
Towards Smooth Policies in Deep

Reinforcement Learning for Musculoskeletal

Simulations of Human Walking

Bachelor’s Project Thesis

Carl Lange, s4007533, c.a.lange@student.rug.nl,

Supervisor: Prof. Dr. Raffaella Carloni, r.carloni@rug.nl

Abstract: Recent advances in the musculoskeletal modeling of human walking demon-
strated the ability of Proximal Policy Optimization combined with imitation learning to
train a simulated musculoskeletal model for human-like walking. However, the resulting
gait featured erratically changing muscle activations, which imposes a hurdle for apply-
ing this technique to actuated prostheses. Therefore, the main goal of this paper was
to build on the previous work and apply regularization techniques in order to learn a
smoother policy with less erratic activations. The results demonstrate that L2 layer regu-
larization, changed neuron activation function, and reward shaping effectively decreased
muscle erraticness and resulting torques. However, not all simulation runs achieved a
stable gait pattern. Additionally, the learnt gaits that were stable showed large discrep-
ancies in joint angles when compared to human data. In summary, the results suggest
that the applied regularization techniques were successful at decreasing erraticness but
there exists a trade-off between regularization and performance.

1

Towards Smooth Policies in Deep

Reinforcement Learning for Musculoskeletal

Simulations of Human Walking

Bachelor’s Project Thesis

Carl Lange, s4007533, c.a.lange@student.rug.nl,

Supervisor: Prof. Dr. Raffaella Carloni, r.carloni@rug.nl

1 Introduction

Physics-based computer simulations emerged
as a useful tool to study human movement and
locomotion. One of the application domains is
the engineering of actuated prostheses for hu-
man amputees. Passive prostheses are less ef-
ficient from a standpoint of metabolic energy
demands (Fey et al., 2011) and often lead to
asymmetric gait patterns causing ”wear and
tear” in the passive structures of the amputees
(Martinez-Villalpando, 2012). Active, actuated
prostheses can alleviate such problems. How-
ever, active prostheses raise the problem of
actuator control constrained by the individ-
ual properties and gait patterns of amputees.
Traditional control approaches have the down-
sides of requiring extensive parameter tuning
for each individual as well as being unable to
adapt to new gait patterns and situations (Law-
son and Goldfarb, 2014).

Recently, Reinforcement Learning (RL), and
Deep Reinforcement Learning (DRL) in partic-
ular, demonstrated to be a promising frame-
work for developing the controllers of actuated
prostheses. All but one submitted solutions for
the NeuRIPS 2018 competition Artificial Intel-
ligence for Prosthetics (Kidziński et al., 2020)
deployed DRL algorithms to train a simulated
musculoskeletal model with a lower-limb pros-
thesis to walk. A more comprehensive review
of existing work on this topic can be found in
Table 1.1, but it can be said that many of the
learned policies, though successfully achieving
stable, human-like gaits suffer from the problem
of erratic actions. In the case of musculoskele-
tal models, this means erratically activating the
muscle fibers of the model such that the ac-

Figure 1.1: An example of a policy producing
actions that lead to erratic changes in muscle
fiber force. The graph is taken from De Vree
and Carloni (2021).

tivation differs vastly from time step to time
step. Such erratic behavior may be caused by
the complexity of the underlying deep neural
networks (DNNs) that approximate the policy.
Goodfellow et al. (2014) showed that the out-
put of DNNs can differ vastly for only slightly
different inputs.

Erraticness may be unproblematic in simu-
lated prostheses but provides a limitation for
applying such algorithms on physical hardware.
Extreme and frequently oscillating activations
increase wear and tear and thus decrease the
life span and operability of actuators. Thus, to
achieve the goal of controlling actuated pros-
theses with DRL algorithms, the learned poli-
cies need to be as smooth as possible without
losing their ability to produce a stable gait.

This paper mainly builds upon work by
De Vree and Carloni (2021) by using the same
algorithm (PPO + imitation learning) and
simulation environment OpenSim Delp et al.
(2007). The two main objectives of this paper

2

are to

• replicate the success of De Vree and Car-
loni (2021) on a more realistic muscu-
loskeletal model with four additional mus-
cles

• investigate the effects of different regular-
ization methods on the erraticness of mus-
cle activations and joint torques

Achieving these objectives would pave the way
for directly controlling physical prostheses with
DRL controllers.

2 Theoretical background

This section provides a brief overview of the
reinforcement learning framework and the ad-
vances in deep reinforcement learning.

Reinforcement learning The goal of rein-
forcement learning is to train an agent to act
optimally in an environment. As opposed to
the supervised learning paradigm, the RL agent
learns by interaction with the environment.
Specifically, the agent acts according to a pol-
icy π which maps any state of the environment
s ∈ S to any of the possible actions a ∈ A. The
goal of the agent is to find the optimal policy π∗

that maximizes the discounted cumulative re-
ward. This task can be defined as a Markov De-
cision Process (MDP) ⟨A,S,R, γ, T ⟩. The re-
ward function R(s, a) → R returns a real num-
ber for a specific action a taken in a state s and
is used to inform the agent of the ”goodness” of
its action in a state. The sum of future rewards
is usually discounted over time by a discount
factor γ. A discount factor favors rewards in
the near future (i.e. only a few states away)
over rewards received in the far future. Lastly,
the transition function T (s′|s, a) is a determin-
istic or stochastic function that determines the
next state s′ of the environment given the cur-
rent state s and action a. MDPs are said to
be model-free if the transition function of the
environment is not known to the agent. This
is the case for many real-life applications such
as controlling a musculoskeletal model (Sutton

and Barto, 2018). The value function V (s) de-
fines the expected total reward received by the
agent for being in state s.

Deep reinforcement learning Classic RL
algorithms require explicit representations of
the value function V (s) or state-action value
function Q(s, a) in lookup tables. This makes
such methods inapplicable for continuous state
or action spaces, or even very large discrete
spaces due to the lookup table limitations im-
posed by memory hardware. Deep Reinforce-
ment Learning (DRL) solves this problem by
using neural networks (NNs) to approximate
components of the MDP such as the value func-
tion V (s) and the policy π(s).

Feedback loop The agent learns an optimal
policy via a feedback loop with the environ-
ment. A schematic representation is shown in
Figure 3.2. At time t the agent observes state st.
A NN is used to parameterize the current pol-
icy πt. With st as input to πt, the agent chooses
and executes action at. This changes the state
to st+1, the agent receives the scalar reward rt.
The reward feeds into the loss function of the
policy network and the agent updates its policy
πt → πt+1 by changing the weights of the NN
according to the loss function.

3 Methods

In this section, the methodological details of the
simulation, learning algorithm, reward func-
tions, and experimental setup are explained.

3.1 Simulation

OpenSim, developed by Delp et al. (2007),
is a physics simulation engine that is fre-
quently used for biomechanical modeling of hu-
man movement and rehabilitation (Seth et al.,
2018). In addition, OpenSim proved to be use-
ful in related work on human locomotion sim-
ulation by De Vree and Carloni (2021); Weng
et al. (2021); Nowakowski et al. (2021); Gao
et al. (2020); Anand et al. (2019). The mus-
culoskeletal model simulated in OpenSim has

3

Table 1.1: Overview of the relevant existing literature on regularization methods for Re-
inforcement Learning.

