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Abstract

Organisms can move in a wide variety of ways and for many different
reasons. The processes leading to and affected by movement have become
the subject of the field of movement ecology. The introduction of the
‘movement ecology framework’ by Nathan et al. and the recent techno-
logical advancements of the methods for the collection of movement data
have lead to an increase in the use of models to study movement. The
type of model employed is dependent on the research questions and the
system being studied. This review focuses on two modelling paradigms
in movement ecology and their applications in research. The first I call
parameterisation, because stochastic models are used here in order to de-
termine the importance of potential factors in influencing the movement
path of an individual. By comparing summary statistics of various sim-
ulations of these models with summary statistics of observed movement
paths, the models can be parameterised to most closely resemble the pro-
cesses at play in nature. The second paradigm focuses on the observation
of evolutionary patterns in individual based models. In these models,
traits affecting movement decisions are evolvable and can lead to inter-
esting spatial and temporal dynamics, which can give insights into the
evolutionary causes and consequences of movement. With the use of case
studies, potential applications of the two paradigms are demonstrated and
ways in which these methods have advanced our knowledge of movement
are explained.

Introduction

There is a lot of variation in the movement of organisms in nature. Not just
in the way an organism moves (e.g. walking, flying), but also in the processes
behind movement (i.e. the reasons for moving to a certain location). Movement
can be achieved actively or passively and it may occur locally or over greater
distances. As a result of this large amount of diversity in the scale and means of
movement, the effects of this process are widespread. The fates of individuals,
populations and even ecosystems can be affected by the patterns that result
from the way movement takes place. Community compositions change due
to migration events of organisms for instance (Schlägel et al., 2020). On the
other hand, the state of the environment can also play a major role in the
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manner individuals move around. For example, several migratory bird species
have changed the timing of migration from their overwintering areas to their
breeding grounds in response to climatic changes (Zaifman et al., 2017). Due
to the impacts movement processes can have on several temporal and spatial
scales, they have become a popular subject of research over recent years.

Because it is difficult to study such a wide variety of behaviours, Nathan
et al. (2008) proposed the movement ecology paradigm - a general framework
for studying all aspects of movement (figure 1). They suggest that a focal
individual is characterised by three components: an internal state, a motion
capacity and a navigation capacity. The internal state represents the individual’s
physiological and cognitive state, which drive the individual to move for a certain
reason. Such reasons could be the need to look for food or to move away from
predators. The motion capacity describes the organism’s ability to move in
different ways. These differ between species, but also between different manners
within an organism (e.g. pinnipeds are better at swimming than at moving on
land). An individual’s navigation capacity explains how well an organism can
use information to determine where and when to move. These three components
interact with one another, as well as with a fourth component: the external
factors. Such factors can be any aspect of the environment that has an effect on
the movement process. All of these components, and their interactions, result
in a movement path, which in turn can affect some of these components. This
movement path can be observed, and understanding the underlying processes
leading to this path as well as the effects of this path on the organism and the
environment are the main goals of movement ecology.

In recent years, technological advancements have improved the ability of
movement ecologists to gather and record more data (Katzner & Arlettaz, 2020;
Kays et al., 2015). This has lead to a surge in the use of models in order to
analyse these large data sets more effectively (Joo et al., 2022). Since it is
difficult to accurately measure an individual’s motion and navigation capacities,
models can also provide a way to study the role these components play in the
individual’s decisions that lead to a certain movement path (Joo et al., 2022).
Currently, models are in widespread use in this field and several paradigms have
been developed to answer questions related to the movement of individuals.
In this literature study, I will review two modelling paradigms in the field of
movement ecology. The frameworks of these techniques will be explained and
the applications will be discussed on the basis of a number of case studies.
Finally, I will give an overview of the advantages of and the potential issues for
the different paradigms.

Parameterisation

A first way in which models can be used in movement ecology is as a tool to
unveil potential factors affecting the movement paths of individuals. This is
usually done by trying to relate a stochastic model to an observed movement
path. The stochastic model includes several factors which could play a role in
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Figure 1: The movement ecology paradigm as proposed by Nathan et al. (2008).
It shows how three components (yellow background) relating to a focal individ-
ual (internal state, motion capacity and navigation capacity) and a fourth exter-
nal factor (light blue background) affect the movement path of this individual.
Arrows indicate the direction of the relationships between these different com-
ponents. The resulting movement path can also affect the internal and external
factors.
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the individual’s decisions regarding its movement and the importance of these
factors is determined by some statistical analysis. This is done by calculating
summary statistics based upon which a comparison can be made between the
movement path generated by the stochastic model and the observed movement
path. Such a comparison results in an approximation of the likelihood of ob-
taining the observed data with the parameter values used in the model, i.e. the
importance of certain factors for the shape of the movement path. Based on
the likelihoods of different parameter values, an interpretation of the data can
be made.

