
Designing a User Interface for Semi-Automatic
Tumor Segmentation

Using Certainty Visualization to Promote Explainability

Liv Ziegfeld
S3369390

MSc in Computational Cognitive Science
MASTER’S THESIS (45 ECTS)

Internal Supervisor:
Dr. Fokie Cnossen (Artificial Intelligence, University of Groningen)

External Supervisors:
Dr. Peter van Ooijen (Faculty of Medical Sciences, University Medical Center Groningen)
Alessia de Biase (Department of Radiotherapy, University Medical Center Groningen; PhD)

August 31st, 2022



INTERFACE DESIGN FOR SEMI-AUTOMATIC TUMOR SEGMENTATION 1

Abstract
Automatic tumor segmentation using deep learning models is a promising avenue for decreasing
the inter-observer variability and time needed for manual tumor segmentation. Since tumor
segmentation is still carried out manually at the Universitair Medisch Centrum Groningen
(UMCG), the first aim of this project was to design a user interface for the computer-aided
segmentation of head and neck tumors. To promote appropriate trust and optimal usage of the
tool, it was also investigated how to incorporate visualizations of the model’s confidence in its
predictions. This should increase the explainability of the model’s output, which has been
lacking in similar tools that give binary outputs. Lastly, the project focused on exploring whether
a semi-automatic segmentation tool is desired and is clinically feasible at the UMCG.

From interviews and user tests with clinicians it was determined that a first-reader tool
for tumor segmentation would be most useful. A user interface was thus designed that supports
radiation oncologists in creating, reviewing and editing automatic tumor contour predictions. The
predictions were visualized in the form of an interactive certainty map containing colored,
semi-transparent contours. This allows clinicians to compare the contours at different certainty
thresholds and to select the one that best matches their own perception of the tumor’s boundaries.
The interface also contains an all-in-one map of all available prediction thresholds for a given
slice that can be used as a general overview.

Results from the user testing indicated that radiation oncologists were optimistic about
introducing a tool for computer-aided segmentation of tumors to the UMCG. Participants
reported that the user interface is pleasant and easy to use and that the certainty maps generally
aided their understanding of the model’s predictions. Thus, the present research offers a
promising outlook for visualizing the model’s prediction certainty to make the outputs more
explainable. Further, valuable suggestions for the improvement of the interface were gathered as
well as suggestions for the implementation of this tool.
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1. Introduction

1.1 Background Information

After heart disease, cancer is the most common cause of death (Cancer, 2021). According to the
WHO, malignant tumors resulted in approximately 10 million deaths worldwide in 2020
(Cancer, 2021). Head and neck (H&N) cancer, which will be the focus of this paper, is an
especially complex cancer type due to this area’s intricate anatomy (Schutte et al., 2020). More
than 830,000 cases of head and neck cancer are diagnosed each year worldwide (as of 2019),
with a mortality rate above 50% each year (Cramer et al., 2019; Schutte et al., 2020). According
to Schantz and Yu (2002), the prevalence of H&N cancer is on the rise, especially in younger
populations.

Surgery and radiation therapy are the two most common treatments for H&N cancer
(Marur & Forastiere, 2008). Whilst in the past treatment success was mainly measured by the
extent to which the tumor could be removed and by general survival rates post-treatment, the
requirements for successful treatment are becoming more nuanced (Semple et al., 2008).
Nowadays, an additional important indicator of treatment success is the patient’s quality-of-life
post-treatment (Semple et al., 2008). Many of the advances in radiotherapy over the last two
decades also led to an improvement in this post-treatment well-being of a patient (Morgan &
Sher, 2020).

One of the main ways radiotherapy may reduce a patient’s quality of life is by causing
toxicity. Trotti (1997, p. 570) defines toxicity as “any temporary or permanent change in normal
tissues and/or related symptoms from cancer treatment”. Toxicities resulting from radiotherapy
treatment usually appear in the first 90 days after treatment beginning (Cox et al., 1995; Trotti,
2000). These occur since ionizing radiation kills tumor cells and controls their growth, but also
damages healthy cells and tissue surrounding the tumor (Baskar et al., 2014). In other words,
toxicity can result in failure of the organs surrounding the tumor, also known as organs-at-risk
(OARs). In the head and neck region, this may for instance lead to problems with swallowing or
with speech (Semple et al., 2008). Around 15%-40% of H&N cancer survivors suffer from pain,
which oftentime remains until well after treatment completion (Cramer et al., 2018). Apart from
physical difficulties and pain following H&N cancer treatment, the patient’s psychological
well-being may also be compromised as a result of toxicity build-up. This may for instance occur
due to feelings of shame caused by a change in speech (Semple et al., 2008).

Reducing the amount of radiation the organs-at-risk receive can strongly limit the build
up of toxicity in the tumor-free regions. Hence, it is of utmost importance to attempt irradiating
only the cancerous areas, while leaving surrounding healthy organs and tissue as unaffected as
possible. However, if the area the radiotherapy is focused on is too small and some part of the
tumor will not be targeted by radiotherapy, the tumor may grow or metastasize in the future
(Foster et al., 2014). Thus, administering the majority of the radiation dose to the exact tumor is
important. To do so, precisely defining the tumor’s boundaries is required before starting the
treatment, which is also known as tumor segmentation. The terms ‘tumor segmentation’,
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‘delineation’, and ‘contouring’ will be used interchangeably throughout this paper. In this
process, a radiation oncologist usually outlines the tumor on a medical imaging scan using a pen
tool in a delineation software. This is frequently done on computed tomography (CT) scans,
while also consulting positron emission tomography (PET) and magnetic resonance imaging
(MRI) scans. Apart from helping to determine the precise area to irradiate, delineation is
necessary to stage the tumor, create treatment plans, and to evaluate the effectiveness of the
treatment while monitoring the progression of the cancer (Wong, 2005, as cited in Gordillo et al.,
2013).

To date, much of the tumor segmentation is carried out manually by radiation
oncologists. However, manual tumor segmentation is a labor-intensive process with high inter-
and intra-observer variability (Andrearczyk et al., 2022; Foster et al., 2014). Such variability may
be caused by differences in human perception, varying understanding of delineation guidelines,
individual bias or differences in the experience of radiation oncologists (Sorantin et al., 2021;
Njeh, 2008; Sadeghi et al., 2021). Furthermore, the process is error-prone (Andrearczyk et al.,
2022; Foster et al., 2014). Tumor delineation can be ambiguous due to irregular and fuzzy
boundaries of the tumors, as well as low image resolution and high noise in PET images (Foster
et al., 2014). Such difficulties may be magnified for tumors in the head and neck region, due to
the region’s complexity and small structures (Van Dijk et al., 2020). Thus, delineations are often
subjective, limiting the reproducibility of the segmentation results and increasing the possibility
for suboptimal irradiation (Foster et al., 2014). Tumor segmentation is also very time consuming
(Andrearczyk et al., 2022; Foster et al., 2014). Radiation oncologists specialized in H&N cancer
can take up to several hours delineating a single patient’s tumor. After delineating a tumor,
radiation oncologists often consult one another to discuss the accuracy of their delineations due
to the high inter-observer variability, further adding to the time needed for delineation. This
increases the difficulty for radiation oncologists to keep up with their workload and to ensure
rapid treatment for each patient.

Recent scientific advancements have shown that automatic tumor segmentation may
increase the reproducibility, accuracy, and speed of the segmentation process (Andrearczyk et al.,
2022). Deep learning (DL) algorithms, which are artificial intelligence models that are inspired
by human neural networks, have shown enormous potential in predicting tumor boundaries on
imaging scans (Andrearczyk et al., 2022). Such models can be used as decision-support tools to
guide and assist the clinician in their task.

Despite the promising nature of DL models for tumor segmentation, their adoption in the
clinic is still sparse (Gulum et al., 2021). This is mainly due to the fact that most current deep
learning tools lack transparency and understanding by their users due to their black-box nature
(Sorentin et al., 2021). While research efforts are increasing to make DL tools more explainable
in general, the progress with making AI tools more transparent for medical imaging specifically
have been limited (Natekar et al., 2020). This is also reflected by the nature of current deep
learning segmentation tools: The user generally only sees the output of the model, but does not
receive any information on how the model came up with these predictions.
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One way to increase the explainability of DL models is to communicate their certainty to
the user. This involves indicating the model’s confidence in its output so the user gets more
insight into why the model made a certain prediction. As suggested by Natekar et al. (2020),
clear visualizations of the working of a deep learning model allow users to make better
judgements on the veracity of the predictions. For instance, if the model has a low certainty of
being accurate in a specific instance, this could prompt the user to review this region or data
point more closely. Most current automatic segmentation methods lack this indication of the
predictions’ uncertainty (Wang et al., 2019). This may promote false assumptions about the
results’ reliability, causing areas that need expert review to be overlooked (Shi et al., 2011; Wang
et al., 2019). Over-reliance on the automatic tool and errors may occur as a result. Alternatively,
the user’s trust in the system can be compromised if the model shows an output the user believes
to be wrong and it does not communicate that it only has low confidence in this prediction. This
could eventually lead to users stop using the tool.

Research is currently being conducted at the Universitair Medisch Centrum Groningen
(UMCG) on this topic. Researchers at the UMCG developed a deep learning model that
generates automatic predictions of head and neck tumor contours on CT and PET images and it
is now being investigated how to make this tool more explainable and trustworthy. Instead of
only displaying a single predicted contour, the model outputs probability maps indicating the
degree of certainty of each pixel to be classified as tumor or not. This model is not used in the
clinic yet and it does not currently have a user interface to present its results to the clinicians.
Further, no research has been carried out in the UMCG on how to display the model’s
uncertainty in the user interface to date.

1.2 Research Goal

The aim of the current research is to design an interactive user interface for a decision support
tool for automated tumor segmentation. It should display the outputs of the tumor segmentation
model along with a visualization of the model’s certainty. This interface should be part of a tool
that aids radiation oncologists in their tumor segmentation of oropharyngeal cancer patients
receiving radiotherapy as their primary treatment. It will be investigated how to best
communicate the model’s certainty in the form of a certainty map. Since the map should give
users more insight into the decision process of the model, it will be examined whether it aids
clinicians in their understanding of the predictions and whether more appropriate confidence in
the system’s output could be achieved. Further, the satisfaction with the design of the user
interface and the clinical feasibility of such a system at the UMCG will be evaluated during user
tests. This research is being conducted to establish how an automatic tumor segmentation tool
may eventually be introduced as a decision support tool to the UMCG in the most useful manner.
Identifying what radiation oncologists require from such a tool and examining whether certainty
visualizations are helpful and desired is crucial before implementing a similar system in practice.
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Thus, the current paper addresses the following research questions:
1. What are the user requirements for an automatic tumor segmentation interface?
2. How is the model’s certainty best visualized using certainty/probability maps?
3. What is the perceived clinical feasibility and utility of such a system at the UMCG?

1.3 Paper’s Structure

The topic’s theoretical framework will first be outlined by providing background information on
head and neck cancer and how tumors are segmented at the UMCG. Next, an overview of current
automatic segmentation tools and of explainable AI in medical imaging will be given. Lastly,
human factors considerations and cognitive engineering principles will be discussed. Following
this, the design of the prototype of the user interface will be outlined. Findings from interviews
and the shadowing of UMCG radiation oncologists and researchers will be presented that
resulted in user requirements used for the interface design. Next, results of the user testing will
be discussed along with recommendations for the improvement of the original prototype design.
In the last part, suggestions will be made for future research and for clinical implementation.

PART 1: THEORETICAL FRAMEWORK
Since the automatic segmentation tool is focused on head and neck cancer, the following section
will provide background information on this type of cancer. Following this, the manual tumor
delineation process will be outlined in a general manner to provide an understanding of the tasks
involved.

2. Head and Neck Cancer

The majority of H&N cancers, approximately 90%, are rapidly growing squamous cell
carcinomas (HNSCC) (Marur & Forastiere, 2008; Schutte et al., 2020). HNSCCs get their name
from the cells this cancer originates in, namely squamous cells, which form the mucus layers of
the head and neck (Head and Neck Cancers, n.d.). H&N cancer may also originate in the salivary
glands, sinuses, muscles, or nerves, but these cancer types have a lower prevalence rate than
HNSCCs (Chow, 2020; Head and Neck Cancers, n.d.).

H&N cancer can occur in different regions within the head and neck, as depicted in
Figure 1 below (Waqar et al., 2019). These regions include the oral cavity, the throat (also known
as the pharynx, containing the sub-parts of the nasopharynx, the oropharynx, and the
hypopharynx), the voice box (larynx), the paranasal sinuses and the nasal cavity, or in the
salivary glands (Waqar et al., 2019; Head and Neck Cancers, n.d.). The highest risk factors for
developing H&N cancer include smoking and drinking alcohol, but dietary deficiencies
including a vitamin A and iron deficiency have also been associated with H&N cancer (Marur &
Forastiere, 2008). Furthermore, around one fourth of HNSCCs are linked with the human
papillomavirus (HPV) (Marur & Forastiere, 2008).
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Figure 1. Head and Neck Cancer Regions
Note. Figure from Waqar et al. (2019). Copyright 2019 by Waqar et al.

