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Abstract 

 
Engagement is a key factor in audiometry and children with hearing loss undergo regular auditory 

tests to determine their speech perception abilities and have their hearing devices adjusted. 

Incorporating the humanoid robot NAO as a support during audiometry could result in an engaging 

experience for the child. However, in order to determine whether NAO is able to provide a positive 

experience, children's engagement and acceptance towards the robot must be measured during the 

auditory sessions. 

The goal of this exploratory study was to develop a video protocol of non-verbal cues and 

evaluate engagement levels of children with hearing loss during a NAO supported speech 

audiometry. Furthermore, it aimed to explore the non-verbal cues that indicate engagement and no 

engagement towards the robot, changes in non-verbal behaviors with time and examine these cues 

in children with lower maximum speech perception levels. 

 The findings suggest that children display a wide range of non-verbal behaviors during 

NAO-supported auditory tests including but not limited to “leaning towards the robot”, “actively 

moving” or “amused”. Furthermore, outcomes of case studies indicate that children who had lower 

maximal speech perception levels expressed “amused” behavior frequently and for relatively 

longer periods of time. 

 

Keywords: human-robot interaction, video protocol, non-verbal cues, engagement, speech 

audiometry 
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1 Introduction  

1.1 Human-robot interaction 

Human-robot interaction (HRI) is an interdisciplinary research field that aims to facilitate the 

communication, coexistence, and mutual adaptation between robots and humans (Salvini et al., 

2011). HRI has a long history that dates back to the 1940s and has grown immensely ever since 

(Sheridan, 1997). The first autonomous robotic system was “Shakey”, a robot developed in 1958, 

at the Artificial Intelligent Center at the Stanford Research Institute (SRI) (Speck et al., 2017). It 

was able to perform advanced tasks such as localization, navigation, object detection, and has 

contributed to several advancements in artificial intelligence (AI) and robotics (Nilsson, 1984). 

Since then, with the rapid development of automation and AI, the characteristics and functions of 

robots have changed, as they are now able to display complex behaviors such as interacting and 

communicating with humans or other physical agents (such as robots or computers) (Hegel et al., 

2009; Carradore, 2022). 

For linking the needs of humans with the possibilities that robot technologies are able to 

provide, HRI plays a critical role by analyzing, designing, modeling, implementing, and evaluating 

the dynamic and complex interactions between humans and robots (Fong et al., 2003). The field of 

HRI also aims to examine different communication channels such as vocal, visual communication 

or displaying gestures to understand whether these are able to facilitate more natural and flexible 

interactions (Takeda et al., 1997).  

According to the Computers are Social Actors (CASA; Reeves & Nass, 1997) paradigm, if 

computers behave as social actors, people tend to approach them similarly as they approach other 

humans. Nowadays, robots are able to display rich social behaviors during direct interactions, such 

as social cues that might impact the way we treat these technologies (Breazeal, 2004). To illustrate, 

Young et al. (2011) conducted a study to investigate how the social and physical presence of robots 

can be able to create a more complex and different interaction context compared to interaction 

experiences with other technologies (e.g. PC, mobile phones or home appliances). The authors 

argued that HRI is unique since robots are able to elicit salient and emotionally charged interaction 

experiences due to the social and physical characteristics of these interactions that elicit a strong 

sense of active agency. Modern robots such as humanoids and social robots are often capable of 

freely moving, displaying gestures and facial expressions; features which may encourage people to 
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perceive them as social partners. Next to the physical factors, the experiences of users could be 

influenced by a multitude of social factors such as affect or social norms (Young et al., 2011). 

However, the combination of these factors could elicit a phenomenon called “Uncanny Valley” 

(MacDorman & Ishiguro, 2006). According to Mori (1970), the “Uncanny Valley” is when robots 

appear more humanlike and familiar, resulting in the positive experience of humans potentially 

turning to negative as they view them as “eerie” or “unsettling” (see Figure 1). Therefore, Mori 

(1970) suggested that robot designers should be careful when designing robots that closely 

resemble humans due to the risk of “falling into the Uncanny Valley”. On the other hand, 

MacDorman & Ishiguro (2006) argued that the experience of “Uncanny Valley” could have a 

positive aspect for the field of HRI and cognitive science, since it might reflect that our brains are 

processing some robots as humans; and, therefore, offering novel insights into unique human 

behaviors. 

An interplay of these factors creates a holistic context surrounding the HRI experience, 

making it a unique interaction compared to other technologies (e.g. computers). This holistic 

context has important implications for evaluating HRI experiences as well. The following 

subsection will elaborate further on challenges and possibilities of evaluating and measuring these 

experiences, focusing on engagement, within the HRI field. 

 

 

Figure 1. The Uncanny Valley phenomenon as demonstrated in the original article (Mori, 1970) 
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1.1.2 HRI metrics and engagement  

The HRI research community has been aiming to establish a set of common metrics to evaluate 

interactions; however, the wide range of human-robot applications makes it difficult to define 

metrics that are suitable for all purposes (Steinfeld et al., 2006). Developing a toolset of metrics 

that fit every scenario may not be feasible or essential. However, adaptable metrics that use well-

known scoring techniques might help the HRI area in assessing interactions in a variety of 

scenarios. Murphy and Schreckenghost (2013) developed a taxonomy of HRI metrics with three 

parent categories, measuring different aspects: the human, the system, and the robot. The system 

category is further divided into subsections such as productivity, efficiency, reliability, safety, and 

coactivity. The human component features metrics such as trust or situation awareness and most of 

these are inferred from psychophysiological measures, while the robot component includes for 

example self-awareness or plan state (i.e. robot’s progress) (see Figure 2 for the full taxonomy). 

 

Figure 2. Taxonomy of the HRI metrics (Murphy & Schreckenghost, 2013) 

 Furthermore, HRI metrics can also be organized into task categories such as navigation, 

perception, social, management or manipulation depending on the primary objectives and tasks to 

be performed by the robot (Steinfeld et al., 2006). Social metrics can be applicable to robots with 
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primary tasks that require “social interaction”. In order to evaluate the effectiveness of these 

interactions, one can assess for example interaction characteristics (e.g. interaction style), trust, 

persuasiveness, compliance (e.g. adherence of norms) or engagement (Steinfeld et al., 2006). These 

metrics can be measured using a variety of methods, including questionnaires, psychophysiological 

measurements, observations, and data directly captured by the robot (Bethel et al., 2007; Rueben 

et al., 2020). 

 According to (Sidner et al., 2005) engagement is the process of establishing and maintaining 

an interaction and is characterized by challenge, positive affect, endurability, aesthetic and sensory 

appeal, attention, feedback, variety/novelty, interactivity, and perceived user control. Moreover, it 

can indicate the quality of the interaction and experience of users with the system (Oertel et al., 

2020). Since human-robot social interactions are typically complex and multi-modal, analyzing 

engagement has been a challenge in the HRI research field (Lytridis et al., 2020). In some cases, 

measuring engagement directly is unfeasible. For example, questionnaires are impractical for 

children who cannot read yet, and psychophysiological measures are typically sensitive to 

movements. However, engagement could be inferred by observing social or non-verbal cues that 

indicate cognitive, effective, and attentional involvement (Lala et al., 2017). The advantages of 

examining these behaviors are that they are well-identifiable, easily obtainable, and are applicable 

in various HRI and research settings (Dautenhahn & Werry, 2002). However, context plays an 

important role when assessing non-verbal cues. For example, in an isolated context with one-on-

one interaction, individuals may exhibit different behaviors than in a dynamic setting with more 

participants, such as auditory testing where children are accompanied by a speech therapist, 

audiologist and their parents. Since these interactions are more dynamic, the social aspects could 

play key roles during the interaction (Oertel et al., 2020). Furthermore, when humanoids are 

involved in these dynamic interactions, social non-verbal cues may be an important factor when 

assessing engagement. Humanoid robots, for instance NAO, can display social and guiding cues 

such as nodding, making the robot more salient, which could help users complete the tasks 

successfully while maintaining a natural interaction flow (Steinfeld et al., 2006).  

 Evaluating human-robot interactions are often done via observations based on video 

material (Dautenhahn & Werry, 2002). Observing and recording non-verbal cues could allow 

researchers to evaluate, for instance, facial expressions, articulated gestures and body posture, as 

well as direct physical contact between humans and robots such as shaking hands (Breazeal, 2003). 
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Moreover, these non-verbal cues are beneficial in measuring social characteristics such as capturing 

attention and holding interest and these are also the key aspects of engagement (Steinfeld et al., 

2006).  

Successful cooperation between humans and robots might benefit society in a variety of 

fields (Fong et al., 2003). For instance, healthcare has benefited from social robots in hospitals, 

clinics, and living-in-space facilities (Breazeal, 2003). In these areas, robots are considered more 

as collaborators or assistants rather than tools. A socially assistive robot is an interactive robot 

frequently applied in healthcare as assistants or companions. These robots have the potential to aid 

healthcare professionals and create a personalized, engaging environment for patients that helps 

them meet relevant health needs and goals (Breazeal, 2011). The next section will discuss the 

characteristics and applications of socially assistive robots.  

1.2 Socially assistive robots 

We distinguish socially assistive robots (SARs) from robots involved in conventional human-robot 

interactions (Fong et al., 2003). SARs can demonstrate characteristics such as advanced level of 

communication, being able to learn to recognize virtual agents and humans and display natural 

cues. These properties are particularly important in fields where robots are involved in peer-to-peer 

interactions, solving tasks (e.g. navigation) and effective communication (Dautenhahn et al., 2006). 