There are several different methods for determining the likelihood of pa-
rameter values. One can use a simple calculation of how close the summary
statistics are to the observed value or use a rejection filter approach, to name
a few (methods reviewed in Hartig et al., 2011). However, in order to learn
how this likelihood varies over larger parameter space, the posterior distribu-
tion of the parameters is needed. This is usually achieved through Bayesian
inference methods. One such method that has become widely used, is Approx-
imate Bayesian Computation, which in essence bypasses the need to calculate
the likelihoods and immediately produces the posterior density. These parame-
terisation techniques have been utilised by many movement ecology studies.

Figure 2: The relative probability of elk selecting steps that end in either aspen
stands, conifer forests or open areas depending on the probability of the presence
of wolves. Taken from Fortin et al., 2005.
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A study on the movement of elk (Cervus canadensis) used parameterisation
to uncover a potential explanation for a trophic cascade in Yellowstone National
Park (Fortin et al., 2005). The authors had collected movement path data of 13
female elk, the locations of which were identified every five hours. They paired
each step (the distance between two consecutive locations) with 200 random
steps with the same starting point but with different distances and directions.
The observed and simulated steps were combined with landscape variables, such
as the probability of a wolf being present, the distance to the nearest road and
the type of habitat cover, and were used by a step selection function model to
estimate the importance of these landscape variables for the decision making
process behind the movement paths. They found that the movement of elk was
influenced by many different factors, but the most interesting result was the
effect wolves had on the type of habitat elk ended their steps. Steps were most
likely to end in aspen stands, followed by open areas, and then conifer forests
when the elk were in an area that wasn’t used much by wolves, whereas in areas
with a higher probability of encountering a wolf, steps were most likely to end
in conifer forests, followed by open areas and finally aspen stands (Figure 2).

A more modern approach to understand the processes underlying movement
was taken by Zhang et al. (2017). They used a case study on black petrels (Pro-
cellaria parkinsoni) to highlight the application of Approximate Bayesian Com-
putation (ABC) in deriving information from individual based models. They
obtained movement paths from 11 petrels using GPS telemetry, with positions
being estimated every 5 minutes. A Hidden Markov model (HMM) was used
to determine that the individuals exhibited three distinct behavioural states
during their foraging trips. The authors selected nineteen different summary
statistics, based on either spatial or temporal variables, which provided enough
information for parameterisation and comparison of individual based models. In
these models, individuals could be in either a foraging or a searching state (the
third behavioural state identified by the HMM was excluded because it was re-
lated to commutes, which were not relevant for the authors’ research questions),
and their movement was influenced in different ways according to which state
they were in. For ABC, they used a rejection filter to determine the 100 model
simulations which approximated the observed movement patterns the best out
of the total of 1 ∗ 106 simulations. The difference between the prior and pos-
terior distributions of the parameters (i.e. a measure which shows whether the
accepted models used a specific subset of the explored parameter space) was
used to figure out which parameters had the biggest influence on the petrels’
foraging trajectories. They found that the distributions of six out of ten of
the parameters had become significantly narrower during the ABC process (see
figure 3). Energy consumption rate was the one which had been constrained
the most out of all parameters. The authors also used ABC to determine how
well a simpler model, which did not include the effects of wind speed and site
fidelity, performed in comparison to the full model. Out of the 200 accepted
simulations (same acceptance rate as during the parameterisation, but double
the total simulations since twice as many models were used), 62 came from the
simpler model, whereas 138 were from the full model, and so they concluded
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Figure 3: Posterior distributions of parameters used in an individual based
model on foraging movement in black petrels. The F-values indicate how much
these distributions differ from the prior distributions. Taken from Zhang et al.,
2017.

6



that the performance of the simpler model was reasonable even though it was
rejected.

