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Abstract 
 
Conventional means of characterization, analysis, and diagnosis of gait pathology rely on large and 

expensive motion capture technology, which demands an elaborate laboratory set-up. Although the 

said means has established itself as the gold standard for gait analysis, the concomitant resources, 

accessibility to the patient, and the required expertise has deemed this solution non-scalable. New 

market solutions such as wearable sensor technology with machine learning-driven algorithmic 

diagnostics have paved the way for cost-effective alternatives. These novel market solutions see an 

advantage over the gold standard in terms of the scalability of deployment and accessibility to the end 

user, without the pre-requisite technical expertise at the users’ end to engender an objective basis for 

gait analyses. This research project was aimed at providing a framework for the development of a 

novel machine learning-based algorithm for automated gait analyses by exploring and investigating 

trends in muscle activation and the resultant gait kinematics. Through this framework, a standardized 

method for partitioning the gait phases under investigation, and the subsequent analyses through 

feature extraction has been implemented. This standardized method was used to assess the scalability 

and flexibility of the novel ML-powered wearable sensor technology for unified gait analysis. 

Furthermore, this project forms a gold standard for the validation of the tool by comparing the data 

acquired from the conventional motion capture system and the ML-powered wearable-sensor 

technology. 

 

Introduction 
 

Human gait, which refers to the human locomotive act of walking is an important form of mobility 

that allows us to participate in and is paramount for labour, societal, and sports-related activities. 

Deviations in regular walking can have a significant impact on an individual’s life. Without clinical 

intervention, the said deviations can develop into pronounced consequences. This could lead to the 

exacerbation of the underlying condition causing the deviation and may debilitate the individual. This 

would impair their ability to perform and contribute to work and society. In turn, this would burden 

the individual with financial constraints by driving up indirect costs incurred. Furthermore, this would 

result in the reclusion of the individual from society and would potentially progress to depression, 

anger, and other mental illnesses. Regaining full mobility through effective treatment has been the 

primary goal of rehabilitation. The choice of rehabilitation and its efficacy is heavily reliant on an 

accurate diagnosis of the atypical gait (Langhorne et al., 2009). The current established gold standard 

in gait analysis is the laboratory-based three-dimensional gait analysis (3D CGA) which includes motion 

capture analysis, measurement of external forces and muscle activation (Wren et al., 2020). Using 3D 

CGA analysis, clinicians can objectively identify limb motions, joint angles, muscle activation, and foot 

and joint loading. Although this gold standard means of analysis has proven to greatly improve the 

efficacy of treatment, it is accompanied by practical limitations. It relies on expensive equipment, 

requires an elaborate laboratory set-up, and needs highly trained personnel to ensure data integrity, 

to name a few. Accessibility to the patients, as these labs are present in highly specialized clinical 

institutes, and the high concomitant cost adds to 3D CGA’s limitations. For example, in the northern 

Netherlands, only two such specialized facilities are available to patients. Patients in the said region 

must encumber a waiting period of up to 6 months of which the ones exhibiting the most severe gait 

pathologies gain precedence of consideration.  
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Wearable sensor-based systems were introduced as a potentially cost-effective, mobile, off-the-shelf 

alternative to the laboratory-based method. These sensor systems, which are designed to acquire 

both muscle activation (electromyography) and movement data (accelerometer, gyroscope, etc.), are 

driven by predictive machine learning analytics to detect specific gait events. These specific gait events 

such as heel strike, toe off, etc. are then used to segment the data into the gait phases (swing and 

stance) for subsequent analysis. In the case of 3D CGA analysis, these gait events are detected using a 

force plate to discern the start and end of plantar contact. Segmentation of the gait data into the gait 

phases is essential for further analysis as certain gait pathologies, such as gastrocnemius spasticity, 

are identified by abnormal ankle extension in the swing phase. Hence, apart from an effective and 

efficient means of acquiring gait data, segmentation of the same is paramount to robust analysis. 

Laboratory-based force plate-based partitioning has shown high accuracy but shows a great deviation 

in the case of patients with severely impaired gait who exhibit very low foot clearance and very small 

step lengths (Caderby et al., 2013). It requires expensive equipment, i.e., force plates, and partitions 

applied to the entire data captured is extrapolated from the gait events captured within the area of 

the force plate: 2 to 3 steps. Furthermore, trained clinical technicians are required to assess the quality 

and integrity of the data by manually controlling the partitioning accuracy and correcting irregularities 

if any. Machine learning (ML) based partitioning overcomes the above limitations and has been widely 

used in wearable sensor technology as they can include a greater number of steps for accurate 

partitioning of the data recorded in the patient’s home environment.  

Although ML power wearable sensors see an advantage in accessibility to the patient, they still have 

some limitations. The main limitation seen is the lack of flexibility of these systems (i.e., highly 

dependent on the sensor systems that can be employed, and lack of expansion to partition data 

acquired through other means) and clinical flexibility. Most of the sensors which incorporate ML 

partitioning are highly reliant on specific patient groups with specific pathologies which reduces its 

purview to expand its application to other gait pathologies and applications and is mostly validated on 

healthy adults. Furthermore, as shown by Kidzinski et al. (Kidziński et al., 2019), a large set of data 

(>9000 annotated CGA recordings) was required to train the ML model incorporated to accurately 

partition the data. Concurrently, a dataset size of similar order would be required to re-train the 

system for a different patient demographic. 

Through this master’s project, a standardized framework for gait partitioning was implemented. This 

framework was aimed to be used in the design, development and validation of a novel AI tool 

conceptualized by Oro Muscles B.V., Groningen, Netherlands. The flexibility and accuracy of the tool 

were first established on data acquired from laboratory-based 3D CGA patient recordings and in a 

wearable sensor system designed by Oro Muscles. 

