
Searching for Architectural Design
Decisions in Open-Source Software

Mailing Lists

Bachelor Thesis for Computing Science

Andrew Lalis andrewlalisofficial@gmail.com

Supervised by Dr. Mohamed Soliman m.a.m.soliman@rug.nl

August 23, 2022

mailto:andrewlalisofficial@gmail.com
mailto:m.a.m.soliman@rug.nl

Abstract
Google and other web-based search engines give users immediate access to
a plethora of knowledge. Mailing lists however, go unnoticed, and in search-
ing for knowledge about software architecture for making important design
decisions, they present an ideal source of information. In this study, we pre-
pare the tools necessary to fetch, process, and categorize the architectural
design decisions found in the mailing lists of several open-source projects
from the Apache Software Foundation. An analysis will present information
on the types of decisions, their prevalence, and the patterns these decisions
form through a thread of emails. Several keyword-based search queries will
be evaluated against the dataset to determine their effectiveness at retrieving
the most relevant information.

Page 1 of 71

Contents
Abstract 1

Introduction 3
Software Architecture . 3
Searching . 4
Defining Types of Design Decisions . 4
Research Questions . 7

Related Work 8

Tools 10
Overview . 10
Architecture . 11
Email Downloader . 12
MBox Parser . 14
Email Indexer . 15
Email Dataset Browser . 20
Email Dataset Report Generator . 26
A Minimal Workflow Example . 31

Methodology 33
Choosing Sources . 33
Fetching and Processing Sources . 34
Categorization Process . 36
Analysis . 42

Results 46
Kinds of Architectural Design Decisions . 46
Patterns of Design Decisions . 50
Search Effectiveness . 59

Discussion 62

Conclusion 63
Threats to Validity . 63
Future Work . 64

References 65

Appendix 67
Lucene Keyword Queries . 68
Email Dataset Schema . 69
Key Analysis Algorithms . 70

Page 2 of 71

Introduction
In this paper, we’ll explore the efficacy of using targeted keyword searchqueries
to find architectural knowledge inmailing lists for open-source software projects.
More simply put, we’ll build tools, collect data, and analyze that data to qual-
itatively determine how effective certain keyword-based search queries are
at finding useful information in large sets of emails, sent in mailing lists for
developers to communicate about large open-source software projects.

Software Architecture
Behind every software system you interact with, including the one used to
read this paper, is a set of elements, relationships, and rationale that define
the software’s architecture. While on the surface, you see the implementation
of the software, the architecture is concerned with what elements, their inter-
actions in order to provide a framework for satisfying the requirements of the
system [17]. Continuing our example, the software you’re using to read this
paper probably uses an architecture that includes elements like a PDF ren-
derer, file reader, and a controller to manage your button clicks and mouse
scrolling. Collectively, this set of components, design decisions, rationale, as-
sumptions, and context together are defined as the architectural knowledge of
the system[4].

In Perry’s 1992 paper, ”Foundations for the Study of Software Architecture”, he
posits that ”we have not yet arrived at the stage where we have a standard set
of architectural styles with their accompanying design elements and formal
arrangements,” and that each system is ”a new architecture” [17]. While we
are perhaps nearer now, 30 years later, to that mythical stage of architectural
standardization, indeed many new systems are genuinely new architectures,
with new elements or entirely novel approaches to communicating between
components, where engineers must consult both their acquired skills and the
collective knowledge of their peers, to make a best-effort to build a system to
satisfy their requirements.

Despite the plethora of resources available to the modern software engineer,
we still often see architectural knowledge vaporization[13] because of undoc-
umented decisions engineers took when designing the architecture of a sys-
tem, or because it’s impossible or practically infeasible to extract useful in-
formation. This dissipation of knowledge is a function of time and architec-
ture size, and can lead to some serious problems that have already estab-
lished themselves as hallmarks of poor software design in the industry, such
as an increasing cost to improve or upgrade a system [13, 17], and a lack of
reusability [13], and an increased cost of maintenance [16] even when no new
features are added. These costs can, and often do, reach a point at which
it is simply more effective to start over, abandoning completely any estab-
lished work on an architecture. Through the years, this evolved from repro-

Page 3 of 71

gramming low-level batch programs for early computing installations[16], to
today’s distributed systems. Succinctly, a loss of architectural knowledge, by
conjecture, leads to a loss of value and a loss of efficiency, and this paper aims
to add additional tools to our collective defense against such regression.

Searching
It is important to explore different avenues for acquiring knowledge, espe-
cially as the body of information grows exponentially with time. It is diffi-
cult for developers and software architects tomake informed decisions about
their own projects, because the source of their knowledge is distributed in a
variety of disparate sources. If we can reliably glean information about soft-
ware architecture and the successful (and unsuccessful) decisions that other
field experts have made, we can make this knowledge more accessible for all.

Most people are familiar with ”googling” to find solutions to their questions,
but Soliman et al. has shown that using web search engines is not effective
for mining knowledge from mailing lists[19]. This probably is a symptom of
the fact thatmost search engines do not index emails sent inmailing lists (as it
generally doesn’t make sense to do so), and that search engines can’t provide
a friendly user experience for navigating results that would be shown from
mailing lists.

Therefore, we’ll need to index and search over emails independently. Of course,
this detaches the research fromwhat themajority of people are doing in their
everyday lives, but presents more opportunities for automated architectural
knowledge scraping, and as Bhat et al. has shown, an effectivemachine learn-
ing model is well within the realm of possibility[3].

Defining Types of Design Decisions
Before we can begin searching for architectural knowledge in earnest, we
must first exhaustively define the types of distinct architectural design de-
cisions that will be categorized.

We start by evaluating Kruchten’s original set of design decisions in section
2.1 of ”Building Up and Reasoning About Architectural Knowledge”[15], which
lists four main kinds of decisions: existence, ban, property, and executive.

These decisions were conceived in a domain that must consider architectural
knowledge froma large variety of sources, and sowe also consult den Boon[4]
and Faroghi[7] formore information that’s specific to open-source issue/ticket
boards andmailing lists. From theirmore specific lists, aswell as some cursory
categorization attempts, the following architectural design decisionswere adopted.

Existence

Page 4 of 71

Existence decisions are those that are concerned with the creation of new el-
ements of a system’s conceptual or implementation architecture, or the cre-
ation of behavioral connections between existing components. Generally, ex-
istence decisions manifest themselves in discussions about whether to add a
new component to a system, or to link components together.

Structural decisions are a subset of existence decisions that focus solely on
the creation or modification of components of an architecture; most often
the addition of new components to a system.

On the other hand, behavioral existence decisions are concerned with, well,
the behavior of the components of a system, namely how multiple compo-
nents in a system interact with each other.

For example,

• The system shall incorporate an additional process manager to orches-
trate other high-level tasks.

• The system shall send periodic ”heartbeat” packets to connected sub-
systems.

Property
This category of design decision is taken almost verbatim from Kruchten’s
originally proposed list of architectural design decisions[15], and is defined
as one which states an enduring, overarching trait or quality of the system.
This is not so much related to any particular element or behavior because
they often necessarily affect many components with cross-cutting concerns.

For example,

• The system shall be able to process at least 10,000 incoming connections
concurrently.

• The system shall allow for flexible third-party plugin integration.

Process
Again, this design decision is taken without much need for revision, from pre-
vious papers on the subject. A process decision is concerned less with the
architecture itself, and more the internal development process. This includes
things like software quality and testing strategies, code review procedures,
and enhancement proposal protocols.

For example,

• We as developers should define a strict suite of tests that must pass in
order for any new release to be made available to the public.

• We should create a formal procedure for submitting patch requests.

Page 5 of 71

Technology
These decisions are made regarding the comparison, evaluation, and choice
of third-party technologies for use in or with an architecture. This could be
as simple as discussing a choice of programming language, to choosing a set
of supported Open-ID Connect API providers for a user authentication micro-
service. Generally, an email shall be considered to contain a technology de-
sign ”decision”, even if no discrete decision is made in that email. This is be-
cause a large part of technology discussions focuses on evaluating the prop-
erties of various alternative solutions, and such discussions have been found
in practice to end with a rather simple, abrupt choice based on a vote.

For example,

• Wewould like to use theDprogramming language towrite startup scripts
for the system, because of its flexible syntax and high performance[5].

• Our development teamshouldmake a choice betweenusing Jira orGitHub
Issues for our ticket board. Here are their pros and cons: ...

Page 6 of 71

Research Questions
Themain research question that this paper attempts to answer is summarized
in the following question:

Whatarchitectural knowledgeexists in open-source software
development mailing lists?
This broad main question can be further segmented into a series of more
specific questions on the nature of the knowledge that exists in mailing lists:

1. What types of architectural design decisions are present in mailing lists?

2. How often do architectural design decisions appear in mailing lists?

3. What patterns exist in the order in which architectural design decisions
appear? Furthermore, why do such patterns, if any, exist?

4. How effective is using Apache Lucene to index and search for architec-
tural design decisions in mailing lists?

Page 7 of 71

Related Work
In the field of architectural knowledge acquisition (granted, a rather niche
field), the work of this research builds directly on the results obtained in den
Boon’s paper that explored the effectiveness of using theApache Lucene search
engine for finding this knowledge[4]. This research found that Lucene can in-
deed be used for finding knowledge effectively, and also provided a basis for
the four queries that this study uses for searching. It also concluded that,
when using these queries to search through both issue/ticket boards and
mailing lists, that mailing lists were more suitable to finding ”macro architec-
tural design decisions”.

The primary supervisor of this paper, Mohamed Soliman, also prepared a
study in 2021 that evaluated the effectiveness of commonweb search engines
(i.e. Google) to find architectural knowledge, and from this paper we can learn
that there are some key drawbacks to such a ”lazy” approach to searching for
architectural knowledge using the world’s most ubiquitous search engine: de-
sign decisions are underrepresented, issue trackers and mailing lists are not
indexed by search engines, and that most actual open-source software archi-
tecture on websites like GitHub is not easily accessed. Furthermore, we see
from this paper that while Google does make it easy to compare alternative
solutions for architectural problems, with blogs and tutorials being the most
common result, finding information on instantiating new architectures is not
as easily accessible. These drawbacks provide motivation to search for al-
ternative, more targeted searches that go beyond Google’s general purpose
indexing patterns[19].

Xiong et al. worked in 2018 on analyzing the content of open-source Hiber-
natemailing lists to search for ”assumptions regarding requirements, environ-
ment, design decisions, etc.” and found that the Hibernate developer mailing
list contained 832 such relevant results from a sample size of 9006 posts. This
provides an indication that developer mailing lists can be a valid source of
knowledge about architectural design decisions[21]. As stated in that paper,
this study attempts to address the need to ”explore the feasibility of this study
in other OSS projects”. Similar to this, work done by Ding et al. shows defini-
tively that discussions in OSS developer mailing lists do lead to measurable
changes in the software’s architecture, which provides further indication that
mailing lists have a high potential for finding legitimate, practical, and usable
architectural knowledge[6].

Kruchten’s paper ”Building UP and Reasoning About Architectural Knowledge”
provided a basis for the types of architectural knowledge that this paper will
discuss, particularly his discussion on the ”Ontology of Design Decisions”[15].
This information is combined with the research of den Boon[4] and Faroghi[7]
to arrive at the formalized set of design decisions that is discussed in the De-
sign Decisions section of the methodology discussion.

Page 8 of 71

https://google.com
https://github.com
https://hibernate.org/
https://hibernate.org/

With regards to the development of the practical tools used for this study,
Tang’s comparative study of existing architectural management tools[20] was
a useful indicator of what the current (well, as of 2008) functionalities and
expectations are for such tools. However, the different solutions examined
under that paper focused mainly on larger-scale commercial ventures, which
this study is not. Those tools therefore had a plethora of additional require-
ments, like privileged access to architectural knowledge and concurrent user
content locking. These features, while they can be useful when deployed in
a large-scale setting, are not necessary for a simpler passive study of existing
knowledge in mailing lists.

To extend the discussion on tools for extracting knowledge, Bhat et al. man-
aged to produce a machine learning model for the identification and classifi-
cation of architectural design decisions inOSS issues, andmanaged to achieve
91.29%accuracy in detection, and 82.79%accuracy in classification[3]. Granted,
this model applies only to issues and not mailing lists, and mailing lists are
generally more verbose, so the applicability of this study’s findings to mailing
list searching are rather limited. In any case, our study may help to provide
data and guidance to future work on developing a machine learning model
for the classification of emails, similar to Bhat’s study.

Page 9 of 71

Tools
To facilitate the research described in this document, a suite of tools was
developed to aid in the fetching, processing, categorization, and analysis of
emails from various open-sourcemailing lists. This section contains a detailed
overview of each of these tools, and a high-level overview of the system ar-
chitecture and how the entire suite can be used from start to finish.

The entire collection of tools and their source code is available online at the
Architectural Knowledge Analysis GitHub organization. Each of the tools dis-
cussed in this section is organized under a separate repository. In general,
any projects written in Java require the user to have version 17 or greater in-
stalled to build the project or run any executables/apps produced by it. You
can get the latest OpenJDK release here. Any projects written in D should use
a fairly recent version of D. The DMD compiler, version 2.099.1, was used to
build and run all D projects/scripts. You can get the latest D compiler here.

Note that, especially for D projects, development was done in a Linux environ-
ment, and no serious attempt was made to provide additional compatibility
and support for the Windows or Mac operating systems. Any compatibility is
simply a consequence of the cross-platform nature of the technologies used.
File path separators, process management, permissions, and other function-
alities are handled differently in other operating systems, thus it is encour-
aged that you use a Linux-based OS to make use of these tools.

Overview
While each of the tools described in this section exist as a standalone project
that can be incorporated into any third-party application, themajority of these
focus on providing auxiliary services to the Email Dataset Browser application.

The general workflow that these tools enable, is described as follows:

1. Raw mbox files (files containing many emails) are downloaded from a
mailing list archive’s API.

2. Themboxfiles are parsed to extract the individual emails and theirmeta-
data, and this is used to build a relational database and Lucene search
index.

3. A researcher categorizes the emails in the dataset according to a set of
pre-defined criteria. In this case, we use the architectural design deci-
sions covered in the introduction.

4. The categorized emails and Lucene search results are exported from the
dataset to a JSON format.

5. Analysis is performed on the data and visualizations are generated.

Page 10 of 71

https://github.com/ArchitecturalKnowledgeAnalysis
https://adoptium.net/temurin/releases
https://adoptium.net/temurin/releases
https://dlang.org/download.html

Figure 1: System architecture for the various tools developed for this re-
search.

Architecture
As shown in figure 1, the user mainly interacts with the Email Dataset Browser
and the Report Generator for a typical workflow, and the user may also manu-
ally use the Email Downloader via a command-line interface if they so choose.
As discussed in the browser’s overview, the browser provides a graphical user
interface for downloading emails from Apache’s mailing list API, generating
a dataset from those downloaded emails, and interacting with that dataset.
The browser internally uses the Email Indexer for the majority of its work, and
the Email Downloader to provide its download capabilities. Furthermore, the
Email Indexer uses the MBox Parser internally for its dataset generation algo-
rithm.