SARs could act as assistants or peers and are often applied in the research, medical and educational 

fields (Fong et al., 2003). The features and goals of these robots are generally specific: they aim to 

provide assistance by direct and effective interaction while achieving measurable progress in 

convalescence, rehabilitation, learning, etc. (Feil-Seifer & Mataric, 2005). Moreover, they have 

been applied in roles such as therapy aid for children dealing with grief or as social mediators for 

children with autism (Ismail et al., 2012; Kabacińska et al., 2021). In these contexts, evaluating and 

improving human-robot interactions are essential for creating personalized and pleasant 

experiences (Feil-Seifer & Mataric, 2005). 

 Humanoid robots are often used as SARs, as they are designed to resemble physical 

characteristics of humans, are typically equipped with sensors, actuators, cameras, speakers and 

could be preprogrammed to perform specific movements (Choudhury et al., 2018). Since these 

robots support social cues (e.g. nodding), people are able to communicate with them easily without 

the need of specific training (Breazeal et al., 2004). Additionally, as these robots are designed to 
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have anthropomorphic attributes such as a head, two arms and two legs; as well as social 

characteristics including gaze and gestures, we tend to view them as more humanlike (Salem et al., 

2011). This could lead to a better natural interaction and a more positive HRI experience (Young 

et al., 2011). However, both the physical characteristics and non-verbal behaviors of the robot could 

contribute to the “Uncanny Valley” phenomenon (Thepsoonthorn et al., 2021). Therefore, it is 

important to examine aspects and features in robots that increase likeability without increasing the 

“Uncanny Valley” effect in humans. 

 One of the most popular humanoid robots widely used in research, education, and 

healthcare is NAO (Choudhury et al., 2018). It was developed by the French company Aldebaran-

Robotics, later acquired by SoftBank Robotics (SoftBank Robotics, 2005) and features two 2D 

cameras, 11 touch sensors (three on each hand, three on the head, two on either foot, and the center 

chest button), four directional microphones and speakers, as well as the ability to move and adjust 

to the environment with 25 degrees of freedom (Robaczewski et al., 2021). It also includes vocal 

recognition and dialogues that are accessible in multiple (20+) distinct languages. Figure 3 shows 

an image of the NAO robot. These characteristics allow humans to naturally engage with the NAO. 

Additionally, the appearance and gestures of the NAO robot remain neutral (Thepsoonthorn et al., 

2021). Thepsoonthorn et al. (2021) investigated whether the nonverbal behaviors of NAO (while 

giving a TED talk to the participants) could contribute to the “Uncanny Valley” experience. The 

results of the study revealed that when the robots expressed combinations of gestures (including 

hand gestures, gazing, face tracking), human-likeness and affinity were both rated highly (based 

on the results of the questionnaires). These findings could imply that displaying specific gestures 

could help overcome the “Uncanny Valley” effect when interacting with a NAO robot. The 

following section will discuss the practical implications of NAO as an assistant in the healthcare 

field. 
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Figure 3. NAO robot (Courtesy of SoftBank Robotics) 

1.3 NAO in healthcare 

NAO has been successfully implemented in several applications within healthcare settings 

including being a care robot, assistive robot, rehabilitation robot or trainer (Kyrarini et al., 2021).  

For instance, Qidwai et al. (2020) investigated whether the NAO robot would be a beneficial 

assistant during teaching activities for children with autism in a short case study conducted at a 

local school for children with autism spectrum disorder (ASD). The robot was programmed to teach 

behavioral and academic traits and take part in interactive activities such as storytelling, “Simon 

Says” game, morning exercise and a song-based game in the role of a teacher-assistant. During the 

experiment, memory, response time, type and number of trials were assessed. According to the 

findings, NAO has a strong potential to help autistic children learn more effectively. However, the 

research demonstrated that children who were afraid of the robot from the start did not perform 

well. On the other hand, when fear was replaced with more positive feelings as the interaction 

proceeded, such as curiosity and fun, the performance improved. Children who were intrigued by 

the robot from the beginning completed the tasks with more ease and fluency (during the teacher 

plus NAO condition) compared to the condition with the conventional teacher-based style utilizing 

the same tasks with the same group of children. The authors highlighted the positive outcomes of 

applying NAO as a teacher assistant but warned against using NAO in a robot-only setting due to 
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the lack of human-touch and human values that are crucial for social and communicational 

development. 

 Belpaeme et al. (2012) published an overview of the ALIZ-E project (Adaptive Strategies 

for Sustainable Long-Term Social Interaction) which aims to offer supporting robot companions to 

children diagnosed with metabolic disorders (diabetes and obesity) during their hospital stay via 

supporting their well-being and teaching them how to manage their health conditions. The ALIZ-

E project implemented NAO and the study aimed to evaluate the HRI aspects involved in the 

project and provide an overview of the developments of the integrated system. The ALIZ-E system 

includes multiple game-like features (including quiz, dance-game, imitation game) and iteratively 

developing technologies (natural language competencies, memory structures, user modeling, 

bodily expression, and emotion). Several exploratory experiments and testing cycles were 

conducted to evaluate the HRI aspects of ALIZ-E within hospital settings. For instance, diabetic 

participants were provided with diabetes-based quiz games, and they were playing either with an 

adaptive or a non-adaptive robot (Blanson Henkemans et al., 2012). The adaptive robot asked 

personal questions, used this information (the answers from the questions) while interacting with 

the child and asked questions regarding their experiences at the end of the game. While their 

understanding of diabetes significantly increased in both conditions, enjoyment ratings (based on 

questionnaires) were (non-significantly) higher in the adaptive robot condition. Nalin et al. (2012) 

aimed to examine whether a social bond could emerge in children during their hospital stay when 

they interact with ALIZ-E. The children were able to play with a robot for three hours during 

several days and could choose between three games: quiz, dance and imitation and they could stop 

the game at any point. At the end of sessions, they had to fill out questionnaires that assessed their 

experiences. The children generally reported positive experiences and feelings of “happiness” even 

at the third encounter when the novelty effect was not salient anymore. When they were required 

to choose a label to describe their relationship with the robot, the most commonly used labels were 

“friend”, “brother or sister” and “classmates” and the least often used labels were “acquaintance” 

and “stranger”. These observations could suggest that NAO has the potential to be applied within 

hospital settings for children and it could be a successful assistant during their hospital stay, 

however further research is needed that investigate different interfaces (e.g. NAO and PC), 

technical integrations (e.g. type of gestures), and other experiences (e.g. via examining non-verbal 

cues during interactions). 
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Students with intellectual disabilities (ID) may also benefit from NAO, since it can assist 

them in achieving their unique learning objectives. Hughes-Roberts et al. (2019) conducted a study 

with adolescents attending therapy centers and schools specializing in multiple disabilities such as 

ID and autism. Participants had a variety of disabilities, including Down's syndrome, hearing loss, 

developmental delays, and epilepsy and often suffered from combinations of these disorders. 

Because the participants were intellectually diverse, they each had their own learning objectives, 

such as vocal imitation, object identification, or reacting to their own name. Along with a qualified 

researcher and a teaching assistant, a NAO robot assisted them in achieving these goals. While the 

results of the study revealed that engagement levels were higher and the percentage of 

independently obtained goals were larger in the robot sessions compared to the control, these 

differences were not significant. The researchers argued that since students differed in several 

aspects, the intervention should be examined on a case-by-case basis to determine the unique 

factors that contribute to a successful intervention. Furthermore, they concluded that eye gaze may 

not be a valid indicator of engagement in the studied population since autistic children do not apply 

eye contact in the same manner as other children do. Therefore, further research is needed on 

investigating individual cases and disabilities to determine when NAO is most engaging as well as 

improving the methods for detecting engagement to ensure validity and reliability. 

Hughes-Roberts et al. (2019) highlighted that developmental disabilities are often 

associated with varied degrees of hearing loss. Hearing loss may have a number of implications on 

students' performance, not only in the cognitive but also in the psychosocial domain. NAO could 

offer assistance for children who are impacted with hearing loss either due to developmental 

disability or other external/internal factors. Although prior studies have examined the effectiveness 

of humanoid robots such as NAO as a companion for children with various health conditions, 

research investigating whether NAO could be an effective assistant for children with hearing 

impairment has been limited. The upcoming sections will discuss the impact of hearing loss in 

children and previous research on applying humanoid robots in auditory fields.  
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2. Theoretical framework 

2.1 The impact of hearing impairment 

Hearing impairment has become increasingly prevalent in recent years (World Health Organization 

[WHO], 2018) and detecting hearing loss early could enhance patients' quality of life. Moreover, 

it is more than merely a medical condition; it can also have an impact on a person's social and 

cultural life, making it a multifaceted problem. For instance, it can affect phases on language use, 

educational experience, and social identification (Hindley, 1997). 

 The two most common devices to compensate for hearing loss are hearing aids (HAs) and 

cochlear implants (CIs). HAs aim to compensate for reduced audibility and some suprathreshold 

distortions (e.g. reduced dynamic range due to loudness recruitment) (Armstrong et al., 2022). HAs 

are often effective in compensating for reduced audibility, but not all suprathreshold deficiencies 

can be easily compensated for, such as frequency selectivity (Sanchez-Lopez et al., 2020). CIs 

process sound and deliver the sound signal directly to the acoustic nerve by electric stimulation and 

have been shown to provide speech understanding in deaf children and adults (Abdel-Latif & 

Meister, 2022). CI devices provide speech signal to deaf individuals; however, due to the 

limitations in electric stimulation of the auditory nerve, the signal delivered is impoverished in 

spectro-temporal fine details (Zhou et al., 2020). Both situations create difficulties for hearing in 

users of these devices. Additionally, there are certain differences when comparing CI users to 

normal hearing individuals in the perception of vocal characteristics of sounds, perceiving speech 

in noise or perceiving degraded speech due to factors such as: different methods of coding of voice 

pitch in the CIs, nature of maskers, or the differences in listening effort (Başkent et al., 2016). 

