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Abstract
Topic models are generally evaluated using coherency measures. These measures calculate the fre-
quency of co-occurrence between all the representative words of a topic. Research shows that co-
herence correlates well with human judgment. However, no research has looked into the correlation
between coherence and classifier accuracy. Can we use coherence for topic model selection when it
is used for a prediction problem? To fill this gap, this project conducts two experiments that inves-
tigate this correlation. Two topic models (LDA and BERTopic) are trained and evaluated with four
different coherence measures (UCI, UMass, NPMI, and CV). Classifiers (Logistic Regression and
Decision Trees) are trained using topic model features to predict corpus categories. Accuracies are
then correlated with the coherence measures. The results found the classifiers significantly correlated
with UMass and NPMI. However, the UMass correlations were problematic for being inconsistent.
Therefore, only NPMI could be considered generalizable for classifier performance estimation. The
results also showed a difference between classifier performance using different topic models. That is,
though BERTopic had higher coherence scores, LDA led to better logistic regression classifiers.
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1 Introduction

Text data often contain a large number of different words and symbols. A simple and popular pro-
cessing method is to transform text data into term-frequency (TF) matrices. TF matrices represent
documents as counts of all words in a corpus. For example, a corpus containing 10,000 word types
will represent each document using 10,000 features. While TF matrices can be used for statistical
and machine-learning models, they are often very inefficient. Each additional word token results in
another feature, leading to further complexity and resource use. They also do not represent documents
intuitively, providing little insight into possible underlying patterns. This is where topic modelling
comes in.

Topic modeling generates latent variables – or “topics” – from documents in the corpus. Topic
models can represent documents as a collection of topics. This results in a smaller and more efficient
corpus representation. It also results in more interpretable features. An early form of topic modeling
that is consistently referred to in the literature is Latent Dirichlet Allocation (Blei et al., 2003). LDA
has been applied to many different domains like scientific journals and historical newspapers (Griffiths
& Steyvers, 2004; Yang et al., 2011). LDA’s popularity inspired other topic modeling techniques as
well as additional domains of application.

Topic models are, by nature, unsupervised models. This begs the question: how are they evalu-
ated? Initially, topic models were evaluated using extrinsic measures. Wei and Croft (2006) evaluated
them based on their performance in information retrieval tasks. Wallach et al. (2009) evaluated them
based on the model’s ability to predict whether a document belonged to a corpus. Other evaluations
involve human judgment, where people would read the words of a topic and judge them. These eval-
uation methods, while valid, are unscalable. They take time and resources to conduct. “Coherence”
measures would prove to be the solution. Coherence measures how “fitting” all top words are to a
topic. The top words are the most frequently appearing words in a given topic, where frequency is
calculated differently depending on the topic model. How “fitting” top words are together refer to
how well they correlate with human judgment. A coherent topic could contain “brother, father, sister”
because they cohere to family. An incoherent topic could contain “pizza, book, submarine” because
their connection is unclear. Different coherent measures calculate these scores differently.

The first two coherence metrics ever developed were UCI (Newman et al., 2010, 2011) and UMass
(Mimno et al., 2011). In brief, UCI calculates topic coherence by measuring its pointwise mutual
information (PMI). PMI measures the rate of co-occurrence between two terms across documents.
UCI finds the PMI of terms using an external resource – Wikipedia specifically. UMass also calculates
the rate of co-occurrence between two terms. However, it calculates the rate differently and only uses
the training corpus. Lau et al. (2014) shows that both methods correlate well with human judgment.

Little is known if coherence also predicts feature quality for machine-learning. Researchers have
already used topic models to create well-performing classifiers (Hall et al., 2008; Sarioglu et al.,
2012). They often use coherence to determine how many topics a model should have. However,
they use coherence for interpretability, not knowing whether it leads to stronger classifiers. Knowing
the relationship between coherence and classifier accuracy would be useful for machine-learning. If
a correlation exists, coherence can predict topic feature importance. If a correlation does not exist,
we know only to use coherence for interpretability. This research project examines whether this
correlation exists.
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1.1 Research Questions
This project asks whether there is a relationship between coherence and classifier accuracy. There
exist many topic models, coherence measures, and classifiers. More detailed questions with these
things in mind are necessary to better understand the relationship. As such, this project poses the
following questions:

1. Is there a significant correlation between average model coherence and classifier accuracy?

2. Is there a significant correlation between individual topic coherence and feature importance?

3. Are significant correlations consistent across topic models?

4. Are significant correlations consistent across coherence measures?

5. Are significant correlations consistent across classifiers?

The first question looks at the relationship between coherence and accuracy directly. It aims to
see if coherence could be used to predict classifier performance before training. If no correlations are
found, then it is clear that coherence cannot predict classifier accuracy. However, if a correlation is
found, then the remaining four questions can determine the direction of this relationship.

The second question looks at the relationship between coherence and classifier accuracy on a
smaller scale. Topic model classifiers effectively use topics as features for classification. Coherency
measures compute an individual score for each topic in a topic model. The average coherence score
estimates the general performance of a topic model. Some classifiers have feature importance metrics
that show how much a given feature contributes to its predictions. We can correlate individual topic
coherence scores and the feature importance metrics that evaluate the topics as features. Doing this
lets us see the relationship between coherency and classifier performance on a smaller scale. A signif-
icant correlation would suggest that classifiers use individual topics for prediction. A non-correlation,
on the other hand, would imply that classifiers use all or several topics for prediction. This point, of
course, depends on whether average coherency correlates with classifier accuracy. If so, this would
suggest that topics are more predictive if they are used as a group.