Reference Category Method RL task Outcome

Liu et al. (2019) MLP architecture
Adding L1 and L2 regularization, Entropy regularization,
Batch normalization, and Dropout to RL algorithms

9 continuous control tasks from MuJoCo and RoboSchool Increased rewards, L2 regularization being the most effective

Lee (2020) MLP architecture
Testing the effects of different MLP activation functions on
received reward in RL

Continuous control 2D car racing
ReLU-like activation functions received the highest rewards,
with ReLU6 (Howard et al., 2017) being the best

Jang and Son (2019) MLP architecture
Testing the effect of combinations of activation functions paired
with kernel initializers on the performance of PPO

OpenAI Gym cartpole and pong
ReLU activation and random normal initializers lead to the
highest reward in CartPole

Hossny et al. (2021) MLP architecture
Making the activation function for each output neuron a learnable
parameter of the MLP

OpenAI Gym pendulum, LunarLander, BipedalWalker
Parameterized activation functions lead to higher rewards and
less fluctuating actions

van Wouden (2021) Reward function
Adding a penalty term in the reward function that penalizes large
changes of actions between time steps

Human walking with a simulated musculoskeletal model
in OpenSim

No walking behavior was achieved by the agent

Asadulaev et al. (2020) Policy loss function
regularizing the policy network by penalizing high Jacobian
conditioning in the loss function

OpenAI Gym continuous control improve policy stability

Shen et al. (2020) Policy loss function
Adding a penalty term that encourages local Lipschitz continuity
of the loss policy function

5 continuous control tasks from MuJoCo Smoother policy and increased sample efficiency

Thodoroff et al. (2018) Policy loss function
Smoothening historic estimated advantages with an
exponential term

OpenAI Atari games Higher reward received by regularized agents

Mysore et al. (2021) Policy loss function
Adding a penalty term to the policy loss that penalizes large
policy changes in the spatial and temporal domain

4 continuous control OpenAI tasks Regularization improved policy smoothness

Raffin et al. (2020) Exploration method
State-dependent exploration adapted to Deep Reinforcement
Learning algorithms

4 continuous control PyBullet tasks
Regularized controller achieved similar performance with less
erratic movements compared to a standard controller

Table 3.1: PPO hyperparameters. All val-
ues were adopted from De Vree and Carloni
(2021).

Parameter Value
Seed 999
Learning rate 0.0003 (annealed)
Steps per batch 1536
Batch size 512
Updates per batch 4
Discount factor γ 0.999
GAE λ 0.9
Entropy coefficient 0.01
Clip range 0.2

22 Hill-type muscles (Hill, 1938), 14 degrees of
freedom (DoF) and was developed by Seth et al.
(2018). A musculoskeletal model with only 18
muscles and 10 DoF was frequently used in
previous research (Weng et al., 2021; De Vree
and Carloni, 2021). In this study, a model ex-
tended by four muscles and 4 DoF was used
because it is more realistic and the additional
muscles should allow more granular control of
the model.

In RL, the observation that the agent makes
in a state is a crucial component. For this im-
plementation, the observation was a vector of
size 142. A more elaborate representation of the
observation vector can be found in Table 3.2.

3.2 Learning algorithm

Proximal Policy Optimization (PPO) was used
as the learning algorithm. PPO belongs to the
class of policy gradient methods, which update

(a) Front view (b) Back view

Figure 3.1: Overview of the musculoskeletal
model. It has 22 muscles, which are labeled
in the figure. The model is symmetric, mean-
ing it has eleven identical muscles on each
side of the body.

4

Table 3.2: Overview of the observation vector. Values in parentheses indicate three values
for (x, y, z) coordinates.

Variable Amount Values

Body parts 72 Position (3), velocity (3) for: femur, tibia, talus, calcaneus, toes, torso, head

Model: Hips 12 Angle, angular velocity: hip flexion, hip adduction, hip rotation

Model: Knees 4 Knee angle, angular velocity

Model: Ankles 4 Ankle angle, angular velocity

Model: Pelvis 18
Global position (3), global orientation (3), local linear velocity (3),
local angular velocity (3), local position (3), local velocity,
local orientation (3), local angular velocity (3)

Imitation data: Hips 12 Angle, angular velocity: hip flexion, hip adduction, hip rotation

Imitation data: Knees 4 Knee angle, angular velocity

Imitation data: Ankles 4 Ankle angle, angular velocity

Imitation data: Pelvis 12 local angular velocity (3), local position (3), local velocity, local orientation (3)

Sum 142

Figure 3.2: The RL training loop. The pol-
icy, parameterized by an MLP, maps an in-
put observation vector to an action vector
which is executed by the agent. The agent
then receives a reward based on the changed
state of the simulation and updates its pol-
icy.

the policy by performing grading ascent on the
estimated gradient of the policy. PPO is the
successor of Trust Region Policy Optimization
(TRPO). TRPO, proposed by Schulman et al.
(2015a), maximizes the expected ratio of the
new policy πθ and old policy πθold while con-
straining the size of the update. The update
step is calculated as the maximum Kullback-
Leibler (KL) divergence of the policy’s parame-
ters θ. Specifically, TRPO maximizes LCPI(θ):

maximize
θ

Êt

[
πθ(at|st)

πθold
(at|st) Ât

]
subject to Êt [KL [πθold (· | st) ,

πθ (· | st) ≤ δ

(3.1)

where Êt is the empirical average at time t,
πθ is the new parameterized policy, πθold the
old parameterized policy, at the action taken at
time t, st the state at time t, and Ât the esti-
mated advantage at time t. The advantage is es-
timated using Generalized Advantage Estima-
tion (GAE, Schulman et al. (2015b)). Express-
ing the changing policy with this ratio formed
the main novelty of TRPO. Ratios larger than
one indicate better action under πθ compared
to πθold , values smaller than one stand for worse
actions in comparison. Although TRPO showed
promising performance in the original paper,
it turned out to be difficult to implement and
complex to compute (Schulman et al., 2015a).
Thus, Schulman et al. (2017) introduced PPO.

5

PPO’s main improvement over TRPO is to clip
the policy ratio. This prevents policy updates
from being too large, i.e. πθ being too far away
from πθold which could lead to unstable train-
ing behavior Schulman et al. (2017). PPO min-
imizes the objective:

L(θ) = Êt

[
min

(
rt(θ)Ât,

clip (rt(θ), 1 − ϵ, 1 + ϵ) Ât

(3.2)

where rt(θ) is the policy ratio and ϵ is the
clipping hyperparameter.

In this study, the objective of the agent is to
control the skeleton’s movement by activating
its 22 muscles. An MLP represents the policy
by outputting 22 floats in the range [0, 1], given
the observation vector as input as described in
Table 3.2. Thus, the policy is represented by the
weights θ of the MLP. The effectiveness of the
current policy is evaluated using GAE (Schul-
man et al., 2015b) and a second MLP which is
trained to learn the state-value function V (s).

The implementation of PPO in Python is
largely adopted from the Stable-Baselines 3
framework (Raffin et al., 2021). Table 3.1 pro-
vides an overview of all hyperparameters used
in the PPO implementation. They were entirely
adapted from the work of De Vree and Carloni
(2021).

3.3 Imitation learning

Human data To increase the similarity be-
tween the gait learned by the controller and
a human gait, imitation learning has been
demonstrated to be successful by De Vree and
Carloni (2021), who used walking data from
83 children. In this study, the gait kinematics
from an able-bodied adult subject were used be-
cause the subject’s mass and height closely re-
semble the measurements of the musculoskele-
tal model. The data was obtained from subject
AB06 from a biomechanical study by Camargo
et al. (2021). Subject AB06 was a 1.8 meters
tall, 20-year-old male that was 74.8kg heavy.
The data used for imitation learning features
joint kinematics of the hips, knees, ankles, and
pelvis and was recorded during ground-level

walking at 1.12 ± 0.21m/s (average speed of
all subjects for self-paced normal walking). For
more methodological details of data collections,
see Camargo et al. (2021).