Once a dataset is generated, it is available to be read by the Report Generator,
which simply examines all the information in the dataset to produce some
aggregate data and visualizations.

Generally, users only need to concern themselves with the Browser and Re-
port Generator; all other components are simply dependencies. A user’swork-
flow should generally remain entirely within the scope of the browser’s func-
tionality, and occasionally invoking the report generator on datasets when
desired.

Page 11 of 71

Email Downloader
The email downloader component helps us to solve the first step of the work-
flow: fetching mbox files from a mailing list archive. It does this by introduc-
ing the MailingListFetcher that provides a common interface for fetching
mailing list archives that is designed to be compatible with most online mbox
file repositories. It simply defines a single downloadmethod that downloads
a mailing list (identified by its domain and list name) and saves the mbox files
to a given directory. The caller provides a start and end timestamp to limit the
download to only those archives pertaining to emails sent within the specified
timeframe, and finally a message consumer that can be used for downloader
to report messages as it performs the download.

CompletableFuture<Collection<Path^> download(
Path dir,
String domain,
String listName,
ZonedDateTime start,
ZonedDateTime end,
Consumer<String> messageConsumer

);

The download happens asynchronously, and the returned CompletableFu-
ture is completed when the download is complete.

Because this research will focus on mailing lists from the Apache Software
Foundation, we provide an ApacheMailingListFetcher implementation
that implements the above interface. It uses Apache’s (undocumented) API
endpoint at https://lists.apache.org/api/mbox.lua to download emails viaHTTP,
using a rate-limited strategy with a delay of 1 second, and a short-circuiting
behavior where the fetcher will give up after 10 consecutive months of no
emails.

For example, we could request anMBox file from the API containing all emails
sent in March of 2022 in the common-dev mailing list in Hadoop.

https:^/lists.apache.org/api/mbox.lua?domain=hadoop.apache.org&list=common-dev&d=2022-03

CLI
Besides the programmatic interface that the email downloader provides, it
also provides a command-line interface when running the project’s JAR file as
an executable. The JAR file can be obtained from the project’s releases page,
or built from source using maven:

mvn clean package assembly:single

The CLI provides access to, at the time of writing, just the Apache implemen-
tation for the mailing list fetcher, and essentially allows one to invoke the

Page 12 of 71

https://lists.apache.org/api/mbox.lua
https://github.com/ArchitecturalKnowledgeAnalysis/EmailDownloader/releases

download method from the command-line. Its detailed usage information
is provided below.

Usage: EmailDownloader [-hV] [^-apache-api-url=<apacheApiUrl^]
[^-apache-max-failures=<apacheMaxConsecutiveFailures^]↪→

[^-apache-request-interval=<apacheRequestInterval^]
-d=<domainName> [^-from=<fromDate^] -l=<listName>
[-o=<outputDir^] [^-until=<untilDate^]
^-apache-api-url=<apacheApiUrl>

The URL to Apache's MBox API.
^-apache-max-failures=<apacheMaxConsecutiveFailures>

The maximum number of consecutive failures in
email fetching to tolerate before quitting the
download early.

^-apache-request-interval=<apacheRequestInterval>
The number of milliseconds to wait between each
API request, to avoid rate-limiting
repercussions.

-d, ^-list-domain=<domainName>
The domain to download from. For example, "hadoop.
apache.org"

^-from=<fromDate>
Earliest period to download from, inclusive.
Formatted as yyyy-mm. Defaults to ten years
before today.

-h, ^-help Show this help message and exit.
-l, ^-list-name=<listName> Name of the mailing list to download from.
-o, ^-output=<outputDir>

Directory to place downloaded files in. Will
create it if it doesn't exist. Defaults to ./emails/

^-until=<untilDate>
Latest period to download from, inclusive.
Formatted as yyyy-mm. Defaults to the current
year and month.

-V, ^-version Print version information and exit.

This information is also available via the standard ^-help flag.

For example, if we want to download MBox files containing all emails sent
in the common-dev mailing list under Hadoop from January 2020 until the
present day, we would execute the following command:

java -jar emaildownloader-1.2.0.jar -l common-dev -d hadoop.apache.org ^-from 2020-01
-o emails↪→

Page 13 of 71

MBox Parser
With the rawmboxfiles obtainedby the email downloader, it’s not yet possible
to do anything productive until we extract the individual emails and their data.
To do this, we introduce the MBox Parser library. This library provides a pro-
grammatic method for extracting and pre-processing emails from all mbox
files in one or more directories or files.

The main interface is the MBoxParser class, from which objects can be in-
stantiated with a provided EmailHandler implementation that executes a
callback for each email parsed from the set of mbox files. Specifically, the
format for emails obtained by the parser is as follows:

public class Email {
public String messageId;
public String inReplyTo;
public String sentFrom;
public String subject;
public ZonedDateTime date;
public String mimeType;
public String charset;
public String transferEncoding;
public byte[] body;

}

Additionally, a utility method is provided to read the body of the email as a
simple string. Internally, the parser makes use of Apache’s Mime4j library,
and a custom email content handler that performs some extra processing on
email dates and message ids to improve uniformity:

• We expect dates in the RFC-1123 format. For example, Sun, 21 Oct
2018 12:16:24 GMT, and if we get something slightly different, attempts
are made to transform it into an acceptable format.

• We strip the angle brackets (< and >) from the email’s uniquemessage id.
These brackets exist on every email, anddonot contribute to the unique-
ness of the id. Stripping themmakes the message ids more readable as
plain text when embedded in HTML or any XML, and makes searching
over them easier.

The Mbox Parser provides users with the ability to provide their own filter
functions to further refine the results, but this will be discussed inmore detail
when explaining the Email Indexer component. No command-line interface
is provided for this library; it is only available as a programmatic Java library,
meant to be used in concert with the email downloader and any other pro-
grams that consume individual emails.

Page 14 of 71

https://james.apache.org/mime4j/

Email Indexer
While the downloader and parser can be thought of as auxiliary to the goals of
this research, the Email Indexer project forms the core of the email dataset’s
structure, and by implication, the research in this paper. The email indexer
is a Java library that offers a programmatic interface for creating, managing,
and exporting categorized email data.

Each dataset produced by the email indexer exists nominally as a directory, or
as a ZIP archive of a directory. Each dataset directory contains the following
components:

1. An embedded relational H2database file nameddatabase.mv.db, which
stores all emails, tags, and other key information for the dataset. A
schema diagram is provided in this section, and the full schema defi-
nition can be found in the appendix.

2. An index directory in which the indexes generated by Apache Lucene
are stored.

3. A metadata.properties file that holds some meta information about
the dataset. As of the time of writing, the only metadata stored in this
file is the dataset version, which, again at the time of writing, is version
2.

Email Thread Structure
Emails have a self-referencing many-to-one
relationship defined by their ”In-Reply-To”
field. It is important to understand the con-
sequences of this structure, and how it im-
pacts the dynamics of processing data. In
any information system, a self-referencing,
many-to-one relationship that an entity par-
ticipates in, can be interpreted as a tree data
structure.

Each email can be thought of as a node in the
tree, where each reply to that email forms a
branch. There is no limit to howwide or deep
the tree can become, because there is no universal hard limit on the number
of replies to an email, nor on how many replies may be sent in a thread.

In previous research by den Boon, this natural tree structure of email threads
was artificially flattened into a sequential list, presumably to facilitate more
efficient methods of working with the data[4]. However, in this research, the
tree structure of the emails is preserved in the dataset, because it more accu-
rately depicts how real users would navigate a set of emails using any number
of existing programs, and therefore can provide a better model for determin-

Page 15 of 71

https://www.h2database.com
https://lucene.apache.org/

ing the effectiveness of searches. This choice does come with some draw-
backs, however.

1. Because emails form a tree structure, navigating the dataset is more
computationally intensive, and more complex for a user, than if one
could simply traverse a flat list.

2. Analysis is more complex, due to the fact that most algorithms will need
to incorporate tree traversal, either iteratively or recursively.

3. Relational databases generally do not offer facilities for recursive fetch-
ing, which can lead to performance losses when processing large sets of
emails.

Despite the drawbacks, it is important to analyze and categorize emails in a
format that does not lose the latent structural information contained in the
email thread’s tree itself. Furthermore, for this particular research, the vol-
ume of data and methods of analysis do not present any difficulties in terms
of computational performance.

Database Schema

Figure 2: A diagrammatic representa-
tion of the email dataset’s relational
schema.

The relational schema is the core of
the email dataset, and defines how
weoperate on andorganize the data.
It is purposefully designed to be as
simple as possible, to make it easy to
use the dataset in a variety of appli-
cations and environments.

The schema consists of three enti-
ties: emails, tags, and mutations (al-
though mutations are not strictly re-
quired).

Emails are, as you’d probably ex-
pect, the entity that represents a sin-
gle email message, sent by some-
one, in a mailing list. While emails do
have their own unique MESSAGE_ID
attribute[18], they are identified by an 8-byte integer primary key. This re-
duces the dataset size, improves search performance due to the monotonic
nature of incrementing primary keys, and allows for easier referencing of
emails by their id, instead of a long, randomly-generated message id.

Also of note is an email’s PARENT_ID, which is a self-referencing foreign key
that references another email entity by its id. This foreign key is the man-
ifestation of the many-to-one relationship between an email and its parent,
where many ”child” emails may refer to one parent email. The parent id is de-
rived, when processing emails, from the email’s ”In-Reply-To” field. According

Page 16 of 71

to RFC 5322, the in-reply-to field, if present, must reference another email’s
message-id, and this format of replies forms the basis of an email thread’s
structure[18].

Tags are entities which can be attached to any number of emails, to offer a
method of categorizing emails. Originally in version 1 of the dataset format,
tags were not entities but simple texts that were attached to each email, but
it was discovered during the development of the tools for this research that
there are several benefits to having tags as their own entities: the ability to
edit a tag’s name, provide a description, and reduce the total dataset size by
referencing an 4-byte integer id instead of keeping a copy of a string for each
tag applied to an email.

There exists a many-to-many relationship between emails and tags, which
one could verbalize as, ”A tag may be applied to many emails, and an email
may have many tags applied to it.”

Mutations are entities that record some change to the dataset which is used
as a historical record of how a the emails in a dataset are filtered or modified.
Mutations are used at the discretion of any third-party application which in-
terfaces with the EmailIndexer API, and are not required to be used.

There exists a many-to-many relationship between mutations and emails,
which one could verbalize as, ”A mutation may involve many emails, and an
email may be involved in many mutations.” It is not required that a mutation
be linked to any emails.

Indexing with Lucene
Alongside the relational database resides the index directory, as mentioned
at the start of this section. This contains the indexes produced by the Apache
Lucene indexing librarywhenwebuild an indexusing the emails in the database.
This index is then used for executing query searches over the database by
users.

For each email in the dataset, we index the following fields as non-stored
string-type fields using the DOCS_AND_FREQS_AND_POSITIONS index options
provided by Lucene[1]:

• The SUBJECT field.

• The BODY field.

In addition to these indexed fields, we store the email’s id and pre-compute
the root id (id of the first email in the current email’s thread), as these are
essential for producing actionable results fromany query search on the index.

Page 17 of 71

https://lucene.apache.org/
https://lucene.apache.org/

Dataset Generation
Probably themost critical part of the email indexer is its workflow for taking in
mbox files, using theMbox Parser to extract emails, and build the dataset and
its various components. The following snippet illustrates an abridged version
of the dataset generation algorithm (with trivial log messages and typical Java
verbosity removed).

1 public CompletableFuture<Void> generate(Collection<Path> mboxFileDirs, Path dsDir) {
2 return Async.run(() ^> {
3 ^/ Parse files and create database
4 Files.createDirectories(dsDir);
5 DatabaseGenerator dbGen = new DatabaseGenerator(dsDir.resolve("database"));
6 List<Path> mboxFiles = new ArrayList^>();
7 for (var dir : mboxFileDirs) {
8 mboxFiles.addAll(findMboxFiles(dir));
9 }

10 MBoxParser parser = new MBoxParser(new SanitizingEmailHandler(dbGen));
11 for (var file : mboxFiles) {
12 parser.parse(file);
13 }
14 dbGen.postProcess(status);
15 dbGen.close();
16
17 ^/ Generate Lucene Index
18 EmailDataset dataset = new EmailDataset(dsDir);
19 new EmailIndexGenerator().generateIndex(dataset);
20 dataset.close().join();
21
22 ^/ Generate Metadata
23 Properties props = new Properties();
24 props.setProperty("version", "3");
25 props.store(Files.newBufferedWriter(dataset.getMetadataFile()), null);
26 });
27 }

Notice on line 8 thatweuse aSanitizingEmailHandler to handle all parsed
emails. This handler applies some extra sanitization to further reduce the
amount of useless junk that ends up in the final dataset. It removes any emails
which:

• Have an unknown charset (we’re not able to decode them).

• Have a missing or empty body.

• Have a missing or empty message id.

Additionally, it also performs the following modifications to emails:

• Removes reply textswhich start with ”—–OriginalMessage—–”, orwhose
lines begin with ”>”. This greatly reduces the volume of text for large
email threads, and helps to reduce the number of false-positives re-
turned by searches.

• Strips ”<” and ”>” from the beginning and end of any email’s message id,
in-reply-to, or sent-from attributes.

Page 18 of 71

Data Access API
In order for the email indexer API to be used by third-party applications, we
provided a set of repositories that can be used to find, create, update, and
delete entities from the dataset, as well as a set of searchers that providemore
advanced retrieval mechanisms with SQL and Lucene searching.

1. The EmailRepository provides access to emails, includingmethods to
find both the full email entity, and a preview which omits the body and
in-reply-to fields to make it feasible for applications in search results or
other scenarios where the full email information isn’t needed.

2. The TagRepository provides access to tags, and various methods for
adding and removing tags from emails.

3. The EmailSearcher has methods for finding emails using a collection
of SearchFilters, which are used to build SQL queries over the set of
emails. Themethods in the EmailSearcher generally return anEmailSearchRe-
sult which contains the actual email results, as well as some informa-
tion that’s useful for pagination implementations in third-party applica-
tions.

4. The EmailIndexSearcher has methods for finding emails (or email
threads) using an Apache Lucene search query.

For developers’ convenience, all data-access objects are full documented with
accurate Javadoc so that the usage of the API is abundantly clear.

Page 19 of 71

Email Dataset Browser
Themain part of the research, categorizing emails based on the types of archi-
tectural design decisions they contain, is accomplished by the Email Dataset
Browser application. It is a desktop application built with Java and the Swing
user-interface component library.

While the original design is based on the ArchDetector tool designed by den
Boon[4], it was built anew to better support the structure of email threads,
and provide a more extendable platform for analysis without needing to de-
ploy aweb server or PostgreSQL database like the ArchDetector did. Addition-
ally, since den Boon’s research, the Apache Software Foundation has updated
their infrastructure for mailing list management, which broke the ArchDetec-
tor’s automatic mailing list download functionality. Our Email Downloader
tool addresses that.