The symptomatology of H&N cancer depends on the stage of the cancer and on its
primary location. Some of the most common symptoms of H&N cancer include sores and ulcers
that don’t heal, a sore throat, difficulty and pain while swallowing, and ear pain (Marur &
Forastiere, 2008). Neck masses or lumps in the mouth region can also be observed in some
patients (Marur & Forastiere, 2008).

The following section will describe how H&N cancer is usually detected at the
Universitair Medisch Centrum Groningen (UMCG), the hospital this research is based on.

3. Treatment of Head and Neck Cancer at the UMCG

To design an effective user interface that can be implemented as seamlessly as possible, it is
crucial to understand the context the interface should be implemented in. Hence, the following
sections briefly describe the workflow of radiation oncologists at UMCG. This is also depicted in
Figure 2. Most of the information on this workflow was gathered from interviews with UMCG
radiation oncologists. Where required, this was supplemented with findings from literature. A
more detailed task analysis can be found in section 7 “Requirements Analysis”.

3.1 H&N Cancer Detection

Tumors can be detected in different manners in the UMCG. Patients may present to the clinic
with some of the aforementioned symptoms or complaints (see section 2), or patients might be
referred to the UMCG for treatment by another hospital which identified a tumor. Lastly, some
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patients are asymptomatic but coincidentally find out they have a tumor due to another health
check-up. This may for instance involve a dental appointment or another condition for which an
MRI (magnetic resonance imaging), CT or PET scan is made. Once a tumor has been detected, it
will be diagnosed and the extent of the tumor will be determined to appropriately stage the tumor
(Marur & Forastiere, 2008). Further, the patient will be checked for metastases (Marur &
Forastiere, 2008).

The radiation oncologists at UMCG treat patients that have never received any treatment
for H&N cancer before, but also patients who have previously been operated on to remove the
tumor. Such patients may then need radiotherapy due to re-growths or since parts of the tumor
were missed or could not be removed in the operation.

3.2 Manual Delineation Overview

Once the patient presents to the hospital, radiation oncologists at the UMCG meet the patient to
discuss their symptoms, do physical examinations, and explain the process of radiotherapy.
Following this, imaging scans will be made. These can include CT, PET and MRI scans and are
also known as simulation scans. Before generating the treatment plan, the organs at risk and the
target volumes will be segmented from the imaging scans by various clinicians, as described in
the following sections.

3.2.1 Organ at risk segmentation.

Before the radiation oncologist starts segmenting the tumor, a radiation technologist delineates
all organs at risk (OARs). Generally, about 25 OARs are segmented per patient in the H&N
region. These will be used for planning of the treatment, since the amount of radiation that will
hit the OARs is a decisive factor for which therapy to administer.

Organ at risk segmentation is already done partially automatically at the UMCG.
Automatic OAR segmentation is a less complex task than automatic tumor segmentation for a
variety of reasons. First, organs usually do not grow or spread, unlike tumors. Second, the
location of OARs is always the same, while tumors can be located in different areas of the head
and neck. Moreover, OARs are delineated so they can be avoided during radiotherapy, while
tumors are delineated for the opposing reason: they are the target of radiotherapy. Thus, tumors
have to be delineated in an extremely precise manner to ensure that the entire tumor volume is
targeted, while simultaneously irradiating as little surrounding tissue as possible. The precision
of OAR segmentation does not have to be exactly as high. This lower complexity and slightly
lower required precision of OAR segmentation explains why it was successfully introduced to
UMCG earlier than automatic tumor segmentation.

3.2.2 Primary tumor segmentation.

After the OARs are segmented, the delineation of the gross tumor volume (GTV) can begin. This
is the extension of the tumor itself that is visible on the imaging scans (Leer, 2005). During GTV
segmentation, a radiation oncologist examines medical imaging scans to identify the tumor(s)
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and outlines them using a delineation software. Scans from different imaging modalities may be
used for this. For H&N tumors, (planning) CT and PET scans are used most commonly in the
segmentation procedure. These modalities are frequently used due to the complementary
information they offer. CT scans provide anatomical information, while PET scans give insights
into the functional and metabolic processes of volumes of interest (VOIs), which are the
structures to be delineated and targeted by treatment (Foster et al., 2014). In some cases radiation
oncologists may use overlapped CT/PET images, meaning that structures of the H&N region can
be seen on the same image as the metabolic activity in that area. However, CT and PET scans are
taken at different time points and possibly with a different positioning of the patient, which in
some cases can create a mismatch between the two scans in terms of overlap. In such cases the
clinician may choose to view them separately in their software. In addition, MRI images may be
used which are made in 3D. Consulting these three imaging modalities can be useful to check the
extension of the tumor and whether the delineations have been made correctly. Nevertheless, the
availability of scans from different modalities may vary. For instance, when patients are referred
from other hospitals to the UMCG, the radiation oncologists at UMCG often still use the scans
from the referring hospital, where MRI scans are sometimes not made.

The frequency of taking imaging scans during the radiotherapy course may also vary
from patient to patient. Around two weeks prior to treatment beginning, the PET, CT and MRI
scans are made for all patients. The scans will be made in the same position the treatment will be
administered and a fixation mask is used. With specific therapy types or with certain patients,
imaging scans may be taken again throughout the treatment. If a patient changes a lot during the
course of the therapy, for instance by losing a lot of weight, if the tumor shrinks very rapidly, or
when having a lot of edema (swelling), cone-beam imaging is often used throughout the
treatment. This ensures the radiation is still appropriate and allows making adjustments in the
treatment plan if necessary.

When delineating the tumors, the radiation oncologists always take patient information
into account. Sometimes they review the patient data first and then proceed to the scans, while on
other occasions the scans are first analyzed after which the patient chart is consulted. Patient data
in the chart may for instance include age, gender, prior diseases and injuries, teeth removals, and
a description of the tumor’s location.

3.2.3 Segmentation Review Meetings.

Due to the high interobserver variability and the complexity of delineating tumors in the head
and neck region, clinicians at UMCG usually consult each other to discuss their work. After the
radiation oncologist who treats the patient in question has segmented their tumor, a meeting will
be held in which the segmentation will be discussed. A head and neck radiologist usually first
shares findings from an MRI examination done in the software SECTRA, if available. Here any
areas that might contain tumors are discussed and it will be checked whether the lymph nodes
look pathological. Next, the team switches to the software RayStation and the radiation
oncologist takes over to share the delineation they have made prior to the meeting. Other
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clinicians will then state any disagreements or areas that need closer review. All tumor
segmentations will also be examined by H&N nuclear medicine physicians. After the meeting,
the radiation oncologist goes back to make adjustments to their segmentation if necessary, which
is relatively common. Following this, the treatment plan will be generated after which the actual
treatment may commence.

Figure 2. Radiotherapy Workflow at UMCG

Now that a general overview of the manual segmentation process of radiation oncologists has
been provided, the following section will describe why automation has been introduced into this
workflow, what the promise of this is and what hurdles still exist in successfully implementing
auto-contouring tools on large scales.

4. Automatic Tumor Segmentation

The number of AI applications in medical imaging has shown a sharp increase over the last years
(Suzuki, 2017). One of the main reasons for this rapid advancement is that AI tools can
contribute to better clinical outcomes and make the workload of radiologists more manageable
by increasing the speed of work (Alexander et al., 2020; Andrearczyk et al., 2022). Alexander et
al. (2020) found that 90% of interviewed US radiologists perceived an increase in their workload
between 2016 and 2019, a trend that reflects the increased demands for efficiency in radiology in
the Netherlands as well (Strohm et al., 2020). Furthermore, pressures to reduce the cost of
healthcare in the Netherlands point to AI tools as a promising avenue (Strohm et al., 2020).

4.1 Computer-aided Diagnosis (CAD)

Machine learning (ML) is a subset of AI which is commonly used in automated systems in the
medical domain, as depicted in Figure 3 (Suzuki, 2017; Abdellah & Koucheryavy, 2020). ML
models learn from data by automatically identifying patterns in datasets which can be used to
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make predictions about new cases (Lee et al., 2017). ML is now being employed for
computer-aided diagnosis (CAD). CAD is the general term to describe the process of a physician
detecting, diagnosing or classifying abnormalities from medical imaging scans using AI systems
(Jorritsma et al., 2015; Doi et al., 1999). Such systems work in a semi-automatic manner (not
fully automatically), since they only assist the professional in their task by promoting diagnostic
accuracy, reliability and efficiency while still requiring human verification (Doi et al., 1999;
Sorentin et al., 2021).

Figure 3. Relationship between AI, ML and DL
Note. Figure from Abdellah and Koucheryavy (2020).

CAD systems can be employed in three different manners, as depicted in Figure 4.
Frequently, CAD is used as a second reader whereby the expert first evaluates medical images in
their routine way, after which the system prompts the physician to reevaluate their work in case
of inaccuracies or missed targets (Jorritsma et al., 2015; Fujita, 2020). This increases the time
needed for image analysis (Fujita, 2020). When using CAD as a time-saving concurrent-reader,
the physician has access to the model’s prediction from the onset, and hence will use the
prediction while simultaneously forming their own judgment (Fujita, 2020). Lastly, first-reader
CAD systems fully evaluate the medical images initially and the physician only interprets and
corrects the system’s predictions afterwards (Fujita, 2020). This CAD type saves the most time
(Fujita, 2020).



INTERFACE DESIGN FOR SEMI-AUTOMATIC TUMOR SEGMENTATION 14

Figure 4. Different Uses of CAD Systems; A) Second-reader, B) Concurrent reader, C)
First-reader
Note. Figure from Fujita (2020).

Besides for detecting tumors, CAD can also be used for object classification, which is the
focus of this paper (Suzuki, 2017). Classification refers to making a decision on which class a
certain object belongs to, for instance if it is cancerous or not (Suzuki, 2017). This involves
analyzing so-called input features from medical images (Suzuki, 2017). Input features may vary,
but include characteristics such as darkness, size, contrast, shape and texture (Suzuki, 2017;
Sorentin et al., 2021). In ML, such input features must be determined by the human operator,
making this a laborious task (Holzinger et al., 2017).

However, in the current state of the art technique for medical image segmentation, human
intervention is not required to select such features (Suzuki, 2017; van der Velden et al., 2022).
This involves a subclass of ML, known as deep learning (DL). As illustrated in Figure 5, instead
of using predetermined features as model input, deep learning models take large datasets of
medical images as input to analyze the images’ pixel values directly to make classification
decisions (Suzuki, 2017). Since human feature identification is not required, DL models are also
known as ‘end-to-end ML’ models since they can run autonomously once fed with the training
data (Suzuki, 2017). This minimal human involvement is a major advantage of DL models (Van
Dijk et al., 2020). Figure 6 depicts the steps of hand-crafted feature selection in ML models that
are taken over by the model in DL (Suzuki, 2017).
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Figure 5. Machine Learning (A) Trains on Predetermined Image Features, Whereas Deep
Learning (B) Directly Makes Predictions Based on Automatically Extracted Features
Note. Figure from Suzuki (2017).

Figure 6. Eliminated Steps of Human Intervention in DL Models (Right Hand Side) Compared
to Hand-Crafted Feature Extraction in ML Models (Left Hand Side)
Note. Figure from Suzuki (2017).
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The current leading standard DL algorithm for automatic tumor segmentation are convolutional
neural networks (CNNs) (Jiang et al., 2021; Muhammad et al., 2021). These will be briefly
explained in the following.

4.1.1 Convolutional Neural Networks (CNNs) for Automatic Tumor Segmentation.

CNNs get their name from their properties that mimic a human neural network. They are
structured in a hierarchical manner where data flows through different layers consisting of
‘neurons’ (Holzinger et al., 2017). The structural similarity between human and artificial neurons
is displayed in Figure 7 (Lee et al., 2017). When used for automatic tumor segmentation, such
CNNs determine whether each pixel or voxel in a medical image (a voxel can be thought of as a
3D pixel) is part of a tumor or not (Vandewinckele et al., 2020).

Figure 7. Structural Similarity of Human (left) and Artificial Neurons (right)
Note. Figure from Lee et al. (2017). Copyrighted 2017 by Lee et al.