Nowadays, CIs (unilateral or bilateral) are very common among children with hearing loss 

(Vermeulen et al., 2012). Unilateral CI refers to patients fitted with one CI, while bilateral CI users 

have two CI devices. Bimodal CI+HA is the combined use of a HA and CI. Children with hearing 

loss undergo regular auditory tests to determine their speech perception abilities and have their 

HAs or CIs adjusted (Uluer et al., 2021). These tests are generally conducted by the audiologist 

and/or speech therapist, and the most commonly used tests are pure tone audiometry and speech 

audiometry (DeBow & Green, 2000). Pure tone audiometry is considered as the “gold-standard” 

hearing assessment (Maclennan-Smith et al., 2013) and the foundation of this test is detection 

thresholds of pure tones that are obtained at octave frequencies between 125 Hz and 8 kHz 
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(Bosman, 1989). Pure-tone audiometry scores can be divided into five categories: normal (<= 20 

dB HL), mild (21-40 dB HL), moderate (41-60 dB HL), severe (61-80 dB HL) and profound (> 80 

dB HL). Speech audiometry is generally applied complementary to pure-tone audiometry to assess 

speech perception and communication abilities of the individual, which, depending on the etiology, 

could differ from what the hearing thresholds indicate (Bosman, 1989). Speech audiometry tests 

are able to give a rough estimate on how well speech could be perceived in quiet or in noisy 

environments, depending on the type of the test. NVA (Nederlandse Vereniging voor Audiologie) 

lists and the DIN (Digit-In-Noise) test are widely used speech audiometry tests in the Netherlands. 

The NVA lists correspond to a speech-in-quiet test and consist of 60 lists (45 for adults and 15 for 

children) each containing 12 words, forming a pool of 177 CVC (consonant-vowel-consonant) 

words (Vanpoucke et al., 2022). The first word of each list is a practice item, and the scoring is 

performed at the phoneme (basic unit of a speech sound in a language) level. The 11 test items 

consist of 33 phonemes (three phones per word); therefore, each phoneme corresponds to 3% of 

the final score for the list. The total percentage score (speech intelligibility score) is the number of 

correctly heard phonemes multiplied by 3, and 1% is added if the total score is higher than 50% 

(Veispak et al., 2015). The maximum speech perception score is the total percentage score of the 

NVA list with speech signal presented at 65 dB sound pressure level (Spirrov et al., 2018). The 

DIN test is an adaptive speech-in-noise test consisting of a set of 120 unique digit triplet 

combinations constructed from the digits 0 to 9, separated by silent intervals (Vroegop et al., 2021) 

and presented as a set of 24 predefined triplets per test. The stimulus is mixed with a constant 

masking noise. The DIN determines the signal-to-noise ratio (SNR) that is required for an 

individual to identify 50% of the presented triplets correctly. The final DIN score is the speech 

reception threshold (SRT) which is the SNR corresponding to 50% correct recognition (SRT is 

calculated by taking the average SNR of trial 5 to 25) (Van den Borre et al., 2021). For the DIN 

test, the SRT is assessed by adaptively varying the SNR with a step size of 2dB depending on 

whether the response is correct or incorrect (one-up one-down procedure) (Vroegop et al., 2021). 

The standard deviation (SD) of the score determines whether the DIN was reliable. For a reliable 

DIN test score, SD should be below 3.6 for children with mild to profound hearing loss for the first 

test and below 3.1 SD for the second test (Vroegop et al., 2021). 

 The testing equipment (for pure tone audiometry) generally consists of a screening 

audiometer and headphones throughout a session guided by trained personnel (e.g. speech therapist 



 

 17  
 

or audiologist) (Walker et al., 2013). However, a limited number of studies have been conducted 

investigating whether robots are able to provide support for children during speech audiometry. 

The following section will discuss some of these studies that utilized NAO or other socially 

assistive robots as assistants supporting children with hearing loss and/or during speech 

audiometry. 

2.2 SARs supporting children with hearing loss 

Ioannou and Andreeva (2019) conducted a study with hearing impaired children who had HAs or 

CIs to investigate whether NAO could be an efficient tool for supporting speech therapy. The 

advantage of NAO over standard speech therapy sessions is that NAO could create a playful, 

engaging learning environment. Moreover, as children cannot read the lips of the robot, they must 

rely on their CIs or HAs during the sessions. The results demonstrated that all participating children 

showed steady progress throughout the six weeks of the intervention period and were able to 

respond consistently and correctly to sounds towards the last two weeks. Additionally, they 

displayed positive attitudes towards the robot and found the interventions entertaining. Previous 

studies demonstrated that children are often highly interested in technological advances such as 

computers, gadgets or robots (Shamsuddin et al., 2012). Moreover, since NAOs have a unique 

physical form and novelty, children might find them especially appealing and motivating (Lytridis 

et al., 2020). Abdul Malik et al. (2014) suggested that since NAO could act like a toy or friend and 

increase children’s attention, the impact of a therapy could be more effective when the humanoid 

robot is present. 

NAO could have the potential to become an engaging tool during speech audiometry since 

it is able to provide guiding cues such as gaze or gestures, making the sessions more salient 

(Breazeal, 2003). Ondáš et al. (2019) aimed to develop a research platform to study aspects of 

robot-supported audiometry. They utilized NAO integrated with an asymmetric multimodal 

dialogue system, where the robot could use gestures and speech to interact with users. The 

experimental setting included Conditioned Play Audiometry (CPA), which consists of interactive 

game-like tasks where the child interacts verbally by performing specific activities such as selecting 

cards based on the sounds they hear. During the CPA sessions, the children were seen happy and 

excited, they reacted positively to the robot’s invitation to help it learn new words and the sessions 

were successful. The authors concluded that NAO has a potential in audiometry and in increasing 
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patient attention and motivation. However, they only included a small sample of children with 

unaffected hearing, highlighting the need for further research that involves children with hearing 

disabilities. 

Finally, Uluer et al. (2021) investigated whether the humanoid robot Pepper (also developed 

by SoftBank Robotics) supplemented with emotion recognition could assist children with hearing 

loss during auditory testing. The RoboRehab project included an affective module that processed 

facial and physiological data, a gamified tablet interface for the tests, and a social robot assistant 

that ran the tests and provided feedback. The affective module was used to recognize emotions of 

children via machine learning and deep learning methods. The experiment was conducted with 

hearing impaired children and three different setups were assessed: conventional, tablet (tablet-

based auditory game with visual feedback), and robot plus tablet (tablet-based game but feedback 

via gestures). In the conventional setting, the audiologists played pairs of stimuli sequentially and 

asked the child to answer whether they perceived the pairs to be same or different. The tablet setup 

featured an auditory perception game with visual feedback on the tablet, and the robot setup 

included the same tablet-based game, but the feedback was provided via the gestures of the robot. 

Children were accompanied by an audiologist during both the tablet and robot setups. 

In addition to collecting physiological signals and facial expressions, two surveys were 

conducted to explore the subjective evaluations of children. The results of the affective module 

indicated that the robot had a stimulating presence during the tests. Furthermore, test metrics 

showed that while the setup did not impact the hearing test results, the total testing time increased 

in the robot plus tablet compared to the conventional setup. Video annotations were examined to 

assess whether the longer testing times were due to increase in engagement levels. Since the 

conventional study was performed during the COVID-19 epidemic and all the children were 

wearing facial masks, the behavioral analysis results were inconclusive for the comparison of the 

conventional setup with the gamified setups. However, the results demonstrated that smiling, 

mimicking, and talking behaviors appeared in the robot plus tablet condition but not in the tablet 

only condition, possibly indicating greater engagement towards the robot. Additionally, survey 

results demonstrated that younger children were more excited to see the robot compared to older 

ones. 

 In view of the above-mentioned studies, NAO could provide a pleasant interaction 

experience for children with hearing loss. The present study aims to further evaluate the potential 
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of SARs, particularly NAO, in speech audiometry for children with hearing loss. Video annotation 

could be beneficial in evaluating such interactions especially in settings that involve children with 

hearing loss, since other methods, such as questionnaires could be less applicable (due to age and 

cognitive background of the children). The following section will discuss earlier research that 

assessed behaviors (such as engagement or discomfort) utilizing video schemes or annotation. 

2.3 Video schemes in HRI research 

To research engagement, social interaction, or other characteristics of HRIs, a wide range of 

methodologies have been employed including surveys, physiological measurements, and video 

annotations. Analyzing video recordings with video annotations is a frequent method for evaluating 

HRI, particularly when verbal reports or questionnaires are not available, optimal, or may bias the 

findings (e.g. when children are not yet able to read) (Kidd & Breazeal, 2005).   