Data processing The publicly available
data set was processed for imitation learning.
First, the musculoskeletal model was rotated
by 90° clockwise around its y-axis to align the
model-centered coordinate system with the col-
lected data. Next, collected data was trimmed
down to the interval [12.8s, 16.8s] which cor-
responds to the time span in the trial when
subject AB06 walks in a straight line. This
trimmed data was used to calculate inverse
kinematics (IK) with OpenSim’s Inverse Kine-
matics tool. The root mean square error for the
IK data was 0.261, which is sufficiently pre-
cise according to the OpenSim documentation
(Delp et al., 2007). Finally, IK data was ex-
tracted and post-processed. In postprocessing,
the first 39 time steps of the imitation data were
removed to initialize the agent in the mid-swing
phase of the gait cycle rather than starting
standing. Such initialization techniques proved
to be very useful during training. This way,
the agent was forced to take the first step be-
cause the unstable starting position caused a
forward movement that would result in a fall
if the agent did not move. The resulting file
contained 680 time steps with δt = 0.005. For
each time step, the following data points were
included for the left and right limbs: hip flex-
ion angle, hip adduction angle, hip rotation an-
gle, knee angle, and ankle angle. Furthermore,
pelvis coordinates (x, y, z) and pelvis orienta-
tion (tilt (around the z-axis), list (around the
x-axis), rotation (around the y-axis)) were in-
corporated.

3.4 Reward formulation

The reward function plays an essential role in
RL, as it encodes the objective for which the
agent adjusts its policy. For the task of learn-
ing to walk, the reward function was composed
of two parts: a goal term that rewards the agent
for moving its pelvis forward in the sagittal
plane and an imitation term that penalizes dis-

6

Table 3.3: This table provides an overview of all conducted training runs. Each run is
constituted by a specific reward function and policy. The runs are categorized into four
categories based on the type of regularization that is used in the run. In addition, the table
shows how many parallel environments were used in each run and for how many total time
steps each run was trained. The entries in the ”Name” column serve as identifiers for
the runs and are capitalized. Envs denotes the number of parallel environments that were
used in the training process. This number was set to the number of CPUs of the hardware
equipment.

Name Category Envs Total steps Policy Reward

ReLU Activation 4 3,913,728 ReLU Base
LReLU Activation 2 3,136,512 LReLU Base
Tanh Activation 1 3,087,360 Squash Base
L2 0.00005 Layer 16 4,128,768 L2 − 5e−5 Base
L2 0.0005 Layer 4 3,102,720 L2 − 5e−4 Base
L2 0.001 Layer 4 3,683,328 L2 − 1e−3 Base
Large (0.001) Layer 4 3,428,352 Large Base
Multiply Reward 8 4,079,616 Squash Multiply
Additive Reward 8 4,300,800 Squash Additive
Curriculum Reward 8 6,494,208 Squash Curriculum
Feet penalty Tune 16 10,272,768 Squash Feet penalty
Adduction penalty Tune 8 10,844,160 Squash Adduction
Base Tune 8 7,262,208 Standard Base

similarity between the agent’s kinematics and
the imitation data. In this study, the effects of
six different reward functions were explored for
their ability to achieve a stable gait and re-
duce erraticness in muscle activations. In the
following equations, p refers to penalties, r to
rewards, v to velocity, p to position, and ”imi”
to the corresponding data points in the imita-
tion data. Table 3.3 shows which reward func-
tion was used in each simulation run.

Base reward The base reward function fol-
lows previous work from De Vree and Carloni
(2021). The goal reward rgoalt is calculated at
every time step t using a velocity penalty pvelt :

pvelt = (pvx − imi pvx)2+(pvz − imi pvz)2 (3.3)

rgoalt = exp(−8 ∗ pvelt) (3.4)

where vx and vz are the agent’s pelvis velocity
in the x and z directions.

The imitation reward rimit is calculated us-
ing positional and velocity penalties for joint
angles:

ppost =
∑

(pagent − pimitation)2 (3.5)

pvelt =
∑

(vagent − vimitation)2 (3.6)

where the sum ranges over the knee angle, ankle
angle, hip adduction, and hip flexion, each for
both legs as well as pelvis rotation, list, and
tilt. The imitation reward is a weighted sum of
the exponentiated penalty terms:

rimit = 0.75 ∗ exp(−2 ∗ ppost+
0.25 ∗ exp(−2 ∗ pvelt)

(3.7)

Combining both reward terms leads to the
total reward rt:

rt = 0.4 ∗ rgoalt + 0.6 ∗ rimit (3.8)

All weights were adopted from De Vree and
Carloni (2021) who found that these values lead

7

to the best results. This reward composition re-
wards the agent when it walks (i.e. the pelvis
moves) in x direction and penalizes any devi-
ations of the knee, ankle, pelvis, and hip joint
angles from the imitation data.

Erraticness reward Previous work by van
Wouden (2021) attempted to decrease muscle
activation erraticness by including a penalty
term in the reward function, shown in Equation
3.9. The additional penalty was an exponenti-
ated sum for all muscles of the current muscle
activation and activation at the previous time
step.

rerr = exp(−c ∗
m=22∑
m=0

(activationt − activationt−1)2)

(3.9)

In van Wouden (2021), no value was stated for
the constant factor c multiplied by the sum. In
this study, rerr is calculated slightly different:

rerr = 1 − 1

22
∗

m=22∑
m=0

(activationt − activationt−1)2)

(3.10)

As all muscle activations are in the range [0, 1],
the mean activation difference can maximally
be 1. Thus, if all activations from the 22 muscles
are maximally different from their previous val-
ues, the agent receives an erraticness reward of
1− 1

22 ∗ 22 = 0. This erraticness penalty can be
combined with the base reward function in two
possible ways. The penalty term can be added
as another summand to the weighted sum of
total rewards, resulting in the reward function

r = wgoal ∗rgoal +wimi ∗rimi +werr ∗rerr (3.11)

This reward function was used in the Additive
run (see Table 3.3 for an overview of all con-
ducted runs). It comes with a potential down-
side. Not only do the weights of the components
have to be tuned, the agent could learn to max-
imize this reward by just maximizing the rgoal
and rimi terms while discarding the rerr term.

This potential problem can be solved by mul-
tiplying the rerr reward with the sum of rgoal
and rimi:

r = (wgoal ∗ rgoal + wimi ∗ rimi) ∗ rerr (3.12)

This prevents the reward from increasing if the
rerr is low. The Multiply run used this reward
function.

Curriculum reward The results from van
Wouden (2021) show that the used reward for-
mulation did not produce a walking gait. Thus,
it might be the case that the regularization
came at the cost of the expressiveness of the
policy. One potential solution here is to first
train the controller to walk, and once a full gait
cycle is achieved, add regularization to the re-
ward function. To train the controller to walk,
the base reward function (Equation 3.8) was
used. Then, a reward function similar to the ad-
ditive erraticness reward in Equation 3.11 was
applied. Furthermore, the weights of the com-
ponents changed when the training episode be-
comes longer to encourage learning focus on de-
creasing erraticness.

r = wgoal ∗rgoal +wimi ∗rimi +werr ∗rerr (3.13)

The weight vector w containing wgoal, wimi,
and, werr is

w =

{
[0.45, 0.45, 0.1]T , if t < 150

[0.3, 0.45, 0.25]T , otherwise
(3.14)

where t is the time step within the current
episode.