Before using a CNN for automatic tumor segmentation, a training set of medical images
must first be generated. This involves collecting images (frequently CT or PET) containing the
tumor type of interest (Begoli et al., 2019). Next, labeling of the data will occur in which a
clinician manually segments the tumor, which will be seen as the ‘ground truth’. Sometimes
pre-segmented scans are used to construct a training set, while on other occasions the scans will
be marked specifically for the purpose of developing a DL model. The required size of the
training set differs for each model since it is dependent on the variability within the dataset and
the quality of the labels. Nevertheless, datasets of top-performing CNN auto-segmentation
models contain more than 100 patients (Vandewinckele et al., 2020; Men et al., 2017; van Dijk et
al., 2020). The model will use the ground truth scans as training input by feeding the pixels of
the image to separate neurons in the first layer of the neural network.

As depicted in Figure 8, the input layer relays the information across different
convolutional and pooling layers with varying activations and biases. This creates an iterative
training where so-called hidden layers receive activations from the previous neuron layer and
compute metrics such as the weighted sum of these inputs (Holzinger et al., 2017). Learning
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parameters are continually updated and optimized until reaching the performance metric in
question, which frequently is segmentation accuracy (Begoli et al., 2019). Ultimately, the hidden
layers carry valuable information about the task features, which are finally passed to the output
layer (Holzinger et al., 2017). Here model takes all information into account to make a decision
on which class (tumor or not) the input belongs to.

Following the training of the model, the performance of the algorithm will be evaluated
on a test set. This is a dataset that has not been seen in training and that has been preserved to
examine how the model generalizes to new instances (Begoli et al., 2019).

Figure 8. Structure of a Convolutional Neural Network (CNN)
Note. Figure from Suzuki (2017).

4.1.2 Performance of Current Automatic Segmentation Models.

The standard for current auto-contouring CNNs is to output a classification of whether each
pixel/voxel contains tumor or not (Oreiller et al., 2022). Hence, such models predict a tumor’s
boundary in a binary way.

Autocontouring CNNs have achieved promising accuracies, with their performance being
on par with manual segmentation by medical professionals or even higher than that of a single
radiologist (Savenije et al., 2020; Vandewinckele et al., 2020; Jorritsma et al., 2015). Badrigilan
et al. (2021) conducted a meta-analysis of 17 H&N DL segmentation studies based on MRI in
which they found that the pooled DICE score was 0.8965. The DICE similarity coefficient
measures segmentation accuracy by calculating the overlap between an autocontour and the
ground truth, whereby a score of 1 represents perfect overlap. A dice score of 0.7785 was also
achieved for GTV auto-segmentation on PET/CT images (Xie & Peng, 2022; Andrearczyk et al.,
2022). Hence, these results suggest that auto-contouring models can already achieve very high
accuracy.
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Reviews on the clinical implementation of autocontouring CNNs for H&N cancer are
lacking in the current literature, which is reflective of the low level of clinical adoption
(Vandewinckele et al., 2020; Tang et al., 2018). Despite the outstanding results in terms of
accuracy, reliability and speed of autocontouring CNNs, many clinics are hesitant to integrate
such systems into their workload (Gerlings et al., 2021; Yang et al., 2022). Strohm et al. (2020)
suggest a multitude of reasons for this, including lacking funding for AI adoption in the clinic, an
unstructured implementation strategy and inadequate trust in AI predictions. It has been
suggested that lacking trust is largely caused by the fact that CNNs are often not interpretable by
their users (Gerlings et al., 2021; Yang et al., 2022). As a consequence, many intricate AI models
are never actually employed in practice and get stuck in the development process (Tjoa & Guan,
2021; Gerlings et al., 2021). The causes for the lack of interpretability will now be discussed,
along with their effect on users and the consequences for clinical implementation.

4.2 Problems with DL Models

4.2.1 Black-box Nature.

The widespread lack of understanding of DL models combined with the significance of clinical
decisions has led to hesitation for large-scale employment of such algorithms in the clinic
(Gulum et al., 2021; Begoli et al., 2019). A big part of this is due to the low intervention of
humans in DL models, causing the user to be less aware of the model’s workings. In DL, the user
cannot examine the features extracted in the training procedure which will be decisive for the
model’s output (Wong et al., 2020). This lacking association between the model's output and the
features extracted makes such models less explainable (Reyes et al., 2020). As Gulum et al.
(2011) point out, it is usually models with high accuracies that are the least explainable due to
their high complexity. This creates a tradeoff between accuracy and transparency, as depicted in
Figure 9 (Yang et al., 2022). Such highly complex deep learning models with low interpretability
are often referred to as ‘black-box models.’

These undesirable effects of black-box models on the user are rooted in human factors
principles. When designing new tools, especially ones involving automation, it is of great
importance to consider these cognitive and usability aspects. Hence, some of the main human
factors concepts relevant to the current project will be outlined below. After this, some
implications for the design of the new interface will be drawn from these findings.
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Figure 9. Performance-explainability Tradeoff; Deep Learning Models (e.g. CNNs) have high
Accuracies but low Interpretability
Note. Figure from Yang et al. (2022)

5. Human Factors in Automatic Tumor Segmentation

Technological aspects have long received the most research attention in the development of
automated tools (Parasuraman & Riley, 1997). Psychosocial phenomena have however been
neglected by CAD researchers in the past (Strohm et al., 2020; Nishikawa & Bae, 2018).
Considering human factors is especially important since the workflow of the user may
fundamentally change when introducing automation (Lee & Seppelt, 2012). New tasks may get
added to the user’s workflow and old tasks may require modifications (Lee & Seppelt, 2012).
When these changes are not communicated to the user or are misunderstood, severe errors may
occur (Lee & Seppelt, 2012). The following section describes how failing to make human factors
considerations when introducing automated segmentation tools into the workflow can lead to
inappropriate system usage and negative clinical outcomes.
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5.1 Trust

Jorritsma et al. (2015) point out that the current radiologist-CAD interaction is suboptimal. In big
part this is attributable to the inappropriate trust radiologists have in CAD systems. Trust is a
complex concept that is affected by one’s experience, personality, and ability (von Eschenbach,
2021). Improper trust can lead to an inappropriate reliance on automation, and is therefore a
crucial factor when examining the cooperation and delegation of tasks from humans to machines
(von Eschenbach, 2021; Jorritsma et al., 2015). When trust is inappropriate, two main problems
can occur, as described below.

5.1.1 Under-reliance

Lacking trust can lead to an under-reliance on AI tools, which could present itself as clinicians
not taking the predictions seriously (Jorritsma et al., 2015). Jorritsma et al. (2015) suggest that
true-positive predictions may be overlooked as a result, which may be detrimental to patients'
well-being. Further, complete disuse of the tool may also occur (Jorritsma et al., 2015). When
radiologists lack trust in an automated decision-support system, they frequently revert back to
their manual segmentation methods. This may mean that optimal accuracies are not achieved
which could negatively impact patient treatment, the procedure will be more time-intensive and
spending on AI tools may be unnecessary if they are not used in practice.

5.1.2 Over-reliance

On the other hand, automation-induced complacency can occur when a user excessively relies on
the system, causing misuse (Sujan et al., 2019; Parasuraman & Riley, 1997; Jorritsma et al.,
2015). This can occur if the user blindly trusts the system and is not aware that the predictions
are not 100% accurate. Over-reliance can lead to two types of errors. Errors of commission occur
in the case of false-positives, where an incorrect prediction is accepted by the clinician, thus
decreasing the accuracy (Mosier et al., 1998; Sujan et al., 2019). Opposingly, errors of omission
describe false-negatives that occur when the CAD system does not identify a present abnormality
and the user hence overlooks these (Jorritsma et al., 2015).

5.2 Out-of-the-loop Syndrome

Apart from inappropriate trust and therefore ineffective usafe, one other main risk with
automation is that it creates a distance between the user and the task (Lee & Seppelt, 2012).
When the entire task can be completed without intervention by the human operator, their
monitoring abilities and their situation awareness strongly decrease as well (Lee & Seppelt,
2012; Endsley, 2012). Even when instructing a human to oversee the workings of the automatic
system, it can be more challenging to regain control in emergency situations or to identify
anomalies (Lee & Seppelt, 2012). This describes the out-of-the-loop syndrome (Endsley, 2012).
In the case of automatic tumor segmentation, this could mean that the user does not identify
when errors are made by the system. The clinician may also be less involved with the treatment
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administration when completely relying on fully automatic systems for the segmentation, which
could lead to unpleasant effects on the relationship with the patient.

5.3 User-Centered Design

To minimize the possibility of inappropriate trust in and usage of technologies, a user-centered
design process is vital. Human factors should be considered at every stage of development to
achieve optimal usability. Usability describes “the extent to which a product can be used by
specified users to achieve specified goals with effectiveness, efficiency and satisfaction in a
specified context of use” (ISO 9241-11, 1998; as cited in Dias et al., 2017, p.20).

The interaction design life cycle by Rogers et al. (2013) in Figure 10 describes the steps
of a user-centered design process. This involves first establishing the requirements of the future
users for the to-be-designed product or service, after which first designs are created. Next
interactive prototypes are made, which are then evaluated. This process is iterative, meaning that
adjustments to the design are continuously made as new requirements are identified. This can
occur through prototype evaluations or through new information from interviews or literature
search. Only when the product has been extensively tested and user satisfaction has been assured,
is the design life cycle complete. Involving the user in this manner increases the possibility of
identifying poor design choices early on and ensures that the tools are appropriate for their
implementation context.

Figure 10. Interaction Design Life Cycle by Rogers et al. (2013)

As such human factors principles are gaining more research attention, there are more
efforts at incorporating them while designing new technologies. The current movement of
eXplainable AI aims to develop more transparent AI tools in which optimizing the understanding
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of predictions and designing for more appropriate trust are priorities. This will be described in
more detail in the following section.

6. Explainable AI

The potential of DL models and the lack of their interpretability has sparked researchers all
across the globe to work towards so-called eXplainable AI (xAI). Miller (2019) defines
explainability as the extent of understanding of the cause of a decision. This means that users
want more insight into why an AI model reached a particular decision (Molnar, 2020; Natekar et
al., 2020). The terms explainability, transparency, and interpretability will be used
interchangeably throughout this paper to describe this concept.

Identifying every step the model takes to reach a conclusion is not necessary to increase
explainability. Instead, Holzinger et al. (2017) suggest that a ‘functional understanding’ is
needed, instead of detailed algorithmic knowledge of how the model works. Moreover, XAI
should make the user aware of what the model is capable of and where its limitations are, as well
as providing the user with an understanding of its workings in the future (Yang et al., 2022).

Ultimately, increasing the explainability of AI models can promote their acceptance and
increase the trust of medical staff (Natekar et al., 2020; Holzinger et al., 2017). Further, an
understanding of the model’s output may decrease the possibility of misinformed decisions
which could reduce errors (Gulum et al., 2021). Apart from increasing the trust of clinicians, the
demand for xAI in the medical field is increasing due to legal reasons, where clinicians may be
asked to justify their reason for reaching a certain decision (Gerlings et al., 2021; Gulum et al.,
2021).

While there is a movement towards more transparent AI tools in all fields, the necessity
in the medical field is especially urgent. In the medical field, decisions made using AI systems
have high stakes which have profound effects on a patient’s well-being and treatment outcomes,
sometimes even being decisive for a patient’s life or death (Patrício et al., 2022). Yet, little
research attention has been devoted to date to making deep learning models for medical imaging
more interpretable (Natekar et al., 2020; Holzinger et al., 2017). Hence, the following sections
will describe methods to promote XAI in radiology, with a specific focus on automatic
segmentation tools.

6.1 Increasing the Explainability of Tumor Segmentation Models

According to Cai et al. (2019), medical professionals demand local and global explanations for
AI models. Local explanations refer to case-by-case information on why a particular decision
was reached by the model, whereas global reasoning pertains to general information on the
model (Cai et al., 2019).

The explainability of models for medical image analysis can be increased through visual
information, texts, or via examples (van der Velden et al., 2022). To date, visual information is
most frequently used in this domain (van der Velden et al., 2022). Saliency mapping is the
leading form of visual explanation in which the areas on a medical scan that were most decisive
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for reaching the model’s decision are highlighted (van der Velden et al., 2022). Textual
explanations include image captions generated by AI models or reports outlining the model’s
results (van der Velden et al., 2022). Lastly, example-based explanations make references to prior
clinical decisions that are similar to the task at hand in order to promote generalizing from
examples (van der Velden et al., 2022).

To increase the adoption of AI systems in the clinic, it has further been suggested that
uncertainty quantification is necessary (Begoli et al., 2019; Lim et al., 2019). Gillman et al.
(2021, p. 669) define uncertainty as the “quantification of the doubt about the measurement
result.” The potential for uncertainty visualization in an automatic tumor segmentation interface
is two-fold. Firstly, insight into the model’s prediction confidence may increase the user’s trust in
the system. This allows identifying whether the model’s predictions are reliable or not (Lim et
al., 2019). Not communicating uncertainty measures clearly can cause misinterpretation by
clinicians (Gillmann et al., 2021). Having an uncertainty quantification may therefore evoke a
more nuanced information uptake by clinicians in which they take all available information into
account to make a critical judgment of whether the model is correct or not. The second way in
which insight into the model’s ambiguity can be useful is that it could point out regions with
especially low certainties (Jungo et al., 2018). These could then be examined more closely by
medical professionals and manually corrected. The following section provides more detail on
displaying uncertainties.