 For instance, Koay et al. (2006) investigated the comfort level of seven adult subjects with 

respect to 12 robot behaviors by a handheld device (where subjects used a continuous scale to judge 

their current comfort level), questionnaires and analysis of pre-recorded video data to identify 

instances of discomfort. The participants had to perform two tasks: Negotiated Space Task and an 

Assistance Task. During the Negotiated Space Task, the robot moved around the room as the 

subject went through a stack of books, memorizing one title at a time, and writing down each title 

on the whiteboard. During the Assistance Task, the subject had to copy the book titles from the 

whiteboard onto paper while seated at a table, underlining particular letters with a red pen. The 

robot was responsible for bringing the missing pen to the table. The video footage was analyzed by 

two video coders, using a predefined video annotation scheme. The video scheme helped coders to 

identify instances of discomfort and included behaviors that indicate discomfort such as jumpy or 

jerky body movements, surprised facial expressions and the coders also had to indicate details of 

robot behaviors (robot actions, proximity and motion). To assess the consistency between the 

coders, Cohen’s Kappa was calculated, and the video scheme was assessed applying matching rules 

(strict or relaxed matching rule depending on whether suggested instances of discomfort of both or 

only one coder was matched with the data from the handheld device). Findings indicated that when 

the robot was blocking the path during the experiment, subjects were likely to experience 

discomfort. 
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 Lala et al. (2017) aimed to detect engagement during conversational HRIs by building a 

real-time engagement recognition model. Recorded videos were analyzed of 91 conversational 

human-robot sessions in order to select the most relevant social signals. The videos were annotated 

by several coders who marked the beginning and end points of each target behavior (verbal 

backchannels, nodding, laughter, eye gaze). The target behaviors were chosen based on a previous 

study where behaviors accompanying perceived engagement were identified (Inoue et al., 2016). 

Six annotators took part in the study by Inoue et al. (2016) and after rating the video sessions, 

agreements among annotators were assessed and discrepancies were discussed. The most common 

indicators were determined based on transition relevance places, relationship with multi-modal 

behaviors and time distribution of annotations. The outcomes of these analyses demonstrated that 

the most relevant engagement indicators were nodding, laughter, verbal backchannels, and eye 

gaze, therefore these behaviors were included in the engagement recognition model featured in the 

research by Lala et al. (2017). After testing the model, the authors noted that, even though the 

difference was not significant, they noted a drop in performance of the engagement model when 

using behavior detection compared to manual annotation (Lala et al., 2017). A similar study was 

conducted by Jang et al., (2014). The authors aimed to develop a classifier to recognize engagement 

in children during a robot-conducted math quiz game. Videos of seven children were annotated by 

three different coders. The coders had to indicate different social signals such as posture (straight, 

stoop), speech (robot/child), gaze direction (e.g., TV, robot), behaviors (e.g., head-nod, headshake, 

touching-hair, touching-face) or facial expression (smile, laughter, neutral). After coding the social 

signals, they also had to indicate engagement as two states (engaged = 1, not engaged = 0). The 

high agreement (Cohen’s Kappa above 0.6) behaviors were the following: posture, behavior, gaze 

direction, game context and speech by robot. 

 Serholt and Barendregt (2016) investigated whether children express signs of social 

engagement when socially significant events were initiated by a robot. This project was a 

longitudinal field trial at a primary school lasting for 3.5 months. The interaction sessions took 

place during standard classroom lessons and included map tasks and treasure hunts guided by a 

NAO robot. The sessions were recorded and annotated by the two authors. The coders used a 

predefined video scheme that included both positive and negative indicators based on previous 

literature by Argyle and Dean (1965), Castellano et al. (2009) and Vacharkulksemsuk and 

Fredrickson (2012). Examples of social engagement indicators were gazing at the robot, timid or 
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flushed smiles, reacting to the greeting of the robot, waving, nodding, head shakes and mirroring. 

Gazing elsewhere other than at the robot, nervous or confused expressions were considered as 

indicators of no social engagement. The results showed that most frequent facial behaviors were 

smiling or looking serious, the most frequent verbal responses were indicating understanding or 

agreement, e.g., “Yes” or “Okay” and the most common gestures were head nods.  

These studies demonstrate that a well-defined video scheme could help identify behaviors 

that might be hidden to other assessments (e.g. questionnaires). Additionally, video annotations 

provide time stamped data that could be re-processed (Kidd & Breazeal, 2005). However, the 

observation process is subjective and might be influenced by the personality, attitudes, or other 

personal factors of the coders. A well-developed and understandable video scheme with clear 

descriptions (and examples) of the behaviors could help to avoid uncertainties.  

The goal of the present study is to focus on non-verbal cues that appear in everyday 

interactions and to develop a video protocol that is easily adaptable to human-robot interactions in 

various settings. Furthermore, it seeks to contribute to the preliminary findings of assessing non-

verbal cues in HRI studies in the auditory field. The next section will present the details on how 

these objectives will be examined as well as the relevant research questions and hypotheses. 

3. Research questions and relevance of the present study 

Even though findings of previous research are promising regarding eliciting engagement during 

human-robot interactions with NAO (Uluer et al., 2021), there has been limited research on 

investigating non-verbal cues as engagement indicators in audiometric settings supported by NAO. 

Engagement is a key factor in audiometry and children with hearing loss undergo several 

audiometric tests to assess hearing levels and adjust hearing devices. Incorporating NAO as a 

support for children with hearing disabilities during speech audiometry could result in a pleasant 

and engaging experience. However, to determine whether NAO is able to provide a positive 

experience, children's engagement must be measured during the auditory sessions. There is 

currently no standard approach for evaluating these metrics and detecting them is a challenging 

task in HRI due to the complexities of these interactions. Observation and annotation of non-verbal 

cues could be a suitable method in audiometry and has been frequently applied in HRI research 

(Abdul Malik et al., 2014; Uluer et al., 2021). 
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 The goal of this exploratory study was to create a video protocol with standard scoring 

metrics of non-verbal cues to evaluate engagement levels in HRI during audiometry with children. 

The non-verbal cues were selected based on prior studies of child-robot interactions (Dautenhahn 

& Werry, 2002; Jang et al, 2014; Serholt & Barendregt, 2016). The video scheme included easily 

detectable, natural non-verbal behaviors that emerge in human-human as well as human-robot 

interactions. A reliable video protocol could aid researchers and clinicians to share knowledge, 

compare and evaluate relevant outcomes and findings in the child-robot interaction (CRI) field 

(Steinfeld et al., 2006).  

The research questions addressed in the present study are the following: 

1. What are the most and least common non-verbal cues that indicate engagement or no 

engagement towards the robot during auditory testing with children? 

2. How does the frequency of these cues change throughout the auditory sessions; in 

particular, comparing the beginning and the end of sessions? 

3.  How do these cues differ for children with lower levels of maximum speech scores 

compared to the overall sample? 

It is hypothesized that the most common non-verbal cues would be engagement indicators while 

the least frequent ones would not be indicators of engagement (H1). Furthermore, it is expected 

that more in general, more cues would appear at the beginning of the video and less towards the 

end as the novelty effect of the robot wears off (H2). Finally, children with lower levels of 

maximum speech scores would display similar cues compared to other children indicating that the 

NAO is able to effectively supporting them as well during the interactions (H3). 

4. Methods 

4.1 Participants  

27 hard-of-hearing children were participating in the study conducted at the UMCG. Prior to the 

testing, all parents provided their informed consent for the sessions and the video recording (as 

approved by the METc ethical review committee at UMCG: METc 2018/427, ABR 

NL66549.042.18) and all children took part in the study during their scheduled clinical session at 

the ENT outpatient clinic in the UMCG. Recorded videos of the testing were analyzed in the present 
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study. The age range of participants was between 4 and 15. Hearing devices, specifically one or 

two CIs or one CI and one HA, were used by the participants and neuropathy was not in the 

exclusion criteria. The video recording of one child was excluded from the study since they only 

had HA as a hearing device (without CI) and they attended school for normal hearing children; 

therefore, the total sample size of the current study was n = 26. Participants’ relevant demographic 

characteristics are summarized and presented in Table 1. 

 

Table 1.  

Demographic characteristics 

Participant characteristics  
N (%) / 

M(SD) 

Age   

Mean (SD) 8.97 (2.8) 

Hearing device   

Bilateral CI 19 (73%) 

    Unilateral CI               3 (12%) 

    Bimodal CI+HA 4 (15%) 

Hearing Loss (PTA 0.5-4 kHz better ear, unaided)  

Mild (21-40 dB HL) 
 

     1 (4%) 

Moderate (41-60 dB HL)      1 (4%) 

Severe (61-80 dB HL)      2 (8%) 

Profound (>80 dB HL)      22 (84%) 

Speech perception in quiet (65 dBSPL,%, aided)  

    Mean (SD)      90.8 (13) 

Note. M = mean, SD = standard deviation, N = sample size, % = percentage 

4.2 Materials 

4.2.1 Robot 

A NAO robot (SoftBank Robotics) was utilized for this research, which is a 57 cm long humanoid 

robot with speakers and microphone. The NAO was operated with the Wizard of Oz approach 
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(WoZ) which refers to a person controlling the robot's movement, navigation, voice, and gestures 

remotely (Riek, 2012). 