The browser is essentially a front-end for the Email Indexer’s functionality, and
provides some other conveniences. The remainder of this section will discuss
all the features of the app, and how it is typically used for categorizing emails.

Figure 3: A screenshot of the email dataset browser app’smain user interface,
showing an email that has some tags.

Page 20 of 71

Generating a Dataset

Figure 4: The popup for generating a
new dataset.

The browser app allows users to
generate a new email dataset from
mbox files on the user’s file system,
and allows users to download mbox
files on-the-fly from Apache’s mail-
ing lists. Navigate in the app’s menu
to File and then Generate Dataset,
and you should see a popup open, as
shown in figure 4. Themain interface
consists of a list of directories to read
mbox files from. You can add and re-
move directories from this list.

If you’d like to download mbox files
from Apache’s mailing lists, you can
use the Download Emails button to bring up another popup, as shown in
figure 5. In this interface, the user can provide the domain and list names,
as discussed in the Email Indexer’s section, as well as a start and end date
and directory to download to. Do note that download can take a significant
amount of time (up to 10 or 20 minutes for large mailing lists), so be patient
with this step.

Figure 5: The popup for
downloading mbox files from
Apache mailing lists.

Once you’ve downloaded and/or located all
the directories containing mbox files you’d
like to include in the dataset, youmust select
a directory inwhich to place the dataset. This
directory will be populatedwith the dataset’s
database file, metadata file, and Lucene in-
dex directory. When you’ve done this, click
Generate to generate the dataset.

Again, this process may take a while, de-
pending on the size of the dataset and your
system’s hardware performance, so please
be patient. A popup will appear that shows
messages from the email indexer’s dataset
generation system to indicate the current
status as the process progresses. Once the
generation is complete, you can click the
Done button to exit the popup. The dataset
now exists on your system, in the directory
you specified in the popup, and you can open it like you would any other
dataset using the app.

Page 21 of 71

Opening and Browsing Datasets
To open a dataset, navigate to the File menu, and select Open Dataset. In
this file selection dialog, select the a dataset’s directory to open it. You may
also select a ZIP archive file instead, in which case the app will first unzip the
archive to a directory of the same name, and open that. Once you open a
dataset, you’ll see on your left a panel with three tabs labelled Browse, Lucene
Search, and ID Selection. These are the three different ways in which you can
navigate the dataset.

Figure 6: Use this popup to filter emails in the standard browse panel based
on the tags that they do or do not have.

Figure 7: The view for search-
ing the dataset using Lucene
queries.

In the Browse view, you can browse the
emails using a traditional paginated, filter-
able view. You can choose to show only hid-
den emails (those that have been removed
by a user because they’re irrelevant), only
non-hidden emails (the default option), or
both. You can also choose to show only
root emails, (emails that are at the root of
an email thread, i.e. the first email in the
thread), only child emails, or both (the de-
fault option). Finally, you can also filter the
emails based on the tags they have, using the
tag filter shown in figure 6. If you select tags
under the Included Tags list, only emails that
have those tags will be shown. Conversely, if
you select tags under the Excluded Tags list,
only emails which donot have those tagswill
be shown.

In the Lucene Search view, you can search the

Page 22 of 71

dataset using a provided Lucene query. You can read about the acceptable
syntax for such queries in the Lucene 9.1 documentation. Figure 7 shows an
example where we search over a dataset using the query ”test*”. The results
show the list of all email threads which match the query, ranked frommost to
least relevant, according to Lucene. By default, only 20 results are shown, but
this can be changed in the Settings under the Filemenu; look for the Browse
page size option.

Figure 8: The view for search-
ing the dataset using specific
email ids.

Finally, in the ID Selection view, you may en-
ter a comma-separated list of email ids, to
view only those emails. Take note that by id,
we mean the id which the email indexer has
assigned to the email when inserting it into
the database, not the email’s message id. As
shown in figure 3, the id can be found at the
top of the email’s information panel on the
right-hand side of the app. This view is es-
pecially useful for the iterative process of fa-
miliarizing oneself with the types of architec-
tural design decisions, and how they appear
in various emails in practice.

In each of the three views, a list of emails is
shown in the email tree view below the view-
specific options panel. As shown in figure 9,
this tree view allows the user to expand an
email to show its replies, if any exist. With

this type of view, it’s easy to navigate large email threads, and get an overview
of the high-level structure of the thread. Each email is listed in the view using
its subject, similar to how many email client programs already do.

Figure 9: The tree view used to
navigate lists of emails.

Beside each email is shown an info panel
with detailed information about the selected
email, as shown in figure 10. This panel is
shown beside each selected email, and can
be expanded or hidden using the controls on
the vertical divider between it and the email’s
main content view. Here you can see the
following information, listed in the order in
which it appears:

1. The email’s assigned id. This is used in
the ID Selection view.

2. The email’s full subject field.

3. A link to the email that this one is a re-
ply to, if any.

4. The name of the person who sent the

Page 23 of 71

https://lucene.apache.org/core/9_1_0/queryparser/org/apache/lucene/queryparser/classic/package-summary.html

email.

5. The date at which the email was sent.

6. A panel which shows all the tags that
have been assigned to the email. This
will be covered more later.

7. A list of replies to the email. You can
click on a reply to navigate to it.

Figure 10: The information panel that’s
shown beside each email.

In the email’s tag panel, you can see
all the tags that have been assigned
to the email. On the right, you can
see the parent tags (any tags that be-
long to any parent email of this one)
and the child tags (any tags that be-
long to any child email of this one).
Each tag is colored using a random
color derived from a hash of the
tag’s name, to improve readability
and easy identification of tags.

At the bottom of the tag panel,
there’s a select box where you can
select tags to apply to the selected
email. If you select any of the tags
in the email’s main list of tags, you
can also click the Remove button to
remove those tags. You can double-
click on any of the tag items in any of
the lists (main, parent, child) to edit
the tag’s name or description.

Page 24 of 71

Managing Tags

Figure 11: The tag manager popup, which shows a list of all tags and some
information about them.

To create, edit, or remove the set of tags that are available for applying to
emails, you can use the tag manager. Open this popup by navigating to the
Tag menu, and select Manage Tags. You should see the popup shown in
figure 11. Here, you can see a table showing all tags currently in the dataset.
You can select a tag and click Edit, or just double-click it to edit. New tags
can be added via the Add button, and selected tags can be removed via the
Remove button.

Do take care with removal though, as removing a tag is a permanent and irreversible op-
eration that will permanently remove information from your dataset. Consider renaming a
tag to have an ”unused” prefix first, until you’re absolutely certain that a tag can be removed
without losing any valuable information.

Filtering Emails
While our APIs make a best attempt to remove some of themost egregious ill-
formatted and useless emails, a large amount of noise does make it through
to the dataset. Therefore, we provide a suite of tools to filter out emails using
a few different methods. These are available in the Filtermenu of the app.

First, any email can be individually hidden with the Hide and Show buttons.
Besides that, you can also hide all emails sent by the same author as the one
who sent the selected email, or hide all emails that have exactly the same
body content as the selected email, with Hide by Author and Hide all by
body respectively. Finally, Hide by SQL can be used to manually define an
SQL clause to hide all emails that match that clause.

Page 25 of 71

Email Dataset Report Generator
When enough data has been collected through the categorization of emails
in a dataset, the dataset report generator pipeline is used to extract, analyze,
and visualize the data. This pipeline is orchestrated by a run_pipeline.d
script that invokes each of the sub-processes in the correct order.

This pipeline uses Java 17 with Maven, and D 2.099.1 with the Dub package
manager. Additionally, it makes use of the DSH library for D. It’s not required
to have it installed, but it does make it easier to make changes to the pipeline
script. You will need both Java and D, and their respective package managers
installed to run the pipeline successfully. Additionally, the pipeline has not
been validated onWindows or Mac operating systems. Use these at your own
risk.

run_pipeline.d, or the pipeline runner as it’ll be referred to from now on, is
an executable file that, if given the proper executable permissions, will run as-
is. Otherwise, you can build the file using Dub as a single-file project. If using
DSH, you can run the following command to compile a binary executable:

dshutil compile run_pipeline.d

The pipeline runner, when run, expects a single argument, which determines
the behavior of the program.

• If the help argument is passed, then a simple help message is shown.

• If the clean argument is passed, then files generated by previous runs
are removed.

• If the rebuild argument is passed, then executable files for the vari-
ous steps of the pipeline are rebuilt from source. Use this if you make
changes to the source. Note that executables are also built automati-
cally if they’re missing at runtime.

• Otherwise, the argument is interpreted as the path to a dataset direc-
tory to run the pipeline on.

To summarize, the report generation pipeline is as follows:

1. Extract data from the dataset.

2. Perform analysis on the data.

3. Generate visualizations of the data.

The remainder of this section will discuss each step of the pipeline in more
detail.

Page 26 of 71

https://github.com/andrewlalis/dsh

Extraction
To extract the necessary data, a small Java program uses the Email Indexer
as a dependency, and exports all emails that have any tag, into a large JSON
array. Each email in the export is structured like so:

{
"id": 43815,
"parent_id": 43810,
"message_id": "CAL7CpJx7sSVZR+idVmdvwgDGX5DOD31L\u003d+fw@mail.gmail.com",
"subject": "Re: HADOOP-18198. Release Hadoop 3.3.3: hadoop-3.3.2 with CVE fixes",
"in_reply_to": "CAL7CpJydXGTxkgzV903dc2HR2yQgXpacs_iJa7MirKJQ@mail.gmail.com",
"sent_from": "Steve Loughran \u003cstevel@cloudera.com.INVALID\u003e",
"date": "2022-04-12T11:13:49+01:00",
"body": "I should add that the CVEs^^.",
"tags": [

"existence",
"existence-structural",
"technology"

]
}

In addition to the emails, this program also exports information about various
Lucene searches, because Lucene is inherently a Java library and this is our
last opportunity to extract such data before the next steps of the pipeline. A
list of queries is provided in the classpath of the program, in aqueries.properties
file. For each query, we get the list of individual emails and email threads that
are returned as results, and compile this data into a JSON array.

{
"name": "decision_factors",
"query": "actor* availab* budget* business case* client* concern* conform*",
"threads": [39719, 42370, 42375],
"emails": [43269, 42370, 42375]

}

Finally, the program exports information about all known mutations to the
dataset, and puts these into a JSON array. Below is an example of a mutation
object.

{
"id": 6,
"affected_email_count": 458,
"description": "Hiding all emails sent by email addresses like:

%hudson@lucene.zones.apache.or%"↪→
}

Thus the end result of this step is an emails.json containing the list of
all tagged emails, a searches.json containing a list of all Lucene queries
and the results they returned, and a mutations.json containing a list of all
recorded mutations to the dataset.

As an aside, we use the extraction step to opportunistically export and per-
form any additional steps besides core data extraction which can easily be

Page 27 of 71

done in Java. To that end, the extraction program also performs a minimal-
istic natural-language-processing pipeline on the set of tagged emails using
Stanford’s CoreNLP library. With CoreNLP, we annotate every tagged email in
the dataset to find the most common lemmas (simple canonical or dictionary
form of a word[8]) for the following groups of emails:

• Emailswith any architectural design decision (existence, technology, pro-
cess, or property).

• Emails that contain any existence decision.

• Emails that contain any technology decision.

• Emails that contain any process decision.

• Emails that contain any property decision.

• Emails that are categorized as non-architectural.

This data is exported as a JSON object whose keys refer to named lemmatiza-
tion group objects, each of which has its own ordered list of lemmas, starting
with the most frequent. You can find it in lemmas.json after running the
analysis pipeline.

While the lemmatization data of emails will not be used further in this re-
search, we present this feature so that it can be used by future efforts to pin-
point the best keywords to use when using traditional index-based keyword
search approaches. The logic also serves as a foundation for more extensive
natural-language analysis of email contents, for any future research in that
area.

Page 28 of 71

https://stanfordnlp.github.io/CoreNLP/

Analysis
After the data is extracted by the previous step, we use a D program to run
a suite of analyses on the data. The program can be run using the following
arguments:

./analysis -e emails.json -s searches.json ^-minifyJson

Where -e defines the required emails.json input file, and -s defines the re-
quired searches.json. –minifyJson is an optional flag that, if present, mini-
fies the JSON output of the analysis.

Internally, the set of emails is parsed into a data structure that allows us to
rapidly process all analytics by keeping the emails in memory for the duration
of the program. Then, we introduce two types of analyses: those which op-
erate on emails, and those which operate on search results separately. This
allows us to define two generic interfaces that all independent analyses can
conform to.

^^*
* A set of emails as obtained from a dataset, with some pre-computed arrays
* for faster data lookup.
^/
class EmailSet {
Email[] emails;
Email[] rootEmails;
Email[long] emailsById;
Email[][long] repliesById;
string[] tags;
Email[][string] emailsByTag;

}

^^*
* Represents an analysis operation that consumes emails to add to its data,
* and produces at the end some data which can be added to a JSON object.
^/
interface Analysis {
void initialize(EmailSet set, string[] akTags);
void accept(Email email, EmailSet set, string[] akTags);
void addToJson(ref JSONValue obj);

}

^^*
* Represents an analysis operation to be performed on dataset search results.
^/
interface SearchQueryAnalysis {
void accept(EmailSet set, SearchQueryData data, string[] akTags, ref JSONValue obj);

}

The actual analyses that are performed by this program will be discussed in
more detail in the Methodology section.

Ultimately, both types of analyses append their results to a referenced JSON
object that will be written to the program’s standard output stream. In the
context of the pipeline runner, the output is sent to aanalysis_results.json
file, so that it can be read both by users, and by the visualization program that
runs in the next step.

Page 29 of 71

Visualization
To visualize the data in the charts and diagrams you see in this report, we use
the JFreeChart library in conjunction with a simple Java program that reads
the JSON output from the analysis step.

The programdefines a simple interface so that visualization can be subdivided
into a set of independent rendering operations.

public interface ChartRenderer {
void renderCharts(JsonObject data) throws Exception;

}

This way, the rendering operations can be parallelized. The speedup from
this isminimal, but should provide clear benefits with larger datasets (ofmore
than 5,000 tagged emails). The resultant images are placed in the working di-
rectory of the program. This is managed by the pipeline runner that correctly
adapts its working directory to place the visualizations into a visual directory
alongside the other JSON files.

Page 30 of 71

https://www.jfree.org/jfreechart/

A Minimal Workflow Example
To help illustrate how exactly everything fits together, this sectionwill lay out a
step-by-step guide that takes the user through generating a dataset, working
with it, and finally using the report generator to produce visualizations and
analyses.

Note: You will need to have Java 17 or higher installed on your system. You can download it
here. You will also need a recent D compiler toolchain, which you can download here.