 

Background information 
 

Electromyography 
Electromyography (EMG) is a process of recording the electrical activity of the muscles that arise from 

their activation by the nervous system. The bioelectric signal acquired through this process, called the 

Electromyogram can be employed in a wide range of applications such as sports analysis, and human-

machine interfaces, to name a few. The primary use case of EMG has been to assess muscle health 

and muscle activity in the clinical sphere and was first introduced in 1966 to diagnose specific muscle 

disorders by Hardyck et. al. (Cram et al., 1998). The electromyogram can be recorded in two ways: 
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invasively and non-invasively. Invasive measurement, as shown in Figure 1 Is done by inserting 

percutaneous needles to specific sites in the muscle and is used where information on highly localized 

muscle activity is required. The non-invasive means, termed surface EMG (sEMG), uses gel electrode 

patches placed on the skin at specific sites and records more general activity. SEMG is preferred in 

applications that involve the dynamic acquisition of muscle activity, and the invasive needles may 

hinder movement and present discomfort to the subject. Improper functioning of the muscles can be 

caused by various defects to the neuromuscular or the skeletal system such as stroke, or spinal cord 

lesions. It can also result in complications such as skeletal deformity, issues with locomotion and 

development of pain to name a few. EMG of the muscle activity during any specific phase of motion 

or locomotion can yield an idea of muscle health and motor control. This information can be indicative 

of various abnormalities such as neural injury or compression, denervated muscles or primary 

pathological processes. 

 

 

Inertial measurement unit 
An inertial measurement unit (IMU) is an electronic device that through accelerometers and 

gyroscopes measure the specific linear acceleration and angular velocity. IMUs are commonly 

employed in smartphones, and unmanned aerial vehicles, and have now seen an entry into the clinical 

sphere with human movement and locomotion analysis. The gyroscope measures the 3D orientation 

with respect to the inertial frame of the earth’s gravity and the accelerometer measures the 3D rate 

of change of the velocity as shown in Figure 2. The data engendered by such an IMU would have 6 

degrees of freedom. Newer IMUs also have a magneto meter included which measures the local 

magnetic field.  

Before the introduction of IMUs in the clinical sphere, EMGs were considered a standalone parameter 

to assess muscle strength and output. The drawback of this approach is that the EMG data acquired 

cannot indicate the type of muscle contraction, i.e., isometric, eccentric or concentric. The 

incorporation of IMUs with EMGs can help discern between muscular force output and the actual 

extent of neuromuscular effort.   

 

 

 

Figure 1: Image highlighting the electromyogram acquired from the biceps brachii.  

Source: (Ebbecke, 2020) 
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Normal human gait 
Normal human gait, as defined by Whittle (Whittle et al., 2007) is “a method of locomotion involving 

the use of the two legs, alternately, to provide both support and propulsion.” It involves the combined 

activity of the musculoskeletal system, the peripheral nervous system, and the central nervous 

system’s (CNS) centre for locomotion (Sadeghi et al., 2000), (Vaughan et al., 1992). Normal human gait 

encompasses a series of cascading events: 1) Activation of the CNS centre for locomotion; 2) 

transmission of the gait signal to the peripheral nervous system; 3) contraction of the respective 

muscle as a result of neuromuscular activation; 4) initiation of locomotion due to the joint movements, 

as regulated by the skeletal components, and; 5) the generation of a ground reaction force. One 

complete gait cycle comprises the duration of walking between two consecutive heel strikes or initial 

ground contact of the same foot. A complete gait cycle consists of two phases: the stance phase and 

the swing phase. These two phases can be further classified into eight sub-phases the start of the end 

of which can be determined by specific points in the gait cycle as illustrated in Figure 3. 

 

Figure 2: Illustration of EMG data acquired from the vastus lateralis (VL) and gluteus muscle mapped onto hip flexion angle. Source: (Noraxon 
USA, 2020) 

Figure 3: Phases and events of regular human gait. Source: (Perry & Burnfield, n.d.) 
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The stance phase refers to the part of the gait cycle where either or both feet maintain contact with 

the ground and amounts to about 60% of the entire gait cycle. This phase is further divided into the 

five following subphases:  

1) Initial contact which is characterized by the first moment of contact between the foot and the 

ground termed heel strike. This marks the start of the gait cycle and the stance phase. The 

knee joint extends rapidly right before initial contact and is almost straight (with little to no 

flexion of the knee joint) at the point of contact. The ankle maintains a neutral position 

between plantarflexion (ankle extension) and dorsiflexion (ankle flexion) Figure 4 (b). 

 

2) Loading response is the stage where the body weight is transferred to the limb and 

progressively shared between the two limbs in contact. In addition to this, the foot is lowered 

through plantarflexion over the heel and is hence termed ‘heel rocker’ till a stage of complete 

foot plantation called the foot flat period is reached. From a nearly straight knee joint, as seen 

in the heel strike stage, the knee joint reaches a ‘stance phase flexion’ which is controlled by 

the contraction of the quadriceps Figure 5. This phase amounts to roughly 12% of the gait 

cycle from the point of initial contact. 

3) The mid-stance phase is where the entire body weight is transferred to the single limb, and 

subsequently, the body progresses over the single limb. This is also the period of the gait cycle 

where the contralateral limb (opposite limb) swings by the ipsilateral limb (limb used as 

primary reference) and corresponds to a brief period termed as feet adjacent. This phase 

follows the foot flat and extends from 12% to 31% of the gait cycle. 

4) Terminal stance, which occupies the 31% to 50% interval of the gait cycle following the 

midstance, begins with the period of the gait cycle where the lift of the heel from the planted 

surface or heel off is initiated. It is characterized by the body, or rather its centre of mass, and 

the contralateral limb moving ahead of the ipsilateral foot at which point the transfer of 

weight is initiated to the forefoot. The knee joint shows the most extension right before heel 

off, proceeding with which flexion of the knee begins. Furthermore, the ankle joint reaches 

peak dorsiflexion right before the toe-off, proceeding which plantarflexion or extension of the 

ankle joint begins. The end of the terminal stance is marked by the heel strike of the 

contralateral foot. 

5)  Pre-swing, which forms the last subphase of the stance phase, covers the 50% to 

approximately 60% interval of the gait cycle wherein the body weight is unloaded from the 

ipsilateral foot and transferred to the contralateral foot. The end of pre-swing is often termed 

as toe-off, and at this stage, the knee joint achieves about half of the maximum flexion it would 

achieve in the swing phase that follows. Additionally, the ankle achieves maximum 

plantarflexion right after toe-off. 