Gait-tune rewards Intermediate results in-
cluded a walking agent. However, that agent
had a physically impossible walking gait, as its
bones penetrated each other during some parts
of the gait cycle. Therefore, two other reward
functions were designed to discourage such un-
desirable behavior. In both rewards, the rgoal
reward was adjusted. In the Adduction penalty
reward, a penalty for activations of the hip ad-
duction muscles was included with the goal of

8

preventing excessive hip adduction that could
lead to legs moving to undesirable positions.
The penalty is formulated as the sum of acti-
vations of the left and right adductor muscles:

padduction =
∑

adductor activation (3.15)

The penalty is incorporated into the goal re-
ward as

rgoalt = exp(−8 ∗ pvel)− 0.5 ∗ padduction (3.16)

This reward was used in the Adduction penalty
run.

Because the learnt gait showed very straight
legs with little knee flexion, the weight of knee
flexion deviation from the imitation data was
doubled in the imitation reward. To discour-
age the agent from crossing its feet, the sum
of goal reward and imitation reward was mul-
tiplied with a factor pfoot based on the amount
of foot crossing:

pfoot = max(0.5 − y left − y right, 0.1)

pfoot =

{
pfoot, if y left ≥ y right

1, otherwise

(3.17)

where y left and y left are the positions of the
left and right foot in the frontal plane. This
leads to the total reward being

r = (wgoal ∗ rgoal + wimi ∗ rimi) ∗ pfoot (3.18)

This reward was used in the Feet penalty run.

3.5 Erraticness methods

Table 1.1 categorizes attempts to decrease er-
raticness or learn smoother policies in the liter-
ature. In this study, the effects of reward shap-
ing and MLP regularization are investigated.
For the former, the reward function of the agent
is modified, as described extensively in Section
3.4. For the second category, the MLP is regu-
larized using layer regularization and activation
functions.

Layer regularization L2 regularization
adds an additional penalty term to the loss
function of the MLP. This term, shown in
Equation 3.19, penalizes large weights of
individual neurons, thereby decreasing the
chance of overfitting (Ng, 2004).

L = Ls − λ

N∑
i=0

θ2i (3.19)

where L is the resulting loss function of the
MLP, Ls the standard loss function, and θ
the weight vector of size N of the MLP. Liu
et al. (2019) find that L2 regularization gener-
ally performs the best when compared to other
regularization methods for MLPs. Liu et al.
tuned λ, the coefficient for the additional L2

loss term, to their RL problems using a range of
[0.00005, 0.001]. In this study λ was evaluated
for three values: 0.00005, 0.0005, and 0.001.

Activation functions In MLPs, the activa-
tion function of the neurons mathematically de-
termines the neuron’s output based on all its
input from other neurons and a bias. Though
activation functions are classically not consid-
ered to be regularization methods, they can
have significant a impact on performance. De-
spite Dubey et al. (2021) reporting that some
activation functions like the rectified linear
unit (ReLU) perform well on a wide range of
tasks, there is no one-fits-all activation func-
tion. Rather, the choice of activation function
seems to be application-dependent. In the do-
main of RL, little research has been conducted
on the effects of activation functions. In many
RL frameworks (Raffin et al., 2021; Dhariwal
et al., 2017) Tanh is the default activation func-
tion. In this study, the effects of using ReLU
(Eq. 3.21) and leaky ReLU (LReLU, Eq. 3.22)
activation functions are explored and compared
to the Tanh function.

Tanh(x) =
ex − e−x

ex + e−x
(3.20)

ReLU(x) = max(0, x) =

{
x, if x ≥ 0

0, otherwise

(3.21)

9

LReLU(x) = max(0, x) =

{
x, if x ≥ 0

0.01x, otherwise

(3.22)
(Dubey et al., 2021).

3.6 Experimental setup

This subsection outlines how the regularization
methods are tested and what data is collected.
Three Linux computers were used for training,
each with one GPU and 16, 8, and 4 CPUs re-
spectively.

Training parameters Every training run
(see Table 3.3) consists of a combination of re-
ward function (see Section 3.4) and policy (see
Table 3.4). The time for training the individ-
ual runs was heavily dependent on the number
of total time steps, parallel environments, and
computing hardware. These factors can also be
seen in Table 3.3. Parallel environments were
used during training for two reasons. Firstly,
the trajectory collection part of PPO can be
parallelized. When PPO is trained on a single
environment, the agent acts in the environment
for some amount of steps x, stores the observa-
tions, actions, and rewards, and then updates
the policy based on the collected experience.
With parallel environments, multiple agents go
through the experience collection process at the
same time, thereby collecting x∗y steps for up-
dating the policy if y parallel environments are
used. Thus more total time steps can be col-
lected in the same wall time than with a single
environment. In addition, every policy update
is based on more total time steps, leading to
potentially more stable updates. This benefit is
also supported by the second feature of parallel
environments. Each environment has a different
random seed. Therefore, the collected trajecto-
ries differ between environments and should in
theory generalize better.

Evaluation of erraticness To reliably eval-
uate the erraticness of a learned policy, there
needs to be a method of quantification. This

Table 3.4: Overview of the policies used in
the experiment runs. All log probabilities
were initialized to 0 and weights were ini-
tialized orthogonally. The number of neu-
rons corresponds to the two hidden layers
of each MLP. For the shared-layer policy,
the first hidden layer is shared between the
policy and value network and contains 512
neurons. The MLP then has separate heads.
The policy head features a hidden layer with
128 neurons and the value head’s hidden
layer contains 312 neurons. When policies
use a Tanh function to squash the output,
the value of all neurons in the final layer is
squashed through that function.

Name Neurons Activation Squashing L2 λ

Standard 312, 312 Tanh None None
Squash 312, 312 Tanh Tanh None
ReLU 312, 312 ReLU Tanh None
LReLU 312, 312 LReLU Tanh None
Large 512, 512 ReLU Tanh 0.001
L2 − 5e−5 312, 312 Tanh Tanh 0.00005
L2 − 5e−4 312, 312 Tanh Tanh 0.0005
L2 − 1e−3 312, 312 Tanh Tanh 0.001

study used two quantitative measures for er-
raticness. The first one is adapted from Raffin
et al. (2020) and termed continuity cost.

C = 100 × Et

[(
at−1 − at

∆a
max

)2
]

(3.23)

where at−1 is the action taken at time step t−1,
at is the action taken at time step t, and ∆a

max

is the maximum action. Applied to the problem
at hand, at−1 is a vector of the 22 activations
in the range [0, 1] from the last time step, at
is the vector of activations at the current time
step, and ∆a

max is the maximum value for an
action, so ∆a

max = 1. The continuity cost for a
trained agent is aggregated over time and for
all muscles. A less erratic policy should lead to
lower continuity costs.

The other measure investigates the torques
that apply to the agent’s knees and ankles in
the sagittal plane when using a learned gait.
The torques can be compared to those of a
healthy human from experimental data. In this
paradigm, a less erratic policy is represented

10

by a lower root mean square error of the mean
torque Mx compared to Mx from the imitation
data.

Evaluation of the gait The main metrics
to evaluate which run achieved the best walk-
ing pattern are episode length (the agent should
walk as far as possible) and Joints RMSE (the
joint angles should be as similar to imitation
data as possible). Furthermore, higher mean
episode rewards indicate a good walking perfor-
mance of the agent with respect to its specific
reward function.

Simulation initialization The first 39 rows
of the imitation data were removed during data
processing. This leads to the agent starting in
a right midstance phase of the gait, where the
left heel is already lifted from the ground. This
initialization of the agent, and the inertia that
comes with it, has been empirically shown to
improve the agent’s learning ability.

