = 0,

where (x, y)× (w, z) ∈ P1 × P1 ∼= F0.

Figure 34: Blow down from I∗2 , 2I2∗ to Hirzebruch surfaces F0 and F2.
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5 Discussion

This thesis has explicitly discussed blow-downs of extremal rational elliptic surfaces with at
least one additive fiber to the surfaces P2, F0 and F2 over an algebraically closed field. A
few pencils in F0 whose blow-up at the base points results in an extremal rational elliptic
surface have been found explicitly. However, not for every extremal rational elliptic surface
an explicit pencil in F0 and F2 has been found. In a perfect world, for each Hirzebruch
surface a reference for a pencil would have been found, preferably in the same style as [13].

As discussed in Section 2.1, a non-algebraically closed field could result in problems when
blowing down. There is some literature about the Galois theory on elliptic surfaces that is
connected to this topic, for instance [14]. However, the writer has not found an extensive
reference. For the writer of this thesis personally, a new aim would be to fully understand
how Galois permutations on components of singular fibers work, and how this influences the
possible blow-downs for elliptic surfaces over non-algebraically closed fields. For instance,
why can certain extremal rational elliptic surface always be blown down to P2 over k, while
for others k̄ is a necessary condition. The writer’s search engine skills have not yet found a
reference on it, and hence it would seem like a suitable next project.
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Appendices
This thesis contains pencils whose blow-up gives a certain type of rational elliptic surface.
These pencils were tested using Magma, an algebraic computational software. The following
code was used to confirm the pencils in P2 and find their Weierstrass Form.

P<x,y,z> := ProjectiveSpace(Rationals(),2);

k<t> := FunctionField(Rationals());

P2<x,y,z> := ProjectiveSpace(k,2);

C := Curve(P2,t*z*(x2 + x ∗ z − y2) + x3 + z ∗ x2);
pt := C![0,1,0];

E,toE := EllipticCurve(C,pt);

KodairaSymbols(E);

BadPlaces(E);

WeierstrassModel(E);

The following code was used to confirm the pencils in F0.

P<x,y,z> := ProjectiveSpace(Rationals(),2);

k<t> := FunctionField(Rationals());

P2<x,y,w,z> := ProductProjectiveSpace(k,[1,1]);

C := Curve(P2, w2 ∗ x2 + t ∗ (x2 ∗ z ∗ w − x2 ∗ z2 + y2 ∗ z ∗ w));
pt := C![0,1,1,0];

E,toE := EllipticCurve(C,pt);

KodairaSymbols(E);

BadPlaces(E);
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