6.2 Uncertainty Quantification

Uncertainty in tumor segmentation models originates from a variety of sources, for instance from
image acquisition, processing and reconstruction (Gillmann et al., 2021). Incorrect setup of the
patient or movement during the CT/MRI/PET scan can also cause artifacts (Njeh, 2008;
Gillmann et al., 2021). Since DL models learn from the segmentations made by human radiation
oncologists, the prediction quality also depends on the accuracy of the ground truth data (Begoli
et al., 2019). Further, it could be that the training set is not representative of all possible tumor
types, creating inaccuracies in the prediction of boundaries for tumors that have not been trained
on (Begoli et al., 2019). Hence, training sets should be as large as possible so that the model can
learn all types of delineations, increasing the accuracy of its predictions (Sorantin et al., 2021).

6.2.1 Certainty Maps to Display Model’s Confidence

With the trend towards visual explanations in medical image analysis and the advantages of
depicting a model’s confidence in its predictions, a powerful way of combining these may be
through a certainty map. Certainty maps are visual representations of the varying confidence
levels the model has in its output across an imaging scan. In the case of tumor segmentation, the
map would therefore represent the certainty in its classification decision for each pixel of
whether it contains tumor or not.

Certainty maps are advantageous for a variety of reasons. Firstly, since tumor
segmentation is a very visual process, it is beneficial to use this same modality to promote
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insights into the model’s reasoning. Using a different modality, such as having clinicians read a
text might create a feeling of detachment towards the task at hand. Visual maps can be integrated
with imaging scans, hence allowing a seamless integration into the tasks of radiologists (Reyes et
al., 2020). Further, certainty maps give case-specific information, as recommended by Cai et al.
(2019), since the model produces a different certainty map for each patient. This can be useful
since it is akin to how clinicians discuss cases with other colleagues during segmentation review
meetings (Cai et al., 2019; Gerlings et al., 2021). Like in review meetings, areas of ambiguity are
highlighted in certainty maps that might need further review. Hence, certainty maps could
simulate the discussion with a colleague, making this a technique that could fit well into the
workflow of radiation oncologists. Lim et al. (2019) confirmed this by suggesting that a system
is expected to be trustworthy if the method of communicating uncertainty is similar to how
humans would share their uncertainty with others. For these reasons, the current research is
based on a DL model containing an certainty map as its output, as specified in the following
section.

Given the information on CAD tumor segmentation systems, black-box models, XAI and
on evoking more appropriate trust in autocontours discussed thus far, the design of an automated
tumor segmentation model for the UMCG will now be outlined.

PART 2: DESIGN
The aim of the current project was to design a user interface for an automatic tumor
segmentation tool for radiation oncologists at the UMCG. Furthermore, it was investigated how
to best incorporate probability maps reflecting the model’s certainty into the interface and how
optimal interaction with them could be ensured. The design was based on the previously
discussed literature on developing tools to increase the usability and explainability of AI models,
in order to evoke more adequate trust in the predictions.

To structure the design process and to take the future user into account, the interaction
design lifecycle by Rogers et al. (2013) was followed, as was described previously (Figure 10).
The following section describes how the first step of the interaction lifecycle was tackled,
namely the identification of user requirements.

7. Requirements Analysis

In order to understand what is expected of an automatic tumor segmentation interface at the
UMCG, the current tasks of radiation oncologists first had to be analyzed in more detail.

7.1 Shadowing and Semi-structured Interviews

Participants
To understand their workflow, two radiation oncologists were shadowed while performing a live
segmentation of tumors. These radiation oncologists were already involved in the project of
Alessia de Biase, who is the developer of the automatic segmentation model this interface is



INTERFACE DESIGN FOR SEMI-AUTOMATIC TUMOR SEGMENTATION 25

based on. One of them is specialized in head and neck tumors (shadowed online via Microsoft
Teams), while the other focuses on lung tumors (shadowed in person at the UMCG). Despite the
focus of this research being on head and neck tumors, a lung specialist was observed for
availability reasons and since there is a lot of overlap with the general steps required for
delineating tumors in different regions. Two radiation oncologists were shadowed to minimize
the possibility of missing important information when watching only one of them.

Apart from the radiation oncologists, several other UMCG staff members from the
radiology department were interviewed. Two PhD candidates were interviewed, one with
experience in automatic organ-at-risk segmentation, and one with experience with AI tools for
medical imaging. Further, three UMCG researchers who were present at monthly meetings with
the head and neck tumor segmentation team with experience in deep learning and tumor
delineation provided valuable insights into the requirements for this interface.

Method
The radiation oncologists segmented tumors while explaining their procedure throughout the
process. The goal of this requirements analysis was to gain more insight into tumor
segmentation, including an overview of tools the radiation oncologists need in a segmentation
software, any issues they currently face, and wishes and needs for the to-be-designed interface.
Semi-structured interviews were also carried out in these sessions to gain more specific
information on their tasks. Some of the main questions that were asked during these meetings
can be found in Appendix A.

Results
The findings from all interviewees will now be presented collectively.

Equipment and environment. The radiation oncologists at the UMCG currently use the
software RayStation 10B (RaySearch Laboratories) on a Windows PC to manually segment
tumors (as of April 2022). They have two PC monitors, one frequently used to review patient
details and other information relevant to their segmentations, while the second monitor is used to
actually delineate the tumors. A screenshot of the interface of RayStation can be seen in Figure
11 below. Radiation oncologists at the UMCG segment tumors in their offices. No major
nuisances were observed in this work environment, although the observees could be subject to
distractions such as phone calls or other people coming into their office.
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Figure 11. Screenshot of the Interface of the Software RayStation (RaySearch Laboratories),
used by UMCG Radiation Oncologists for Manual Tumor Delineation

Hierarchical Task Analysis of Manual Tumor Segmentation. A hierarchical task
analysis (HTA) was constructed from the semi-structured interviews with the radiation
oncologists and from shadowing them during manual tumor segmentation. This was done to
explore the steps that are currently necessary to segment a tumor manually. Identifying the
functionalities that are currently being used and the steps necessary for manual tumor
segmentation can provide insight into the requirements for an automatic tumor segmentation
interface. Further, any problems or inefficiencies with the current software could inspire
improvements for the interface prototype that will be designed.

The hierarchical task analysis can be seen in Figure 12. It includes a more general
overview of the steps taken in the workflow of manual tumor segmentation. Details regarding the
exact clicks made in the manual tumor segmentation software were omitted, since the aim of this
project was not to redesign the current software of radiation oncologists at UMCG. Instead, the
goal of the HTA was to provide a structured overview of the subtasks involved and which order
they are carried out in. The steps of the HTA will briefly be described hereunder.

First, radiation oncologists review the patient information. This includes the patient’s
demographics and information about the location and extension of the tumor. Other relevant
information may include prior treatment histories such as operations. Next, the radiation
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oncologist opens RayStation and loads the patient’s imaging scans (CT, PET, possibly MRI). The
axial (transverse) view is usually preferred for primary tumor segmentation in the H&N region.
They will then scroll through the slices of the imaging scans to get a rough idea of where the
tumor is located. Sometimes this is also done as the first step, while patient information is
consulted in the second step. This depends on the personal preferences of the radiation
oncologist. Next the tumor segmentation is started. For this, clinicians frequently scroll to a CT
slice in which the tumor is well-visible and will start using the brush tool in RayStation to trace
the outline of the tumor they have identified. The segmentation is then often turned on and off, so
its accuracy can be examined without having the segmentation occlude a part of the tumor. If the
segmentation needs to be altered, the brush tool can again be used to enlarge the delineation or it
can be made smaller using the erase tool. Once the radiation oncologist is happy with their
segmentation on their first slice, they will move on to the next slice. Every slice can be
individually segmented in this manner, but RayStation’s interpolation tool is frequently used to
save time. This involves delineating one slice, skipping a few slices, and then delineating a
second slice. This will give ‘end’ delineations for a certain region between which the remaining
delineations can be interpolated, or created automatically based on these ‘end’ delineations. The
radiation oncologist will then review the interpolated slices and edit them if necessary. While the
delineations are being made on the CT, the PET scan of the same slice is frequently consulted
since the uptake can provide valuable information on the tumor’s extension. Once all slices have
been delineated, a final review is made and the MRI may be consulted to check the segmentation
accuracy. Some clinicians also choose to use the MRI at the beginning of their segmentation or
throughout their segmentation procedure. Once the radiation oncologist is satisfied with their
delineation they can save the delineation by pressing the button labeled ‘Create new ROI’,
entering a name (usually naming conventions are used, such as GTVp for gross primary tumor
volume), and selecting a conventional color for the delineation type (for the GTVp the UMCG
usually uses yellow). After the GTVp has been created, the other important target volumes are
created by expanding the GTV by certain margins, which is usually done with a preset in
RayStation. These include the clinical target volume (CTV), the planning target volume (PTV)
and the internal target volume (ITV).

This hierarchical task analysis already captures most of the basic tool and design
requirements that are needed in such a system and that will also be used in the design of the new
interface, which are listed in Appendix B.
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Figure 12. Hierarchical Task Analysis: Steps involved in Manual Segmentation

Tool Usage. The interviewees stated that they want a ‘first-reader’ decision-support
system, as was defined in section ‘4.1 Computer-aided Diagnosis (CAD)’. Thus, the
to-be-designed interface will be for a tool that predicts the initial tumor boundary automatically.
The radiation oncologist’s role will then be to review the model’s predictions and to edit them if
any corrections are necessary. The interviewees preferred this mode of usage since they
mentioned that this would save the most time which could reduce their workload.

However, the previously discussed information on out-of-the-loop syndromes and
inappropriate trust in CAD systems showed the dangers of designing intransparent systems with
high levels of automation, which can especially be problematic for first-reader tools. To reduce
this risk of blindly trusting the system and becoming complacent, the tool will be designed so
that initial contour predictions are made by the models autonomously, but so that the user still
has to engage with the predictions to decide on the most fitting prediction. Adding an interactive
element to the model’s output will increase the likelihood that users fully engage with the
predictions which may make them more alert and critical. It will now be discussed how this
interactive element was designed and incorporated into the interface.
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8. Certainty Visualization

This interface and the included certainty visualization was built around an AI model by de Biase
et al. (2022). Before stating the requirements for the certainty visualization, the model will
briefly be described below to convey an understanding of the idea.

8.1 Deep Learning Model the Interface is Built Around

The automatic tumor contour predictions that were visualized in the interface prototype stem
from a 2D deep-learning neural network for oropharyngeal cancer by de Biase et al. (2022). It
determines the degree of classification certainty of each pixel being tumorous or not (de Biase et
al., 2022). The model gives a probability map as its output representing its certainty. Hence, the
idea was to design an interface that shows a visual representation of the different prediction
certainties for given regions on a CT scan.

The DL model was trained on planning CT and PET images of 241 oropharyngeal cancer
patients that received radiation therapy at the UMCG between 2014 and 2022. Testing was done
on 61 patients. Bounding boxes of size 144x144x144 were used for training and testing the
model. The training data set contained labeled ground-truth data in the form of manual
delineations of the primary gross tumor volume (GTVp) by radiation oncologists of the UMCG.
For further information on the training of the DL model, please refer to de Biase et al. (2022),
which contains a description of a similar network trained on fewer patients.

8.2 Design of the Certainty Map

Next, it had to be established how the idea of the certainty visualization would be translated into
the interface. In the semi-structured interviews with the radiation oncologists and UMCG
researchers, first mock-ups of possible certainty visualizations were presented to understand their
preferences. Three types of certainty visualizations were initially presented to them, as shown in
Figure 13. These included a solid colored map, a solid gradient map, and a single solid contour.
The participants indicated that they preferred the colored map as in option A) (Figure 13) due to
better visibility of the differences between the probability thresholds. However, it was mentioned
that it was problematic that the tumor could now no longer be seen due to the certainty map’s
opacity. Hence, it was agreed to keep the colors but instead of using solid colored areas, only
colored contours would be used that have lower opacity, as seen in Figure 14.

Moreover, it was mentioned that it is important to consider whether the autocontours
have their border outside or inside of the predicted tumor, as shown in Figure 15. The
interviewed clinicians reported that outside borders would be more advantageous as they do not
occlude any part of the tumor and hence allow for better visualization of the tumor.
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A) B)

C)

Figure 13. Initial Certainty Visualization Ideas on Cropped CT Scans: A) Colored solid map, B)
Gradient solid map. C) Single solid contour

Figure 14. Updated Certainty Visualization: Colored Contours
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Figure 15. Autocontour Border Options: A) Outside border, B) Inside border

After having established the main requirements for the general functionalities of the tool and the
certainty map, the visual design of the interface prototype was then tackled, as described below.