1. Download the latest version of the Email Dataset Browser here. It is
an executable JAR file, so Linux users may need to mark the file as ex-
ecutable, either through their file explorer, or with the following com-
mand (replace <version> with the version you downloaded):

chmod +x emaildatasetbrowser^<version>.jar

2. Open the Browser application. It should open to a blank view, with the
various search panels on the left. Go to the application’smenu, and Click
on File > Generate Dataset.

3. For this example, we’ll download some emails from Hadoop’s common-
dev mailing list, but you could also use the MBox files from the Datasets
repository that has been provided. In the Generate Dataset dialog, click
on the Download Emails button. This will open another Download dia-
log.

Enter hadoop.apache.org for the Domain, and common-dev for the
List. Select January 1st, 2022, as the Start date (time doesn’t matter),
and leave the End date at its default value.

Click on Select directory... to select the directory that the MBox files
will be downloaded to. This can be any location, but it’s recommended
to create a new directory since quite a few files might be downloaded,
and it’ll otherwise add a lot of clutter.

Finally, click Download to begin the process of downloading the MBox
files. A progress dialog will appear, which shows a log of each individual
file download’s status. You’ll be notified when the download is finished,
and at this point, you can safely click Done to close the progress dialog.

4. Now that we have a set ofMBox files on our system, we can click theAdd
Mbox Directory button to select the directory containing those MBox
files. The directory should appear in the Generate Dataset dialog’s list.
For this example, we’ll just be using one directory, but you can addmore
if you want.

5. Click on Select directory... to choose the directory to generate your
dataset in. This should preferably be an empty directory.

Page 31 of 71

https://adoptium.net/temurin/releases
https://dlang.org/download.html
https://github.com/ArchitecturalKnowledgeAnalysis/EmailDatasetBrowser/releases/latest
https://github.com/ArchitecturalKnowledgeAnalysis/Datasets

6. Click Generate to start the process of generating the dataset. This will
open a progress dialogwith somedetailed information aboutwhat’s cur-
rently happening in the generation process. Once the generation is com-
plete, you can safely click the Done button to close it.

7. Click on File >Open Dataset, and in the dialog, select the directory con-
taining the dataset we just generated, and click Open. The browser’s
search panel on the left should populatewith some emails, and themain
email view should contain information about the first email.

8. Click on Tag > Tag Manager in the application menu to open the tag
manager dialog. In order to use the report generator and its visualiza-
tion, we must add the following tags: ”existence”, ”property”, ”process”,
”technology”, and ”not-ak”. The report generator will also not be able to
produce any usable results unless there’s a sufficient number of anno-
tated emails for each tag.

9. You can go ahead and browse the dataset and apply tags to emails as
you see fit. For the remainder of this guide, we’ll be using a pre-populated
dataset which you can download here, since it has a large volume of
tagged emails and thus can produce some decent visualizations. If you
download it, unzip it to a directory.

10. Now that we have a dataset with some annotated emails, we’ll demon-
strate running the report generator on it. Note that the report generator
is only tested on Linux systems; use Windows and MacOS at your own
risk. All further instructions include bash-specific commands.

Clone the repository to your PC, and then call the run_pipeline.d
script to run the pipeline on your dataset.

git clone
https:^/github.com/ArchitecturalKnowledgeAnalysis/EmailDatasetReportGen.git↪→

cd EmailDatasetReportGen/
./run_pipeline.d /path/to/my/dataset

The analysis may take a while, since it includes a very intensive natural-
language-processing step. Once it’s done, you should see a new direc-
tory whose name is formatted like report_DATE_TIME.
Inside the report directory, you’ll find the following:

• emails.json, searches.json, andmutations.json contain the
raw export data from the dataset.

• analysis_results.json contains the raw data produced by the
analysis step.

• lemmas.json contains NPL lemma data.

• The visual/ directory contains all visualizations.

Page 32 of 71

https://github.com/ArchitecturalKnowledgeAnalysis/Datasets/raw/main/datasets/iteration-9.zip

Methodology
For the purposes of this research, we will focus on analyzing the contents of
mailing lists from threemajor open-source projects from the Apache Software
Foundation: Hadoop, Cassandra, and Tajo. Mailing list data will be obtained
from lists.apache.org, and this data will be indexed and searched over using
Apache Lucene. A subset of emails from thesemailing lists will be categorized
based on the type of architectural design decisions they contain, in order to
conjecture about the efficacy of searching.

We’ll first discuss the process of preparing thedatasets, followedby anoverview
of the methods of categorization and analysis.

Choosing Sources
While previouswork by den Boon chose to analyze data fromboth issue track-
ing boards and mailing lists from open-source software projects[4], this re-
search will limit the scope of sources to just mailing lists, since that is the fo-
cus of our research questions. More specifically, amailing list is a ”mechanism
whereby a message may be distributed to multiple recipients by sending to
one address.”[10] Put more plainly, someone may subscribe to a mailing list,
and in doing so, they will receive any email which is addressed to that list.
Likewise, that person may also send an email to the list’s address, and it will
be broadcast to all other subscribed recipients. In the context of software de-
velopment, mailing lists have been used extensively since their inception as a
way to collectively discuss and make design decisions regarding large open-
source projects. Because of this, we can expect mailing lists for software de-
velopment to be particularly rich in architectural knowledge, and they make a
good candidate for analyzing the effectiveness of various search approaches.

Within the domain of mailing list communications, we can further narrow our
search down to software projects which we can reasonably expect to contain
a large amount of, and large variety of architectural decisions. These would
generally be large projects withmanymoving parts, which have a broad range
of applications and societal uses. The Apache Software Foundation (ASF) is a
leader in these sorts of projects, with many open-source systems for man-
aging, processing, and searching through big data, which find their usage in
various state-of-the-art enterprises and research endeavors, notably NASA,
Facebook, Twitter, Netflix, and so on[2]. From the ASF, we chose mailing lists
from the following three projects for analysis:

1. Cassandra - Anopen sourceNoSQLdistributeddatabase trustedby thou-
sands of companies for scalability and high availability without compro-
mising performance.

2. Hadoop - A framework that allows for the distributed processing of large
data sets across clusters of computers using simple programming mod-

Page 33 of 71

https://hadoop.apache.org/
https://cassandra.apache.org
https://attic.apache.org/projects/tajo.html
https://lists.apache.org/
https://lucene.apache.org/
https://cassandra.apache.org
https://hadoop.apache.org/

els. It is designed to scale up from single servers to thousands of ma-
chines, each offering local computation and storage.

3. Tajo - A robust big data relational and distributed data warehouse sys-
tem for Apache Hadoop. Tajo is designed for low-latency and scalable
ad-hoc queries, online aggregation, and ETL (extract-transform-loadpro-
cess) on large-data sets stored on HDFS (Hadoop Distributed File Sys-
tem) and other data sources.

Project descriptions obtained from the respective projects’ homepages.

For each of the above projects, we obtained one or more mailing lists dedi-
cated to the discussion of the project’s internal development, thus excluding
irrelevant discussions about usage and user issue reports.

For Cassandra, we chose the following mailing lists:

• dev@cassandra.apache.org

For Hadoop, we chose the following mailing lists:

• common-dev@hadoop.apache.org

• hdfs-dev@hadoop.apache.org

• mapreduce-dev@hadoop.apache.org

• yarn-dev@hadoop.apache.org

For Tajo, we chose the following mailing lists:

• dev@tajo.apache.org

Fetching and Processing Sources
The first step to being able to analyze and identify architectural knowledge in
mailing lists is, of course, to obtain the emails from themailing lists in the first
place. For this purpose, the Email Downloader utility library was developed,
and for parsing and preparing data for use in our datasets, the MBox Parser
utility library was developed.

Downloading
The EmailDownloader utility offers an asynchronous interface for download-
ing a series of MBox (email archive format) files to a directory. Because all of
the mailing lists used by this research come from the Apache Software Foun-
dation, the library includes an implementation for downloading from theASF’s
mailing list internal API at https://lists.apache.org/api/mbox.lua, with support
for rate-limited downloading and the ability to detect long periods of inactivity
and short-circuit prematurely to save time.

Page 34 of 71

https://tajo.apache.org/
https://lists.apache.org/list.html?dev@cassandra.apache.org
https://lists.apache.org/list.html?common-dev@hadoop.apache.org
https://lists.apache.org/list.html?hdfs-dev@hadoop.apache.org
https://lists.apache.org/list.html?mapreduce-dev@hadoop.apache.org
https://lists.apache.org/list.html?yarn-dev@hadoop.apache.org
https://lists.apache.org/list.html?dev@tajo.apache.org
https://lists.apache.org/api/mbox.lua

The end result is that we are able to download a large archive of all emails sent
in a mailing list, since its inception, to today. Specifically, from the Hadoop,
Cassandra, and Tajo mailing lists, we obtained all emails between the dates
of 31-01-2006 and 12-04-2022, which totaled 246,673 emails.

• 20,489 emails from Cassandra’s mailing list.

• 220,001 emails from Hadoop’s mailing lists (this makes up the majority
of the dataset).

• 6,183 emails from Tajo’s mailing list.

Processing
Once we have downloaded a large amount of MBox files, we must parse their
contents to extract the individual emails for use in our analysis. This is done
by the MBox Parser utility library, which offers an interface for parsing a col-
lection of MBox files and issuing a callback handler for each email that was
obtained.

The end result is a collection of many Email objects that are ready for further
use, whose format is described in the code snippet below:

public class Email {
public String messageId;
public String inReplyTo;
public String sentFrom;
public String subject;
public ZonedDateTime date;

public String mimeType;
public String charset;
public String transferEncoding;
public byte[] body;

}

We use the Email Indexer’s set of preliminary filtering efforts to remove junk
emails, and then used amanual approach to remove any further emails which
we deemed to be irrelevant (usually, advertisements, off-topic messages, and
automated messages). Therefore, all emails sent from the following list of
addresses have been pruned from the dataset:

• hudson@lucene.zones.apache.org
• hudson@hudson.zones.apache.org
• hudson@hudson.apache.org
• git@apache.org
• jenkins@builds.apache.org
• jira@apache.org

Page 35 of 71

This list of email addresses which send irrelevant automatedmessages is lim-
ited to only those which a human researcher encountered and identified, so
it must be noted that there is no guarantee that this is an exhaustive list; it is
simply a list compiled as emails were categorized.

After a review of the quality of the dataset with the supervisor, it was deter-
mined that we would further filter the emails to exclude those which con-
tained the texts ”call for papers” or ”workshop” in their subject, or which con-
tained ”call for papers” within the body of the email. This allows us to remove
a large amount of irrelevant emails that will almost certainly not contain a lot
of architectural knowledge. These ”call for papers” emails also usually attempt
to garner more traffic by including large amounts of SEO-friendly keywords,
which tends to place them high in the Lucene search results; something we
want to avoid.

Categorization Process
This study categorized the architectural knowledge contained in 1919 individ-
ual emails, spread across 188 different email threads from Hadoop, Cassan-
dra, and Tajo developer mailing lists. This section provides an overview of
how this was achieved.

Email categorization happened in iterations, where a selection of emails would
be analyzed for the architectural knowledge they potentially contain, and a
subset of this section was presented to the supervisor for verification. With
each iteration, feedback and a broadening collection of examples helped to
build the final list of design decisions included in this paper, and already-
categorized emails were revised under the new definitions. More specifically,

1. The researcher categorizes a set of emails (usually between 100 and
200), and selects a sample from that set, and sends the ids of the sam-
ple set to the supervisor, along with a copy of the dataset at that point
in time.

2. The supervisor evaluates the accuracy of tag annotations on the emails
in the sample set, and discusses the motivations for why certain tags do
or do not apply to specific emails.

3. The researcher makes note of each of the emails which were incorrectly
categorized, and their reason for the erroneous categorization.

4. The researcher rectifies categorization on all emails which were incor-
rectly categorized, and revisits all emails from the original set whose
tags match in any way with the erroneous emails, so that they can be
re-evaluated.

In total, 9 iterations were performed over the course of this research. With
the first iteration, nearly every single email was found to have errors in its
classification. However, towards the 7th, 8th, and 9th iterations of review,

Page 36 of 71

consensus was reached on nearly every email in the review set.

The rate at which email categorization can happen is a clear limiting factor
to the scale of this study, because of the time requirements to develop an
intuition for accurately identifying the design decisions in emails, and the time
required to simply read such a volumeof emails. This will be discussed further
in the paper’s conclusion.

To better understand the process of categorizing emails based on the types
of design decisions they contain, the following sections will describe, in detail,
how to identify instances of those design decisions in practice.

Identifying Existence Decisions
To identify existence decisions, we look for specific cases where components
and their behaviors are discussed.

^^. There has already been some Slack discussion around this, but for anyone who
doesn't follow that closely, I'd like to lobby more widely for my proposal
in CASSANDRA-17292 to eventually move cassandra.yaml toward a more nested
structure. ^^.

↪→
↪→
↪→

In the above example, we see a discussion regarding changes to the structure
of the cassandra.yaml file (a cassandra node’s configuration file). This is an
example where a developer is advising to make a structural change to a key
component in the Cassandra architecture.

In another example, we see that existence decisions can be found when a
proposal is made to add a new component, or merge an external component
into the main system architecture.

So, on Orange side, we propose to discuss with Datastax how to best merge Casskop's
features in Cass-operator.↪→

These features are:
- nodes labelling to map any internal architecture (including network specific labels

to muti-dc setup)↪→
- volumes & sidecars management (possibly linked to PodTemplateSpec)
- backup & restore (we ruled out velero and can share why we went with Instaclustr but

Medusa could work too)↪→
- kubectl plugin integration (quite useful on the ops side without an admin UI)
- multiCassKop evolution to drive multiple cass-operators instead of multiple casskops

(this could remain Orange internal if too specific)↪→

In addition to adding/modifying/removing components from a system’s ar-
chitecture, we can find existence decisions in cases where the behavior and
coupling of components and subsystems in an architecture occurs.

+------+
+------+ credentials 1 | SSO |
|CLIENT|-------------->|SERVER|
+------+ :tokens +------+
2 |
| access token
V :requested resource

Page 37 of 71

+-------+
|HADOOP |
|SERVICE|
+-------+

The above diagram represents the simplest interaction model for an SSO service in
Hadoop.↪→

1. client authenticates to SSO service and acquires an access token
a. client presents credentials to an authentication service endpoint exposed by the SSO

server (AS) and receives a token representing the authentication event and verified
identity

↪→
↪→
b. client then presents the identity token from 1.a. to the token endpoint exposed by

the SSO server (TGS) to request an access token to a particular Hadoop service and
receives an access token

↪→
↪→
2. client presents the Hadoop access token to the Hadoop service for which the access

token has been granted and requests the desired resource or services↪→
a. access token is presented as appropriate for the service endpoint protocol being

used↪→
b. Hadoop service token validation handler validates the token and verifies its

integrity and the identity of the issuer↪→

Here, we see a prime example of an existence design decision which focuses
on how different parts of the system interact, and this description of the be-
havior ofHadoop’s single-sign-on authentication flow is a key example of behavioral-
existence architectural knowledge.