Data collection During the training process
of a run, reward and episode length are col-
lected as the main training metrics. For the
evaluation of a trained agent, the joint angles of
hips, knees, ankles, and pelvis are stored. This
data is used to compare the learned gait to the
imitation data as well as to compute the torques
that result at the knees and ankles. To evaluate
the erraticness of the policy, the muscle activa-
tions and continuity cost for all muscles at each
time step are calculated and stored during eval-
uation.

4 Results

This section presents the results of all train-
ing runs: the controller for normal walking, the
controllers with reward regularization, the con-
troller with layer regularization, and the con-
troller with activation function regularization.

The runs are evaluated based on re-
ward, episode length, continuity cost, resulting
torques, joint angles, and achieved gait. The re-
sulting torques, as well as joint angles, are com-
pared to the imitation data using root mean

square error (RMSE). The closer the RMSE is
to 0, the more similar the agent’s results are
to the imitation data. Thus, a run is the best
within a metric if it has the lowest RMSE out
of all runs. The torques are normalized to the
weight of the simulated model, 75.16kg. For the
torques Mx in the agent’s sagittal plane, the
RMSE is calculated as

RMSE =

√
(agent − imi)2

t

with t = min(tagent, timi). For torques, RMSE
is aggregated over t for the knee and an-
kle joints of the right leg and the agent’s x-
dimension (sagittal plane). For joint angles,
RMSE is aggregated over t and the pelvis, hip,
knee, and ankle of the right leg. The continuity
cost C is calculated for each muscle and each
time step using Eq. 3.23 and aggregated over
time and all muscles. Whether a full gait cycle
was achieved or not is determined by analyzing
the left foot of the agent. The agent starts the
gait by rising the left foot. Thus, if two occa-
sions of the left foot touching the floor are ob-
served in the simulation, the agent completed
a gait cycle.

Reward Figure 4.5 shows the mean episode
rewards of the runs achieved during training,
grouped by run category. The plots for the Re-
ward (Figure 4.5b) and Layer (Figure 4.5d) cat-
egories both show that generally, the received
rewards of stronger regularized runs are lower
and increases stagnate earlier. In the Activa-
tion category (Figure 4.5a), the runs with Tanh
and ReLU activation functions clearly achieved
higher rewards which continue to increase, in
contrast to the LReLU run. The Base run in
the Tune category (Figure 4.5c) accomplished
the highest reward out of the three runs. How-
ever, all three runs had different reward func-
tions so a numerical comparison of rewards is
less indicative of performance than the trend
of the reward curve. Note that the Curriculum
run starts at a reward of 100 because the train-
ing process started from the trained Tanh run,
as explained in Section 3.4.

11

Table 4.1: Summary of all evaluation metrics. For each run category, the best value within
a category is shown in italic font. The best value out of all runs is displayed in bold font.
Mx, and Joint RMSE scores are reported in units of RMSE. Joint RMSE, Mx, and C
are rounded to three, two, and one decimal respectively. Reward and episode length are
rounded to integers.

Name (see Table 3.3) Category Reward Episode length C Mx Joint RMSE Gait cycle

ReLU Activation 105 242 2.40 5.93 0.419 No
LReLU Activation 62 149 2.03 5.4 0.43 No
Tanh Activation 107 211 1.52 5.83 0.495 Yes
L2 0.00005 Layer 79 167 2.54 6.8 0.306 No
L2 0.0005 Layer 67 149 2.04 7.6 0.321 No
L2 0.001 Layer 54 143 2.03 6.0 0.279 No
Large Layer 54 137 2.34 6.6 0.503 No
Multiply Reward 78 187 1.58 5.4 0.417 No
Additive Reward 89 220 2.21 5.7 0.401 Yes
Curriculum Reward 199 486 2.30 6.1 0.705 Yes
Feet penalty Tune 145 255 2.34 3.3 0.425 Yes
Adduction penalty Tune 120 186 2.42 6.7 0.451 Yes
Base Tune 145 256 2.69 7.1 0.71 Yes

Table 4.2: Evaluation metrics for all runs,
aggregated by run category.

Category Reward Length C Mx Joints Gait

Activation 91.3 201. 1.98 5.72 0.448 0.333
Layer 63.5 149 2.24 6.74 0.352 0
Reward 122 298. 2.03 5.74 0.508 0.667
Tune 137. 266. 2.48 5.71 0.529 1

4.1 Normal walking

Table 4.2 shows evaluation metrics of all con-
ducted runs, aggregated by category. In terms
of episode length, runs in the reward category
performed the best while Layer had the on av-
erage shortest episodes. In addition, none of the
Layer runs achieved a stable gait. However, the
Layer runs have the lowest Joints RMSE, indi-
cating that the learned movement, though un-
stable, was most similar to human walking.

The pattern of Reward runs having a long
episode length but high Joint RMSE persists
when looking at the results of individual runs.
From all runs, Curriculum achieved by far the
longest episodes. Although this run learned a
stable gait, the plotted gait pattern in Figure
4.3 (red line) and the high Joints RMSE pro-
vide evidence for the gait pattern being dissim-
ilar to human walking. This finding is further

supported by a visual analysis of the emerg-
ing gait. Figure 4.4 depicts an example: from
4.4a to 4.4b, the agent adducts its left leg ex-
cessively which causes the leg to move through
the right leg. Correlation analysis for episode
length and Joint RMSE reveals that there ex-
ists a moderate positive correlation between
the two variables (Pearson’s r(11) = 0.697).
As both metrics are essential indicators for the
goal of human-like walking, a trade-off must be
made. The Feet penalty run serves as an exam-
ple. It learned a stable gait, reaching an episode
length of 255 while maintaining a Joints RMSE
of 4.25 which is lower than the mean Joints
RMSE of 4.51. It should also be noted that the
goal of having a small Joint RMSE is impor-
tant but becomes pointless if no gait cycle is
achieved.

For further analysis, joint angles of the right
ankle, knee, and hip of the trained agents are
plotted in Figure 4.3 as a function of the gait
cycle stage. Specifically, data is shown for all
runs that performed best in at least one met-
ric from Table 4.1. In addition, the imitation
data ± one standard deviation (SD) is shown in
grey for comparison. At the ankle joint, all runs
but Tanh show somewhat similar kinematics
(within one SD), although they lack some gran-

12

ularity, such as the small decrease in the angle
at around 30% of the gait cycle. None of the
runs shows the patterns of human hip flexion
in their kinematic data. In fact, the hip flexion
angle remains somewhat constant for all runs
except Tanh, which shows some hip extension
in the last third of its gait cycle. For knee kine-
matics, all runs except L2 (0.001) display some
similarity to the imitation data: Their knee an-
gles decrease in the second quarter of the gait
cycle before it increases again. However, all of
the runs have consistently larger knee angles
than the imitation data.

An interesting observation is that whether
a gait cycle was achieved or not is posi-
tively correlated with Joints RMSE (Pearson’s
r(11) = 0.585). This can be interpreted as less-
human-like gaits correlating with more chance
to achieve a gait cycle.

4.2 Erraticness

The erraticness of each run’s policy is evaluated
from two points of view. The ”action” point of
view examines the continuity cost C of actions.
The other view is more outcome-oriented, fo-
cusing on the torques that result from actions.

Actions The average continuity cost for all
muscles over all time steps is shown in Ta-
ble 4.1, and aggregated by run category in Ta-
ble 4.2. This table shows that Activation runs
had the lowest average continuity cost, whereas
Tune runs had the highest average continuity
cost. Out of all runs, Tanh achieved the lowest
continuity cost, followed by the Multiply run.
Importantly, the mean continuity cost scores of
all regularization categories were lower than the
mean score of Tune, the only category without
regularization.