Comparing different versions of the same model is a rather useful application
of ABC, since this can help bypass a major obstacle for ecological modelling - the
need to create an accurate model of the natural system. A nice demonstration
of this is a study on site fidelity and long distance dispersal in Fowler’s toads
(Anaxyrus fowleri) on the north shore of Lake Erie (Marchand et al., 2017). The
authors attached radiotransmitters to a number of toads, located their daytime
refuges once a day and identified which individual used which refuge. They used
a certain multiscaled random walk model which allows an individual to return
to a location it has been at before. Three different versions of this model were
created, which differed in the way the probability to return to a given location
was calculated. The random return model had the same constant probability
for each refuge, with multiple visits to a refuge increasing the probability of
returning to this one. Individuals in the nearest return model always returned
to the nearest refuge. In the distance-based return model, the probability of
returning to a refuge decreases exponentially with the distance to this refuge.
Approximate Bayesian Computation was used to determine which model re-
sulted in the summary statistics that were closest to those of the observed data.
This selection process produced 15% support for the random return model, 0%
for the nearest return model and 85% support for the distance-based return
model. However, during cross-validation of the models, the authors found that
data from the random return model was often thought to have come from the
distance-based return model (34.5% of the time) and vice versa (22.6% of the
time), and so they also computed the number of distinct refuge sites, which was
not used directly during model fitting. This statistic showed the best fit for the
random return model. Marchand et al. mentioned that this model, which they
developed with the help of ABC, could be used to estimate the connectivity of
between certain toad populations for example.

As shown by the case studies discussed before, models can be a powerful tool
to learn which ecological factors affect the movement of individuals. However,
models are only as useful as they are capable of accurately simulating natural
systems, which means that one does need to gather data about the system first
in order to be able to make confident claims about the results of the model.
This can be somewhat bypassed by comparing different models with the use
of Approximate Bayesian Computation, but these models do need to be based
on realistic assumptions to be useful. Moreover, the data used to parameterise
the models also needs to be of good quality. As many techniques there are to
gather movement data, they all come with their own potential types of error
(Patterson et al., 2008). There may be a sampling bias, inaccuracy in estimating
the location of individuals or incomplete data, to name a few. In recent years,
technological advancements have lead to vast improvements of the ability of
these methods to gather more accurate data (Katzner & Arlettaz, 2020; Kays
et al., 2015), but error correction is still an important step during the analysis.
Another potential issue is the inability to derive behavioural patterns from the
data due to a temporal mismatch between observations and movement decisions.
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In other words, the resolution of the data is not sufficiently high to capture
certain behaviours, which can lead to biases in the interpretation of the data
(Patterson et al., 2008). State-space models are able to take such observational
errors into account, as they couple the stochastic model of movement with a
model of the observation method (Patterson et al., 2008). Such models can
allow scientists to create more realistic approximations of observed movement
paths (Avgar et al., 2013).

Figure 4: The predicted errors for the estimated time between changes in di-
rection at different temporal mismatches between the movement process and
the observations. A higher R indicates that observations were made more fre-
quently relative to the frequency at which movement decisions were made. Dif-
ferent graphs indicate different methods of Approximate Bayesian Computa-
tions. Taken from Ruiz-Suarez et al., 2020.

Ruiz-Suarez et al. (2020) used a state-space model to study the effect of
a temporal mismatch between the process and the observations on the predic-
tion errors of ABC algorithms. They used a correlated random walk as their
movement model, where individuals walk in a certain direction for a time of λ
(drawn from an expontential distribution) before making a turn (angle drawn
from a von Mises distribution with a mean of 0 and a concentration of κ). Ob-
servations of individuals’ locations were made at regular time intervals. Based
on these locations, four summary statistics were calculated. To obtain posterior
parameter distributions, three different ABC algorithms were employed: a sim-
ple rejection-based algorithm, and two algorithms which correct the imperfect
match between the observed and accepted summary statistics by use of either
linear regression or a neural network. Then, the authors evaluated how accurate
these algorithms were in estimating the posterior probabilities for λ as a func-
tion of the ratio R between the temporal scale of observation and the temporal
scale of at which movement decisions are made. They found that the predicted
error increases with the ratio R, which indicates that more frequent observations
can lead to inaccurate parameter estimations. Because of this, Ruiz-Suarez et
al. recommended that the observations are less than five times the average of
the times between direction changes (Ruiz-Suarez et al., 2020).