In another example, we see amore strictly behavioral formof existence knowl-
edge, which appears more in the form of a high-level algorithm or workflow,
than an explicit description of component interconnections.

One failure scenario: Node A, B, and C replicate some data. C goes
down. The data is deleted. A and B delete it and later GC it. C
comes back up. C now has the only copy of the data so on read repair
the stale data will be sent to A and B.

A solution: pick a number N such that we are confident that no node
will be down (and catch up on hinted handoffs) for longer than N days.
(Default value: 10?) Then, no node may GC tombstones before N days
have elapsed. Also, after N days, tombstones will no longer be read
repaired. (This prevents a node which has not yet GC'd from sending a
new tombstone copy to a node that has already GC'd.)

Identifying Technology Decisions
In contrast with existence decisions, technology decisions are some of the
most trivial to identify, because it’s just naturally quite easy to identify discus-
sions about third-party technologies as separate from the systemarchitecture
itself.

Here’s an example of an email discussing the tradeoffs of python and jdk-
based cassandra multi-node testing.

The primary tradeoffs as I understand them for moving from python-based multi-node
testing to jdk-based are:↪→

Pros:
1. Better debugging functionality (breakpoints, IDE integration, etc)
2. Integration with simulator
3. More deterministic runtime (anecdotally; python dtests _should_ be deterministic

but in practice they prove to be very prone to environmental disruption)↪→

Page 38 of 71

4. Test time visibility to internals of cassandra
Cons:
1. The framework is not as mature as the python dtest framework (some functionality

missing)↪→
2. Labor and process around revving new releases of the in-jvm dtest API
3. People aren't familiar with it yet and there's a learning curve

As the above example and the next one illustrate, most technology discus-
sions tend to contain some form of informal comparison between competing
technologies to accomplish a goal. We see this again in another conversation
on comparing the Jira ticket system to GitHub and Apache’s own in-house sys-
tem for improving the code-review workflow.

We had a pretty long conversation about this very topic on the dev list
awhile ago (search for "Discussion: reviewing larger tickets" on the
mailing list). I think the final conclusion was that having the
back-and-forth via JIRA helped codify some of the design decisions that
took place during implementation and review that could be lost using an
external tool.

So while it's extra overhead and very raw from a tooling perspective, the
pros outweighed the cons.

And as one final example, technology knowledge is not limited to just com-
parisons, but also assertions about the quality or properties of a third-party
technology in the context of a larger discussion. Take for example this email
on the Thrift serialization API’s TRecordStream component.

Yes. TRecordStream's fundamtental use case is to be a robust file format for
storing records (in our case thrift or ctrl delimited log data) and that
they/it be self describing.

This means fixed sized frames that can be skipped over in case of corruption
and providing transparent checksums and/or compression if needed. And a way
to put the serializer/deserializer information in each header.

And of course cross platform/languages - Java, Python, Perl and C^+.

Identifying Process Decisions
To identify process decisions, we look for conversations around the testing
and development workflows that developers follow, since these often lead
to actual concrete process decisions. For example, a common theme is the
reiteration that a project needs more or better testing, which then spawns
a discussion around how to adjust the development process to achieve that.
We see that in this example below.

Hi Dev,

What principles do we have? How do we implement them?

Our team has been evaluating 3.0.x and 3.x for a large production deployment. We have
noticed broken tests and have been working on several patches. However, large
parts of the code base are wildly untested, which makes new contributions more
delicate.

↪→
↪→
↪→

Page 39 of 71

All of this ultimately reduces our confidence in the new releases and slows down our
adoption of the 3.0 / 3.x and future 4.0 releases.↪→

So, I'd like to have a constructive discussion around 2 questions:

1. What principles should the community have in place about code quality and ensuring
its long term productivity?↪→

2. What are good implementationg (as in rules) of these principles?

To get this started, here is an initial proposal:

Principles:

1. Tests always pass. This is the starting point. If we don't care about test
failures, then we should stop writing tests. A recurring failing test carries no
signal and is better deleted.

↪→
↪→
2. The code is tested.

Assuming we can align on these principles, here is a proposal for their implementation.

Rules:

1. Each new release passes all tests (no flakinesss).
2. If a patch has a failing test (test touching the same code path), the code or test

should be fixed prior to being accepted.↪→
3. Bugs fixes should have one test that fails prior to the fix and passes after fix.
4. New code should have at least 90% test coverage.

Other process discussions can be more limited in scope, simply making an
assertion about what should be the case for how the project is handled. This
next example contains a simple process decision about how an experimen-
tal flag should be applied to features, and when to remove it.

Reviewers should be able to suggest when experimental is warranted, and conversation on
dev+jira to justify when it’s transitioned from experimental to stable?↪→

We should remove the flag as soon as we’re (collectively) confident in a feature’s
behavior - at least correctness, if not performance.↪→

Additionally, we identify quite a few process decisions which are structured
more concretely as assertions about the current state of the development
process, such as this one about how Cassandra’s major releases are struc-
tured.

We are moving away from designating major releases like 3.0 as "special,"
other than as a marker of compatibility. In fact we are moving away from
major releases entirely, with each release being a much smaller, digestible
unit of change, and the ultimate goal of every even release being
production-quality.

Identifying Property Decisions
Finally, property decisions are, in practice, the most difficult to properly iden-
tify, since they are first of all quite a bit more rare than the others as we’ll
see in the analysis section, and the very nature of property decisions is that
they are broad, abstract suppositions about the qualitative attributes of the
software architecture and its goals. In the first example, we present a case

Page 40 of 71

where properties of a new in-memory table implementation are established
for Cassandra.

We would like to contribute our TrieMemtable to Cassandra.

https:^/cwiki.apache.org/confluence/display/CASSANDRA/CEP-19%3A+Trie+memtable+implementation

This is a new memtable solution aimed to replace the legacy implementation, developed
with the following objectives:↪→

- lowering the on-heap complexity and the ability to store memtable indexing structures
off-heap,↪→

- leveraging byte order and a trie structure to lower the memory footprint and improve
mutation and lookup performance.↪→

In another example, we see that a software architecture’s property decisions
don’t necessarily need to focus on physical qualities like performance and
memory usage, but also things like the quality of the system’s security promises,
and support for third-party integrations.

I've been recently looking into how we could improve security in
Cassandra by integrating external solutions. There are very interesting
projects out there, such as Vault[0], ^^.
^^. Wouldn't it be cool to have
automated, build-in certificate management instead? That's what got me
started to work on CASSANDRA-13971.

For a third example, we will show the first email sent by Michael Cafarella
which started the HBase project in Hadoop, back in 2006. It’s a long email,
but even in just the opening three paragraphs, we see the establishment of
several key properties of the system.

I've written up a design that I've been working on for a little bit, for
a project I'll call "HBase". The idea is for Hadoop to implement something
similar in spirit to BigTable. That is, a distributed data store that
places a greater emphasis on scalability than on SQL compatibility
or traditional transactional correctness.

BigTable is neither completely described anywhere, nor is it
necessarily exactly what we want. So I'm not trying to clone BigTable,
but I am going to draw on it a lot.

My personal view is that BigTable is a great "physical layer" but not yet
a great database system. A major thing it lacks is a good query language.
Another, freely admitted by the Google people, is any kind of inter-row
locking. I'm not going to try to solve all these problems, but I would
like HBase to be extendible enough that it's easy to add new query
languages or primitives.

In contrast, we can find property decisions in some of the smallest emails that
are made in rebuttal to claims about what a system should or shouldn’t do,
like in the following example.

Hadoop 3693 is, btw, how archives got implemented for 18. As the spec at
the beginning says, compression is not a goal.

Page 41 of 71

https://hbase.apache.org/

Analysis
Once a reasonable sufficient number of emails were categorized, a set of anal-
yses was developed to help illustrate the results, and how they pertain to the
research questions. Asmentioned above, the dataset we operate on contains
1919 unique categorized emails, from 188 different email threads. For more
information on how these analyses are implemented, and how to run it your-
self, see the section on the Email Dataset Report Generator.

Relevance
For multiple metrics in the analysis, we discuss an email or email thread’s
relevance. This is a measure of how valuable such a result is, where those
with high amounts of architectural knowledge should have a higher relevance
than those who don’t. And any email or thread containing no architectural
knowledge should certainly have a relevance value of 0.

For individual emails, we simply take an email’s relevance value as 1 if it is
categorized as containing at least one type of architectural design decision,
or a value of 0 otherwise.

Let e be an email, and |e| be the number of architectural tags applied to email
e. Then, we can compute the relevance rel(e) as follows:

rel(e) =

{
1 |e| > 0

0 otherwise
(Email Relevance)

For an entire email thread, the approach ismore involved, as threads can con-
tain wildly different amounts of architectural knowledge. We use a nuanced
approach to computing relevance which incorporates both the thread’s to-
tal amount of architectural knowledge, and the density of knowledge in the
thread. A thread’s (Email Thread Density) is simply the ratio of architectural
emails in the thread, to the total number of emails. This way, we avoid the
pitfalls of overvaluing large threads with a lot of sparse knowledge, while pro-
viding extra motivation for finding dense threads with a large amount of ar-
chitectural design decisions. Let |tak| be the total number of emails in a thread
which contain at least one architectural tag, and |t| be the total number of all
emails in the thread, architectural or not.

dt =
|tak|
|t|

(Email Thread Density)

When incorporating a measure describing the thread’s total amount of archi-
tectural knowledge, we compute first the total number of tagged emails in
every thread in the dataset, and then take the third-quartile value as our tQ3

against which each thread’s total amount of tagged emails can be normalized.
Then we can define the thread’s normalized ”total knowledge” value.

Page 42 of 71

tn = min
(
1,

|tak|
tQ3

)
(Email Thread Total Knowledge)

We use both the thread’s density dt, and its normalized total knowledge tn as
a linear combination to produce a relevance metric for a thread.

relt =
dt + tn

2
(Email Thread Relevance)

Lucene Search Precision
In order to answer the question of how effective Lucene indexing and searching
is to find relevant architectural knowledge, two metrics were used.

First, a simple iterative precision metric is used to determine a search query’s
precision Pn for a search to find n emails or threads where reli is the relevance
of the ith email or thread:

Pn =
n∑

i=1

pi
n
where pi =

{
1 reli > 0

0 reli <= 0
(Search Precision)

This metric tells what ratio of results returned by a query contain some archi-
tectural knowledge, so it can be of use to describe how effective a search is
at returning anything of value, but does not account for the rank of elements
in the search, nor the true relevance of email threads. This equation works
for analyzing searches over individual emails, and searches over threads by
obtaining reli using either (Email Relevance) or (Email Thread Relevance), re-
spectively.

Normalized Discounted Cumulative Gain
A better metric that accounts for a result’s rank in addition to its relevance is
the Discounted Cumulative Gain, and this helps us to model real-world user
persistence in examining large result sets[14].

DCGn =
n∑

i=1

reli
log2(i+ 1)

(DCG)

However, this metric may be wildly different depending on the query that’s
used. To compensate for this, we normalize the cumulative gain by comparing
the DCG to the best possible result that could be obtained, also known as the
ideal DCG[12]. Let RELn be the list of the n most relevant documents in the
dataset, ordered in descending order. Then we can compute the ideal DCG
as follows:

Page 43 of 71

IDCGn =

|RELn|∑
i=1

reli
log2(i+ 1)

(IDCG)

And once the IDCG is obtained, we can simply use this to normalize the DCG
result produced by any query over the dataset.

NDCGn =
DCGn

IDCGn

(NDCG)

In the end, we can use NDCG as a general metric to evaluate the effectiveness
of a search query to produce highly relevant results, with the most relevant
results first. In theory, we would like a perfect query for which the NDCG is
computed as 1 for all n[4].

N-Gram Patterns
Besides evaluating the effectiveness of the various query searches, we’d also
like to answer questions about the content of architectural knowledge, and
identifying patterns in how such knowledge appears can be key to under-
standing this. To that end, inspiration was taken from the N-Gram method
for analyzing natural language. N-gram models have been used successfully
in machine translation, speech recognition, entity detection, and informa-
tion extraction[9]. The n-gram approach can be applied to an email thread
to find the most common ordered n length sequences of tags that appear
in the dataset. Furthermore, Guthrie et al. demonstrated that skip-grams (a
technique where unmarked elements can be skipped) are effective at finding
meaningful value from datasets without needing to increase the size of the
dataset[11].

Therefore, we present a recursive algorithm for finding a list of all known se-
quences of email ids in a thread that correspond to one of many possible tag
patterns, which can optionally be configured to skip non-architectural emails
(generating a skip-gram model).

First, the patternSearchRecursive method is defined to iterate over all
tags on a given email, and for each tag, find any patterns that start with that
tag. For any of those patterns, call the findMatchingSequencemethod and
store the results in our result instance variable.

The findMatchingSequencemethod will then recursively traverse an email
thread from a starting email, until it finds a sequence that matches the given
pattern of tags.

Co-Occurrence
N-grams are excellent at giving insight into the ordered patterns of architec-
tural knowledge discussion, but a simpler co-occurrence metric can tell us

Page 44 of 71

https://en.wikipedia.org/wiki/N-gram

what types of architectural knowledge most often appear together. For this,
we just make a pass over all categorized emails, and increment a counter for
each combination of tags that is encountered.

Aggregate Data
In addition to the above analyses, we will also provide a suite of simple ag-
gregate analyses to be able to better visualize the data. This will include the
following properties for each individual email:

• Body size: the total number of characters of the email’s body.

• Word count: the total number of words in the email’s body. Words are
any sequence of text separated by one or more whitespace characters.

And for email threads, the following additional properties will be examined:

• Thread size: the total number of emails in a thread.

• Participant count: the total number of all unique participants in a thread.

Page 45 of 71

Results
In this study, 1919 individual emails, in 188 unique email threads, were cate-
gorized according to the architectural design decisions they contained. Fur-
thermore, this set contains the top 75 email threads from each of the four
provided Lucene search queries. We will now illustrate the results of this ef-
fort, and attempt to substantiate answers to the posed research questions.

Note that all data, plots, and other graphics that were programmatically generated, have their
source code available on GitHub.com.

Kinds of Architectural Design Decisions
To answer the first and second research questions, we can look at the total
number of emails (and threads) that have been categorized under each type
of architectural design decision.

Figure 12: The total number of emails with each type of tag.

From figure 12 we can clearly see that the majority of emails contain no archi-
tectural knowledge at all, and by a large margin. However, we also see some
interesting variation in what kinds of architectural design decisions do exist,
with existence being themost common, followed closely by process decisions.

Looking at the results for threads in figure 13, the outlook isn’t quite so de-
pressing. Despite the fact that yet again,most threads generally don’t have ar-
chitectural knowledge, a large portion of threads do contain a significant num-
ber of identified design decisions. Again, existence decisions are the most
popular, but thereafter it is evident that there is a relatively large number

Page 46 of 71

https://github.com/ArchitecturalKnowledgeAnalysis/EmailDatasetReportGen

of threads discussing technology decisions, while fewer process discussions
than one would expect if extrapolating the individual email data.