9. Prototype Design

Taking the information into account that has been gathered thus far, first prototypes were then
designed for the segmentation interface. This was done using the prototyping software Figma.

9.1 Layout

Since the shadowing and unstructured interviews did not reveal any major issues with the general
layout of RayStation, a similar layout was adopted for the new interface prototype. This should
make adjustment to the new interface easier and interaction more intuitive since the radiation
oncologists are already used to working with RayStation. Hence, the wireframe as seen in Figure
16 contains the primary view in which the biggest imaging scan could be viewed, as well as two
smaller scans in the secondary and tertiary view to the right. The view selection at the bottom
allows switching the images used for the primary, secondary and tertiary views and provides an
overview of the available scans for the patient. At the top of the wireframe is a panel for the
patient information and the controls, which will include buttons such as creating a contour,
brush, eraser etc. The program controls at the very top would include buttons like open and save.
The left panel would contain the delineations. As in RayStation, these should include the organs
at risk which can be turned on and off so they can be used when delineating the primary tumor.
Further, the actual targets should be present here.
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Figure 16. Wireframe showing Prototype Layout

9.2 Contents

It was identified that the interface would require two main pages or modes, as described below.
Low-fidelity prototypes of these pages can be seen in Figure 17. Larger screenshots can be found
in Appendix C.

9.2.1 Pages

Homepage. The user would see the homepage when first opening the program. Icons
were added to the program controls panel to open patient files, to save the file, and to minimize,
maximize and close the program. Further, a patient icon was added to the patient information tab
and the controls panel now has buttons to interact with and modify the autocontours. This
includes a button to create a new autocontour, a button for editing the contour, and buttons to
accept (save) and delete it. The targets/delineations tab has some sample targets and mock up
images were added for the sake of prototyping (these images do not represent an actual H&N
cancer case from the UMCG). Further, a first slider prototype was designed intended for
changing the certainty threshold of the model’s prediction. The commonly used RGB color range
from red (very certain) to blue (very uncertain) was chosen for the slider to have a wide range of
colors, increasing the ease of distinguishing them from each other.
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Edit page. Apart from the homepage, a first prototype of the ‘edit’ page was designed.
This would be visible after creating the autocontour and after clicking on ‘Edit’ in the control
panel. This would reveal the brush and erase buttons using which the autocontour could be
adjusted. ‘Done’ could be pressed once satisfied with the manual edits and when wanting to
return to the homepage.

9.2.2 Interactive Certainty Visualization

As discussed previously, colored contours were chosen to represent the different prediction
certainties of the DL model. It was agreed upon with the interviewees that an interactive
certainty map would be useful that allows selecting a given certainty threshold and then
switching between different thresholds to understand where the model is less and more confident
about the presence of a tumor. To allow for this interactivity, a slider was added to the primary
view with certainty thresholds from 0 percent to 100%, as seen in Figure 17. For instance, if the
user would select a prediction certainty threshold of 90%, the interface would show an outlined
region for which the model is 90% confident that it contains the tumor. In addition to the slider
labels, the colors on the slider correspond to the different colors of the probability map, so the
user can easily understand which threshold they are currently viewing on the CT scan.

A) B)
Figure 17. Prototype Version 1 of A) Homepage and B) Edit page (right)
Note. Secondary and tertiary view figures from van den Brekel & Castelijns (2005) and
Hennessy (2015).

Next, more details were added to the prototypes.
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9.3 Buttons

Instead of having pages with different button locations for the homepage and the ‘Edit’ page as
in Figure 17, it was decided that the button locations should remain consistent to reduce
confusion. Hence, all main buttons were designed to have an active and an inactive state. The
clickable active buttons have full opacity, while the inactive buttons appear less opaque to
communicate that they cannot be clicked on a given page.

For instance, Figure 18 A) shows the screen that would be visible after the patient’s scans
have been loaded into the tool and before the autocontours have been created. At this point, the
only actions the user can take is to switch the organs-at-risk segmentations on and off, to change
the images in the gallery, or to create the autocontour. Hence, these are the only buttons that are
active and appear clickable. The updated ‘Edit’ page in Figure 18 B) would appear after the
contours have been created and the user clicks ‘Edit’. Here it has been made clear that the ‘New
Autocontour’ button is no longer relevant since the autocontour has already been created, while
the ‘Edit’ button is now darker to show that the interface is in edit mode. The buttons brush,
erase, accept and delete are now in their active form, as well as the slider, so the user can perform
manual edits of the predicted contours.

Further, icons were added to the buttons for easier navigation and more clarity. Tool icons
were also placed in the primary view to be able to select, scroll, move the scan, zoom in and out,
and maximize the scan. Lastly, a switch was added to toggle the autocontour on and off as well
as labels for the slider indicating the certainty thresholds and an indication of the threshold the
slider is currently set to for easy usage. Additionally, the image views were labeled so the user
can identify which modality they are looking at and when the imaging scan was taken.

A)
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B)

Figure 18. Prototype Version 2- Added Details and Active/Inactive Buttons on A) Homepage
and B) Edit Page
Note. Secondary and tertiary view figures from van den Brekel & Castelijns (2005) and
Hennessy (2015).

9.4 Colors

Since the manual segmentation software RayStation used at UMCG has a very dark theme with
gray and black being the primary colors, a dark color scheme was also opted for in this
prototype. This was done to make the new interface more similar to RayStation to avoid too big
adjustments and dark colors can also be easier on the eyes than light ones, which could decrease
fatigue when radiation oncologists spend several hours on their computers segmenting tumors.
However, some color differences were desired to make the interface stand out and to make it
more clear that it is separate from RayStation. Hence, a dark blue color theme was opted for, as
seen in the mood board used for selecting the interface colors in Figure 19. Dark blue is a
calming color that is frequently used in the medical domain and was hence deemed appropriate
for this interface.
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Figure 19. Mood Board for Color Choice of the Prototype.
Note. Images from SergeyBitos (n.d.), K. (n.d.), ZinetroN (n.d.), and Bureau Oberhauser (n.d.).

The selected colors were then added to the prototype along with further details and refinements
to result in the final prototype, as depicted in Figure 20. The button ‘Edit’ was removed as it was
deemed an unnecessary intermediate step upon further consideration. Instead, the brush and erase
buttons were placed onto the main screen directly. Furthermore, an ‘Interpolate’ button was
added, as the requirements analysis revealed that the radiation oncologists frequently speed up
their manual segmentation procedure by using automatic interpolation between two end slices. In
the automatic tool, the predicted contours of two end slices could also be manually edited, after
which the user may decide to interpolate between the manually edited slices. Moreover, instead
of one ‘Delete’ button, the updated interface now has two deletion buttons. Firstly, the ‘Delete
this contour’ allows the user to delete the contour on the slice they are currently viewing in the
main view in case they deem it as inaccurate and would rather wish to manually segment the
tumor on a given single slice. ‘Delete all contours’ should be used if the user wants to remove
the entire prediction on all slices at once. Since radiation oncologists frequently use CT and PET
scans simultaneously, the PET images were now also included in the tertiary view.

The secondary view now contains an ‘all-in-one’ probability map which presents the
predictions at every probability threshold available, with the colors corresponding to the colors
on the slider. This is mainly intended to offer an overview of how the predicted contours change
with the different probability thresholds. It allows comparing different thresholds and could
motivate the user to examine a single probability more closely in the main view in case of any
prediction thresholds that need a closer inspection.
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A)

B)

Figure 20. Final Prototype with A) Home Page and B) Edit Page
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9.5 State Awareness

Since this is an interface prototype for a semi-automatic tool, several considerations had to be
made so the user knows what is going on at every point and does not get confused by the state of
the tool.

Progress Indication
Firstly, when the user prompts the tool to create a new set of autocontours, the interface will
display a progress bar as seen in Figure 21. Since it is expected that the tool would take a few
minutes to create its predictions for new patients, the user should be informed that it is currently
processing the images. If this is not done, frustration and confusion could arise since the user
may believe that the tool is not reacting as expected.

Figure 21. Progress Bar- Creating Autocontour

Warnings
On some slices, the DL model was not able to make predictions with high certainty, for instance
when the tumor was very small or barely visible on a given slice. In Figure 22 it can be seen that
the all-in-one map only contains probability certainties up to about 50%. When the user would
select a higher percentage such as 90%, there would be no predicted contour that can be
displayed. To inform the user of this, a warning was included in the interface that reads “No
predicted probability available at this threshold.” This was done to prevent the user from
thinking that there is a general error with the tool, and instead promote their understanding that
for certain slices the model cannot reach a certainty above a specific threshold.
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Figure 22. Warning When no Prediction is Available for a Selected Certainty Threshold

PART 3: EVALUATION
After the prototype design for the automatic tumor segmentation interface was completed, a user
evaluation was conducted which will be discussed in this chapter. The user evaluation was
carried out to examine whether the radiation oncologists at UMCG deem the general idea of such
an automatic tumor segmentation study useful and clinically feasible. Further, it was investigated
whether the current prototype interface design is appropriate for supporting interactions with the
deep learning model’s certainty map of the predicted tumor contour. Since the UMCG currently
does not use a similar automatic tool for tumor segmentation yet, this study’s goal was to identify
any other requirements that were missed when designing the prototype but that should be
incorporated into the interface when expanding on this design in the future. Due to the
exploratory nature of this project, a fully functional system was not yet built, but instead the
interactive prototype was evaluated and recommendations for improvements were made which
will be discussed later on. The design of the user testing will now be discussed along with the
results, followed by recommendations for changes.
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10. Methods

Participants
Nine clinicians from the UMCG participated in this user testing by voluntarily signing up.
Recruitment was done using flyers and emails that were sent around in the radiotherapy
department of the UMCG. Seven participants were radiation oncologists, one was a medical
doctor and radiation oncology researcher, and one was a radiotherapy researcher. Seven
participants were specialized in head and neck tumors, while one was from the lung department
and one was from the urology and palliative department. Even though the interface includes
predictions for head and neck tumor contours, similar tools could also be designed for other
departments in the future. Further, the focus of the user testing was not to judge the accuracy of
the predictions, but rather to evaluate the utility and usability of the prototype in general, hence
participants from other specializations were also recruited.

The experience in tumor segmentation ranged from approximately 6 months to 20 years.
Two participants were already familiar with the purpose of the project and had seen previous
versions of the prototype since they were shadowed and interviewed during the requirements
analysis. Even though they were not completely new to the interface, they had not seen the final
version of the prototype.

All participants had experience with RayStation, the current manual segmentation
software. None of the participants had extensively worked with similar automatic segmentation
tools before. One participant mentioned that they had tested a similar tool by a company in the
clinic, but that this was very disappointing due to its low accuracy and due to the fact that it was
only based on CT scans. Hence, this tool was never implemented at the UMCG.

Materials
The user testing was conducted in a room in the radiotherapy department of the UMCG. The
prototype interactions were carried out using the prototyping software Figma, run in the browser
version using Google Chrome. The mouse and the keyboard were used for interaction with the
prototype. The setup consisted of two Windows PC monitors. One was used to display the actual
prototype, while the other had a Google Sheets presentation containing variants of the main
prototype that were shown after the exploration of the prototype. The variants were covered
during the prototype interactions so participants wouldn’t be distracted during the prototype
testing phase. To record the screen during the prototype interaction, a Google Chrome browser
plugin of the software Screen Recorder was used. An iPhone 10 was used for the voice
recordings.

Design & Procedure
Ethical approval was obtained for this user evaluation study from the Research Ethics Committee
(CETO) of the Faculty of Arts, University of Groningen. Each user evaluation lasted for
approximately 30 minutes. Some participants stayed a bit longer depending on their availability
and whether or not they still had feedback to discuss. Upon arrival, the participants were
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welcomed, after which they read an information brochure about the purpose of the study and
how their data will be processed and stored (see Appendix D), as well as an information sheet
with details about the interface and the deep learning model (see Appendix E). The most
important points were then repeated verbally to them in order to ensure everyone understood the
information in the sheets and had sufficient knowledge for the user evaluation. The participants
then gave their informed consent (see Appendix F), after which the screen and voice recordings
were started.

After this, demographic data were collected. This included how much experience they
have in radiation oncology/radiotherapy and tumor segmentation, if they use RayStation in their
everyday tasks, and if they have used an automatic tumor segmentation tool before. During the
sign up procedure, they were already asked for their job title, their department, their
specialization, and for any additional demographic information they think would be beneficial
for us to know.