From the Layer runs, L2 regularization with
λ = 0.001 lead to the lowest continuity cost.
Ordering the ”layer” runs from most regular-
ization (λ = 0.001) to least (λ = 0.00005),
one can observe an inverse correlation between
the level of regularization and continuity cost.
Another pattern becomes apparent within the
Layer runs: Although runs with more regu-
larization seem to have lower continuity cost,

Figure 4.1: Torque normalized to model
mass as a function of right ankle angle.

they also perform worse in terms of reward
and episode length. In the Layer category,
the highest reward and episode length were
achieved by the run with the smallest λ. The
same relation is found in the Reward cate-
gory. The highest reward and longest episodes
were both reached by the Curriculum run. How-
ever, the Reward run with the lowest continu-
ity cost was Multiply, followed by Additive. In
the Tune category, the Feet penalty reward re-
sulted in a slightly lower continuity cost than
the other two runs. All run categories individ-
ually as well as together show two patterns.
Firstly, stronger regularization occurs together
with lower continuity cost. Secondly, high con-
tinuity cost seems to be correlated with per-
formance and gait stability. In fact, episode
length and reward are both positively corre-
lated with continuity cost: Pearson’s rrew(11) =
0.329; Pearson’s rlen(11) = 0.265. Solely the
Tanh run forms an outlier, as it achieved the
lowest continuity cost out of all runs while hav-
ing the highest reward within its run category.

Outcomes Next to assessing whether the ac-
tions produced by the policy are less erratic, the
torques that result at the agent’s joints from
the executed actions can be evaluated. The Mx

in Table 4.1 and 4.2 show the RMSE of the
resulting torques at the knee and ankle in the
sagittal plane of the agent, with respect to the
imitation data.

The Tune runs show the on average low-
est RMSE for torques, closely followed by the

13

Figure 4.2: Torque normalized to model
mass as a function of right knee angle.

Activation and Reward runs. The individual
run with the lowest RMSE torque is the Feet
penalty run from the Tune category.

From the Activation runs, LReLU recorded
the lowest torque RMSE. The Layer category
paints a similar picture for Mx as it did for
continuity cost: more regularization correlates
with lower torque RMSE. The run that resulted
in the lowest RMSE had λ = 0.001. In the Re-
ward category, this trend remains. The run with
the highest reward and episode length, Cur-
riculum, also registers the largest RMSE for
torques within its category. Moreover, the run
with arguably the most reward regularization,
Multiply has the lowest RMSE. From the un-
regularized runs in the Tune category, the Feet
penalty run achieved the lowest RMSE, while
being identical in reward to the Base run and
very close in terms of episode length.

Interestingly, the lowest torque RMSE of 3.32
was scored by the unregularized Feet penalty
run. The value can be interpreted as the torques
that apply to the knee and ankle of the Cur-
riculum run being 3.32 Nm

kg higher than in the
imitation data. The agent’s deviations from the
imitation data are further supported by plots of
torque as functions of knee and ankle angles in
Figures 4.1 and 4.2.

It can be seen that none of the runs produce
torque patterns similar to the imitation data.
For the torques applying at the ankle, see Fig-
ure 4.1, one can notice that all runs produce
torques at ankle angles that are much larger
than in the imitation data. Another interest-

ing observation is that all resulting torques in
the imitation data are negative, meaning they
accelerate the talus or tibia in the negative x
direction of the agent. In contrast, all runs reg-
ister some torques with positive values. This is
likely another contributing factor to the unsta-
ble gait cycles of many runs. Similar observa-
tions can be made from the torque plot of the
knee joint in Figure 4.2. In the imitation data,
all torques happen at negative knee angles, i.e.
when the knee is flexed. This is not the case
for the simulation runs, which all show some
torques applying at positive knee angles, i.e.
extended knees. Torques at positive knee an-
gles imply (over)extended, very straight legs.
The gait patterns of the knee in Figure 4.3
align with this observation, as the simulation
runs show consistently larger (positive) joint
angles. The torque plots for the knee of the Feet
penalty run seem most similar to the torques in
the imitation data in terms of torque range and
knee angle range. In addition, it is the only run
for which the torques form a closed ellipsoid like
the imitation data. The closed ellipsoid can be
interpreted as the agent performing a full cycle
of knee flexion and extension during the gait cy-
cle. However, even for the Feet penalty run the
difference in the shape of the ellipsoid and the
imitation data torques indicate a discrepancy
between the learned gait and imitation data.

5 Discussion

Two objectives were addressed in this study:
1) Replicating previous successful work by
De Vree and Carloni (2021) on the 22 muscle
model with 4 additional muscles and 2) assess-
ing the effects of regularization techniques on
policy erraticness. The results show that the
former objective turned out to be more diffi-
cult than expected. The Base run, the first at-
tempt to replicate De Vree and Carloni (2021)’s
result, did not learn to walk longer than one
gait cycle, and the gait was less similar to im-
itation data than results from De Vree and
Carloni (2021)’s. The Curriculum run, which
achieved the longest episodes, mastered many
stable gait cycles but kinematic analyses re-

14

Figure 4.3: Gait pattern of different runs plotted as joint angle over the percent of the gait
cycle. Imitation data ±1 standard deviation is shown in grey.

(a) Swing phase (b) Terminal stance
phase

Figure 4.4: Physically impossible gait pat-
tern: The agent swings its left leg through
the standing right leg from the initial con-
tact phase to the terminal stance phases of
the gait.

vealed that the gait was lacking appropriate
knee and hip flexion. Both indicators used to
quantify policy erraticness, continuity cost C,
and resulting torques at the knee and ankle
Mx, could be decreased by regularization. The
Activation category achieved the lowest scores
for both variables out of all categories. Thus, it
can be concluded that all applied regularization
methods are effective for decreasing continuity
cost, and that reward regularization and acti-
vation functions can lead to more human-like
torques.

However, the lack of stable gaits in most runs
forms an important caveat to this conclusion.
In the bigger picture, the goal is to apply DRL
architectures to physical prostheses. With this
in mind, achieving smoother policies is a nec-
essary but by no means sufficient condition for
the application of DRL. Looking at the results
from this table through the lens of application,
the Curriculum and Feet penalty runs seem to
be the best results. The Curriculum run learned
a gait pattern that lead to the longest episodes
with a stable gait, lower continuity cost, and
lower Mx than the Base run. On the other
side, the Feet penalty run also achieved more
than one gait cycle and in addition featured the
torques that were most similar to the imitation
data. Because all simulation runs in this study
were conducted on a healthy musculoskeletal
model, it might be possible that an amputee
model with a prosthesis reacts differently to the
regularization.

15

(a) Activation

(b) Reward

(c) Tune

(d) Layer

Figure 4.5: Rewards received during the
training process, grouped by run category.

The totality of all runs, as pointed out in
Section 4, hints at a trade-off between reg-
ularization and performance. Ideally, such a
trade-off should not have to be made in real
applications. Therefore, the metrics that were
used here to quantify erraticness might be in-
valid. Continuity cost which is adapted from
Raffin et al. (2020) was originally formulated
for robotic control, not human musculoskele-
tal walking. To exemplify that directly incor-
porating continuity cost into the objective may
be harmful, the reward function of the Multi-
ply run (Equation 3.12) multiplies the goal and
imitation reward by a continuity cost penalty
and thereby emphasizes regularization a lot.
As PPO maximizes its cumulative reward, the
agent learns to produce actions with low con-
tinuity cost to satisfy the multiplicative con-
straint in the reward function. This is also evi-
dent in Table 4.1 which shows that the Multiply
run had the second lowest continuity cost over-
all. However, Multiply did not result in a sta-
ble gait and had the shortest episodes within
its category. Another possible explanation for
the regularization-performance trade-off is that
shifting emphasis on reducing continuity cost
takes away from the importance of goal and im-
itation reward. This is the case for the Additive
and Multiply runs. As shown in Equation 3.14,
the weights for goal and imitation reward are
decreased in favor of the continuity cost weight.
For increasing the continuity cost term, the sta-
bility or similarity of the gait is extraneous.