Figure 13: The total number of threads that contain each at least one email
with a given tag.

The reduced frequency of process discussions at the thread level, juxtaposed
with the increased frequency at the individual email level, indicates that there
exists a fewer number of threads discussing development processes, but those
threads which do discuss processes, generally contain more emails. We can
see this difference illustrated further in figure 15, which plots the distribution
of thread sizes for threads containing various tags.

Conversely, there are proportionately more threads discussing technology
than there are individual emails, and again this can be explained by the na-
ture of such discussions. Conversations about technologies tend to be shorter
than other conversations about the actual architecture of a system, probably
because there is a lesser need to reason about and qualify decisions com-
pared to the system’s own components.

Page 47 of 71

Figure 14: The relative frequency of the different types of design decisions.

Figure 15: Boxplot showing the distribution of total thread size for threads
containing different tags. A thread is placed into one of the categories if it
contains at least one email with that tag.

Page 48 of 71

Figure 16: Boxplot showing the distribution of body sizes of emails for threads
containing different tags. A thread is placed into one of the categories if it
contains at least one email with that tag.

Figure 17: Boxplot showing the distribution of word counts of emails for dif-
ferent tags.

The (Email Thread Relevance) equation provides some insight into how often
architectural knowledge appears. We observe a roughly linear gradient from
a relevance of 0.1 to a relevance of 1.0, and again we see that a plurality of
email threads are mostly irrelevant in terms of their architectural knowledge
content.

Page 49 of 71

Figure 18: Histogram that shows the distribution of the relevance of all email
threads.

Patterns of Design Decisions
To determine if and what sort of patterns exist in progression of architec-
tural design decisions through an email thread, a series of n-gram and co-
occurrence analyses were performed. We will first discuss what patterns ex-
ist, and then consult a few cases to try and understand why those patterns
exist.

Table 1: All 2-gram sequences, ordered frommost common to least common.
Pattern Count
property→ existence 18
existence→ process 17
technology→ existence 17
existence→ technology 16
existence→ property 15
property→ technology 14
process→ existence 11
process→ technology 11
property→ process 10
technology→ process 9
technology→ property 6
process→ property 4

Page 50 of 71

Table 2: All 2-gram sequences, ordered frommost common to least common,
skipping non-architectural emails between tags.

Pattern Count
existence→ process 58
existence→ property 55
technology→ existence 54
existence→ technology 49
property→ existence 43
technology→ process 41
process→ technology 40
process→ existence 35
property→ process 27
property→ technology 25
technology→ property 21
process→ property 15

Already with just the 2-gram model, it is clear that there is a sort of bidirec-
tional relationship between property and existence decisions, and between
existence and technology decisions. Furthermore, the model indicates that
there is not a strong directionality in the patterns, since most pairs have a
similar frequency with both orientations. The skip-gram technique does lead
to more abundant results, but there may be a slightly reduced accuracy[11],
in that an arbitrary number of intermediate emails have been skipped, thus
the application of a skip-gram model may not be as reliable as the non-skip,
but seems to perform better without needing a larger dataset.

Table 3: Top 5 3-gram sequences, ordered from most common to least com-
mon. Other sequences omitted due to low frequency.

Pattern Count
property→ existence→ process 4
existence→ property→ technology 3
technology→ existence→ process 2
property→ technology→ existence 2
property→ technology→ process 2

Page 51 of 71

Table 4: All 2-gram sequences, ordered frommost common to least common,
skipping non-architectural emails between tags.

Pattern Count
technology→ existence→ process 24
existence→ process→ property 21
existence→ property→ process 19
existence→ technology→ process 19
technology→ process→ existence 19
technology→ property→ existence 16
existence→ technology→ property 14
property→ existence→ process 14
existence→ property→ technology 13
property→ technology→ existence 12
technology→ existence→ property 11
process→ technology→ existence 10
property→ existence→ technology 9
existence→ process→ technology 9
property→ technology→ process 8
technology→ property→ process 7
process→ existence→ technology 7
technology→ process→ property 6
property→ process→ existence 6
property→ process→ technology 3
process→ property→ existence 3
process→ existence→ property 2
process→ property→ technology 1
process→ technology→ property 0

Given that the dataset consists of nearly 2,000 categorized emails, the results
of the strict 3-gram model show that there is no abundant evidence for any
highly structured patterns of discussion. The skip-gram model offers some
more information, but again, the frequencies are quite low to be able to defini-
tively state that a pattern exists. A much larger sample would be needed. De-
spite that, we do see that technology and existence decisions tend to occur at
the beginning of email discussions, while process and property tend to follow.

Table 5: Co-occurrence frequency for pairs of tags.
Pattern Count
existence, property 31
existence, technology 25
existence, process 14
process, technology 9
property, technology 8
process, property 8

Page 52 of 71

The co-occurrence data shown in figure 5 reinforces the previous claim about
a relationship between the existence and property decisions, and existence
and technology decisions. Now that it is clear that such relationships do exist,
we will discuss the possible motivation for the existence of these relation-
ships.

Regarding the existence ↔ property relationship, several cases indicate that
this happens when a participant begins a high-level proposal or discussion
on adding a new component, or integrating a subsystem into the main archi-
tecture. This tends to initiate a conversation with one or more property deci-
sions, as users and developers debate on the existing and new properties of
the system, and once this is resolved, concrete components or connections
between components are proposed.

Example: Existence and Property
Thread: [DISCUSS] CEP-19: Trie memtable implementation

An initial email proposes a new implementation of a memtable for the Cas-
sandra project.

#ID 43605
We would like to contribute our TrieMemtable to Cassandra.

This is a new memtable solution aimed to replace the legacy implementation, developed
with the following objectives:↪→

- lowering the on-heap complexity and the ability to store memtable indexing structures
off-heap,↪→

- leveraging byte order and a trie structure to lower the memory footprint and improve
mutation and lookup performance.↪→

The new memtable relies on CASSANDRA-6936 to translate to and from byte-ordered
representations of types, and CASSANDRA-17034 / CEP-11 to plug into Cassandra. The
memtable is built on multiple shards of custom in-memory single-writer
multiple-reader tries, whose implementation uses a combination of state-of-the-art
and novel features for greater efficiency.

↪→
↪→
↪→
↪→

This first email is an example of one where existence and property decisions
happen together: in this case, the new memtable implementation is a struc-
tural change to the architecture, and provides several features that allow bet-
ter qualitative properties of Cassandra. In a response, we see more existence
decisions as the details of the proposed implementation are explained (as
these details often imply structural changes to the architecture).

#ID 43130
The memtable pluggability API (CEP-11) is per-table to enable memtable selection

that suits specific workflows. It also makes full sense to permit per-node
configuration, both to be able to modify the configuration to suit heterogeneous
deployments better, as well as to test changes for improvements such as this one.

↪→
↪→
↪→
Recognizing this, the patch comes with a modification to the API that defines memtable

templates in cassandra.yaml (i.e. per node) and allows the schema to select a
template (in addition to being able to specify the full memtable configuration).
One could use this e.g. by adding:

↪→
↪→
↪→
memtable_templates:
trie:

class: TrieMemtable

Page 53 of 71

shards: 16
skiplist:

class: SkipListMemtable
memtable:
template: skiplist

(which defines two templates and specifies the default memtable implementation to use)
to cassandra.yaml and specifying WITH memtable = {'template' : 'trie'} in the
table schema.

↪→
↪→

Example: Existence and Technology
Thread: Hadoop Summit: Security Design Lounge Session

In this thread, the first email begins by summarizing the attendance andmain
takeaways from a recent Hadoop Summit meetup, and intends to continue
discussion about Hadoop’s security in the thread. The author guided the dis-
cussion primarily to how to improve Hadoop’s security. Already, this identi-
fication of points of improvement for the system and preliminary discussion
includes property and existence decisions.

#ID 17569
^^.
In order to keep the scope of conversations manageable we tried to keep focused on

authentication and the ideas around SSO and tokens.↪→

We discussed kerberos as:
1. major pain point and barrier to entry for some
2. seemingly perfect for others
a. obviously requiring backward compatibility

It seemed to be consensus that:
1. user authentication should be easily integrated with alternative enterprise identity

solutions↪→
2. that service identity issues should not require thousands of service identities

added to enterprise user repositories↪→
3. that customers should not be forced to install/deploy and manage a KDC for services

- this implies a couple options:↪→
a. alternatives to kerberos for service identities
b. hadoop KDC implementation - ie. ApacheDS?

^^.

One response to this email providedmore support formodifyingHadoop’s au-
thentication mechanisms to support pluggable authentication providers, and
mentions a third-party authentication provider (ApacheDS) as one example
of how it could work.

#ID 17690
There was certainly discussions around the emerging work from Daryn related to

pluggable authentication mechanisms within that layer and we will immediately have
the options of kerberos, simple and plain. There was also talk of how this can be
leveraged to introduce a Hadoop token mechanism as well.

↪→
↪→
↪→

At the same time, there was talk of the possibility of simply making kerberos easy and
a non-issue for intra-cluster use. Certainly we need both of these approaches.↪→

I believe someone used ApacheDS' KDC support as an example - if we could standup an
ApacheDS based KDC and configure it and related keytabs easily than the end-to-end
story is more palatable to a broader user base. That story being the choice of
authentication mechanisms for user authentication and easy provisioning and
management of kerberos for intra-cluster service authentication.

↪→
↪→
↪→
↪→

Page 54 of 71

In the other common bidirectional case with existence ↔ technology, we see
a similar pattern of a proposal followed by a rich discussion. For this rela-
tionship, however, proposals often directly or indirectly mention third-party
technologies, and ensuing conversation includes a series of emails that eval-
uate the value of integrating such technologies into the architecture.

Example: Technology and Property
Thread: [Discuss] replacement of airlift/airline framework in CLI tools

In this example, we look at a discussion surrounding the replacement of some
old CLI framework used by various Cassandra tools. The current framework
(airlift/airline) is deprecated and this email thread is continuing a conversation
started in a Slack (instant messaging service) channel.

#ID 43623
In CASSANDRA-17445 we’ve started discussing the options of replacing the deprecated

airlift/airline framework used in CLI tools.↪→

Considering the amount of commands this framework is used in, the impact this might
cause and the future possibilities the operational aspects of Cassandra could
leverage, first comments at slack revealed an in-depth discussion would be
desirable.

↪→
↪→
↪→

Kind request for comments.

The initial message simply expresses a desire to replace the CLI framework,
but doesn’t provide any specific solutions. This intention to refactor/replace
the CLI framework is already an existence decision, as it will generally mean
adding and removing some structural components to facilitate a new CLI de-
pendency. Replies go into more detail about actual technologies that can be
used to replace the airlift/airline framework.

#ID 43650
Maintaining some other tools, originally inspired by nodetool, I started evaluating

alternatives. Started with airline2 and picocli, my preliminary findings are↪→

airline2:
+ low effort to replace, nearly unchanged API
+ capability to generate documentation

picocli:
- considerable effort for migration needed
+ more modern and lean API
+ capability to generate documentation
+ capability to generate shell-completion, including not just subcommands but all

options and parameters↪→
+ capability to generate man pages

In my opinion, there is room for improvement, especially on documentation and the
usability of tools:↪→

* more detailed descriptions on commands and subcommands
* better accessibility to help and docs, e.g. on the website, as man pages, etc.
* adding usage examples to docs and help
* doc pages on the website could be generated e.g. as a side-product of the release

process↪→
* the command completion script could be generated, without the need for manual

maintenance and packaging↪→

Page 55 of 71

* coloured output in a terminal would be appreciated, especially by less experienced
users, e.g. when looking at nodetool status on larger clusters↪→

The above reply provides one of the most typical examples of an excellent
comparison of technologies, in this case CLI frameworks to use for Cassan-
dra’s tools. It also contains a slight property decision, by advocating for the
improvement of the tools’ usability.

#ID 43648
airline/airlift is deprecated. I suspect if there were any security issues they would

not be fixed. Their project recommends moving to Airline 2 or picocli.↪→

I share Stefan's concern about the stability of the CLI and output formatting. We
should avoid any breakages resulting from this migration. Lots of automation
depends on this "interface" being stable.

↪→
↪→

Andfinally, this reply simply provides a little bitmore detail into themotivation
behind the desired change.

Example: Technology, Evaluating Alternatives
Thread: [DISCUSS] Secure Hadoop without Kerberos

In another example, we look at a proposal by a developer for opening Hadoop
up to alternative authenticationmethods beyond just Kerberos (this relates to
the second example on existence and technology). The initial email provides
a list of motivations for why developers should want to do this, and proceeds
to ask for community feedback and ideas.

#ID 38943
Kerberos was developed decade before web development becomes popular.
There are some Kerberos limitations which does not work well in Hadoop. A
few examples of corner cases:

1. Kerberos principal doesn't encode port number, it is difficult to know
if the principal is coming from an authorized daemon or a hacker container
trying to forge service principal.
2. Hadoop Kerberos principals are used as high privileged principal, a form
of credential to impersonate end user.
3. Delegation token may allow expired users to continue to run jobs long
after they are gone, without rechecking if end user credentials is still
valid.
4. Passing different form of tokens does not work well with cloud provider
security mechanism. For example, passing AWS sts token for S3 bucket.
There is no renewal mechanism, nor good way to identify when the token
would expire.

There are companies that work on bridging security mechanism of different
types, but this is not primary goal for Hadoop. Hadoop can benefit from
modernized security using open standards like OpenID Connect, which
proposes to unify web applications using SSO. This ensure the client
credentials are transported in each stage of client servers interaction.
This may improve overall security, and provide more cloud native form
factor. I wonder if there is any interested in the community to enable
Hadoop OpenID Connect integration work?

Page 56 of 71

Another developer responds with more specific information about how they
have experience with OpenID Connect (OIDC) authentication.

#ID 39025
I'm interested in OpenID Connect (OIDC) integration.

In addition to the benefits (security, cloud native), operating costs may
be reduced in some companies.
We have our company-wide OIDC provider and enable SSO for Hadoop Web UIs
via Knox + OIDC in Yahoo! JAPAN.
On the other hand, Hadoop administrators have to manage our own KDC servers
only for Hadoop ecosystems.
If Hadoop and its ecosystem can support OIDC, we don't have to manage KDC
and that way operating costs will be reduced.

This reply provides another motivation for adding support for alternative au-
thentication mechanisms, but mostly motivated by cost optimization rather
than just intrinsic benefit of the architecture. This is a common occurrence
in technology emails, where respondents qualify their opinions based on the
costs of different choices on their industry.

#ID 39045
We aren’t very far from having OIDC support. The pre-requisite RPC/TLS &
RPC/mTLS recently completed rollout to our entire production grid.
Majority of the past year was spent shaking out bugs and ensuring 100%
compatibility. There are a few rough edges I need to clean up for a
community release.

A few weeks ago I created a rough POC to leverage RPC/mTLS with OIDC access
tokens. Goal is a mTLS cert may be blessed to impersonate with an access
token. A compromised service may only be abused to impersonate users that
have recently accessed said service.