Figure 4: figure highlighting (a) flexion and extension of the hip and knee joint and, (b) 
plantarflexion and dorsiflexion of the ankle joint. Source: (Whittle et al., 2007) 
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During the entire stance phase, specifically during the initial and final 15%, both the limbs are in 

contact with the ground and hence these periods are termed double-support phases. The remaining 

duration of the stance phase, particularly in mid-stance, is spent in single-support. 

 

The swing phase amounts to the remaining 40% of the total gait cycle. During this period, the foot is 

not in contact, and the entire weight is borne by the other foot. In essence, while one foot is in its 

swing phase, the other foot is always in the stance phase. The opposite, however, does not hold true 

due to the periods of double support. The swing is can be further classified into the following three 

subphases 

1) Initial swing covers 60% to 75% interval of the gait cycle following the toe-off where the thigh 

begins to advance. This stage begins with a rapid decrease in the body weight on the foot. The 

end of the initial swing is marked by the feet adjacent phase. The initial swing begins with 

about half of the maximum knee flexion (60° to 70°) achieved throughout the swing phase 

and with peak knee flexion at the knee adjacent. The ankle shows maximum plantarflexion at 

the beginning of the initial swing and remains plantarflexed throughout the stage. 

2) Mid-swinging covers 75% to 87% interval of the gait cycle following the initial swing and its 

start coincides with the knee adjacent after which the rapid extension of the knee is initiated. 

The end of this stage is marked by a point in the gait cycle called tibia vertical wherein the 

tibia of the leg in the swing stage is perpendicular to the ground. Through the course of mid-

swing, the angle goes from a plantarflexed state to an almost neutral state. A few degrees of 

plantarflexion or dorsiflexion may be observed at the end of the mid-swing phase. 

3) Terminal swing or late swing covers the 87% to 100% duration of the gait cycle and features 

complete knee extension. The terminal swing begins with the tibia vertical and ends with the 

heel strike of the swing phase foot. Changes in ankle and knee flexion are considerably 

minimal during the terminal swing stage. 

Multiple muscles and bones of the body, and specifically the lower limb, are involved in the gait cycle. 

Many researchers have tried to explain the activity of the various muscles in the gait cycle with an 

“on-off diagram” as shown in Figure 6 (Gillies & Lieber, 2011). Other researchers have attempted to 

draw information through the normalization of the RMS envelope and the temporal characteristics of 

Figure 5: Events of the gait cycle. Source: (Whittle et al., 2007) 
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muscles with peak activity, generally to the reference point of maximal isometric contraction (Stulen 

& DeLuca, 1981). 

 

 

Gait pathologies and abnormalities 
The sequence of the gait stages mentioned above may vary between individuals, and even with the 

individual themselves and still qualify as normal gait. Significant aberration in the gait sequence can 

be indicative of gait pathologies or abnormalities, some of which can be visually identified, while 

others need elaborate clinical analysis. For gait efforts to amount to locomotion of the body certain 

requirements must be met. Each limb should be capable of supporting the load generated by the body 

mass, balancing the body during single support stages must be possible, and the leg in the swing phase 

should advance the planted limb at the end of the swing with sufficient force and energy. These 

requirements are met in the case of both normal gait and some forms of pathological gait, in the case 

of the latter deviations in the form of abnormal and/or asymmetrical movement, a significant increase 

in the expenditure of energy, compensatory mechanisms or the need for gait assist devices is seen. 

For example, a patient with pain in the left knee may display asymmetrical walking wherein a greater 

portion of the gait cycle is spent on the right limb. This may either be a compensatory means to reduce 

pain, or a relative improvement in the efficiency of energy expenditure when compared to their 

walking pattern conforming to normal gait. The gait process is a collaborative task of the central 

nervous system, the peripheral nervous system, and the musculoskeletal system, clinical dysfunction 

of any of these parts may result in atypical gait patterns.  

 

 

 

Figure 6: The "on-off" diagram highlighting the activation of the muscles of the trunk and 
the lower limb in the various phases of the gait cycle. Source: (Tao et al., 2012) 
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In a general sense, the following aspects can be analyzed to identify irregular gait: 

Table 1: Observed gait irregularities. 

IRREGULARITY OBSERVED DESCRIPTION 

Abnormal initial contact Visible irregularity in ankle flexion during the transition from 
terminal swing to initial contact which can lead to 
subsequent variation in the loading response. May range 
from excessive plantarflexion which results in a ‘foot slap’ to 
excessive dorsiflexion resembling a ‘foot drop.’ 

Impaired flexion control Inadequate control of the flexion of the ankle to promote 
toe-off at the end of pre-swing 

Contralateral vaulting Defined as “plantar flexion of the contralateral ankle during 
the single-limb support phase”  (Drevelle et al., 2014). 

Excessive knee 
flexion/extension 

Significantly high-grade knee extension or flexion which 
would result in a gait pattern that resembles ‘crouched 
walking.’ 

Irregular rate of knee 
extension 

An abrupt or accelerated rate of knee extension in the pre-
swing segment of the swing phase 

Asymmetrical hip 
movement 

Gait patterns that resemble hip thrusting, pelvic retraction, 
or asymmetrical sway of the hip. 

Gait circumduction Gait pattern where the foot follows a semi-circular path 
parallel to the ground during efforts of advancement of the 
swinging limb 
 

Increased lumbar lordosis Characteristic increase in the curvature of the lower lumbar 
segment of the spinal cord during selective phases of gait. 

Unusual lean of the trunk Unusual lean of the upper body in either the posterior or 
anterior direction during the gait cycle. Asymmetrical or 
excessive lean of the trunk sideways during the gait cycle may 
also be observed 

 

According to Jacquelin Perry (Perry & Burnfield, n.d.), the causes of atypical gait can be classified into 

five broad categories which encompass both pathological gait and abnormal gait. These five categories 

are elucidated below. 