Next, the free exploration phase started. Since the participants knew the purpose of the
interface, they were asked to try to simulate creating a real automatic tumor segmentation with
this prototype. They were asked to investigate the prototype and to simply do whatever comes
naturally to them. Limited instructions were given to avoid leading the participants too much to
examine if the interface is explainable by itself. The aim was to examine whether all buttons
were in intuitive locations, or if any navigation issues or problems with the functionalities would
arise. Furthermore, the steps taken during tumor segmentation can show quite a lot of variability
between different clinicians. The goal was to analyze each participant’s way of working in order
to review whether the interface supports all interaction methods. Hence, the instructions during
the prototype exploration were kept to a minimum and they were only guided if they encountered
any issues or if they did not know how to proceed. Participants were asked to think aloud during
this stage, according to the think aloud method (Ericsson & Simon, 1993, as cited in Ericsson &
Simon, 1998). This involves verbalizing what the user is looking for, what they are currently
doing, what they like and dislike about the interface and what their next steps are.

While participants were thinking out loud, they were sometimes asked follow-up
questions to make them elaborate on their thoughts. For instance, it was sometimes asked “What
do you think of the certainty map and why?”. The researchers were also open to questions
throughout the user testing and responded or corrected participants when misunderstandings
occurred while trying not to guide or bias them.

After exploring the interface for about 10 minutes, the participants were indirectly
pointed to certain functionalities they might have missed. For instance, they were told “There is a
way to turn the delineation prediction on and off. Could you try finding this?”. This method was
used to ensure that all participants were aware of all the functionalities, but it still allowed
examining whether the remaining buttons were placed intuitively once told about their existence.

Following the exploration phase, participants were asked about their general impressions
of the interface. They were asked how the interaction went, if they think the interface is pleasant,
if they have other general remarks and what they think of the utility and feasibility of this idea.
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This was done verbally to allow them to ‘vent’ and to give them the opportunity to share
anything still on their mind that hadn’t been mentioned before taking the questionnaire.

Then the participants responded to a questionnaire as seen in Appendix G. This consisted
of rating statements on a Likert Scale ranging from 1 (strongly agree) to 5 or 7 (strongly
disagree), depending on the scale. While the participants were responding to the questionnaire
they were told to elaborate on any responses they may wish to and that they may ask for
clarifications when there was doubt about the meaning of a certain question. The questionnaire
was created from a variety of validated questionnaires and subscales. The included scales were:

● System Usability Scale (SUS) (Brooke, 1996): To measure general satisfaction and
usability of the prototype. The complete questionnaire was included.

● Computer System Usability Questionnaire (Lewis, 1995): To measure satisfaction with
the user interface. Only the ‘Interface Quality’ subscale was included. The response
option NA (not applicable) was removed since all statements were deemed relevant for
this research and this was done to encourage responses.

● 7 own questions: 7 questions developed by the researchers about automatic segmentation
and certainty maps were asked.

● Human-Computer Trust (HCT) scale (Madsen & Gregor, 2000): To measure the
understanding the participants have of the system and the extent of (over) trust. Only the
most relevant items were selected from the subscales of Perceived Technical
Competence, Perceived Understandability and Faith. Limited items were included for
time reasons and as to not confuse participants with irrelevant questions.

● Trust in Automation Questionnaire (Körber, 2019): To examine general attitudes towards
automation and the trust in this system. Again only included the most relevant items.

After responding to the questionnaire, the last step was to review different variants of the
interface prototype. This was done to examine the participants’ preference regarding the layout
and the contents of the interface. For ease of use and to speed up the user testing, these variants
were presented in a Google Slides presentation and participants verbally commented on their
preferences. First, it was asked whether the participants prefer having a solid (filled out) map in
the all-in-1 scan (secondary view, as seen in option A in Figure 23) or only having the outlines in
the map (option B). Option B was more akin to the contours they saw in the primary view and
has the advantage of showing more of the tumor region itself, while the certainty map is better
visible in option A. In the second variant (Figure 24) the overlapped PET/CT scan was included
and the participants were asked if this would be helpful or if it is not needed. Third, two buttons
were added to the Controls panel (Figure 25). A button to change the level/window was added,
since the radiation oncologists already use this in their manual segmentation tool and it wasn’t
yet included in the main prototype. This can be used to obtain a better visualization of the tumor
by changing the brightness or contrast of certain regions Further, a button for customizing the
thickness and opacity of the automatic contour was prototyped. It was investigated whether these
customization options would be good to have. Lastly, an alternative layout was shown to the
participants. Here the primary view allowed viewing multiple contours of different probability
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thresholds simultaneously by clicking the respective checkboxes (Figure 26). In the original
prototype only one contour could be observed at a time using the slider.

A) B)
Figure 23. Variant 1: Secondary View Certainty Map - A) solid vs. B) map outlines

Figure 24. Variant 2: Overlapped PET/CT included in View Selection
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Figure 25. Variant 3: Buttons Added to Controls Panel to Change Level/Window and Contour
Opacity and Thickness

Figure 26. Variant 4: Layout Change - View Multiple Predictions Simultaneously
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Following the variant review, participants were asked whether they had any more remarks and
were then thanked for their participation. The voice and screen recordings were then stopped.

11. Results

The results from the interface evaluation will now be discussed along with suggested
improvements for how to optimize the interface.

11.1 General Remarks

Several participants reported that they would ideally like to see such a tool be integrated with
their current delineation software, RayStation. They liked the tool’s functionalities and design,
but mentioned that it would save time and effort if they did not have to switch between
softwares. This also would make getting used to the new functionalities easier. While RayStation
should investigate the possibility of adding an automatic tumor segmentation feature, the further
results from this study will be discussed in the form of a separate interface. The final form of
such a tool is less crucial, but what is of importance here is the functionalities included and how
to best visualize the model’s certainties.

Despite this preference for the tool to be integrated with RayStation, participants quickly
got accustomed to the tool. Generally, the location of the buttons seemed to be appropriate. The
participants easily found the respective buttons when they were looking for something or when
prompted to complete a certain action.

The participants also made some remarks regarding the deep learning model this tool was
based on. Firstly, participants requested automatic delineations of lymph nodes in addition to the
primary tumor predictions. Further, as mentioned earlier, MRI images should be included in the
training and testing of the model so the predictions also include information about the MRI and
so that the predicted contour can be visualized on this modality as well. Lastly, several
participants noticed that the CT scans used in this interface looked slightly ‘rougher’ than those
in RayStation. They assumed that RayStation adds a filter on top of the scans to smoothen them.
For the optimal transition to this system, the CT quality should be the same as that in RayStation.

11.2 Questionnaire Results

The results from the System Usability Scale (SUS) reflect that the interface had an excellent
usability (Mean = 84.72/100). The current average score across participants of 84.72 is well
above this scale’s average usability score of 68 (Sauro, 2011). The main takeaways from these
results are that the participants would like to use such a system frequently, that the system was
easy to learn and to use, and that they felt confident while using the system. Further, not a lot of
technical assistance is required to use the system.

The Interface Quality subscale from the Computer System Usability Questionnaire
(CSUQ) revealed that the participants were also satisfied with the interface (Subscale Mean =
5.61/7). The responses suggest that the designed interface is pleasant, that most functionalities
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expected of a system like this were also included in the prototype, and that there is general
satisfaction with the system.

Next, results of the questionnaire items will be discussed that were specifically created
for this study. Firstly, participants felt like they would be more confident in their delineations if
they would use automatic segmentation as a starting point (Mean = 5.78/7). Second, participants
perceived that their understanding of the model’s predictions was augmented by the probability
maps (Mean = 5.89/7). Seeing the certainties of the predicted outputs was preferred over seeing a
single (binary) prediction (Mean = 5.78/7) and the participants did not feel very confused by the
different probabilities (Mean (negatively worded) = 1.56). Further, time decreases were expected
when using this system (Mean = 5.78/7) and the participants thought it would be feasible to use
such a system in the clinic (Mean = 6.33/7). Lastly, participants did not prefer their usual manual
segmentation method over using a tool like this (Mean (negatively worded) = 2.78). This
suggests that the idea of introducing certainty maps into the interface was successful.

Results from the selected items of the Human-Computer Trust Questionnaire reveal that
the users understand how the system will aid their decision making (Mean = 5.56/7), and that
they perceive the tool to be helpful for decision making even if they do not fully understand the
system’s workings (Mean = 5.89/7). Moreover, participants indicated that they would not be
totally confident that the system is correct when unusual advice is given (Mean = 3.11/7
(negatively worded)).

Lastly, the Trust in Automation Questionnaire reflects that users had a rather high level of
trust in the system (Mean = 3.78/5). Participants were confident about the system’s capabilities
(Mean = 4/ 5) and felt like it works reliably (Mean = 4/ 5). Moreover, the system state was
usually clear to participants (Mean = 4.11/5), which is important to avoid confusion and to
prevent the user from getting lost in the system. Further, the participants felt like automated
systems generally work reasonably well (Mean = 3.67/5).

11.3 Variant Results

The results from presenting the variants to the participants inspired some changes to the layout of
the interface. Variant 1 revealed that 6 out of 9 participants preferred the color wash (solid)
all-in-one map, while 2 participants preferred the contours and one person said to keep both as
options. The latter is what was eventually decided upon to accommodate everyone’s preferences.
As seen in Figure 27, selection tabs were added to the top of each view allowing the users to
switch between color washes and outlines. The colors of the tabs allow users to easily identify
which option they have currently selected.

Feedback on variant 2 revealed that participants would also like to have the overlapped
PET-CT available in the tool. Further, variant 3 showed that the buttons for adjusting the
level/window of the imaging scans should be included in the final interface. Some participants
also mentioned that this button should include different presets, like in RayStation. These may
for instance include a bone, a brain and a larynx setting a quick optimal visualization of the
respective structures. The button for customizing the contour’s thickness and opacity also
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presented in variant 3 was generally liked, but not seen as completely necessary. Most
participants mentioned that it is good to keep in case someone wanted to change it, but that they
probably would not use this frequently since they thought the contours were good as they were in
the prototype. One participant mentioned that changing the opacity would especially be useful
for the all-in-one map, since that included a color wash in the prototype which could occlude the
tumor. Making this more transparent could allow for a better visualization of the tumor while
keeping the color wash. These findings have been taken into consideration for the revised
interface design, as shown in Figure 29.

A)

B)

Figure 27. Added Selection Tabs to Interface to Switch Between Seeing the Predictions as a
Color Wash and an Outline: A) Primary view (CT) with tabs ; B) All-in-one view with tabs
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Furthermore, all participants agreed that it was a good idea to view multiple predictions
simultaneously, as prototyped in variant 4. Since the participants preferred the slider design over
the checkboxes, the two concepts were integrated to design a slider that allows selecting one
main probability (the big handle) which is always needed when the slider is turned on, and as
many sub-probabilities as the user wants to view (the smaller handle dots on the slider). To
promote a better understanding of which probabilities have been selected, the color of the
selected certainties on the slider labels differs from those not selected (Figure 28).

Figure 28. New Slider Design to Allow Viewing Multiple Prediction Thresholds at Once

11.4 Other Remarks

During the user evaluations the participants shared other valuable information on how the
interface could further be improved to suit their needs better. These suggestions were
accommodated in a revised interface design, which can be seen in Figure 29.

As the first improvement suggestion, participants mentioned that they would like the
option to view the CT and PET scans as two big images next to each other, instead of only
viewing the CT scan in a large format. To make more room so the scans can be seen in more
detail, the region of interest (ROI) sidebar to the left of the interface was minimized. When the
user clicks the minimized sidebar, an overlay will open that reveals all necessary information.

Second, participants requested the predicted contour to also be visible on the PET scan.
This visualizes where the prediction would be located in the PET scan and having the predictions
on multiple modalities facilitates judging their accuracy.
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Moreover, the participants asked for the MRI to also be included in the interface, since
this is also frequently used while segmenting tumors. The current deep learning model was only
trained on CT and PET scans, but to further improve the model accuracy, MRI scans should also
be used for the training in the future. This would also allow displaying the predictions on the
MRI scans, as shown in Figure 29. Apart from the MRI, the participants requested having the
option of loading all available scans and planes into the tool. This was accommodated by adding
a horizontal sliding gallery at the bottom of the interface containing the overlapped PET-CT as
well as all planes available.

Furthermore, a participant requested showing the mouse cursor on all imaging scans.
While the user hovers over the CT scan with their mouse, a copy of this cursor will appear in the
other scans as well, to show the user which area in the other scan they are currently looking at.
This can be especially useful when the different modalities do not match up perfectly due to
different patient positioning. The copies of the cursors have a lower opacity so the user can still
easily identify which cursor is their main one.

Figure 29. Revised Interface accommodating Participant’s Feedback
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Since some participants felt some confusion regarding which slice of the oropharynx they
were looking at, an orientation aid was added to the interface. This is a head icon in the bottom
left corner (Figure 29) that has a transverse plane through it, corresponding to the slice that is
currently being viewed.