After a state-space model has been estimated, it can be used to infer the
true path the individual has taken based on the observed data, to generate addi-
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tional observations at times when the individual was not able to be located or to
predict future movement (Patterson et al., 2008). The former two applications
show this method’s true power, whereas the latter is applicable to more general
stochastic modelling methods. Parameterisation, as well as model comparison,
is able to provide information about the processes underlying movement. This
information can then be used to make predictions about which movement deci-
sions an individual may make in a novel environment and knowledge of this can
be used for conservation purposes for example (Patterson et al., 2008).

Pattern Observation

Models have not just been used to reveal which potential processes lie at the
basis of an observed movement path, but also to study the evolutionary impli-
cations of movement (Gupte et al., 2022; Netz et al., 2022). In such models,
individuals tend to have a number of heritable traits which determine their pref-
erence for certain characteristics of the environment (e.g. the amount of food or
the presence of conspecifics). Because individuals produce offspring according
to their fitness, preferences which lead to a higher foraging success or better
survival will be passed on more frequently. This process leads to the evolution
of movement strategies and observing the patterns that arise as a result of this
is the core of studies using this method.

The patterns resulting from the evolution of movement strategies can be,
for example, an evolutionary response to a selective pressure in the environ-
ment or the way certain strategies can outcompete other strategies, potentially
leading to cycles in the most common movement strategy. The observation
of these patterns can be achieved through recording the heritable traits over
time, measuring emergent properties of the system (e.g. distribution of individ-
uals, distance moved) or other means depending on the implementation of the
stochastic model. The usage of this method in eco-evolutionary studies has been
successful in bringing the evolutionary causes and consequences of movement to
light (Gupte et al., 2022; Jager et al., 2011; Netz et al., 2022).

A study on pattern formation in mussel populations used an individual based
model to understand how and why mussels (Mytilus edulis) are distributed in
regularly spaced clumps (Jager et al., 2011). By observing the movement paths
of 12 solitary mussels, the authors were able to determine that the distribution
of step lengths matched that of a Lévy walk (a power-law distribution) with an
exponent of approximately 2. They used this information to develop an individ-
ual based model where mussel movement is determined by the density of mussels
within 3.3cm (short-range density) and within 22.5cm (long-range density). A
higher short-range density and a lower long-range density incentivise the indi-
viduals to stay where they are, whereas the individuals move according to a
Lévy walk when the short-range density is low and/or the long-range density
is high. This minimises competition for resources as well as predation risk and
wave stress. The time until the short-range density was on average 1.5 times
as large as the long-range density was measured for different exponents of the
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Lévy walk employed by the individuals. This showed that the time until pat-
tern formation was shortest for an exponent of approximately 2, meaning that
this movement strategy is optimal for pattern formation. De Jager et al. also
calculated the fitness for every strategy by multiplying survival (proportional to
short-range density) with fecundity (inversely proportional to long-range den-
sity and energy investment in movement). With this, they created a pairwise
invasibility plot, which showed that the Lévy walk with an exponent of 2 was
an evolutionary attractor and therefore an evolutionarily stable strategy.

A system which has been of particular interest of evolutionary ecologists is
that of predators and prey. Netz et al. (2022) developed a model to gain in-
sights into the evolution of movement strategies for predators and prey and how
these strategies shape various patterns in, for example, the resource landscape
and population dynamics. In this spatially explicit model, both predators and
herbivores were able to move between cells within the environmental grid based
on their evaluation of the suitability of nearby cells. This evaluation was de-
pendent on the weighted sums of the grass, herbivore, and predator densities,
where the weighing factors were evolvable traits for each individual. Herbivores
could gain fitness by consuming the grass in their cell, while predators had a
50% chance of capturing and killing a herbivore if they were present in the same
cell, which allowed them to gain fitness. Because individuals with a higher
fitness were able to produce more offspring, the trait values for the weighing
factors could evolve and give rise to different movement strategies. The results
of one simulation of this model are shown in figure 5. Between generations
35,000 and 60,000, the interactions between predators and prey result in shifts
between several states of population dynamics (figure 5A). These different dy-
namical states result in vastly different spatial distribution patterns (figure 5B).
Changes in the dynamical states and spatial patterns were brought about by
different movement strategies for the herbivores and predators (figure 5C). The
authors were able to relate the observed shifts to specific evolutionary changes
in movement strategies in the predator and prey populations and they noted
that evolutionary changes occured on a similar timescale as ecological changes,
which indicates that ecological and evolutionary processes are strongly linked.