1. Structural deformity 

This form of atypical gait is generally caused due to the impairment in the range of motion of the joint 

brought about by tissue contracture i.e., “permanent shortening of the musculotendinous complex 

limiting the mobility of the joint” as defined by Stephane Armand (Armand & Attias, 2019). The 

structural deviation exhibited in the cases of tissue contracture is primarily due to the development 

of fibrous tissue either due to prolonged periods of local or general musculoskeletal inactivity or scar 

tissue formation from an injury.  Apart from tissue contracture, congenital deformities such as atypical 

joint curvatures and conditions like club foot contribute to atypical gait pertaining to structural 

deformities. 
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Knee flexion contracture, to elucidate the effects of tissue contracture with an example, results in 

impaired advancement of the thigh of the swinging limb as a result of excessive flexion of the knee 

Figure 7. This results in improper distribution of weight in the tibia vertical phase, which is then 

compensated by the subject by conscious additional extension of the knee, as determined from the 

muscle activation trends, to prevent asymmetrical terminal knee extension. In other cases, 

pathological conditions can catalyse structural deformity, and subsequently affect the range of motion 

or induce joint contracture. Deformity or disorder with an upper neuron process, as is in the case of a 

stroke with concomitant hypertonicity, can bring about the same effect (Webster & Darter, 2019).  

2. Muscle Weakness 

Gait aberrations that are a result of muscle weakness generally arise due to the lack of recruitment of 

the necessary number of motor units required to generate sufficient force to either generate the 

required wing or withstand the load on the limb during the stance phase. This muscle weakness can 

either be attributed to an upper neuron condition pertaining to the CNS and the spinal cord, a lower 

neuronal disorder relating to the peripheral nervous system or the aspects of the neuromuscular 

junction or muscle atrophy. Upper neuronal conditions are generally indicated by hindered control of 

the muscle with hypertonicity and, hyperreflexia with concomitant impairment in the impression of 

tactile sensation. Pathology with the lower neuron segment usually results in hypotonicity of the 

muscles, and sedate reflexes. On the contrary, upper neuronal pathologies manifest as hypotonicity 

of the muscles and impaired or delayed lower limb reflexes. The orthotic rehabilitation intervention 

for both differs vastly. Clinical analysis of the type of muscle weakness should also take into 

consideration the localization of the pathology. Localized muscle weakness, as observed by premature 

foot flat or foot slap on the onset of loading for patients with impaired dorsiflexion. 

3. Impaired sensory perception 

According to Dan Brennan (Brennan, 2021), “proprioception, otherwise known as kinesthesia, is your 

body’s ability to sense movement, action, and location.” Impairment of the same can lead to 

obstruction in walking by resulting in excessive motion of the swinging limb to achieve the required 

clearance. This is more common in patients with peripheral neuropathies as compared to those with 

single peripheral nerve lesions which have been  (Webster & Darter, 2019). Sensory impairment can 

also affect ambulation due to hindered perception of gait events such as heel strike and toe-off, which 

can significantly alter the loading response. This hindered sensory impairment may also result in 

Figure 7: Joint force as a function of Range of Motion (ROM) in the case of (a) healthy 
adult joint and, (b) joint contracture. Source: (Perry & Burnfield, n.d.) 
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exaggerated and hard contact with the ground or premature unloading. Rehabilitation and treatment 

for sensory impairment are complex because it tends to be ignored as it is not categorically visible 

(Perry & Burnfield, n.d.). Special care must be taken in the case of orthotic rehabilitation to ensure 

complications from impaired sensory perception such as damage to the skin and progression of 

peripheral neuropathy. Furthermore, rehabilitation in the case of proprioceptive loss remains 

burdensome most tests to assess the impairment are subjective, and objective assessment 

encompasses just three grades: absent, impaired, and normal, and hence not quantifiable. 

4. Pain 

A wide range of conditions involving either the neuronal system or the skeletal system (muscles, 

tendons, etc.) can subject a patient to significant amounts of pain, which can subsequently affect their 

gait. Increased tension of the tissues of the limb and the joint, which is the case in conditions such as 

tissue damage due to trauma or arthritis, remains the primary cause of pain. Furthermore, prolonged 

atypical gait because of pain has been shown to result in eventual skeletal deformity and muscle 

weakness due to atrophy. This increase in tissue tension is most commonly indicated by a change in 

the intraarticular pressure which can lead to a change in posture i.e., degree of flexion or extension of 

the joint.  

 

 In Figure 8 shown above, which corresponds to a swollen knee joint and a swollen ankle joint, it is 

noticeable that the intraarticular pressure is the least in a range of 15° to 60° in the former case and 

around 15° in the latter. This reduced range of motion would result in the patient relying on these 

angles of flexion/extension while walking as a means of relieving discomfort. Since the extent of pain 

is hard to quantify and purely relies on the subject/patient’s interpretation and understanding of the 

same, is it hard to account for in gait analysis and rehabilitation. Proper understanding of the 

underlying cause of pain is paramount for effective rehabilitation. 

5. Impaired motor control 

Patients with lesions in the central neurological system see the development of spastic paralysis. This 

paralysis generally manifests as four primary functional deficits which can either present themselves 

alone or emerge in combination with each other to varying extents. Impaired motor control can result 

from trauma and injury to the brain or the cervical and the thoracic segments of the spinal cord as 

seen in stroke, tetraplegia, multiple sclerosis, cerebral palsy, certain infections, and tumours. The four 

primary functional deficits are impaired selective control of muscle groups, muscle weakness, 

spasticity, and the emanation of primary patterns of locomotion (Perry et al., 1978), (Perry et al., 

1974).  

Figure 8: Degrees of flexion of (a) the knee joint and, (b) the ankle joint as a function of 
intra-articular pressure. Source: (Perry & Burnfield, n.d.) 
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Selective control of muscle groups allows the independent movement of a specific joint, muscle, or 

muscle groups. Regular human gait relies on simultaneous selective control of multiple muscle groups 

during the various phases of the gait cycle. Impairment of the same leads to the loss of the patient’s 

ability to recruit specific muscle groups. Muscle and joint reflexes however remain intact. Muscle 

weakness due to impaired motor control manifests itself in the display of atypical gait in a similar way. 

In the swing phase of the gait cycle, a characteristic net flexion pattern is observed and subsequently 

a net extension pattern for the stance. In the case of muscle weakness, the patient exhibits an inability 

to activate the distinct muscle groups which pertain to the different phases of gait. This leads to an 

inability to transition smoothly from swing to stance (and vice versa). 