Next, a suggestion to improve dealing with false positives was given. Figure 30 shows an
example of where the model predicts a false positive. Here two contours are predicted, one
bigger one for the primary tumor and the smaller one is the false positive. This false positive
prediction occurred because the PET scan shows some normal uptake in the tonsil area, which is
interpreted as a tumor by the model. The all-in-one map helps detect that this is probably a false
positive, since it only shows very low probabilities (blue colors) for this area and the high
probabilities (red colors) are only visible in the area of the primary tumor. Thus, the participants
generally were not very confused by the false positives, but they requested an easy way to only
remove the false positive contour. This was prototyped by clicking on the false positive, after
which a selection box appears. Then the user can press the ‘Delete’ button on their keyboard or
use the ‘Delete this contour’ button in the interface. Such false positives should automatically be
deleted across all slices so the user does not have to repeat this for each slice.

Figure 30. Added Option To Delete False Positives Across Slices

The next improvement is with regards to slices for which the model was not able to make
predictions with high certainty, for instance because the tumor was very small or barely visible
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on these slices. In Figure 31 it can be seen that the all-in-one map only contains probability
certainties up to about 50%. When participants in the user testing selected higher percentages,
such as 90%, a warning was shown that read “No predicted probability available at this
threshold.” Although users understood this message pretty rapidly, they suggested adding a
prompt telling users what to do next. Hence, the revised interface presents the warning “No
predicted probability available at this threshold. Change slice or probability threshold.”

Figure 31. Warning Message that no Prediction is Possible at a Threshold of 90%. Users
Suggested Adding a Prompt.

Some participants mentioned that they like the probability map, but that they probably
would not use the low probabilities. Even though they can be useful for gaining more insight into
the model’s decisions or for detecting false positives as mentioned previously, users should still
have the option to hide these low probabilities. Hence, a solution could be to have a handle at the
bottom of the slider which users can drag up. When set to 50% for example, as shown in Figure
32, the lower percentages will be removed from the all-in-one map and a ‘smaller’ slider will be
visible.
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Figure 32. Added Option to Hide Low Probabilities from All-in-one Map

Moreover, it was suggested that the model’s predictions should be differentiated from
manual edits the user made. This has the advantage that changes can be tracked and it will
remain clear what the model predicted and what the user decided to change. This could be useful
to justify one’s decisions when reviewing segmentations with other radiation oncologists. The
contours could be differentiated by color or by dashed and solid lines, as seen in Figure 33. The
sidebar should also include a clear legend so the user does not get confused about which line
corresponds to which contour.

Figure 33. Using Different Colored or Dashed Lines to Distinguish Manual Edits From Model’s
Predictions
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Lastly, one participant suggested that there should be an option to accept contours. If the
user is satisfied with the automatic contour or with their manual edit, they should be able to press
the ‘Accept contour’ button in the interface or press the ‘Enter’ key on their keyboard so save the
contour for this specific slice. The interface will then show a signal, such as the green check
mark in Figure 34 to communicate that this slice has already been reviewed. This allows for a
clear overview of which slices still need review and avoids users overlooking any slices. It
should only then be able to save or export the segmentations once every slice has been accepted.

Figure 34. Added Button to Accept Contours – Allows Keeping Track of Reviewed Slices

PART 4: DISCUSSION
This project was aimed at designing a user interface for a tool for the computer-aided diagnosis
of head and neck tumors. This was done to investigate the possibility of eventually introducing a
semi-automatic tumor segmentation tool to the Universitair Medisch Centrum Groningen
(UMCG). The expected benefit of such a tool is to decrease the inter-observer variability and the
time needed for manual tumor segmentation. The main goal of the interface that was designed in
this project was to allow the users to create, review and edit automatic tumor predictions from a
deep learning model developed at the UMCG. Apart from this, it was investigated how to use
findings from the field of explainable AI to make the outputs of the deep learning model more
intuitive and understandable. This was examined since the black-box nature of similar AI models
has led to low clinical implementations and a lack of trust in these diagnostic aids. Hence, this
project focused on visualizing the model’s certainty in its predictions to promote a better
understanding of the model’s decisions and ultimately more appropriate trust.

Interviews and user tests with clinicians were used to establish the optimal interface
design. It was identified that the interviewees want a ‘first-reader’ tool which directly predicts a
tumor’s boundaries. The expert’s role would then be to review the model’s output and to edit the
predicted contour if necessary. Further, it was identified that the users want a probability map
representing the model’s confidence in its predictions that consists of colored, semi-transparent
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contours. The different colors correspond to the different prediction certainty thresholds which
are visualized on a slider that was added to the interface. This slider allows the user to switch
between different certainty thresholds with matching contour predictions and to select the one the
user deems as most accurate. This adds an interactive element to the model’s output which may
promote more engagement with the predictions.

Further, selecting multiple thresholds was made possible to allow comparing the
segmentations at several certainty levels on one imaging scan. Moreover, buttons for manual
edits of the autocontours were included and it was established that the manual edits should
always remain differentiable from the autocontours to easily backtrack one’s changes, for
instance when reviewing segmentations with colleagues. In addition to the interactive probability
map, a smaller CT scan was added to the interface containing an all-in-one probability map. This
shows all certainty thresholds at once, allowing the user to quickly get an overview of how the
prediction changes for a given slice when changing the threshold.

The user evaluation of the interactive prototype built in this project has shown that the
participants were optimistic about introducing a semi-automatic tumor segmentation tool to the
UMCG. The participants generally thought the designed interface was pleasant and intuitive, and
an excellent usability score was achieved. However, it was mentioned that a similar tool should
ideally be integrated into the software currently used for manual tumor segmentation at the
UMCG, RayStation. This was desired as it would save time needed for switching between
softwares and since it might be faster to get accustomed to a few new functionalities over an
entire new programme.

There was a general consensus that the probability maps helped in understanding the
model’s predictions. Participants reported that they preferred being able to view and interact with
different certainty thresholds, instead of only viewing a single binary prediction, like most other
tumor segmentation tools offer. Hence, the certainty maps designed here were a successful
addition to the interface.

Further questionnaire results revealed that the users understood how the tool could aid
them in their decision making even if they do not fully understand the model’s inner workings.
The trust the users reported to have in the system was adequate and they did not give the
impression that they were overly reliant on the predictions. This would be important to ensure
that the users remain critical of the model’s outputs.

11.1 Limitations

Nevertheless, the current findings should not be interpreted without taking the limitations of this
research into account. Firstly, our sample was a convenience sample consisting of clinicians who
voluntarily signed up for the user test. It is not a random sample of radiation oncologists and
radiotherapists, and is thus not necessarily representative for the UMCG as whole. It could be
that the participants had a higher interest in AI tools and were more favorable of an automatic
segmentation tool compared to their colleagues who did not participate.
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Moreover, the evaluation only consisted of self-report measures. The subjective findings
described in this paper, such as the potential of the tool to decrease delineation time and the
finding that clinicians mentioned they would trust the predictions appropriately, should be
examined in a more objective manner in the future. The entire tool should also undergo more
extensive user testing with a larger array of sample cases before being implemented in the clinic.
This should include difficult cases, for instance ones where the model makes predictions that are
incongruent with the beliefs of the user.

Further, there are some shortcomings regarding the scales used in the questionnaire.
Several questions were developed for this study and thus do not represent validated questionnaire
items. It has not been investigated whether the items accurately reflect the constructs they are
measuring. Nevertheless, for this exploratory study these items still provided valuable inputs.
Moreover, only the most relevant items were selected from the Human-Computer Trust
Questionnaire and from the Trust in Automation Questionnaire in an effort to keep the
questionnaire short. This however makes interpreting the results from individual items difficult,
and the findings from these questionnaires should be interpreted critically. In the future the entire
scale should be used or at least complete subscales.

11.2 Future Research

This project also sparked some suggestions for future research. Apart from testing the automatic
contours in a more objective manner, future investigations should be carried out into whether the
trust in the predictions is associated with segmentation experience. During the user evaluations it
appeared as though participants with less experience in manual segmentation would trust the
model’s predictions more easily. More experienced clinicians repeatedly make statements such as
“I would trust myself over the system”, while less experienced individuals for instance said “I
can rely on the predictions when I don’t know where the tumor is”. If a link between experience
and trust could be established, this could give pointers for the implementation of such a tool. For
instance, novices may be given additional training so they are more critical of the system. This
could be beneficial as their lower experience might mean they could be biased more easily by the
predictions and potentially identify less errors than more experienced clinicians.

Further, future research should examine what kind of briefing should be given to users of
the tool for an optimal understanding of the model. The focus here should especially be on
investigating how much knowledge of AI and the workings of deep-learning models clinicians
should have. Gerlings et al. (2021) note that insight into this topic is still scarce for AI
decision-making tools.

11.3 Suggestions for Implementation

Taking the results of this project together with its limitations, some suggestions for implementing
a tool for semi-automatic tumor segmentation in the clinic will now be outlined. Firstly, a slow
clinical implementation is suggested so that users can get to know the strengths and weaknesses
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of the model in predicting tumor boundaries. Initially the tool could be used as a second-reader,
where the user manually delineates the first few patients and only then compares their
delineations to the autocontours. This could pinpoint areas that may generally need closer review
and allows the user to judge how close the model is to their personal delineations. When
accustomed to the tool and confident in its outputs, the user could then proceed to critically using
it as a first-reader tool.

Second, it is recommended that the user always form their own general judgment of the
tumor boundaries before looking at the model’s results. This can be done by scrolling through the
slices in the interface before generating the autocontours. Having an idea of where the
delineation is believed to be can help to identify regions about which the user is not in agreement
with the model and it may reduce being biased by the model’s predictions.

Further, clinicians should be properly trained to use this new tool. A short user guide or
instructional video should be made that explains the tool’s main functionalities. The model’s
limitations should also be mentioned here, for instance that the model cannot take any patient
information into account that may be relevant for the radiotherapy treatment and that the
predictions are generated based on the idea that the ground truths used for the training of the
model were accurate. Moreover, users should be made aware of certain conditions that could
promote their susceptibility to overreliance on automation, such as high task complexity and a
high workload (Sujan et al., 2019).

Lastly, Sujan et al. (2019) raised an interesting question of whether upcoming generations
who start their training with automatic tools already in place will have the same manual
(segmentation) skills as older generations. A solid manual segmentation foundation is needed to
assess the accuracy of the predictions and to revert to manual methods in case of potential system
failures. Hence, it should be ensured that an automatic tumor segmentation tool is only an aid,
not a necessity for this task.

11.4 Conclusion

In conclusion, this study has suggested that a tool for semi-automatic tumor segmentation may
be useful for radiation oncologists at the Universitair Medisch Centrum Groningen. User tests
with radiation oncologists showed that they were satisfied with the user interface designed in this
project and that they were optimistic about collaborating with an artificial intelligence tool in the
segmentation of tumors. Furthermore, introducing interactive probability maps representing the
model’s prediction confidence to the interface offers a promising avenue to increase the user’s
understanding of the model’s decisions. Hence, insights from explainable AI have been
successfully used in this project to design a tool for computer-aided diagnosis. If more objective
tests confirm that the inter-observer variability of manual segmentation and the time required for
this task can be reduced, the workflow of radiation oncologists may be severely improved by
introducing such a tool, which could ultimately result in more efficient and reproducible patient
treatment.
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Appendix A - Interview Questions

Main questions asked to radiation oncologists during the semi-structured interviews to gather
requirements.

1. Which software do you currently use for manual tumor segmentation?
2. Which modalities do you use (CT, PET, MRI, Xray)?
3. Which planes do you use (axial, sagittal, coronal)?
4. How many slices do you delineate?
5. Do you consider patient information while delineating? If yes, which?
6. How frequently do you delineate a single patient?
7. How is radiotherapy applied?
8. Which functionalities and tools of the segmentation software do you use?
9. Are there any problems, inefficiencies, or missing functionalities with the current

software?
10. Do you use certain strategies/guidelines to identify tumors?
11. How long does the delineation take on average?
12. What causes uncertainty/doubt in your delineations? How do you solve this?
13. Do you discuss your delineation with other colleagues?
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Appendix B - Requirements Table

Table 1. General Requirements for Automatic Segmentation Interface based on Hierarchical
Task Analysis of Manual Segmentation

Requirement Description

Standard software tools: open and close
window, save

E,g, To open and save patient files

Case information Include basic patient information (name, ID),
and information on imaging scans (which
modality, time stamps)

Zoom To increase/decrease the size of the viewed
area

Hand tool To move to a different part of the scan.

Scrolling through slices With mouse scroll wheel.

On/off button for segmentation To view imaging scan with and without the
segmentation

Brush tool For segmenting the tumor. Should be able to
change the size of the brush (bigger brush for
larger areas and time saving, smaller brush for
details), change the brush color and the brush
should automatically fill in the outline when a
closed shape is drawn.