Kerberos, mTLs, and OIDC may all be simultaneously supported. Part of the
simplicity is regardless of the client’s authn/authz, delegation tokens are
still acquired by jobs to avoid short-lived identity credential expiration.

And generally, we seemultiple emails of a similar nature in technology discus-
sions, where respondents provide their perspective on how they use a tech-
nology in their organization, and in the above case, some details about the
implementation or how it can be used.

Further in the discussion, a reply to Email #ID 39025 provides more informa-
tion about solutions for reverse proxy setups, especially promoting the use
of Nginx as one such implementation. In the second part, it goes into detail
about the requirements of a Hadoop single-sign-on integration, and this list
of requirements is an example of an existence decision, with both structural
and behavioral elements.

#ID 39027
Thank you for the information. Knox plays a main role in reverse proxy for
Hadoop cluster. I understand the importance to keep Knox running to
centralize audit log for ingress into the cluster. Other reverse proxy
solution like Nginx are more feature rich for caching static contents and
load balancer. It would be great to have ability to use either Knox or
Nginx as reverse proxy solution. Company wide OIDC is likely to run
independently from Hadoop cluster, but also possible to run in a Hadoop

Page 57 of 71

cluster. Reverse proxy must have ability to redirects to OIDC where
exposed endpoint is appropriate.

HADOOP-11717 was a good effort to enable SSO integration except it is
written to extend on Kerberos authentication, which prevents decoupling
from Kerberos a reality. I gathered a few design requirements this
morning, and welcome to contribute:

1. Encryption is mandatory. Server certificate validation is required.
2. Existing token infrastructure for block access token remains the same.
3. Replace delegation token transport with OIDC JWT token.
4. Patch token renewer logic to support renew token with OIDC endpoint
before token expires.
5. Impersonation logic uses service user credentials. New way to renew
service user credentials securely.
6. Replace Hadoop RPC SASL transport with TLS because OIDC works with TLS
natively.
7. Command CLI improvements to use environment variables or files for
accessing client credentials

Downgrade the use of UGI.doAs() to private of Hadoop. Service should not
run with elevated privileges unless there is a good reason for it (i.e.
loading hive external tables).
I think this is good starting point, and feedback can help to turn these
requirements into tasks.

Page 58 of 71

Search Effectiveness
To determine the effectiveness of our four queries at finding relevant emails
and threads rich in architectural design decisions, we will use both the preci-
sion and NDCG as metrics to evaluate over each query.

From figure 19 we can see immediately that all queries generally perform
quite well in terms of their precision. Recall that the precision is a measure
of the average ratio of returned results that contain architectural knowledge,
meaning that all four queries perform slightly above 50%. Initially, the deci-
sion factors query performs better, followed by the rationale query from n = 7
onward. The reusable solutions and components and connectors queries in con-
trast perform relatively poorly in the initial results, but precision improves as
n approaches 20. However, it should be noted that the initial performance is
highly unstable and slight variations in the content of emails may completely
alter the first few results, and so practically we should only consider evaluat-
ing a query based on its total precision over a greater n.

In figure 20, the NDCG metric is visualized for the four queries. The graph is
less chaotic than the precision graph, and we can see a more organized trend
line for three of queries, while the reusable solutions performs consistently at
the lowest level. Again, decision factors and rationale performwell initially, and
in this metric, they continue to provide the best performance, albeit by a tiny
margin. Despite the fact that the NDCG metric ”discounts” results at lower
ranks in the result, the queries appear to improve in performance slightly as
the result set grows larger. This could indicate that the factor by which we
discount lower-ranked results is too weak, or that the queries are simply not
effective at ranking highly-relevant results appropriately.

Figure 19: Precision metric with thread relevance computed using all archi-
tectural design decision tags, for all queries.

Page 59 of 71

Figure 20: NDCG metric with thread relevance computed using all architec-
tural design decision tags, for all queries.

While the focus in this study is on evaluating the effectiveness of queries in a
real-world context that’s similar to how a user would really search for knowl-
edge, we also include precision and NDCG measures when using the queries
to search over individual emails, to compare with the thread-based search.
This type of search benefits from a larger dataset volume, as we have roughly
10 times as many fully categorized emails as threads, but does not accurately
depict a typical human search, since it removes context from the search re-
sults by returning fragmented bits of information from many different con-
versations. Generally the searches performworse over individual emails than
they do over threads, with both precision and NDCG values remaining below
0.4 for almost the entirety of the query results, and degrading as n increases.
However, it appears that the reusable solutions query, which performed most
poorly in the thread-based precision and NDCG metrics, tends to perform at
or near the best of all the queries for individual emails.

Page 60 of 71

Figure 21: Precision metric with email relevance computed using all architec-
tural design decision tags, for all queries.

Figure 22: NDCGmetric with email relevance computed using all architectural
design decision tags, for all queries.

Page 61 of 71

Discussion
In this section, we’ll reflect briefly on what we learned from the process of
developing the tools, annotating emails, and analyzing the results of this re-
search.

Of course, the most obvious thing we learned, was the fact that the vast ma-
jority of content in mailing lists contains very little, if any, architectural knowl-
edge, and even after applying numerous filtering strategies andmanual cleanup,
the majority of effort is spent in simply identifying emails that could possibly
contain architectural knowledge, and relatively little effort is required to then
determine what types of knowledge are present.

However, our results showed that, after all the filtering steps, there are some
key features which we can use as hints to help in improving the efficiency with
which design decisions are identified. Figures 16 and 17 both clearly show
a significant difference between size of architectural emails, and those that
aren’t. The size of an email thread is also an excellent indicator that the pres-
ence of architectural knowledge is likely, although we consider this to be of
less utility, because it is often difficult for humans to quickly discern the size
of a recursive email thread structure. Additionally, knowing which patterns
of design decisions are most common (and having many examples of these)
will make it much easier to familiarize new researchers to the concept of ar-
chitectural knowledge, and makes it much easier to learn to identify them by
example; at least, faster than we were able to do with our iterative ”annotate
and review” approach.

A classical keyword-based search seems impractical for actually finding useful
architectural knowledge, beyond the scope of research. While a good portion
of the results are architecturally significant, the performance of the searches
is roughly the same, no matter which query was used, and the usability of
a search is greatly hindered by the simple fact of the matter that navigating
email threads can be non-trivial for humans to comprehend at scale. Despite
this, using keyword searches was generally efficient as ameans for identifying
email threads thatwere good candidates for categorization, as opposed to the
naive approach where one would traverse the entire dataset linearly.

Finally, the effort required to prepare the tools in a way where datasets could
be easily shared and reviewed for collaboration was too great. Roughly two-
thirds of the working time spent on this research was focused on the develop-
ment of the prerequisite tools, and this highlights a need for standardization
of software in this field, so that one high quality tool can be used for many
different research projects. Otherwise, the development of novel software
for each individual research project will be a massive and unnecessary time
sink. We will continue to support the Email Dataset Browser and associated
projects as long as they’re needed by others, but we recognize the need for a
more flexible web-based approach to collaborative knowledge extraction.

Page 62 of 71

Conclusion
In this study, we prepared tools to fetch and process mailing lists, and pre-
pared a categorizeddataset containing 1919 emails in 188unique email threads,
to determine what types of architectural knowledge exists in open-source
software development mailing lists. The results of a varied set of analyses
over this dataset tell us first and foremost that most emails in such mailing
lists do not contain useful architectural design decisions, but that a large pro-
portion of email threads do contain architectural design decisions. There ex-
ists a strong relationship between existence decisions and both technology
and property decisions, as a natural consequence of the flow of a conversa-
tion from proposal to an evaluation of alternative solutions, to choosing an
accepted solution.

From applying Apache Lucene search queries to the dataset, the precision
and NDCGmetrics for both thread-based and individual email results indicate
that the current search implementation is not effective for finding a sufficient
amount of architectural knowledge, when compared to similar metrics per-
formed by den Boon[4] where queries achieved NDCG measures of greater
than 0.9 over 100 results.

Open-source software development mailing lists, as shown by this research,
present ample opportunity for extracting architectural knowledge, and we
have shown that contextual patterns in the types of design decisions can be
used to further aid in searching. However, the search methods used in this
study, or the metrics used to grade them, were insufficient to conclude that
keyword-based Lucene queries are an effective tool for extracting that knowl-
edge. More work is needed to improve how the queries operate over email
threads, how to compute a more accurate relevance measure, and improved
metrics are needed to be able to better differentiate the performance of dif-
ferent queries.

Threats to Validity
Despite the researcher’s best efforts, the data in this paper could be subject
to a number of faults, and it is important that the reader acknowledge these
before pressing onward with any research that depends on these results.

The researcher is a single student whose practical experience does not over-
lap much with the realm of architectural knowledge identification and extrac-
tion. The researcher did iteratively develop a sense of intuition for the design
decisions through many weeks of supervised email categorization, but this is
still prone to the occasional error. Fatiguemay play a role in producing lower-
quality results, as multiple hours of reading emails tends to drain the mind of
all its vitality.

The indexing and searching implementation may not be optimal for email

Page 63 of 71

threads, as no general solution exists for this, given that mailing lists are usu-
ally navigated chronologically by their users. The Email Thread Relevance
equation may not be optimal for computing a truly useful relevance value for
an email thread.

Future Work
This study provides a solid basis for identifying the types and amount of archi-
tectural knowledge that can be found in open-source software development
mailing lists, but is far from an exhaustive resource on the matter. Additional
research is needed to further expand on the data with additional mailing lists
from other open-source communities that focus on different types of soft-
ware. While we explored the patterns in how architectural design decisions
are made, our research was limited to exclusively the content of the emails
themselves, and there aremany examples where the discussion in an email is
migrated to a Jira or GitHub issue tracker, and the reasons for these ”jumps”
betweenmedia has not yet been explored, nor the patterns whichmight exist
between discussions on either end.

While more work can be done to improve the indexing and searching imple-
mentation, and the queries used by it, research by Bhat et al.[3] shows that
there is promise in designing machine learning models to automatically ex-
tract architectural knowledge. The data in this study can be incorporated into
training data for such models.

The tools developed for this study are rudimentary in nature, but have been
developed to the best of the researcher’s abilities to be future-proof and open
to expansion and re-use, and we encourage others to build on their capabil-
ities. Currently, the EmailDownloader utility supports only Apache Software
Foundation mailing lists, but could be expanded easily to support others as
well. The EmailIndexer utility currently only supports the H2 database imple-
mentation, which offers limited concurrency when operating in embedded
mode, and this can be improved to allow for multi-user systems where many
people can contribute to a single dataset’s information at once. And finally,
the EmailDatasetBrowser application could be expanded to include real-time
analytics and improved search interfaces.

Page 64 of 71

https://github.com/ArchitecturalKnowledgeAnalysis/EmailDownloader
https://github.com/ArchitecturalKnowledgeAnalysis/EmailIndexer
https://github.com/ArchitecturalKnowledgeAnalysis/EmailDatasetBrowser

References
[1] URL: https://lucene.apache.org/.
[2] AleemAkhtar. “Role of Apache Software Foundation in BigData Projects”.

In: arXiv e-prints (May 2020). DOI: 10.48550/arXiv.2005.02829.
[3] Manoj Bhat et al. “Automatic Extraction of Design Decisions from Issue

Management Systems: A Machine Learning Based Approach”. In: Soft-
ware Architecture. Ed. by Antónia Lopes and Rogério de Lemos. Springer
International Publishing, 2017, pp. 138–154. ISBN: 978-3-319-65831-5.

[4] Tom den Boon. “Exploring the effectiveness of search engines for find-
ing architectural knowledge in open source repositories”. In: University
of Groningen Student Theses (2021), pp. 3–30. URL:https://fse.studenttheses.
ub.rug.nl/25813/.

[5] Walter Bright, Andrei Alexandrescu, and Michael Parker. “Origins of the
D Programming Language”. In: Proc. ACM Program. Lang. 4.HOPL (2020).
DOI:10.1145/3386323. URL:https://doi.org/10.1145/3386323.

[6] Wei Ding et al. “Understanding the Causes of Architecture Changes Us-
ing OSS Mailing Lists”. In: International Journal of Software Engineering
and Knowledge Engineering (2015), pp. 1633–1651.

[7] Said Faroghi. “Mining architectural knowledge in issue tracking systems”.
In: University of Groningen Student Theses (Feb. 2022). URL: https://
fse.studenttheses.ub.rug.nl/26603/.

[8] W.N. Francis and H. Kučera. “Frequency Analysis of English Usage: Lexi-
con and Usage”. In: Oxford University Press (1982).

[9] Alex Franz and Thorsten Brants. “All Our N-gram are Belong to You”.
In: Google AI Blog (Aug. 2006). URL: https://ai.googleblog.com/
2006/08/all-our-n-gram-are-belong-to-you.html.

[10] R. Gellens. Mailing Lists and Internationalized Email Addresses. Internet
Engineering Task Force (IETF). Oct. 2010.

[11] David Guthrie et al. “A Closer Look at Skip-gram Modelling”. In: (2006).
URL: https://web.archive.org/web/20170517144625/http://
homepages.inf.ed.ac.uk/ballison/pdf/lrec_skipgrams.pdf.

[12] Introduction to Information Retrieval. Apr. 2013. URL: https://web.
stanford.edu/class/cs276/handouts/EvaluationNew-handout-
6-per.pdf.

[13] Anto Jansen et al. “Software Architecture as a Set of Architectural Design
Decisions”. In: Proceedings - 5th Working IEEE/IFIP Conference on Software
Architecture, WICSA 2005 2005 (Jan. 2005), pp. 109–120. DOI: 10.1109/
WICSA.2005.61.

[14] Kalervo Järvelin and Jaana Kekäläinen. “Cumulated Gain-Based Evalu-
ation of IR Techniques”. In: ACM Trans. Inf. Syst. 20.4 (2002), pp. 422–
446. ISSN: 1046-8188. DOI: 10.1145/582415.582418. URL: https:
//doi.org/10.1145/582415.582418.

Page 65 of 71

https://lucene.apache.org/
https://doi.org/10.48550/arXiv.2005.02829
https://fse.studenttheses.ub.rug.nl/25813/
https://fse.studenttheses.ub.rug.nl/25813/
https://doi.org/10.1145/3386323
https://doi.org/10.1145/3386323
https://fse.studenttheses.ub.rug.nl/26603/
https://fse.studenttheses.ub.rug.nl/26603/
https://ai.googleblog.com/2006/08/all-our-n-gram-are-belong-to-you.html
https://ai.googleblog.com/2006/08/all-our-n-gram-are-belong-to-you.html
https://web.archive.org/web/20170517144625/http://homepages.inf.ed.ac.uk/ballison/pdf/lrec_skipgrams.pdf
https://web.archive.org/web/20170517144625/http://homepages.inf.ed.ac.uk/ballison/pdf/lrec_skipgrams.pdf
https://web.stanford.edu/class/cs276/handouts/EvaluationNew-handout-6-per.pdf
https://web.stanford.edu/class/cs276/handouts/EvaluationNew-handout-6-per.pdf
https://web.stanford.edu/class/cs276/handouts/EvaluationNew-handout-6-per.pdf
https://doi.org/10.1109/WICSA.2005.61
https://doi.org/10.1109/WICSA.2005.61
https://doi.org/10.1145/582415.582418
https://doi.org/10.1145/582415.582418
https://doi.org/10.1145/582415.582418

[15] Philippe Kruchten, Patricia Lago, and Hans van Vliet. “Building Up and
Reasoning About Architectural Knowledge”. In: Quality of Software Archi-
tectures (Dec. 2006), pp. 43–58. DOI: 10.1007/11921998_8.