An interesting finding in the results is that
the Layer runs perform worst in terms of Mx.
Instead of the dissimilar torques being a conse-
quence of the agents not learning a stable gait,
the torques may be the reason for the agents
failing to walk.

5.1 Limitations

OpenSim One of the limitations is the
physics simulation software OpenSim that was
used in this study. Despite its widespread
use for musculoskeletal modeling, OpenSim
has been shown to be much slower than
the simulation engine MuJoCo in terms of
wall time needed for simulation steps (Ikkala

16

and Hämäläinen, 2020). Developed by Todorov
et al. (2012), it has the disadvantage that
it does not come with several musculoskele-
tal models as OpenSim does. However, Ikkala
and Hämäläinen converted a musculoskeletal
model from OpenSim to MuJoCo and demon-
strated that MuJoCo can be up to 600 times
faster than OpenSim for simulations of mus-
culoskeletal models. Because simulation dura-
tion showed to be the bottleneck time-wise
during the training process, such a speed-up
would allow for either much longer training
runs, or more total training runs. Both op-
tions would likely improve the final outcomes.
A second limitation is not caused by Open-
Sim directly but rather by the way the geome-
try of the musculoskeletal model is constructed
and interpreted by OpenSim. Specifically, the
model’s bodies (bones, etc.) do not have con-
tact meshes and therefore cannot collide with
each other in OpenSim. This allows behavior
as illustrated in Figure 4.4, where the agent
moves its legs through each other. This train-
ing outcome is clearly undesirable because it
does not transfer to any real-life application.
To prevent such behavior in subsequent runs,
additional components were added to the re-
ward function that penalize excessive adduc-
tion and crossing of the feet. Although sub-
sequent runs showed fewer occasions of body
parts moving through each other, the altered
and increased complexity of the reward func-
tion could have contributed to the difficulty of
the control problem. If the physical simulation
engine would cause the agent to fall every time
it tries to move a body part through another
one, all stable gaits would necessarily lack such
behavior. This would very likely simplify the
training process.

Lee (2020) and Jang and Son (2019) both
found that ReLU-like activation functions out-
perform Tanh in terms of received reward. Fig-
ure 4.5a does not follow this trend, the Tanh
activation function shows the highest rewards.
One possible reason for the disagreeing findings
is that previous work tested activation func-
tions on generally less complex RL tasks and
that their results, therefore, do not generalize
well to musculoskeletal control.

Other limitations of this work involve the
implementation of layer regularization. Exper-
iments in Liu et al. (2019) show that regu-
larizing only the policy network lead to bet-
ter outcomes than applying the regularization
methods to both networks, especially for harder
tasks. However, the implementation framework
for PPO that was used in this study, Stable
Baselines 3 by Raffin et al. (2021), does not
provide a straightforward method for regulariz-
ing only the policy network. Therefore, all layer
regularization and activation functions were ap-
plied to both networks in this study. This could
possibly explain why Layer runs did not per-
form better.

Furthermore, the results in Table 4.1 can
only be interpreted with care because not
all runs allow direct comparisons. Some runs
within the same category differ in more than
one dimension. For example, all Layer runs ex-
cept L2 0.00005 were trained with four paral-
lel environments while 16 parallel environments
were used for L2 0.00005 due to limited avail-
ability of computational resources. Such differ-
ences can impact the training process and thus
should be considered when drawing conclusions
from the results. For reference, Table 3.3 pro-
vides an overview of all conducted runs. Cor-
responding policies are explained in Table 3.4,
and Tables 4.1 and 4.2 show the results from
the runs.

Generalization Although the grand purpose
of this study considers amputees and prosthe-
ses, all runs were conducted on a healthy mus-
culoskeletal model. Afterward, one single sim-
ulation was run with the amputee model to
test whether the results generalize easily from
a healthy to a prosthetic model. The prosthetic
model has a simulated transfemoral prosthesis
that replaces the vasti, tibialis anterior, soleus,
and biceps femoris muscles of the model’s left
leg with actuators. The observation space was
adjusted such that observations of body parts
that were no longer present in the prosthetic
model were replaced by their counterparts. This
simulation did not result in any stable gait pat-
tern. The result provides no grounds for extrap-
olating the effectiveness of regularization tech-

17

niques for healthy models to prosthetic models.

5.2 Future work

This study provides a promising stepstone for
further research. As the results show, clas-
sic regularization techniques from Deep Learn-
ing, as well as reward shaping for regular-
ization, and choice of activation function im-
pact continuity cost of actions and resulting
torques. However, further research should con-
firm or disprove whether continuity cost is a
valid indicator of policy erraticness for muscu-
loskeletal modeling. Furthermore, more work is
needed to optimize the apparent regularization-
performance trade-off. Lastly, expanding the
advances from Ikkala and Hämäläinen (2020)
to migrate musculoskeletal models from Open-
Sim to MuJoCo offers a promising boost in time
efficiency.

6 Conclusions

This paper used PPO combined with imitation
learning for musculoskeletal simulations of hu-
man walking with a 22 muscle model. Addition-
ally, several regularization methods from L2

regularization to reward shaping and different
activation functions were tested for their abil-
ity to decrease the erraticness of learned pol-
icy. The results demonstrate that all three cat-
egories of methods were successful at decreas-
ing the measures of erraticness, continuity cost,
and resulting joint torque compared to baseline.
However, it also became evident that there ex-
ists a trade-off between decreasing these mea-
sures and learning a stable, human-like gait.

Acknowledgements I hereby want to thank
my supervisor Prof. Dr. Raffaella Carloni for
the support and guidance I received during
this study’s completion. In addition, I want
to thank Rutger Luinge, Elena Poeltuijn, and
Robin Kock, all fellow B.Sc. students at the
University of Groningen, for inspiring discus-
sions and advice about the implementation of
PPO. Lastly, I thank Rik Timmers, University
of Groningen research assistant, for technical
support with computation hardware.

References

Anand, A. S., Zhao, G., Roth, H., and Sey-
farth, A. (2019). A deep reinforcement learn-
ing based approach towards generating hu-
man walking behavior with a neuromuscu-
lar model. In 2019 IEEE-RAS 19th Interna-
tional Conference on Humanoid Robots (Hu-
manoids), pages 537–543. IEEE.

Asadulaev, A., Kuznetsov, I., Stein, G., and
Filchenkov, A. (2020). Exploring and ex-
ploiting conditioning of reinforcement learn-
ing agents. IEEE Access, 8.

Camargo, J., Ramanathan, A., Flanagan, W.,
and Young, A. (2021). A comprehensive,
open-source dataset of lower limb biomechan-
ics in multiple conditions of stairs, ramps,
and level-ground ambulation and transitions.
Journal of Biomechanics, 119:110320.

De Vree, L. and Carloni, R. (2021). Deep rein-
forcement learning for physics-based muscu-
loskeletal simulations of healthy subjects and
transfemoral prostheses’ users during normal
walking. IEEE Transactions on Neural Sys-
tems and Rehabilitation Engineering, 29:607–
618.