Eraser tool To edit or erase segmentations

Setting the different imaging modalities as
primary, secondary or tertiary view

Gallery allows switching between CT, PET
and MRI

Allow viewing multiple imaging scans at once Using scans of different sizes

Interpolation button To save time in delineations

Buttons to view/hide regions of interest and
organs at risk

/

Button to save segmentation With templates to save GTV, PTV, CTV, and
ITV

Button to delete segmentation /
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Appendix C - Prototype Design (Large Formats)

Larger versions of the prototypes:

Prototype Version 1 of Homepage
Note. Secondary and tertiary view figures from van den Brekel & Castelijns (2005) and
Hennessy (2015).
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Prototype Version 1 of the Edit Page
Note. Secondary and tertiary view figures from van den Brekel & Castelijns (2005) and
Hennessy (2015).
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Final Prototype of the Homepage
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Final Prototype of the Edit Page
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Appendix D - Information Form containing Study Details

INFORMATION ABOUT THE RESEARCH
Version for participants

“Designing a User Interface for Automatic Tumor Segmentation”

∙ Why do I receive this information?
You recently indicated that you are willing to take part in this study investigating the best way to
design an automatic tumor segmentation system. This document provides further information on
this study and informs you of your tasks and rights.

∙ Contact information
The following researchers are involved in the study:

Liv Ziegfeld Alessia de Biase
MSc Student Computational Cognitive Science PhD Candidate
(RUG) Department of Radiotherapy (UMCG) Tel: 0616825078 E-mail:
a.de.biase@umcg.nl E-mail: l.u.ziegfeld@student.rug,nl

∙ Do I have to participate in this research?
Participation in the research is voluntary. However, your consent is needed. Therefore, please
read this information carefully. Ask all the questions you might have, for example because you
do not understand something. Only afterwards you decide if you want to participate. If you
decide not to participate, you do not need to explain why, and there will be no negative
consequences for you. You have this right at all times, including after you have consented to
participate in the research.

∙ Why this research?
This study aims to investigate if and how an automatic tumor segmentation system can be useful
and feasible at the UMCG. We want to examine whether automatic suggestions for tumor
contours can speed up, facilitate and make manual contouring of tumors more accurate. This
user test is mainly aimed at identifying your preferences for the design and functionalities of the
interface for the automatic segmentation tool. Further, it will be investigated how to best
represent the uncertainties of the automatic segmentations.

∙ What do we ask of you during the research?
After reading this form and providing informed consent, you will be asked to complete the
following tasks during a user test study at UMCG:

∙ Interacting with a prototype of an automatic tumor segmentation system and
completing tasks with it

∙ Answering questions on your preferences for the system
∙ Responding to short surveys on your experience with the system and elaborating on  the

responses if asked
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∙ Having your voice audio-recorded. These recordings will only be shared with the
research team and will allow us to take all your suggestions into account during the
data evaluation.

∙ Having your screen recorded during the interaction with the interface. Mouse tracking
will allow us to make the interface more intuitive by examining where the
user first looks for certain functionalities. This data will only be shared with the
research team.

∙ What are the consequences of participation?
o There are no anticipated risks of participating in this study.
o The study will help us understand how we can introduce a similar system most

effectively in the UMCG. Taking your wishes and requirements into
consideration will enable designing a system that is of maximum utility in
assisting you in your delineations.

∙ How will we treat your data?
o Before the study, contact data are collected to get in touch with you and for

scheduling an appointment for the experiment
o If you provide consent, personal contact data consisting of only your name, e mail

address and speciality will be stored and retained in a file that is fully  separated
from the research data. These personal data will be used to send you a  summary
of the results if you would like that.

o The answers that you provide on the questionnaires and during the interviews, as
well as any remarks/suggestions you make about the system, will be collected as
research data. The data will be pseudonymized via a participant number and will
not be linkable to any personal data that you may provide to receive the  results.

o Your personal data will be stored until the study is completed. This will be
September 31st, 2022, at the latest.

o Pseudonymized research data will be retained for 10 years.
o As a participant, you have the right to access, rectify, and erase your personal data

until the data are made anonymous. You can contact one of the researchers up
until the end of the study (September 31st, 2022) to ask for a copy of your
personal data, have erroneous personal data corrected, and/or have your personal
data withdrawn.

What else do you need to know?
You may always ask questions about the research: before, during the research, and after the end
of the research. You can do so by speaking with one of the researchers present during the user
testing or by emailing or phoning one of the researchers involved.

Do you have questions/concerns about your right as a research participant or about the conduct
of the research? You may also contact the Ethics Committee of the Faculty of Behavioural and
Social Sciences of the University of Groningen: ec-bss@rug.nl.

As a research participant, you have the right to a copy of this research information.
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Appendix E - Information Sheet

Goal:
We are currently developing a system for automatic tumor delineation and would like to hear
your thoughts and ideas in order to make this system as useful in the clinic as possible. The goal
of the system is to save time in the delineation process. Further, the tool should increase the
accuracy and reproducibility of manual contouring of tumors in the head and neck region.
How the system works:
The system will display predictions of the tumor contour on CT scans, which can then be used as
a basis for the delineation. The system is therefore intended as the first step in the delineation
process, where the programme can be used to extract contour predictions, which can then be
edited manually if necessary. Thus, the user will still be required to check these predicted outputs
and ensure their accuracy. It is expected that the editing time of the predicted contours is less
than the time required to delineate a patient’s tumor from scratch.

The system will predict tumor delineations based on registered CT and PET scans using a
Deep Learning algorithm, which is an artificial intelligence model that is inspired by human
neural networks. The model is trained and tested on bounding boxes of fixed size (144x144x144)
extracted from the oropharyngeal cavity of 302 oropharyngeal cancer patients. The available
scans were previously delineated by radiation oncologists of our institute between 2014 and
2022. The GTVp represents the “ground-truth” and the model learns to generate automatic
contours by identifying features that are most important in leading to the ground truths. When the
model receives new, unseen scans, it uses the rules it has established to make its best predictions
on the contour of the new tumor.
Displaying the model’s uncertainty:
Although this model is optimized to produce precise delineations, some inaccuracies are still
possible in its output. These may for instance arise because of poor image quality, or because the
model cannot take patient information into account. Hence, we developed a prototype of an
interface that displays the uncertainty derived from the variability in contouring in the training
set. It allows viewing different levels of prediction certainty and choosing the certainty level that
best matches the user’s judgment of the tumor boundaries. Selecting for instance a certainty
threshold of 70% means that all pixels/voxels are selected for which the model is 70% certain or
more that they are part of the tumor.

You will now get the chance to try out the prototype of this interface. This is only a
simulation of an automatic tumor segmentation interface and hence not all functionalities work
fully. We ask you to focus on the bigger picture to determine what you like and dislike about the
interface.

The first view will be set on the first slice available for this user testing. To scroll through the
slices, please use the up/down arrows instead of the scrolling wheel. Feel free to ask us questions
related to the system at any point.
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Appendix F- Informed Consent Form

“DESIGNING A USER INTERFACE FOR AUTOMATIC TUMOR
SEGMENTATION”

● I have read the information about the research. I have had enough opportunity to ask  questions
about it.

● I understand what the research is about, what is being asked of me, which  consequences
participation can have, how my data will be handled, and what my  rights as a participant
are.

● I understand that participation in the research is voluntary. I myself choose to  participate. I
can stop participating at any moment. If I stop, I do not need to explain  why. Stopping will
have no negative consequences for me.

● Below I indicate what I am consenting to.

Consent to participate in the research:
[ ] Yes, I consent to participate; this consent is valid until 31-09-2022
[ ] No, I do not consent to participate

Consent to processing my personal data:
[ ] Yes, I consent to the processing of my personal data as mentioned in the research  information. I
know that until 31-09-2022 I can ask to have my data withdrawn and erased. I  can also ask for this if
I decide to stop participating in the research.
[ ] No, I do not consent to the processing of my personal data.

Participant’s full name: Participant’s signature: Date:

Full name of researcher present: Researcher’s signature: Date:

The researcher declares that the participant has received extensive information about the research. You have

the right to a copy of this consent form.
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Appendix G - User Evaluation Protocol + Questionnaire

Demographics (verbal) - before using interface

1. What is your job title?

2. What is your specialization?

3. How many years of experience do you have in radiology/oncology?

4. Do you work with RayStation in your everyday tasks?
a. If not, do you work with a different delineation software? Please name:

5. Have you ever worked with automatic segmentation tools?

First thoughts (verbal) - immediately after using interface

1. How do you think that went?

2. What did you like about the interface?

3. What did you dislike about the interface?

4. Are you missing any functionalities from the interface? If yes, which?

5. What do you think the probability map represents?

6. What do you think about the probability map?

7. What do you think about the layout?

8. What do you think of the idea of a (semi) automatic segmentation tool?

9. Other remarks?

Hand out the following scales on paper and ask them to elaborate on their answers/think aloud:
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Please indicate to what extent you agree with the following statements:

System Usability Scale (SUS) (Brooke, 1996) (The scale names were removed from the
participant handouts):

Strongly
Disagree

Strongly
Agree

I think that I would like to use a system like this
frequently

1 2 3 4 5

I found the system unnecessarily complex. 1 2 3 4 5

I thought the system was easy to use. 1 2 3 4 5

I think that I would need the support of a technical person
to be able to use this system.

1 2 3 4 5

I found the various functions in this system were well
integrated.

1 2 3 4 5

I thought there was too much inconsistency in this system. 1 2 3 4 5

I would imagine that most people would learn to use this
system very quickly.

1 2 3 4 5

I found the system very awkward to use. 1 2 3 4 5

I felt very confident using the system. 1 2 3 4 5

I needed to learn a lot of things before I could get going
with this system.

1 2 3 4 5

Please rate the following statements while taking the scale labels into account:

The "Interface Quality" subscale from the Computer System Usability Questionnaire (Lewis,
1995) (The “NA” answer option was removed since all questions should be applicable):

Strongly
Agree

Strongly
Disagree

The interface of this system is pleasant. 1 2 3 4 5 6 7

I like using the interface of this system. 1 2 3 4 5 6 7
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The system has all the functions and capabilities I
expect it to have.

1 2 3 4 5 6 7

Overall, I am satisfied with this system. 1 2 3 4 5 6 7

Please indicate to what extent you agree with the following statements:

Own questions on automatic segmentation:

Strongly
Agree

Strongly
Disagree

Using automatic segmentations as a starting point
would make me more confident in my delineations

1 2 3 4 5 6 7

I feel like the probability map helps me understand
the model’s predictions better

1 2 3 4 5 6 7

I prefer seeing the uncertainties of the predicted
outputs over seeing a single predicted contour

1 2 3 4 5 6 7

The different probabilities confuse me 1 2 3 4 5 6 7

I think using this system as a basis for my
delineations could save time

1 2 3 4 5 6 7

I think it is feasible to use a system like this in the
clinic

1 2 3 4 5 6 7

I prefer my usual method (manual segmentation)
over using a tool like this

1 2 3 4 5 6 7
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Human-Computer Trust (HCT) scale (Madsen & Gregor, 2000) (Only selected the most relevant
items. The items are from the subscales of Perceived Technical Competence, Perceived
Understandability, and Faith)

Strongly
Agree

Strongly
Disagree

The system makes use of all the knowledge and
information available to it to produce its solution to
the problem

1 2 3 4 5 6 7

I understand how the system will assist me with
decisions I have to make.

1 2 3 4 5 6 7

Although I may not know exactly how the system
works, I know how to use it to make decisions about
the problem.

1 2 3 4 5 6 7

It is easy to follow what the system does. 1 2 3 4 5 6 7

When the system gives unusual advice I am
confident that the advice is correct.

1 2 3 4 5 6 7

I like using the system for decision making. 1 2 3 4 5 6 7

Please indicate to what extent you agree with the following statements:

Trust in automation Questionnaire (Körber, 2019) (Only selected most relevant items)

Strongly
disagree

Rather
disagree

Neither
disagree

nor
agree

Rather
agree

Strongly
agree

No
response

The system state was always clear to me. 1 2 3 4 5

I have already used similar systems. 1 2 3 4 5

One should be careful with unfamiliar
automated systems.

1 2 3 4 5

The system works reliably. 1 2 3 4 5

The system reacts unpredictably. 1 2 3 4 5
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I trust the system. 1 2 3 4 5

A system malfunction is likely. 1 2 3 4 5

I was able to understand why things
happened.

1 2 3 4 5

I rather trust a system than I mistrust it. 1 2 3 4 5

I can rely on the system. 1 2 3 4 5

The system might make sporadic errors. 1 2 3 4 5

It is difficult to identify what the system
will do next.

1 2 3 4 5

Automated systems generally work well. 1 2 3 4 5

I am confident about the system’s
capabilities.

1 2 3 4 5

As the last step of this user testing, we will now present you with a few different options for the
layout and the functionalities of the interface. Please tell us which options you prefer and why.