Impaired motor control due to muscle spasticity hinders the quality of the activity of the eccentric 

muscles involved in the gait cycle. Spasticity can be categorically identified by observing the muscle’s 

response to stretch. In the case of a quick stretch, an onset of clonus, i.e., a neurological condition 

that results in rapidly occurring involuntary rhythmic contraction of the muscle is observed. On the 

contrary, continuous muscle activation is observed in response to slow stretch, which is often clinically 

misinterpreted as muscle contracture as shown in Figure 9 . Furthermore, muscle spasticity can further 

complicate gait findings during physical examinations as the hypertonicity can mask the extent of the 

weakness of the opposing muscle groups if present in conjunction. For example, in the case of 

spasticity of the soleus and the gastrocnemius muscle, exaggerated plantar flexion is observed during 

the swing phase. This phenomenon, termed foot drop, can lead to the patient’s impaired ability to 

shift from the sing phase to the stance phase due to the absence of an effective ankle rocker, which 

subsequently engenders an improper loading response during the gait phase transition. The visible 

emergence of primary locomotor patterns is another embodiment of impaired motor control. This 

pattern can be visually identified, as shown in Figure 10 through a pattern of mass flexion during the 

swing phase i.e., flexion of the hip and the knee joint in conjunction with ankle flexion accompanied 

by inversion. On the contrary, a pattern of mass extension is observed during the stance phase. The 

inability to attain a mixed response of flexion and extension during the individual phases of gait results 

in a non-fluidic gait motion, especially during the transition of the two gait phases. 

Figure 9: Muscle response to fast and slow stretch in the case 
of spasticity. Source: (Perry & Burnfield, n.d.) 
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Gait analysis 
 

Gait analysis is a multi-faceted and systematic approach that requires the integration of multiple 

dimensions of information to study human locomotion (Tao et al., 2012). This information can pertain 

to joint and limb motion, the forces generated by the said motions, the moments and power 

generated by the joint due to the resultant joint flexion and extension, and data pertaining to muscle 

activation. Through the integration of this information, various phases of gait can be identified, the 

kinetic and kinematic parameters for the identified gait stages and events can be obtained, and the 

musculoskeletal functions can be subjectively assessed by quantifying them. Gait kinetics refers to the 

moments and forces resulting in the motion of the lower limbs during the gait cycle such as the 

distribution of plantar pressure, and ground reaction force (GRF) (Tahir et al., 2020). Gait kinematics 

uses the range and angles of motion of all the joints that produce that motion. Gait analysis has also 

been used in sports sciences, rehabilitation, and biomedical engineering for effective means of 

characterization of human locomotion. Two main techniques have been employed in human gait 

analysis. These two methods are elucidated below: 

 

1. 3-Dimensional Clinical Gait Analysis (3D CGA) 

This form of clinical gait analysis has established itself as the gold standard over the years. It features 

a large room, or a ‘laboratory,’ in which a subject is asked to walk through, and their gait kinetics and 

kinematics parameters are measured and analyzed. The gait kinematics measurement system includes 

a camera system, several markers, and a computer software. The camera system comprises multiple 

cameras placed at various positions in the room to simultaneously capture the movement of the 

subject from different angles. The markers are camera identifiable fixtures placed on specific locations 

on the skin, limb, joint and even the trunk. The markers can either be rigidly placed on the specific 

segments using rigid arrays or can be placed directly on the skin as shown in Figure 11. These markers 

Figure 10: Primary locomotor patterns due to impaired motor control resulting in 
(a) mass flexion and (b) mass extension. Source: (Perry & Burnfield, n.d.) 
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can be active, i.e., infrared emitting and equipped with a power source or passive, which rely on the 

reflection of light from a stationarily placed light source 

The camera system captures the position of these specific markers as the subject is asked to perform 

a task like walking, running, etc. without altering the position of the camera system and the integration 

of these images from all the different angles gives the 3-dimensional coordinates of each of these 

markers thereby indicating the position of the joints and libs in free space. Special plug-in software 

integrates the images of the marker positions to determine the joint positions, and calculate the 

angular and linear joint velocities and acceleration by subsequent mathematical differentiation (Delisa 

& Kerrigan, 1998). The rate of error in the position, velocity and acceleration with a similar system will 

boil down to the choice of marker positioning. The gait kinematics are computed using the muscle 

activation recordings and measurements of ground reaction forces (GRF). EMG electrodes are placed 

at specific locations on the muscles of interest primarily on the lower limb, and sometimes the hip to 

measure muscle activation at specific cycles of gait. The ground reaction force is measured using a 

force platform, commonly known as a ‘force plate’ as shown in Figure 12 which is typically a 

rectangular plate measuring 60 cm x 40 cm x 1 cm (Zhang et al., 2017a). The plate houses tiny 

transducers which measure 3-dimensional forces applied to them. The forces measured when a 

subject steps on them are used to discern the initial contact, the maximum load, and the toe-off. The 

Figure 11: Rigid and skin placement of optical markers. Source: (Whittle et al., 2007) 

Figure 12: Typical layout of the 3D CGA architecture. Source: 
(Zhang et al., 2017b) 
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timing of these events is used over the entire gait recording to partition the various gait phases and 

gait events. 

Apart from the above systems described for the measurement of gait kinetics and gait kinematics, this 

means of gait analysis also requires an experienced clinician to ensure the integrity of the set-up, the 

protocol followed during gait recording, any aberrations encountered during the data acquisition, and 

identification and rectification of corrupted data. 

 

2. Wearable sensor-based methods 

Analysis of gait can also be carried out with wearable sensor systems instead of a laboratory setup, as 

first proposed and conceptualized by Morris in 1973 (Morris, 1973). These primarily incorporate the 

use of IMUs and EMG sensors that can be placed at various locations of interest on the limbs and the 

trunk. Synchronization and processing of the acquired data can be done externally on a computer 

after wired or wireless transmission of the same or can be done online. Online wearable sensors 

generally are equipped with machine learning analysis capabilities that was been trained with multiple 

sets of data before carrying out specific analyses. Other wearable sensor solutions include the use of 

flexible goniometers which measure the joint angle, and force sensors embedded into the soles of 

shoes to measure the centre of pressure and the ground reaction force. These wearable sensor-based 

methods have provided a low-cost alternative to laboratory setups and have shown the potential for 

wide-scale deployment.  