4.2.2 Setting 

The clinical sessions were in Dutch and lasted approximately 1 hour. The interaction with the robot 

was also in Dutch and lasted approximately 10 minutes and the children had to sit on a chair in 

front of a desk, where a NAO robot was placed (Figure 4). Their parents, the speech therapist, 

audiologist, and researchers were present in the room. The interaction included three different 

phases: static robot, warble tones and speech audiometry test. The clinician controlled the aspects 

of the interaction including the time of each stage (except 30s static) and the choice of the speech 

audiometry test. The speech therapist sat on the other side of the table, assisting the children. Before 

the interaction began, the therapist had a brief talk with the participants, while the NAO robot sat 

still on the table, blinking. Afterwards, the speech therapist demonstrated the warble tones. The 

warble tones (sampled between 150 - 5000 Hz, calibrated at 65 dB) were complex sounds played 

as triggered events when the tactile sensors on the robot's head, hands and feet were pressed to raise 

attention in children and offer an opportunity to get to know the robot. Next, depending on the 

clinician, the participants had to complete either the DIN (speech-in-noise) test and/or NVA 

(speech-in-quiet) lists. The speech audiometry tests began with the robot getting up and taking up 

a crouching position facing the participant, while the audiologist or speech therapist explained the 

task in question. During the tests, the robot provided positive feedback in the form of a nodding 

head movement. As additional feedback, the audiologist was able to select “fist bump” or “blue 

eyes”. “Fist bump” (or “boxing”) refers to the robot raising the arm and offering a “fist bump” as 

positive feedback, while “blue eyes” refer to the robot eyes changing from default white to blue 

color to increase attention. Before each test, the clinician would select the dB for testing. The levels 

of the speech materials were calibrated with a Knowles Electronics Mannequin for Acoustic 

Research (KEMAR, GRAS, Holte, Denmark) located at approximately 80 cm from the NAO and 

a sound-pressure level meter (Type 2610, Bruël Kjær and Sound & Vibration Analyser, Svan 979 

from Svantek). During the NVA lists [45,75 dB] the robot played monosyllabic words that the child 

had to repeat, while during the DIN test [45,72 dB], the child had to repeat the digits.  
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Figure 4. Interaction with the NAO robot 

4.2.3 Video recordings 

The video recordings included all the aforementioned child-robot interactions, from the static-robot 

phase to the speech audiometry test. The parts selected later for analysis were in which children 

interacted with the robot. The interactions were recorded with two cameras from two angles: lateral 

and frontal. In the lateral view, the camera captures the entire body, while the frontal view focuses 

on participants' faces. The parents of the children provided consent for recording the sessions and 

using the data for further analysis. 

4.3 Measurements 

4.3.1 Video protocol 

The video protocol was created based on earlier research that developed video schemes to assess 

HRI in various contexts (Dautenhahn & Werry, 2002; Heerink et al., 2012; Henkemans et al., 

2017). Table 2 represents the complete video protocol. It includes 18 non-verbal behaviors, 11 of 

these were related to the body position and movements, and three were directly related to the robot 

(grabbing, pointing at and waving at the robot). Ten of the behaviors were static (measuring 

frequency) and one was dynamic (measuring duration, i.e. actively moving). The remaining seven 

behaviors were focused on the face of the children and were measured as dynamic behaviors. 
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Table 2. 

Complete video protocol 

Camera view Camera focus Event type 

Lateral view Position Static 

Leaning towards the robot 

Leaning away from the robot 

Hide away 

Nodding 

Shaking head 

Covering ears 

Clapping 

Pointing at robot 

Grab robot 

Wave at robot 

Dynamic 

Actively moving 

Frontal view Face Dynamic 

Amused 

Bored 

Mocking 

Surprised 

Distressed 

Distracted 

Other 

  

4.3.2 Descriptions of the non-verbal metrics 

The static behaviors measured in this research are described as follows: 

Leaning towards and leaning away from the robot 

Leaning towards the robot indicates that the child is purposefully moving their torso closer to the 

robot (decreasing the angle formed between the legs and the torso), while leaning away from the 
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robot implies that the child is purposefully moving the torso away from the robot (increasing the 

angle formed between the legs and the torso). 

Hide away 

Hiding away is described as covering the face with hands/other parts of the body in order to be out 

of sight of the robot/clinicians. 

Nodding 

Nodding is moving the head in an up-down motion as a sign of agreement or understanding. It has 

been regarded as a common backchannel in conversations (Lala et al., 2017). 

Shaking head 

Shaking the head is moving the head in a sideways motion as a sign of disagreement. 

Covering ears 

Covering the ears is the motion of using hands/other parts of the body for cupping the ears to 

indicate that the child is not hearing or does not want to hear the sounds surrounding them. 

Clapping 

Clapping is striking palms together repeatedly (with or without producing sound). 

Pointing at robot 

This behavior refers to using a finger to direct attention towards the robot. 

Grab robot 

Grabbing the robot is invading the robot’s space by grasping the head, torso, arms and/or legs. It 

also includes hugging/kissing/lifting the robot.  

Wave at robot 
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Waving at the robot is moving hands in a sideways motion in front of the robot. Waving is a social 

behavior that can be used to attract the other partner's attention or as a greeting (Rousseau et al., 

2013). 

The dynamic behaviors are described as follows: 

Actively moving 

This metric includes behaviors such as dancing, moving, playing with the body, stretching, 

scratching, or fidgeting.  

Amused 

This behavior indicates that the child is looking entertained or smiling, laughing, and showing 

excitement.  

Bored 

Boredom can be seen when the child is looking weary, being impatient, yawning, rolling eyes. 

Mocking 

Mocking is when the child is making funny faces to the robot. 

Surprised 

Being surprised is reflected by gasping when looking at the robot.  

Distressed 

A child is distressed when for example he/she is crying or throwing a tantrum.  

Distracted 

Children are distracted when they are not focusing on the robot but looking at the clinician, parent, 

other people or objects for a longer period of time. 

Other 
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Actions that are as unclassified, or notes from the annotators such as when the child looks confused 

or puzzled etc. 

4.4 Procedure 

4.4.1 Video annotation 

The video data was manually coded by two independent coders using the predefined video protocol 

(see Table 2). Depending on the behaviors, occurrences (in case of static/point behaviors) or 

beginning and endpoints (in case of dynamic/state behaviors) were annotated. The coding of the 

videos was performed with the BORIS software (Friard & Gamba, 2016). Due to time constraints, 

one of the coders was not able to fully complete the rating for the frontal view. Figure 5 shows the 

behavioral coding map of the video scheme. 

 

Figure 5. Behavioral coding map of the video scheme 
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4.5. Statistical analysis  

4.5.1. Descriptive statistics 

The descriptive statistics analysis included total time, mean time, standard deviation, maximum 

and minimum durations of the behaviors. Moreover, the annotated frontal and lateral view as well 

as the total count of all non-verbal cues were calculated for the videos that were logged by both 

coders (processed data) as well as for the raw data. 

4.5.2. Intercoder reliability 

In order to investigate consistency between coders, percentage agreement was calculated both for 

the raw data (with missing data regarded as non-agreement) and listwise deleted data (missing data 

omitted). The listwise deleted data was applied due to two many missing cases for coder 2 which 

could skew the data. Therefore, the listwise deleted data attempts to provide a better picture on the 

reliability between the two coders since it only includes the videos logged by both coders. The 

listwise deletion was performed with the following method: 1. timings of behaviors were matched 

for both coders (± 3 s), 2. missing data (where one coder data was not available) were deleted. 

Additionally, times were matched (± 3 s) for the raw data as well. Percentage agreement and 

Cohen’s Kappa (unweighted) was calculated across all behaviors as well as for point and state 

behaviors separately.  

4.5.3. Intercoder comparisons 

To examine similarities and differences between the coders for the analyzed behaviors, aggregated 

counts and percentages of behaviors and lateral and frontal view behaviors were calculated and 

plotted for as well as total summed durations of state behaviors (measured in seconds). Since the 

purpose of these analyses was to compare the annotations between the two coders, the counts, 

percentages, and durations were calculated applying the processed data (i.e. data logged by both 

coders: frontal view videos n = 4, lateral view videos n = 26). 

4.5.4. Intracoder comparisons 

Start times of point behaviors were measured and plotted separately for coder 1 and coder 2 and 

divided into three categories based on the video lengths (short <= 600 s, medium = 600-800 s, long 

>=800 s). Additionally, aggregated durations of state behaviors were calculated for coder 1 and 
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coder 2 separately and represented in one plot. The data sample used for the intracoder comparisons 

was the original (raw) data since the analysis aimed to examine the trends of the non-verbal cues 

for coder 1 and coder 2 separately.   

4.5.5. Case studies 

Videos of children who had maximum bilateral speech scores (aided) below 80% were analyzed 

case by case. Ages of these participants are presented in decimals to maintain consistency with 

previous studies that included children with hearing loss. Maximum bilateral speech scores were 

obtained from the scores of the NVA lists. The counts and the durations of the annotated cues were 

plotted and calculated, and the anecdotal evidence was examined as well. The analyzes for the case 

studies were performed with the raw data sample (the frontal view coding only includes the 

annotations of coder 1). 

5. Results 

5.1. Participant flow and missing data 

Due to time and practical constraints, one of the coders could not complete the analysis of the 

frontal view videos therefore, annotated data of 22 subjects were missing for this viewpoint (total 

n = 4). Consequently, for the intercoder comparisons and (listwise deleted) intercoder reliability, 

the final sample for the lateral view behaviors, was n = 26 and for the frontal view behaviors, n = 

4. For the intracoder comparisons, the examined sample size for coder 1 was n = 26 both for frontal 

and lateral view and for coder 2, n = 26 for lateral and n = 4 for the frontal view.  