Another way this technique can be applied is to understand how movement
patterns change in response to a selective pressure. One example of this is a
study on the effect of an introduced pathogen on the evolved movement strate-
gies of a population of social animals (Gupte et al., 2022). They developed a
spatially explicit model where individuals could find food, which is distributed
in clusters across the environment. The individuals’ movement decisions were
based on their inherited traits, which represent the preferences of the focal in-
dividual for the densities of food, individuals handling food and individuals
not handling food. The individuals would move to the location (within their
movement range) which was the most suitable according to their preferences.
Their traits were passed on more frequently the more food they had consumed,
and movement strategies could evolve as a result of this. The authors defined
four different social movement classes: agent tracking (positive preference for
both handlers and non-handlers), agent avoiding (negative preference for both
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Figure 5: Predator-prey dynamics during one simulation. A) shows the popula-
tion sizes of predators (red) and prey (blue) over time. B) gives snapshots of the
system during 3 different moments in time (as shown in graph A), with grass
density in green, herbivore density in blue and predator density in red. Different
colours are a result of combinations of grass, herbivores and predators, while
black is location of low resources. C) shows the different movement strategies
present in the predator (red/yellow/black) and herbivore (purple/cyan/blue)
populations at those same moments in time. The x-axes denote the weight of
grass density for movement decisions, the y-axis that of prey density and the
colours that of predator density. Taken from Netz et al., 2022.
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Figure 6: Effects of pathogen introduction on movement strategies and use of so-
cial information, resulting in ecological changes. A) depicts a shift in most com-
monly adapted movement strategy shortly after the introduction of a pathogen.
B) shows that social information becomes more important after the pathogen is
introduced. C), D), and E) demonstrate an increase in the distance moved and
decreases in the resource intake and number of associations respectively. Taken
from Gupte et al., 2022.
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handlers and non-handlers), handler tracking (positive preference for handlers
and negative preference for non-handlers) and non-handler tracking (negative
preference for handlers and positive preference for non-handlers, however this
did not occur). For the first 3,000 generations of the simulation, almost all indi-
viduals belonged to the agent tracking class, but shortly after the introduction
of an infectious pathogen - which made the infected individual incur a fitness
cost every time step - after 3,000 generations, the handler tracking class be-
came the most popular, after which the agent avoiding strategy was employed
by the vast majority of individuals (figure 6A). Although individuals tracked
other individuals for the first 3,000 generations, the importance of this social
information was negligible (figure 6B). Only after the pathogen was introduced
did the social information become more important, with individuals wanting to
avoid coming into contact with other individuals (figure 6B). By trying to avoid
other individuals, the average distance individuals moved increased (figure 6C)
and resource intake decreased (figure 6D). Individuals did succeed in reducing
the number of associations with other individuals (figure 6E). This, in turn, re-
duced the fraction of the population that was infected and, using an SIR model,
Gupte et al. showed that the population post-introduction was more resilient
to infections than the pre-introduction population. This study illustrates just
how fast movement strategies can evolve in response to selective pressures and
can change emergent population wide patterns.

The three case studies show the wide variety of eco-evolutionary systems
for which pattern observation can lead to new insights regarding the evolution-
ary implications of movement. This method is able to expose the potential
evolutionary causes and consequences of observed movement patterns, but the
interpretation of these results must be done with great care since this technique
is best used as an exploratory method. That is the case due to the fact that
these models are mainly conceptual by nature, with a lack of data gathered from
the lab or field. Therefore, it is difficult to make any strong claims in studies
using the technique, but results can reveal interesting dynamics nonetheless.
The case studies from Netz et al. (2022) and Gupte et al. (2022), for example,
demonstrated that the timescale at which evolutionary changes can take place
may be a lot shorter than is typically assumed.