 

Materials and methods 
 

The following section describes the equipment used and the procedure involved during the process 

of data collection, pre-processing, and subsequent analysis. The demographic of the patients included 

in the study for the different setups are highlighted as well. 

Experimental setup 
 

1. 3D CGA lab setup 

The 3D CGA data recordings of patients were carried out in the human movement laboratory, roughly 

the size of two hospital rooms, equipped with a complete motion capture system and force plates 

embedded in the ground at the University Medical Centre Groningen. The set-up included 3D markers, 

visible as the iridescent spheres in Figure 13, placed on the lower limb as prescribed by the plug-in gait 

model (2010) by Vicon. Limb kinematics were recorded using 10 Vicon Vero optical cameras sampled 

at 100Hz and the subsequent visual data processing was carried out with the proprietary Vicon motion 

capture software Nexus 2.12. Two AMTI force plates were employed to record the ground reaction 

force at a sampling rate of 1000 Hz to identify gait events, i.e., heel strike and toe off in conjunction 

with the Vicon Nexus algorithm. A vertical ground reaction force of 10N was set as the threshold to 

discern between heel strike and toe-off events. In cases where the force plate data engendered 

corrupted data due to significant deviation in gait, experienced lab personnel manually annotated the 

gait events under the supervision of the principal investigator. The activity of the major muscles of the 

lower limb (rectus femoris, vastus medialis, semitendinosus, and the medial head of the 

gastrocnemius, soleus, and the tibialis anterior muscle) were acquired using Cometa EMG sensors at 

a sampling rate of 1000 Hz. The EMG sensors, the black sensors seen in Figure 13, were placed next 
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to the 3D marker set in accordance with SENIAM (Surface ElectroMyoGraphy for the Non-Invasive 

Assessment of Muscles) guidelines for electrode placement. The absolute distance between the 3D 

markers placed on the lateral malleolus of the left and the right limb was used to compute the step 

lengths using the Vicon plus-in gait model. The anterior spine marker was used for the identification 

of gait speed. Additionally, custom Python scripts were employed to extract these spatiotemporal 

parameters, which were then checked by the principal investigator for data integrity.  

2. ORO Muscles set up 

The wearable sensor technology by Oro Muscles B.V. used in this study is an integrated system which 

records muscle activation and the resultant joint movement simultaneously. The EMG data was 

acquired at a sampling frequency of 500 Hz and the joint kinematic data was acquired with the inertial 

measurement unit (IMU) recorded accelerometer and gyroscope readings at 100 Hz each. Two IMU 

and EMG sensors, seen as the sensor taped to the foot with one set of white electrodes in Figure 13, 

were placed proximal to the Cometa EMG sensors on the shank and the foot of the gastrocnemius and 

tibialis anterior muscles respectively. All the Oro sensor system channels were linked via raspberry pi 

for data recording.  

 

 

Data pre-processing 
 

The data acquired from the Oro system was time synchronized with the data obtained from the 3D 

CGA data through custom MATLAB scripts. Furthermore, the EMG data from both, the Cometa system 

and the Oro system were bandpass filtered at 20 Hz (upper cut-off) and 450 Hz (lower cut-off) with a 

fourth-order Butterworth filter. The envelope of the EMG signal was obtained by rectifying and low-

pass filtering the EMG data at 10 Hz with a fourth-order Butterworth filter.  

 

 

Figure 13: Image indicating the placement of the 3D CGA sensors with the optical 
markers and the Oro sensor system. Source: (Christian Greve et al., 2022) 
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Patient recordings 
 

The following section elaborates on the patient demographic that fit the inclusion criteria for the 

laboratory-based and wearable sensor-based data recordings. Patients with gait pathologies as 

mentioned in the section were selected and were required to carry out walking trials either barefoot, 

with shoes with specifically designed orthosis on, or a combination of these. 

1. Patient recordings for lab-based 3D CGA set up 

Patient data recordings between April 2021 and June 2021 carried out at the human 

movement laboratory at the University Medical Centre Groningen (UMCG), Netherlands were 

selected for analysis. A total of 14 datasets from 13 patients, who had provided informed 

consent (refer to Appendix), participated in 60 walking trials in a total of an average distance 

of 8 metres each. Recording of the left and the right limb was acquired separately resulting in 

a total of 120 datasets. Of the 13 patients, 8 children (12.8 ± 3 years) and 5 adults (43.8 ± 14.6 

years), nine of the patients included were diagnosed with spastic cerebral palsy, one patient 

with an incomplete lesion of the spinal cord, one with an undetermined lesion of the CNS, and 

one with primary lateral sclerosis. One of the patients with spastic cerebral palsy participated 

in the study before and after rehabilitation for the same. 

2. Patient recording for the Oro wearable set-up 

The first 5 patients included in the lab-based set-up had participated in the data recording 

with featured the wearable sensor set-up. The average age for this set of patients was (59.2 ± 

14.6) years old. Of the five, two patients were diagnosed with a stroke, one patient with 

cerebral palsy, one with partial injury to the spinal cord, and the last with multiple sclerosis. 

The spatiotemporal gait parameters of the patients involved in the Oro sensor system as 

shown in Table 2. 

 

 

  

 

 

 

Table 2: Spatiotemporal gait parameters of the patients recorded with the Oro sensor system. Source: (Christian Greve et 
al., 2022) 
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Results 
 

Approximately 300 features, including Time domain (TD) and Frequency domain (FD), were extracted 

from the muscle activation data (EMG) and the movement data (accelerometer and gyroscope), and 

mapped with each other to identify trends indicative of pathological gait. To establish and 

demonstrate a clinical use case, the data collected was restricted to the muscle activation and 

resultant motion of the lower limb, specifically the gastrocnemius muscle. The partitioning of the data 

to discern between the swing and the stance phases of the recorded gait was done with the 

proprietary Oro Muscles Graphical User Interface (GUI) (Figure 14) based on the accelerometer and 

gyroscope data fed in. The user manually annotated the swing phases of a few steps (3 to 5) which 

acted as “hints” for the Oro Muscles AI tool to partition the rest of the dataset. This tool subsequently 

outputs the partitioned accelerometer and EMG data annotated. 