5.2. Descriptive statistics 

The total number of coded behaviors were 1472, of which 729 (49.5%) were state and 743 (50.4%) 

were coded point behaviors. Coder 1 logged 488 (33.1%) state behaviors and 388 (26.4%) point 

behaviors, while coder 2 logged 241 (16.4%) state behaviors and 355 (24.1%) point behaviors. The 

data tables including the original (raw) data can be found in Appendix A. The number of logged 

events for each behavior for the videos that were analyzed by both coders (lateral n = 26, frontal n 

= 4) are presented in Table 3. The mean duration for the state behaviors for subjects logged by both 

coders was 13.93 s ± 51.05 s for frontal view and 16.76 s ± 25.48 s for lateral view (Table 4). The 

total duration the videos was 18342 s, the mean time was 705.46 s ± 189.33 s (Table 5). 
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Table 3 

Counts of coded behaviors      

Coded behaviors N (coder 1) N (coder 2) N (total) 

Number of state and point behaviors (lateral, n = 26)     

State 100 136 236 

Point 388 355 743 

Number of state behaviors (frontal, n = 4)     

State 44 79 123 

Note. State behavior = actively moving. Number of videos (subjects) both coders analyzed are denoted by “n”. Subjects both 

coders analyzed in the frontal view: 001, 002, 003, 005. 

 

Table 4 

Durations for state behaviors 

 N (video) Mean(s) SD Median(s) Min(s) Max(s) 

Frontal 26 13.93 51.05 5.5 0.5 565.95 

Lateral 4 16.76 25.48 8 0.74 164.32 

Note.  s = second. Only the durations of state behaviors of subjects whom were coded by both coders are presented 

 

 

Table 5 

Video lengths 

 N (video) Mean time(s) SD Shortest(s) Longest(s) 

Video timings 26 
705.46 (11.76 

min) 

189.33 (3.15 

min) 
455 (7.6 min) 

1156 (19.27 

min) 

Note: s = second. Min = minute. Only the videos that were coded by both coders are presented in this table. 

 

5.3. Intercoder reliability 

5.3.1. Original data 

The percentage agreement of the raw data (tolerance = 0) was 18.8% for all behaviors, 20.2% for 

point behaviors and 13.1% for state behaviors between the two coders. Tolerance is the number of 

successive rating categories that should be regarded as rater agreement. Tolerance was set to 0 since 
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the data was nominal (tolerance other than 0 is only applicable to numerical values). Cohen's kappa 

(κ) was 0.0076 (z = 0.54, p = 0.59) for all behaviors, 0.0188 (z =1.16, p = 0.25) for point behaviors 

and -0.58 (z = -9.34, p < 0.001) for state behaviors. 

5.3.2 Listwise deleted data 

The percentage agreement for the listwise deleted data (tolerance = 0) was 66.7% for all behaviors, 

70.3% for point behaviors and 51.2% for state behaviors between the two coders. Cohen's kappa 

(κ) was 0.602 (z = 21.6, p < 0.001) for all behaviors, 0.628 (z =18.4, p < 0.001) for point behaviors 

and -0.14 (z = -1.98, p = 0.048) for state behaviors. 

5.4. Intercoder comparisons 

The counts of all behaviors can be found in Appendix B. The most frequent behavior for coder 1 

was “nodding” (152 occurrences, 13.7% of total behaviors), “actively moving” (100 occurrences, 

9% of total behaviors), and “lean towards the robot” (78 occurrences, 7% of total behaviors) while 

for coder 2, “leaning away from the robot” (120 occurrences, 10.8% of total behaviors), “leaning 

towards the robot” (119 occurrences, 10.8% of total behaviors) and “actively moving” (93 

occurrences, 8.5% of total behaviors). The least frequent behaviors were “mocking” (1 occurrences, 

0.1% of total behaviors) and “distressed” (1 occurrences, 0.1% of total behaviors) for coder 1 and 

“bored” (1 occurrences, 0.1% of total behaviors) and “distressed” (1 occurrences, 0.1% of total 

behaviors) for coder 2. Behaviors with 0 occurrences were “bored” and “distressed” for coder 1 

and “covering ears” and “other” for coder 2. Figure 6 illustrates a bar chart for all behavior counts 

for coder 1 (red bars) and coder 2 (blue bars). Each bar represents a coded behavior and longer bars 

indicate higher values. The two different colors highlight differences between the annotated 

behaviors of the two coders. The graph demonstrates that -with the exception of the behavior „grab 

robot”- the numbers of the coded behaviors mostly varied between the coders. However, there are 

similarities between the behaviors with the most and least behavior counts such as „leaning toward 

the robot” and “actively moving” (both coders annotated as most common) and „distressed” and 

“bored” (least common). 
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Figure 6. Number of all behaviors for both coders 

The frontal view behaviors analysis demonstrated that the most frequent behaviors for both coders 

were “distracted” and “amused” (coder 1 – “distracted”: 7 occurrences [0.6% of total behaviors], 

“amused”: 34 occurrences [3% of total behaviors]; coder 2 – “distracted”: 51 occurrences [4.6% of 

total behaviors], “amused”: 25 occurrences [2.2% of total behaviors]). The least frequent behaviors 

were “bored”, “distressed” (0 occurrence) and “mocking” (1 occurrence) for coder 1 and “bored”, 

“distressed” and “mocking” for coder 2. Figure 7 illustrates the behavior counts for frontal view 

videos annotated by the coders. Each bar represents a coded behavior and longer bars indicate 

higher values. The distinct colors demonstrate the differences between the coders in regards of the 

annotated behaviors. The chart shows that „distracted” and „amused” had the highest behavior 

counts for both coders and „bored”, “distressed” and “mocking” had the lowest total counts. The 

frontal view behavior counts plots demonstrating the raw data (coder 1 frontal view n = 26, coder 

2 frontal view n = 4) can be found in Appendix C. 
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Figure 7. Behavior counts of frontal view videos 

For the lateral view behaviors, the most frequent behavior was “nodding” (152 occurrences, 13.7% 

of total behaviors), “actively moving” (100 occurrences, 9% of total behaviors) and “leaning 

towards the robot” (120 occurrences, 7% of total behaviors) for coder 1 and “leaning away from 

the robot” (120 occurrences, 7% of total behaviors), “lean towards the robot” (119 occurrences, 7% 

of total behaviors) and “actively moving” (100 occurrences, 9%) for coder 2. The least frequent 

behaviors were “other” (3 occurrences, 0.3%), “covering ears” (3 occurrences, 0.3%), “clapping” 

(6 occurrences, 0.6%) and “hide away” (6 occurrences, 0.6%) for coder 1 and “hide away” (4 

occurrences, 0.4%), “clapping” (5 occurrences, 0.45%), “shaking head” (6 occurrences, 0.6%) for 

coder 2. Behaviors with 0 occurrences were “covering ears” and “other” for coder 2. Figure 8 shows 

the behavior counts for lateral view videos annotated by the coders. Each bar represents a coded 

behavior and longer bars indicate higher values. The distinct colors demonstrate the differences 

between the coders in regards of the annotated behaviors (red: coder1, blue: coder 2). The chart 

shows commonalities between the two coders regarding highest behavior counts (“leaning towards 

the robot) and lowest behavior counts (“hide away”). The lateral view behavior counts plots 

demonstrating the raw data (coder 1 frontal view n = 26, coder 2 frontal view n = 4) can be found 

in Appendix C. 
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Figure 8. Total behavior counts of lateral view videos 

The analysis of the durations showed that among state behaviors, “actively moving” (1594.92 s, 

26.6% of summed total durations) and “amused” (855.37 s, 14.8% of summed total durations) had 

the longest total duration for coder 1 and “actively moving” (2468 s, 44.2% of summed total 

durations) and “distracted” (521 s, 9% of summed total durations) for coder 2. The shortest total 

durations were “mocking” (0.56 s) and “other” (10 s, 0.2% of summed total durations) for coder 1 

and “mocking” (2.5 s, 0.04% of summed total durations) and “bored” (11 s, 0.2% of summed total 

durations) for coder 2. Figure 9 illustrates the total summed durations of the videos where each bar 

represents a state behavior and longer bars indicate longer total durations. The colors demonstrate 

differences between the coders (red: coder 1, blue: coder 2). “Actively moving” had the longest 

durations, while “mocking” showed the total shortest duration for both coders. The total summed 

durations of the raw data can be found in Appendix C. 
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Figure 9. Durations of state/dynamic behaviors 

5.2. Intracoder comparisons 

5.2.1 Time occurrences of point behaviors 

Figures 10 and 11 illustrate the time occurrences of point behaviors for coder 1 and coder 2 

respectively. The x axes of the scatterplots indicate the (starting) times in seconds, while the y axes 

represent the point behaviors. The distinct colors demonstrate separate video lengths (red for 

recordings lasting longer than 800 s, blue for recordings lasting less than 600 s and green for videos 

lasting between 600 and 800 s). 

 Figure 10 demonstrates the timings of point behaviors across all subjects coded by coder 1 

separated by video length. “Nodding” (30%) and “leaning towards the robot” (18%) was frequent 

throughout the sessions. “Shaking head” (7%) and “leaning away from robot” (6%) was also 

frequent throughout the interaction although these behaviors were less frequent.  The least frequent 

behaviors were “covering ears” (0.6%), “hide away” (1.4%) and clapping (1.4%). “Grab robot” 

(12%) and “point at robot” (4.5%) were more frequent at the beginning of the video sessions, while 

“covering ears” (0.6%) and “clapping” (1.4%) were less frequent. Figure 11 demonstrates the 

timings of point behaviors for coder 2. Both “leaning towards” (27%) and “leaning away from 

robot” (27%) were frequent throughout the sessions as well as “nodding” (7.5%) and “grab robot” 

(9.5%). “Pointing” (3%) and “waving at the robot” (1.7%) also appeared throughout the sessions 
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but these behaviors were more common for “short length” videos. The least frequent behaviors 

were “hide away” (0.9%) and “clapping” (1.1%). 