Delp, S. L., Anderson, F. C., Arnold, A. S.,
Loan, P., Habib, A., John, C. T., Guendel-
man, E., and Thelen, D. G. (2007). Open-
sim: open-source software to create and
analyze dynamic simulations of movement.
IEEE transactions on biomedical engineer-
ing, 54(11):1940–1950.

Dhariwal, P., Hesse, C., Klimov, O., Nichol,
A., Plappert, M., Radford, A., Schulman, J.,
Sidor, S., Wu, Y., and Zhokhov, P. (2017).
OpenAI baselines. https://github.com/

openai/baselines.

Dubey, S. R., Singh, S. K., and Chaudhuri,
B. B. (2021). A comprehensive survey and
performance analysis of activation functions
in deep learning. ArXiv, abs/2109.14545.

Fey, N. P., Klute, G. K., and Neptune, R. R.
(2011). The influence of energy storage and
return foot stiffness on walking mechanics

18

https://github.com/openai/baselines
https://github.com/openai/baselines

and muscle activity in below-knee amputees.
Clinical Biomechanics, 26(10):1025–1032.

Gao, X., Si, J., Wen, Y., Li, M., and Huang,
H. H. (2020). Knowledge-guided reinforce-
ment learning control for robotic lower limb
prosthesis. In 2020 IEEE International Con-
ference on Robotics and Automation (ICRA),
pages 754–760. IEEE.

Goodfellow, I., Pouget-Abadie, J., Mirza,
M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., and Bengio, Y. (2014). Gen-
erative adversarial nets. Advances in neural
information processing systems, 27.

Hill, A. V. (1938). The heat of shortening and
the dynamic constants of muscle. Proceed-
ings of the Royal Society of London. Series
B-Biological Sciences, 126(843):136–195.

Hossny, M., Iskander, J., Attia, M., Saleh, K.,
and Abobakr, A. (2021). Refined continuous
control of ddpg actors via parametrised acti-
vation. AI, 2(4).

Howard, A. G., Zhu, M., Chen, B.,
Kalenichenko, D., Wang, W., Weyand,
T., Andreetto, M., and Adam, H. (2017).
Mobilenets: Efficient convolutional neural
networks for mobile vision applications.
arXiv preprint arXiv:1704.04861.

Ikkala, A. and Hämäläinen, P. (2020). Con-
verting biomechanical models from Open-
sim to muJoCo. In International Confer-
ence on NeuroRehabilitation, pages 277–281.
Springer.

Jang, S. and Son, Y. (2019). Empirical eval-
uation of activation functions and kernel
initializers on deep reinforcement learning.
In ICTC 2019 - 10th International Confer-
ence on ICT Convergence: ICT Convergence
Leading the Autonomous Future.

Kidziński, L., Ong, C., Mohanty, S. P., Hicks,
J., Carroll, S., Zhou, B., Zeng, H., Wang, F.,
Lian, R., Tian, H., et al. (2020). Artificial
intelligence for prosthetics: Challenge solu-
tions. In The NeurIPS’18 Competition, pages
69–128. Springer.

Lawson, B. E. and Goldfarb, M. (2014).
Impedance & admittance-based coordina-
tion control strategies for robotic lower
limb prostheses. Mechanical Engineering,
136(09):S12–S17.

Lee, D. (2020). Comparison of reinforcement
learning activation functions to improve the
performance of the racing game learning
agent. Journal of Information Processing
Systems, 16(5).

Liu, Z., Li, X., Kang, B., and Darrell, T. (2019).
Regularization matters in policy optimiza-
tion. arXiv:1910.09191 [cs, stat].

Martinez-Villalpando, E. C. (2012). Design
and evaluation of a biomimetic agonist-
antagonist active knee prosthesis. PhD thesis,
Massachusetts Institute of Technology.

Mysore, S., Mabsout, B., Saenko, K., and Man-
cuso, R. (2021). How to Train Your Quadro-
tor: A Framework for Consistently Smooth
and Responsive Flight Control via Reinforce-
ment Learning. ACM Transactions on Cyber-
Physical Systems, 5(4):1–24.

Ng, A. (2004). Feature selection, l1 vs. l2 reg-
ularization, and rotational invariance. Pro-
ceedings of the twenty-first international con-
ference on Machine learning.

Nowakowski, K., Carvalho, P., Six, J.-B., Mail-
let, Y., Nguyen, A. T., Seghiri, I., M’pemba,
L., Marcille, T., Ngo, S. T., and Dao, T.-T.
(2021). Human locomotion with reinforce-
ment learning using bioinspired reward re-
shaping strategies. Medical & Biological En-
gineering & Computing, 59(1):243–256.

Raffin, A., Hill, A., Gleave, A., Kanervisto,
A., Ernestus, M., and Dormann, N. (2021).
Stable-baselines3: Reliable reinforcement
learning implementations. Journal of
Machine Learning Research, 22(268):1–8.

Raffin, A., Kober, J., and Stulp, F. (2020).
Smooth exploration for robotic reinforcement
learning. In Smooth Exploration for Robotic
Reinforcement Learning.

19

Schulman, J., Levine, S., Abbeel, P., Jordan,
M., and Moritz, P. (2015a). Trust region
policy optimization. In International confer-
ence on machine learning, pages 1889–1897.
PMLR.

Schulman, J., Moritz, P., Levine, S., Jor-
dan, M., and Abbeel, P. (2015b). High-
dimensional continuous control using gener-
alized advantage estimation. arXiv preprint
arXiv:1506.02438.

Schulman, J., Wolski, F., Dhariwal, P., Rad-
ford, A., and Klimov, O. (2017). Proxi-
mal policy optimization algorithms. arXiv
preprint arXiv:1707.06347.

Seth, A., Hicks, J. L., Uchida, T. K., Habib,
A., Dembia, C. L., Dunne, J. J., Ong, C. F.,
DeMers, M. S., Rajagopal, A., Millard, M.,
Hamner, S. R., Arnold, E. M., Yong, J. R.,
Lakshmikanth, S. K., Sherman, M. A., Ku,
J. P., and Delp, S. L. (2018). Opensim: Sim-
ulating musculoskeletal dynamics and neuro-
muscular control to study human and animal
movement. PLoS Computational Biology, 14.

Shen, Q., Li, Y., Jiang, H., Wang, Z., and Zhao,
T. (2020). Deep reinforcement learning with
robust and smooth policy. In 37th Inter-
national Conference on Machine Learning,
ICML 2020, volume PartF168147-12.

Sutton, R. S. and Barto, A. G. (2018). Re-
inforcement learning: An introduction. MIT
press.

Thodoroff, P., Pineau, J., Durand, A., and Pre-
cup, D. (2018). Temporal regularization in
Markov Decision Process. In Advances in
Neural Information Processing Systems, vol-
ume 2018-December.

Todorov, E., Erez, T., and Tassa, Y. (2012).
MuJoCo: A physics engine for model-based
control. In 2012 IEEE/RSJ International
Conference on Intelligent Robots and Sys-
tems, pages 5026–5033.

van Wouden, M. (2021). Deep reinforce-
ment learning for physics-based muscu-
loskeletal simulations of an osseointegrated

tranfemoral amputee model during normal
walking. Bachelor’s thesis.

Weng, J., Hashemi, E., and Arami, A. (2021).
Natural walking with musculoskeletal mod-
els using deep reinforcement learning. IEEE
Robotics and Automation Letters, 6(2):4156–
4162.

20

	Introduction
	Theoretical background
	Methods
	Simulation
	Learning algorithm
	Imitation learning
	Reward formulation
	Erraticness methods
	Experimental setup

	Results
	Normal walking
	Erraticness

	Discussion
	Limitations
	Future work

	Conclusions