Discussion

With the use of case studies I’ve shown how the two modelling paradigms can
be utilised to answer questions about the processes involved with movement.
Firstly, parameterisation can help determine the importance of certain factors
for the decision making process behind an individual’s movement. Fortin et
al. (2005) were able to use this paradigm to uncover the relationship between
the external factors (habitat cover) and the movement paths of elk. By using
Approximate Bayesian Computation with a rejection filter, Zhang et al. (2017)
showed that energy consumption rate was the main driver behind the movement
paths of black petrels and that excluding wind speed and site fidelity does make
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their model worse at simulating these movement paths. Comparing models with
different movement strategies through the use of ABC allowed Marchand et al.
(2017) to ascertain that Fowler’s toads likely employed a random return strategy
for moving to a daytime refuge. These case studies effectively used parameteri-
sation to learn which factors (habitat cover, energy consumption or navigational
strategy respectively) influenced movement. The knowledge acquired from these
studies can be used as a guide for conservation efforts or as a stepping stone for
future studies on these systems.

Secondly, the observation of patterns in evolutionary models of movement
can provide insights in the evolutionary causes and effects of movement. De
Jager et al. (2011) showed that mussels moved according to a Lévy walk with
an exponent of 2 due to the fact that this strategy results in the fastest pat-
tern formation and is also evolutionarily stable. In a predator-prey model, Netz
et al. (2022) were able to determine that evolutionary changes could occur as
fast as ecological changes by relating observed changes in population dynamical
patterns to changes in movement strategies for predators or prey. The poten-
tial speed at which movement strategies can evolve was even more evidently
demonstrated by Gupte et al. (2022), who found that the introduction of an
infectious pathogen can lead to rapid evolution of strategies aimed at avoiding
other individuals in order to reduce the probability of becoming infected and
suffering a fitness reduction. These insights have improved our understanding
of the evolutionary implications of movement and can be used to change the
often made assumptions during the development of eco-evolutionary models.

The effectiveness of the parameterisation paradigm is strongly dependent
on the accuracy of the stochastic models in terms of realistically simulating
the natural system. Excluding an important factor for the movement process
from the model may lead to inaccurate parameterisation, as the absence of
this factor can cause different behaviour and therefore the importance of other
factors (which were included in the model) may be over- or underestimated
as a result (Conroy et al., 1995). Identifying the most accurate model can
be achieved through model comparison with ABC (Avgar et al., 2013), but
omission of an important determinant from each of the models being compared
can still occur. For this reason, knowledge of the natural system is necessary
for the construction of a realistic model, for which accurate parameterisation
is possible. The results one can infer from the parameterisation of an accurate
movement model tend to be limited to the relative importance of modelled
processes. However, knowledge of these processes can be valuable for improving
our understanding of, for example, the population patterns that stem from
individuals’ movements (Schlägel et al., 2020).

As discussed before, pattern observation in evolutionary models on move-
ment is mainly speculative as these models are often purely conceptual with
no direct influence from data gathered from the field. Nevertheless, patterns
demonstrated by such studies can be a complementary part to experimental and
comparative studies in understanding the evolutionary implications of move-
ment. For example, movement models may be able to help explain how flyway
evolution occurs much faster than is predicted by modern synthesis (Piersma,
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2011). Certain factors or relationships in such models can still be rooted in
empirical data, as shown by De Jager et al. (2011). The inclusion of data in
the development of evolutionary movement models will certainly make these
models more credible and the patterns produced by them more convincing, but
I personally believe that, as long as the conclusions drawn from the patterns
observed are done so with caution, even purely conceptual models can further
our understanding of the evolutionary causes and effects of movement.

The two paradigms reviewed in this essay are potent methods in elucidating
the relationships between the different components from the movement ecology
framework (as proposed by Nathan et al. 2008). One does need to appre-
ciate the shortcomings of these paradigms, however, and apply them in the
proper context, which the various case studies have demonstrated. The de-
scribed paradigms are only two of the available methods for studying move-
ment, and other methods can be just as useful for the research of the different
factors involved in movement. Path segementation, for example, can be used to
describe movement patterns, to detect changes in movement behaviour and to
identify the underlying processes (reviewed in Edelhoff et al., 2016). Attempts
at expanding the movement ecology framework to include related fields (e.g.
animal dispersal, Baguette et al., 2014; biodiversity, Jeltsch et al., 2013) have
been made and some of the challenges encountered in these attempts can be
negated by modelling methods such as the ones described here. As the field
of movement ecology continues to advance with the improvement of methods
for gathering movement data, the methods for analysing the vast amounts of
data will become ever more important for enhancing our understanding of the
processes involved with movement.
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