 

Part 1: partitioning of the 3D CGA data 
The 3D CGA data recorded was fed into the Oro muscles software for segmentation. The force plate 

events in the data input were checked by a qualified technician prior to segmentation to ensure data 

integrity. The data output by the software was visualized using custom MATLAB scripts to assess the 

accuracy of the partitioning. The partitions of the accelerometer data were mapped onto the EMG 

data for subsequent feature extraction. The partitioned EMG and accelerometer data for the left and 

right gastrocnemius muscle recorded from a healthy individual is shown in Figure 15. It is noteworthy 

to observe that the technician-validated partitions accurately match the AI partitioning.  

Figure 14: Snapshot of the Oro muscles GUI for gait phase partitioning. Courtesy of Oro 
Muscles B.V, Groningen, Netherlands. 
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Atypical gait was identified by the visually noticeable asymmetry in the activation of the 

gastrocnemius muscle of the two limbs which did not correlate with the observed motion of the two 

limbs. Furthermore, noticeable foot drop during the swing phase and/or a foot slap during the start of 

the loading response, which have been the established tell-tale signs in visual identification of gait 

pathology was observed. The data recorded from a patient with gastrocnemius spasticity was 

partitioned and visualized to observe relevant objective trends to extract (Figure 16). 

 

 

Although this visually observed trend in the acquired data was indicative of atypical gait as a result of 

the spasticity of the gastrocnemius muscle, it only formed a subjective basis of identification of the 

same. A quantifiable metric representing the trends indicated was required to establish an objective 

basis for analysing the gait pathology. The RMS envelope of the partitioned EMG data was primarily 

used to analyze trends pertaining to muscle activation. One primary feature that showed promise in 

Figure 15: Visualization of partitioned data of the left the right limb. Source: (Christian Greve et al., 2022) 

Figure 16: EMG and accelerometery data visualized for patient with left gastrocnemius spasticity. 
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the identification of gastrocnemius pathology was the ratio of the area under the curve (AUC) of the 

RMS envelope in the swing phase as compared to the whole gait cycle.  

 

  

Figure 17 shows the AUC ratios for the graph of the normal gait shown in Figure 15 and for left 

gastrocnemius spasticity shown in Figure 16. This shows a clear deviation in the asymmetry of the 

muscle activity in the left and the right gastrocnemius muscle activity. Multiple datasets were analyzed 

to find a definitive trend to not rely on symmetrical data to draw analyses. In general, it was observed 

that in patients with normal gait, the AUC ratio of the gastrocnemius activity in the swing phase as 

compared to the total cycle was around 15%. Higher values of swing phase to total phase AUCs were 

associated with higher levels of gastrocnemius spasticity with the above subject’s mean value at 27%.  

Thus, an objective basis for identifying pathology was established. Clinicians could choose the metric 

of interest based on the muscle under investigation to identify trends and establish a quantifiable 

means of assessing gait pathologies. 

Part 2: Evaluation of the flexibility of the tool 
The tool was evaluated for flexibility of application by matching the partitioning accuracy for the 3D 

CGA data with the data fed in from the Oro Sensor system collected simultaneously. After the 

partitioning of the data, the two sets of data were time-synchronized by matching the peaks of the 

accelerometer data of the two datasets such that the net difference between the two datasets and 

the AI-identified partitions were minimal as shown in Figure 18. 

Figure 17: AUC ratios for a) normal gait and b) left gastrocnemius spasticity. 

Figure 18: Partitioned Oro sensor data visualized with partitioned 3D CGA data. 
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As seen in the figure, the AI partitions for the 3D CGA data and the AI partitions for the Oro Systems 

data match to a great degree and agree with the technician-validated force plate readings. This 

establishes the flexibility of the AI tool with data acquired from different systems. Partition mapping 

from accelerometer data to EMG data as shown in Figure 19 can also be carried out with the tool and 

implementation of the same showed similar accuracy. 

 

Figure 19: Mapping of partitioned accelerometery data onto EMG data. 

 

Discussion 
 

In a previous study carried out by Oro Muscles B.V., high-performance athletes equipped with the Oro 

sensor system were used to map the activity of specific muscles (Figure 20) to the visually perceivable 

phenomena (posture, technique, etc.) to assess the efficacy and efficiency of performance. Through 

the course of this study, analyses drawn through the data acquired from the Oro sensor system were 

Figure 20: Objective trends of "technique" featuring the EMG signal, accelerometer, and 
gyroscope data and, spectrogram of muscle activation in the respective graphs. Courtesy of 

Oro muscles B.V, Groningen, Netherlands. 
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key in establishing the potential of developing a quantifiable basis for human motion analysis. Through 

its application in the sports use case, it was established that an objective basis of observation, 

visualization and analysis can be formulated. To translate the same to clinical applications 

encompassing the identification of atypical and aberrant gait, a standardized framework for the 

objective analysis of the same was conceptualized and conceived. Characterization of this observed 

gait disparity through categorical and quantifiable metrics would vastly improve the efficacy of the 

assessment and the subsequent choice and trajectory of rehabilitation.  

As discussed in the previous sections, current methods of clinical analysis of gait pathologies rely on 

expensive equipment and an elaborate laboratory set-up. Experienced and highly trained personnel 

are required to carry out the clinical analysis in these gait laboratories. This results in an increased 

concomitant cost for the patients as well as the other stakeholders involved in clinical analysis. 

Although this means of clinical analysis has established itself as the gold standard for diagnosis and 

assessment of rehabilitation, it still has some limitations. It relies on very limited information which is 

collected over walking trials that span over a long duration of time, which impacts the quality of the 

data and limits the number of subjects studied in a specified time frame. During these walking trials, 

patients are required to walk relatively short distances (about 20 m), of which only a fraction (3 to 5 

steps) is used to segment the phases of gait required for subsequent analysis. Analysis of atypical gait, 

the trajectory of rehabilitation to be followed and the assessment of the efficacy of rehabilitative 

efforts are concluded from this limited amount of data and is generally associated with a high turnover 

time. Furthermore, the accessibility of the patient to the relevant facilities adds to the list of the 

limiting factors, and the patient’s inability to replicate everyday gait at the said facilities compromises 

the quality and integrity of the data collected. 