 

Figure 10. Time occurrences of point behaviors: coder 1 

 

 

Figure 11. Time occurrences of point behaviors: coder 2 
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5.2.2 Behavior durations and start times of state behaviors 

The start and endpoints of behavior annotations of coder 1 indicated that “actively moving” (M = 

17.5 s, SD = 27 s) and “amused” (M = 20 s, SD = 48 s) generally lasted longer and occurred 

dispersed throughout the sessions. At the beginning of the sessions, “amused” had the longest 

duration and as the sessions proceeded, it gradually disappeared, while “actively moving” was most 

present during the whole sessions. “Surprised” (M = 6 s, SD = 8 s) and “mocking” (M = 4.5 s, SD 

= 5.5 s) were present occasionally for shorter periods as well as “other” (M = 9 s, SD = 16 s). 

“Other” indicate behaviors not presented in the protocol and coder 1 noted these behaviors as 

“talking to robot”, “catching falling robot” or “uncertain”. The findings of coder 2 indicate that 

“actively moving” (M = 23 s, SD = 66 s) appeared dispersed throughout the sessions and generally 

lasted a longer amount of time. “Amused” (M = 12 s, SD = 10 s) was mostly present in the 

beginning and lasted for shorter durations, while “distracted” (M = 15s, SD = 20 s) was more 

present in the beginning but lasted for longer durations. “Distressed” (30 s) and “bored” (11 s) were 

present once, for a short amount of time, at the beginning of sessions. Figure 12 illustrates the time 

occurrences and durations of the state behaviors. Each row represents one behavior, and the 

different colors indicate the two coders (red: coder 1, blue: coder 2) 

 

Figure 12. Durations and start times of behaviors 
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5.5. Case studies 

5.5.3 Subject 008 

Participant 008 is a 6.4-year-old child with unilateral CI, implanted when they were 1 year old. 

Their maximum speech score (65 dB, aided) was 49%. The anecdotal evidence (notes of the 

clinicians) indicated that the child is often aggressive, and they often struggle with audiometric 

tests. Before the beginning of the test, their parent was afraid that they were going to hit or break 

the robot. However, according to the notes, the child was showing affection towards the robot by 

kissing and hugging it after the session was over. On the video recording, the child seemed scared 

and startled when the robot moved for the first time (shouting, hiding away, looking at the parents). 

After a few seconds of the robot remaining motionless, the child appeared at ease, touched the robot 

and pointed at it. The participant was excited to take part in the NVA list and gave the robot their 

complete attention by looking at it and leaning in its direction. They often touched its head and 

showed emblems towards it (e.g. thumbs up). Moreover, they often imitated the head nodding 

gesture of the robot. Throughout the second NVA list, they continued to show curiosity and 

frequently waved, stroked and leaned in to gaze into the robot's eyes. The speech intelligibility 

score for the first test was 36% (stimuli presented at 60 dB) and 39% for the second test (stimuli 

presented at 75 dB). Figure 13 illustrates the behavior counts for this subject; each row represents 

one behavior. The most frequent behaviors were “grabbing the robot” (31 occurrences), “leaning 

towards the robot” (31 occurrences) and “leaning away from the robot” (27 occurrences) and the 

least frequent behavior was “mocking” (4 occurrences). Figure 14 illustrates the total behavior 

durations during the testing, each column represents one behavior. While “amused” behavior had 

the longest duration (211 s), “mocking” was annotated as the shortest (23 s). 
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Figure 13. Behavior counts for subject 008 

 

Figure 14. Behavior durations: subject 008 

5.5.2 Subject 011 

Subject 011 is a 12.7-year-old child with bilateral CIs. The child was 5 years old when they got 

their first CI and 7 when they got their second CI. The maximum speech score (65 dB, aided) of 

this child was 70%. The anecdotal evidence (notes from the speech therapist) indicated that they 

do not talk much in general, and the speech therapist was afraid they would not be able to perform 

the test. The video recording shows that the child was often smiling and pointing at the robot before 
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the session started. During the warble tones they were often distracted and talked to their parent. 

They also often looked at their parent. When the robot started to move, they seemed a bit startled 

and were leaning away from the robot while talking to their parent at the same time. They were 

often pointing to the robot and referring to it while talking. During the first NVA list, they were 

often smiling, laughing, and seemed amused and during the second NVA list they paid full attention 

to the robot by constantly looking at it. Both NVA lists were completed. The results of the first 

NVA list was: speech intelligibility score = 70% (stimuli presented at 70 dB), and for the second 

NVA list: speech intelligibility score = 76% (stimuli presented at 60 dB). Figure 15 illustrates the 

behavior counts for this subject (each row indicating one behavior). Both “pointing at the robot” 

and “amused” occurred 7 times and were the most common non-verbal cues. “Grab the robot” (1 

occurrence) and “nodding” (1 occurrence) were the least frequent cues observed. Figure 16 shows 

the durations of annotated behaviors with each column indicating one behavior. “Amused” 

behavior had the longest duration in total (117 s) and “actively moving” had the shortest duration 

(6.5 s). 

 

Figure 15. Behavior counts: subject 011 
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Figure 16. Behavior durations: subject 011 

5.5.3 Subject 020 

Subject 020 is 5.1-years-old child, and they have bilateral CIs. The maximum speech score (65 dB, 

aided) of this child was 60%. The clinical profile indicates agenesis of corpus callosum. The 

anecdotal evidence indicates that the child was able to replicate the vowels, but the session in 

general was not adequately successful. Notes from the previous audiometry sessions (before the 

child received their CI) indicated “uncontrollable behavior”. During pure tone audiometry they 

were struggling to complete the test, however, four months after receiving the CIs (current session), 

the child was able to complete it. Figure 17 shows the behavior counts for the present session. The 

most frequent behavior was “grab robot” (12 occurrences) and “actively moving” (10 occurrences) 

and the least frequent was “hide away” (1 occurrence), point at robot (1 occurrence) and surprised 

(1 occurrence). Figure 18 demonstrates the behavior durations for subject 020. “Amused” behavior 

had the longest (418 s), while “surprised” had the shortest duration (2 s). The child was frequently 

seen touching the robot's legs and arms at the beginning of the video recording, and often looking 

to their parents for support (e.g. when the robot moved). They appeared enthusiastic to hear the 

warble tones and keen to hear all the sounds the robot could play. At the beginning of the NVA list 

they were often smiling, touching the robot, and pointing at it. However, when they were not able 

to repeat the words, they lost attention and talked to their parents. The child was not able to 

complete the NVA list for the first two times, but the third try was successful. When the third test 

ended, the robot displayed “boxing” motion. The child was initially confused, but when the robot 
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repeated the action, they became interested and smiled. The speech intelligibility score of the NVA 

list was 36% (stimuli presented at 75 dB). 

 

Figure 17. Behavior counts for subject 020 

 

Figure 18. Behavior durations for subject 020 
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6. Discussion 

6.1 Overview and the goal of the study 

The primary aim of the current study was to develop a video protocol with standard scoring metrics 

of non-verbal cues to evaluate engagement levels in HRI during audiometry with children. This 

video protocol attempted to evaluate whether NAO is able to provide a pleasant experience for 

children with hearing loss by offering a scheme of easily detectable non-verbal cues. The 

subsequent sections will discuss the main findings according to the research objectives and the 

limitations. 

6.2. Non-verbal cues as indication of engagement  

The first research question was the following: What are the most and least common non-verbal 

cues that indicate engagement or no engagement towards the robot during auditory testing with 

children? The corresponding hypothesis for this research question was that the most common non-

verbal cues would be engagement indicators while the least frequent ones would not be indicators 

of engagement (H1). Overall, the intercoder reliability for the listwise deleted data indicated 

moderate agreement (0.41-0.60) for all behaviors and substantial agreement (0.61-0.80) for the 

point behaviors (Cohen, 1960). State behaviors indicated no agreement (potentially due to the small 

sample size of frontal videos), therefore the findings regarding these non-verbal cues should be 

interpreted with caution. According to the annotations and the results of intercoder analysis, 

"leaning towards the robot" was the most frequent point behavior consistent across both coders (i.e. 

it had a high frequency count for both coders). “Leaning towards the robot” is when the child is 

moving their torso closer to the robot and have been linked to inclusion, affirmation, and attentional 

behaviors in human-human and human-robot interactions (van der Kooij et al., 2006; Johanson et 

al., 2019). Additionally, it was discovered that sign language communicators also exhibited these 

characteristics when displaying leaning forward behaviors (Wilbur & Patschke, 1998). Therefore, 

“leaning towards the robot” could be considered as the most frequent engagement indicator in the 

current setting. "Actively moving" was the most often annotated state behavior by both coders, and 

this behavior includes actions like dancing, moving, toying with one's body, stretching, itching, 

and fidgeting. In their pilot study with a social robot, Albo-Canals et al. (2018) regarded “walking 

around” and “playing with the body and other objects” as disengagement occurrences. Children 

were accompanied by the parents during the interaction session with the NAO, and in the videos, 
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children were sometimes seen walking towards them during the testing. This could provide an 

explanation for the high counts of “actively moving”. Additionally, the behaviors with the longest 

durations and relatively high frequencies were “actively moving”, “amused” and “distracted”. 

“Amused” is when the child is smiling, laughing and showing excitement. Smiling and laughing 

are considered as universally positive behaviors and indicators of engagement. This is consistent 

with earlier CRI studies demonstrating that smiling and laughing could reflect engagement and 

enjoyment (Leite et al., 2015; Young et al., 2011). “Distracted” was described as looking at the 

clinician, parent, other people or objects for a longer period of time. The parents were sitting next 

to the children during the testing and the tests were guided by the clinician therefore, the children 

were often interacting with and looking at other people throughout the session which could be 

reflected by the long durations of the annotated “distracted” cue.  