[16] Peter Naur and Brian Randell. “Software Engineering: Report on a con-
ference sponsored by the NATO Science Committee”. In: Working Con-
ference on Software Engineering (1969).

[17] Dewayne E. Perry and Alexander L. Wolf. “Foundations for the Study of
Software Architecture”. In: ACM SIGSOFT Software Engineering Notes 17
(4), pp. 40–52. DOI: 10.1.1.40.5174. URL: http://users.ece.
utexas.edu/~perry/work/papers/swa-sen.pdf.

[18] Pete Resnick. Internet Message Format. RFC 5322. Oct. 2008. DOI: 10.
17487/RFC5322. URL: https://www.rfc- editor.org/info/
rfc5322.

[19] Mohamed Soliman et al. “Exploring Web Search Engines to Find Archi-
tectural Knowledge”. In: Proceedings - IEEE 18th International Conference
on Software Architecture, ICSA 2021 (), pp. 162–172. DOI:10.1109/ICSA51549.
2021.00023. URL: https://doi.org/10.1109/ICSA51549.2021.
00023.

[20] Antony Tang et al. “A comparative study of architecture knowledgeman-
agement tools”. In: The Journal of Systems and Software (July 2008).

[21] Zhuang Xiong et al. “Assumptions in OSS Development: An Exploratory
Study through theHibernate DeveloperMailing List”. In: 25th Asia-Pacific
Software Engineering Conference (APSEC) (Dec. 2018). DOI: 10 . 1109 /
APSEC.2018.00060.

Page 66 of 71

https://doi.org/10.1007/11921998_8
https://doi.org/10.1.1.40.5174
http://users.ece.utexas.edu/~perry/work/papers/swa-sen.pdf
http://users.ece.utexas.edu/~perry/work/papers/swa-sen.pdf
https://doi.org/10.17487/RFC5322
https://doi.org/10.17487/RFC5322
https://www.rfc-editor.org/info/rfc5322
https://www.rfc-editor.org/info/rfc5322
https://doi.org/10.1109/ICSA51549.2021.00023
https://doi.org/10.1109/ICSA51549.2021.00023
https://doi.org/10.1109/ICSA51549.2021.00023
https://doi.org/10.1109/ICSA51549.2021.00023
https://doi.org/10.1109/APSEC.2018.00060
https://doi.org/10.1109/APSEC.2018.00060

Appendix
This section will contain larger bits of text or code or figures that aren’t well
suited to being placed inside the body of the paper. They may be referenced
throughout the body of the paper. Note that not all source code for the vari-
ous tools and analyses are included here, due to the impracticality of distribut-
ing such a large amount of source code. For the complete suite of software
used in this study, please visit the ArchitecturalKnowledgeAnalysis organiza-
tion on GitHub.

Page 67 of 71

https://github.com/ArchitecturalKnowledgeAnalysis

Lucene Keyword Queries
This section contains four keyword-based Lucene search queries provided by
Mohamed Soliman, as derived from previous research for use in this project.
Youmay consult Apache Lucene’s documentation for a reference of the syntax
used in these queries.

Decision Factors actor* availab* budget* business case* client* concern* conform*
consisten* constraint* context* cost* coupl* customer* domain*
driver* effort* enterprise* environment* experience* factor*
force* function* goal* integrity interop* issue* latenc*
maintain* manage* market* modifiab* objective* organization*
performance* portab* problem* purpose* qualit* reliab*
requirement* reus* safe* scal* scenario* secur* stakeholder*
testab* throughput* usab* user* variability limit* time cohesion
efficien* bandwidth speed* need* compat* complex* condition*
criteria* resource* accura* complet* suitab* complianc* operabl*
employabl* modular* analyz* readab* chang* encapsulat* transport*
transfer* migrat* mova* replac* adapt* resilienc* irresponsib*
stab* toleran* responsib* matur* accountab* vulnerab* trustworth*
verif* protect* certificat* law* flexib* configur* convent*
accessib* useful* learn* understand*

Reusable Solutions action* adapt* alloc* alternativ* approach* asynch* audit*
authentic* authoriz* balanc* ballot* beat bridg* broker*
cach* capabilit* certificat* chain* challeng* characteristic*
checkpoint* choice* cloud composite concrete concurren*
confident* connect* credential* decorat* deliver* detect*
dual* echo encapsulat* encrypt* esb event* expos* facade factor*
FIFO filter* flyweight* framework* function* handl* heartbeat*
intermedia* layer* layoff* lazy load lock* mandator* measure*
mechanism* memento middleware minut* monitor* mvc observ*
offer* opinion* option* orchestrat* outbound* parallel passwords
pattern* peer* period* piggybacking ping pipe* platform* point*
pool principle* priorit* processor* profil* protect* protocol*
prototyp* provid* proxy publish* recover* redundan* refactor*
removal replicat* resist* restart restraint* revok* rollback*
routine* runtime sanity* schedul* sensor* separat* session*
shadow* singleton soa solution* spare* sparrow* specification*
stamp* standard* state stor* strap strateg* subscrib* suppl*
support* synch* tactic* task* technique* technolog* tier* timer*
timestamp* tool* trail transaction* uml unoccupied* view* visit*
vot* wizard* worker*

Components and Connectors access* allocat* application* architecture* artifact* attribute*
behav* broker* call* cluster* communicat* component* compos*
concept* connect* consist* construct* consum* contain* control*
coordinat* core criteria* data database* decompos* depend*
design* diagram* dynamic element* engine* entit* event* exchang*
exist* external filter* function* hardware* independ* information
infrastructure input* instance* integr* interac* internal item*
job* layer* link* load* logic* machin* memor* messag* model*
modul* node* operat* outcom* output* part* peer* platform* port*
process* produc* program* project* propert* provid* publish*
read* relat* request* resourc* respon* scope separate server*
service* shar* source* stor* structur* subscrib* support* system*
target* transaction* trigger* runtime realtime network* thread*
parallel notif* distribut* backend* frontend* central* persist*
queue* concurren* middleware* provid* suppl*

Rationale advantag* alternativ* appropriate assum* benefit* better best
caus* choic* choos* complex* condition* critical decid* decision*
eas* evaluat* hard* quick* rational* reason* risk* simpl* strong*
tradeoff weak* rational* disadvantag* comparison* pros cons good
differen* slow* lightweight overkill* recommend* suggest* propos*
outperform* important* versus vs contrast* distinct* fast* heav*
boost* drawback* option*

Page 68 of 71

https://lucene.apache.org/core/9_2_0/queryparser/org/apache/lucene/queryparser/classic/package-summary.html#package.description

Email Dataset Schema
The following SQL snippet defines the relational schema which is used for
email datasets in version 2 of EmailIndexer API.
This DDL script is written using the H2 dialect of SQL.

1 CREATE TABLE EMAIL (
2 ID BIGINT PRIMARY KEY AUTO_INCREMENT,
3 PARENT_ID BIGINT NULL DEFAULT NULL REFERENCES EMAIL(ID)
4 ON UPDATE CASCADE ON DELETE SET NULL,
5 MESSAGE_ID VARCHAR(255) UNIQUE,
6 SUBJECT VARCHAR(1024),
7 IN_REPLY_TO VARCHAR(255),
8 SENT_FROM VARCHAR(255),
9 DATE TIMESTAMP WITH TIME ZONE,

10 BODY LONGTEXT,
11 HIDDEN BOOL NOT NULL DEFAULT FALSE,
12 CHECK (PARENT_ID IS NULL OR PARENT_ID ^> ID)
13);
14 CREATE INDEX IDX_EMAIL_DATE ON EMAIL(DATE);
15 CREATE INDEX IDX_EMAIL_HIDDEN ON EMAIL(HIDDEN);
16
17 CREATE TABLE TAG (
18 ID INTEGER PRIMARY KEY AUTO_INCREMENT,
19 NAME VARCHAR(255) UNIQUE,
20 DESCRIPTION MEDIUMTEXT NULL DEFAULT NULL
21);
22 CREATE INDEX IDX_TAG_NAME ON TAG(NAME);
23
24 CREATE TABLE EMAIL_TAG (
25 EMAIL_ID BIGINT NOT NULL REFERENCES EMAIL(ID)
26 ON UPDATE CASCADE ON DELETE CASCADE,
27 TAG_ID INTEGER NOT NULL REFERENCES TAG(ID)
28 ON UPDATE CASCADE ON DELETE CASCADE,
29 PRIMARY KEY (EMAIL_ID, TAG_ID)
30);
31
32 CREATE TABLE MUTATION (
33 ID BIGINT PRIMARY KEY AUTO_INCREMENT,
34 DESCRIPTION LONGTEXT NOT NULL,
35 PERFORMED_AT TIMESTAMP WITH TIME ZONE NOT NULL DEFAULT CURRENT_TIMESTAMP(0),
36 AFFECTED_EMAIL_COUNT BIGINT NOT NULL DEFAULT 0
37);
38 CREATE INDEX IDX_MUTATION_DATE ON MUTATION(PERFORMED_AT);
39
40 CREATE TABLE MUTATION_EMAIL (
41 MUTATION_ID BIGINT NOT NULL REFERENCES MUTATION (ID)
42 ON UPDATE CASCADE ON DELETE CASCADE,
43 EMAIL_ID BIGINT NOT NULL REFERENCES EMAIL(ID)
44 ON UPDATE CASCADE ON DELETE CASCADE,
45 PRIMARY KEY (MUTATION_ID, EMAIL_ID)
46);

Page 69 of 71

Key Analysis Algorithms
This section contains a selection of algorithms from the analysis tool which merit their inclu-
sion in this paper.

N-Gram Pattern Searching

1 ^^*
2 * Finds a list of sequences of email ids, where the emails in those
3 * sequences have tags matching the given pattern of tags, in exactly the
4 * same order.
5 * Params:
6 * email = The root email to search in.
7 * set = The email set.
8 * pattern = The tag pattern to search for.
9 * Returns: A list of email id sequences, where each sequence contains a

10 * list of email ids corresponding to emails that have tags matching the
11 * given pattern.
12 ^/
13 private long[][] findMatchingSequences(Email email, EmailSet set, string[] pattern) {
14 import std.algorithm;
15 import std.array;
16 if (pattern.length ^= 0) return []; ^/ Failsafe exit if the patterns are empty.
17 bool thisEmailMatches = email.tags.canFind(pattern[0]);
18 long[][] sequences = [];
19 ^/ An appender for appending sequences to the list.
20 auto sequenceAppender = appender(&sequences);
21 if (thisEmailMatches) {
22 ^/ Our base case: the root email has a matching tag.
23 if (pattern.length ^= 1) {
24 sequenceAppender ~= [email.id];
25 } else {
26 ^/ Recursive step: find sequences in replies that match the rest of the pattern.
27 foreach (reply; set.repliesById[email.id]) {
28 foreach (sequence; findMatchingSequences(reply, set, pattern[1 ^. $])) {
29 sequence.insertInPlace(0, email.id);
30 sequenceAppender ~= sequence;
31 }
32 }
33 }
34 } else if (skip) {
35 ^/ If we allow skipping non-architectural emails, check all replies anyways.
36 foreach (reply; set.repliesById[email.id]) {
37 sequenceAppender ~= findMatchingSequences(reply, set, pattern);
38 }
39 }
40 return sequences;
41 }

Page 70 of 71

Thread Relevance
This set of functions is used to compute the relevance of an email thread, in terms of how valu-
able it is for the thread to appear in search results. See (Email Thread Density) and (Email Thread Relevance)

1 ^^*
2 * Computes the relevance of an email thread as a linear combination of the
3 * density and relative tag count metrics for the thread.
4 * Params:
5 * rootEmail = The root email of the thread.
6 * set = The email set.
7 * akTags = The list of tags which are considered architectural.
8 * maxRelevance = The pre-computed "max" relevance for the set.
9 * Returns: The relevance of the thread.

10 ^/
11 double threadRelevance(Email rootEmail, EmailSet set, string[] akTags, double

maxRelevance) {↪→
12 import std.algorithm : min;
13 uint tagCount = countTagsRecursive(rootEmail, set, akTags);
14 return (threadDensity(rootEmail, set, akTags) + min(1.0, tagCount / maxRelevance)) /

2.0;↪→
15 }
16
17 ^^*
18 * Computes the value that we consider to be the "max relevance" of all email
19 * threads in a dataset. This is the third-quartile value of the count of all
20 * tags in all email threads.
21 * Params:
22 * set = The email set.
23 * akTags = The list of tags which are considered architectural.
24 * Returns: The max relevance.
25 ^/
26 double getMaxRelevance(EmailSet set, string[] akTags) {
27 import std.algorithm : sort, mean;
28 uint[] rootEmailTagCounts = new uint[set.rootEmails.length];
29 foreach (i, rootEmail; set.rootEmails) {
30 rootEmailTagCounts[i] = countTagsRecursive(rootEmail, set, akTags);
31 }
32 rootEmailTagCounts.sort();
33 return rootEmailTagCounts[rootEmailTagCounts.length * 3 / 4];
34 }
35
36 ^^*
37 * Computes the density of an email thread. This is the ratio of architectural
38 * emails to the number of total emails in the thread.
39 * Params:
40 * rootEmail = The root email.
41 * set = The email set.
42 * akTags = The list of tags which are considered architectural.
43 * Returns: The density of the email thread.
44 ^/
45 double threadDensity(Email rootEmail, EmailSet set, string[] akTags) {
46 return cast(double) countAkEmails(rootEmail, set, akTags) / threadSize(rootEmail,

set);↪→
47 }

Page 71 of 71

	Abstract
	Introduction
	Software Architecture
	Searching
	Defining Types of Design Decisions
	Research Questions

	Related Work
	Tools
	Overview
	Architecture
	Email Downloader
	MBox Parser
	Email Indexer
	Email Dataset Browser
	Email Dataset Report Generator
	A Minimal Workflow Example

	Methodology
	Choosing Sources
	Fetching and Processing Sources
	Categorization Process
	Analysis

	Results
	Kinds of Architectural Design Decisions
	Patterns of Design Decisions
	Search Effectiveness

	Discussion
	Conclusion
	Threats to Validity
	Future Work

	References
	Appendix
	Lucene Keyword Queries
	Email Dataset Schema
	Key Analysis Algorithms