The trends in muscle activation identified through the data acquired using the wearable sensor 

technology in the current study potentially be used to identify patients displaying pathological gait, 

who can then be channelled to relevant healthcare facilities with elaborate gait analysis laboratories 

for thorough clinical analysis. The tool created was not proposed to replace the laboratory-based 3D 

CGA but rather to equip non-specialized clinics to perform basic assessments and screen out patients 

who exhibit the requirement of specialized clinical intervention. This would reduce the load on the 

clinical infrastructure by reducing the influx of patients that would have to visit the hospitals for clinical 

analysis. Analysis of gait with the use of the wearable sensor system relies on low infrastructural needs 

as it does not require an expensive laboratory system or highly skilled medical personnel. It can be 

used by the patient remotely and the gait metrics can be shared with the clinician without the need 

for a direct visit to the healthcare facility. This improves the quality of the data collected as the patient 

can replicate everyday gait, which would result in an analysis of greater integrity for effective 

rehabilitation and increases the clinical accessibility to the patient. This would in turn significantly 

increase the number of patients analyzed in a given duration of time when compared to the laboratory 

set-up, thereby reducing the turnover time, and improving the efficacy of clinical intervention as 

rehabilitation efforts can be changed at a much quicker pace.  

A notable advantage of the AI tool developed is the accuracy of gait partitioning achieved with a lot 

more data, as opposed to just a few steps in the case of 3D CGA, at a fraction of the time required by 

laboratory-based studies. The short duration of time required for partitioning in conjunction with the 

quick turnover time would significantly bring down the cost and overall engineering time. Moreover, 

since the partitioning is based on a significantly larger dataset as compared to that used in a laboratory 

setup, diagnostic validity in patients with aberrant gait is greatly improved. Furthermore, since the 

wearable sensor system is highly scalable and requires low technical expertise, it can be widely 

deployed in healthcare facilities lacking specialized clinical infrastructure. Perhaps the biggest 
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advantage of this means of gait analysis is that it would drive down the cost incurred by all the 

stakeholders: the patient, hospital, clinical analysis technicians, insurance companies, and 

rehabilitation doctors/physicians. 

 

Pitfalls and Ethical Considerations (Ethics paragraph) 
 

Although this study establishes a clinical use case for gait assessment with wearable sensor 

technology, it is accompanied by some pitfalls. The accuracy and efficacy of the tool were based on a 

small number of participants. This was further limited by the patient demographic chosen as it only 

included healthy patients and those with severe gait impairments, specifically pathologies that 

resulted in gastrocnemius spasticity, despite the proposal of its application on patients exhibiting a 

wide variety of gait pathologies. This study was aimed at establishing the remote use of the wearable 

sensor system without the assistance of personnel with technical expertise but the entirety of data 

used was acquired from a fully-fledged clinical gait laboratory. This study shines light on the potential 

of gait assessment that can be carried out in the patients’ home environment but does not explicitly 

establish the same. The tool developed delivers an objective report with quantifiable metrics to equip 

non-specialized facilities to identify a wide range of gait pathologies instead of engendering a 

categorical diagnosis. This puts a patient at potential risk as the requirement to avail specialized 

rehabilitation would be based on a subjective decision made on objective metrics presented to the 

clinician involved. 

Since the tool created aims to decentralise gait diagnostics from specialized gait assessment institutes, 

certain technical and ethical considerations should be factored in. Firstly, the level of expertise of the 

clinician, or rather the “interpreter” of the data cannot be guaranteed, and hence the resultant 

analysis would exhibit high variability and low repeatability. Unlike the case of an elaborate laboratory 

with a qualified clinician to check the quality of the data recorded, expecting the interpreter to assure 

the integrity of data acquired would not be pragmatic. Owing to the lack of expertise and experience, 

incorrect sensor placements, despite the prescribed guidelines on the same can be expected, further 

exacerbating the quality of data. Secondly, unlike the “one patient, same clinician” approach adopted 

in most specialized healthcare facilities, the same individual may be involved with multiple clinicians 

in a non-specialized facility due to a myriad of factors ranging from administrational redundancies to 

excessive patient load. This may result in a clash in the choice of the trajectory of rehabilitation due 

to varied interpretations. Thirdly, specialized facilities run routine and thorough check-ups of the 

equipment and apparatus used for analysis to ensure patient safety and the quality of the data 

acquired. This cannot be expected from a non-specialized facility. Apart from adding to the uncertainty 

of the data recorded, the patient is put at a physical risk in the case of device malfunction, the 

accountability for which can neither be assumed by the manufacturer of the sensor nor the assessing 

facility.  

Although a cost-effective means of remote gait assessment has been presented and established, the 

level of risk associated with its application must be investigated for specific intended use cases. A cost-

benefit analysis should be carried out considering the patient demographic, the range of pathologies 

considered, technical and clinical prowess of the interpreter, the ratio of patients assessed to the 

number of clinicians available, the healthcare climate of the country or region the tool and device are 

employed in and, the prevalence of gait pathologies in the said region to name a few.   
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Conclusion 
 

Through this master’s project, a standardized framework to aid the design of an automated gait 

partitioning and analysis tool was developed. This tool exhibits and establishes a clinical use case of a 

wearable sensor system then can be widely deployed, owing to its high scalability, and can be 

employed in clinical backgrounds which lack the specialization with respect to the architecture and 

the personnel involved. This novel solution proposed does not aim to replace the current gold 

standard of gait analysis but rather work in line with it as a form of triage to assess and evaluate 

individuals who need an elaborate clinical evaluation. This would thereby offer a means of reducing 

the logistic load on the highly specialized tertiary clinical institutes and improve patient accessibility 

while driving down the concomitant cost for all the stakeholders involved 
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Appendix 
This section includes the consent forms signed by the patients who participated in the study, in 

accordance with the declaration of Helsinki, and the approval received from the Medical Ethics 

Review Board of the University Medical Centre Groningen (UMCG), Netherlands. 
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