 The least frequent point behaviors appearing in the annotations of both coders were “hide 

away” and “clapping”. Hiding away is covering the face with hands/other parts of the body and 

could indicate that the child wishes to be invisible from others out of embarrassment, fear, or other 

emotions like playfulness. Therefore, “hiding away” is not generally considered to belong under 

the “engagement” category. “Clapping” is striking palms together repeatedly as a sign of applause 

or positive valence (Rudovic et al., 2017). The reason why this behavior was not frequent could be 

due to lack of engagement or due to sign language communicators using a different concept to 

display applause. This concept is “deaf applause” which is having both hands up in the air and 

twisting them a couple of times. The least frequent state behaviors were “bored” and “distressed”. 

“Bored” is when the child looking weary, being impatient, yawning, rolling eyes as an indicator of 

the lack of engagement. This behavior had the shortest total duration according to the annotations 

of both coders. “Distressed” was described as crying or throwing a tantrum and is universally 

regarded as an emotional disengagement behavior.  

 According to the video annotations, the findings show that positive behaviors and potential 

engagement indicators that were annotated frequently and/or had the longest total durations were 

the non-verbal cues "amused" and "leaning towards the robot”. However, it is challenging to draw 

a conclusion given that other behaviors, including "actively moving" and “distracted” which are 

not considered as engagement indicators were also rather common. 

 To provide an answer for the first research question, overall, potential engagement cues 

such "leaning toward the robot" and "amused" were seen more frequently during the sessions than 
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“hiding away" or "bored” which are not regarded as engagement indicators. However, the 

hypothesis was only partially confirmed and further work is certainly required to disentangle 

inconsistencies (such as the high count of behavior “actively moving” and “distracted”). A matched 

pairs study design involving children with normal hearing or auditory sessions without the NAO 

could help to provide a baseline for examining engagement.  

6.3 Changes in non-verbal cues with time 

The second research question aimed to investigate how the frequency of the non-verbal cues 

changes throughout the auditory sessions; in particular, comparing the beginning and the end of 

sessions. It was hypothesized that more engagement indicators would appear at the beginning of 

the video and less towards the end (H2). However, the findings from the intracoder analysis 

demonstrated that most annotated behaviors were dispersed throughout the video recordings and 

were rarely clustered at the beginning or at the end of sessions. Point behaviors “leaning towards 

the robot” and “nodding” were annotated to regularly occur and were dispersed throughout the 

videos according to the logs of both coders. “Nodding” is moving the head in an up-down motion 

as a sign of agreement or understanding and prior research demonstrated that it is related to the 

level of engagement (Inoue et al., 2016; Inoue et al., 2018). It is also considered as a sign of 

encouragement and affirmation towards the speaker (McClave, 2000). Given that the robot often 

nodded during the NVA lists and DIN tests, it is also possible that the children were imitating the 

robot during the tests. The behavior "grab the robot" regularly appeared at the beginning of the 

recordings and less frequently as the video progressed. It includes behaviors such as grasping the 

head, torso, arms and/or legs, or hugging/kissing/lifting the robot. Heerink et al. (2012) 

demonstrated that showing affection via physical contact during CRI has been regarded as an 

engaging, interactive activity. Since the auditory tests were preceded with warble tones where 

children were encouraged to touch the robot, it is not surprising that this behavior was more 

frequent at the beginning of the videos.  

  The behaviors “bored” and “distressed” only appeared rarely and mostly at the beginning 

of the interactions. This could indicate that even though some kids were not as interested in the 

robot at first, this pattern could have changed as the kids started interacting with it.  

 In regard to the research question, “grab the robot” behavior fluctuated the most, appearing 

most frequently towards the beginning of the videos compared to the end. In general, most of 
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behaviors were relatively consistent throughout the testing and “nodding” and “leaning towards the 

robot” appeared to be the most persistent behaviors according to the annotations. Therefore, the 

second hypothesis was only confirmed in the case of the “grab robot” behaviors but not for other 

engagement indicators. 

6.4 Engagement in children with lower maximum bilateral speech scores 

The third research question attempted to examine how the non-verbal cues differ for children with 

lower levels of maximum speech scores compared to the overall sample. The corresponding 

hypothesis suggested that the cues these children display would be comparable to the cues that are 

observed in the overall sample. Because three children's maximum bilateral speech scores (65 dB, 

aided) were below 80% (49%, 60%, 70%), the video recordings and the coders' annotations of these 

cases were evaluated to explore whether the video protocol could be applied in these videos and to 

evaluate the experiences with the NAO robot. All three children were successful in completing at 

least one of the NVA tests. Additionally, all children displayed “amused” behavior frequently 

and/or for longer periods of time. They were frequently smiling, laughing and actively interacting 

with the robot by either grabbing it, pointing to it or nodding towards it. Anecdotal evidence 

suggests that all three kids enjoyed their interactions with the robot.  

 To provide an answer to the research question, there were no evident patterns that suggest 

that non-verbal cues considerably differed according to the annotations and the anecdotal evidence. 

The most frequent cues such as “grab robot” or “amused” were often present in the majority of the 

videos. Even though the least frequent cues varied greatly between the three subjects, these cues 

were generally less common when looking at the annotations for all participants (e.g. in case of 

“hide away” or “mocking”). In summary, it is suggested that children with neurodivergent 

profile/less intelligibility scores could also benefit from the positive experiences the NAO robot 

could offer since they display similar (positive) behaviors as the other subjects. 

6.5 Limitations 

The present study included a relatively small study size of n = 26 for the point and n = 4 for the 

state behaviors. As a result, the findings of this study should be carefully interpreted and considered 

as indication to determine whether a video protocol could effectively identify child engagement 

during NAO-assisted audiometry. Additionally, intercoder reliability indicated no agreement for 
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the raw data (possibly due to the large number of missing data due to unequal frontal video sample 

sizes for coder 1 and coder 2), therefore the results should be interpreted with caution and as 

preliminary findings. Although the intercoder reliability of the listwise deleted data shows 

moderate reliability for all the behavior and the results from the case studies demonstrated that the 

non-verbal cues were corresponding to the anecdotal evidence and subjective observations. 

Another potential limitation is that the current study only included children with hearing loss 

without providing a baseline to measure engagement levels (i.e. comparison of engagement during 

speech audiometry testing without the NAO robot). Moreover, the parents actively assisted and 

engaged with the children during the hearing tests, thus the kids interacted with several individuals 

in addition to the NAO robot, which might have caused distraction. Finally, due to time restrictions 

and the additional cognitive load involved in answering questionnaires, the researchers were unable 

to provide the children with surveys to fill out regarding their interactions with the robot. As a 

result, this study's central emphasis is entirely exploratory and observational. 

7. Conclusion 

7.1 Future research 

 
The goal of the current study, which is exploratory in nature, was to create a video protocol for 

examining nonverbal cues with children who have varying degrees of hearing loss during speech 

audiometry supported by NAO. All in all, the present video protocol seems to be a promising 

method to evaluate engagement in this context and the non-verbal cues of the most and least 

frequent behaviors were comparable across the annotations of the two coders. Additionally, it is a 

solid foundation for more advanced video schemes that aim to investigate engagement within the 

fields investigating speech audiometry and HRI. For instance, future research could assess whether 

the video scheme is sufficiently clear by recruiting three or more coders to examine their agreement. 

Additionally, a discussion could be implemented to explore disagreements and the reasons behind 

these disagreements. Furthermore, results showed that the behaviors “mocking”, “hide away” and 

“actively moving” could be described in a more straightforward way to better distinguish between 

levels of engagement. 

 The results of the annotations suggested that NAO could be a promising assistant to 

clinicians during speech audiometry since children (both with lower and higher maximum speech 

scores) often showed engagement indicator cues during the interaction. A follow-up study applying 
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qualitative data triangulation, including quantitative methods as well as qualitative notes, 

transcripts, and subjective insights from the children and/or patents could provide novel 

perspectives of the experiences children face during these interactions. 
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Appendix A – Data tables of the raw data 

 
Total number of coded behaviors      

Coded behaviors N (coder 1) N(coder 2)  N (total) 

Total number of state and point behaviors      

State (coder 1: n = 4, coder 2: n = 26) 488 241 729 

Point (coder 1 & 2: n = 26) 388 355 743 
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Appendix B – Counts of non-verbal cues 

 
Counts of coded non-verbal cues (frontal view only 

includes videos coded by both coders)   

  

Coded behaviors N (coder 1) N (coder 2) N (total) 

Lateral view      

Leaning towards the robot 78 119 197 

Leaning away from the robot 29 120 149 

Hide away 6 4 10 

Nodding 152 34 186 

Shaking head 36 8 44 

Covering ears 3 0 3 

Clapping 6 5 11 

Pointing at the robot 21 14 35 

Grab robot 49 43 92 

Wave at robot 8 8 16 

Actively moving 100 136 236 

Frontal view     

Amused 34 25 59 

Bored 0 1 1 

Mocking 1 1 2 

Surprised 0 0 0 

Distressed 0 1 1 

Distracted 7 51 58 

Other 2 0 2 
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Appendix C – Graphs demonstrating behavior counts of the raw 

data 

 
Behavior counts for the frontal view videos of the raw data 
 

 
 
Behavior counts for the lateral view videos of the raw data 
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Behavior durations for the state behaviors of the raw data 
 

 