The three remaining questions investigate the generalizability of these correlations. The correla-
tion necessitates three different parts: the topic model, the coherence measure, and the classifier. A
correlation may be only found for a specific constellation of those parts. The three separate questions
look at whether there are parts that generalize. The third question looks at topic models. If only
LDA coherence correlates with classifier accuracy, then the correlation is only applicable for LDA. If
another topic model finds a correlation, then we can generalize the prediction.

The fourth question looks at coherence measures. It is possible not every coherence measure
would correlate with classifier accuracy. Every measure may correlate with classifier accuracy. If we
know which one correlates, then we know which measure predicts classifier performance. Inconsis-
tency across measures can also tell us more about these measures. For instance, only UMass may
correlate with accuracy because it does not use an external source for calculation.

The final question looks at classifiers. Different classifiers use different methods to predict. We
want to know if coherence can predict feature quality across different classifiers. Inconsistent corre-
lations across classifiers mean some use topics better than others. It also means we can only predict
classifier performance for those classifiers. Consistent correlations mean coherence predicts classifier
performance in general.
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2 Theoretical Framework

2.1 Topic Models

An early topic model, Latent Semantic Index (LSI), works by using singular value decomposition on
a TF matrix (Deerwester et al., 1990). SVD decomposes a matrix into smaller matrices that explain
the largest amount of variance. The decomposed matrix is more efficient than a TF matrix because
it has significantly less features. The algorithm generates latent variables by using SVD on these
matrices.

LSI, however, isn’t as commonly used today. LSI suffers from polysemy, words that have multiple
meanings. The word “saw” could be used as the verb “to see” or as a tool, but not both. Probabilistic
LSI (pLSI) solved polysemy by using the latent variables as an intermediary between words and
documents (T. Hoffman, 1999). The researchers called these latent variables “topics”. Topics would
be represented as a distribution of words. Documents would be represented as a distribution of topics.
These two forms of representations are still used in current topic modeling technique research.

Most current topic models generate topics through latent variable generation. But each model
generates these models differently. LDA, as stated before, remains the most known and used topic
model. The model is consistently used as a baseline comparison against other topic models. It follows
pLSI’s principle, though its additions are substantial. We will explore LDA more in-depth in a future
section. LDA uses a probabilistic method to generate topics. Following the developments in machine
learning and NLP, other topic modeling techniques have also been developed.

One recent topic modeling development has been to combine them with word embeddings. Sev-
eral topic models are combinations of LDA with word embeddings. The differences between these
models lie in how they are combined. Das et al. (2015) transforms LDA topic-word distribution into
Gaussian mixtures instead of the original Dirichlet. A Gaussian distribution means that the topics are,
effectively, centroids in a word embedding. That is, topics are represented by the words surrounding
the centroid. Batmanghelich et al. (2016) does something similar by using a von Mises-Fischer dis-
tribution. The vMF distribution transforms the word embedding space such that it handles directional
data better. Sia et al. (2020) applies a k-means algorithm on a word embedding and uses the generated
clusters as topics.

Neural networks have also been used to develop topic modeling techniques. The general idea of
neural topic models has been to use neural network representation of documents to find topics. For
instance, variational auto-encoders (VAEs) can transform documents into efficient forms of distribu-
tions. Neural variational document modeling applies a Gaussian softmax on auto-encoded documents
(Miao et al., 2016, 2017). It finds averages in the representation and uses them as topics. ProdLDA
extends this idea further by using products-of-experts (Srivastava & Charles, 2017; Hinton, 2017).
Word embeddings trained from neural networks can also be used directly to find topic models. In
this case, the word embeddings act as the neural network document representation. BERTopic, for
example, applies clustering methods to SBERT word embeddings to generate topics (Grootendorst,
2022).

Though neural topic models yield competitive coherence scores, probabilistic techniques remain
superior (Doan & Hoang, 2021). Nevertheless, this project’s experiment will include a neural topic
model. The project includes both a probabilistic and a neural topic model to account for each method.
LDA will represent probabilistic topic models for their popularity and competitive performance.
BERTopic will represent neural topic models for its use of a neural network and word embeddings.
Furthermore, compared to other neural topic models, BERTopic competes with LDA’s coherency. The
upcoming sections examine their training methods in detail.
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2.1.1 LDA

LDA is a topic model that uses Bayesian probability to generate topics. A specific number of topics
K are first set. Each topic is defined by a multinomial distribution of all words in the corpus. The
distribution of all topics follows a Dirichlet distribution, a non-binary distribution for probabilities.
LDA generates the topics with the following process:

1. set k amount of topics

2. Randomly generate a document-topic distribution β ∼ Dirichlet for each document

3. Randomly generate a topic-word distribution θ ∼ Dirichlet

4. For each word w in each document d:

• randomly select topic k given the document’s topic distribution

• Assign word w to topic j given p(w, j) = p(k|d)∗ p(w|k)

Following this, documents are represented as topic mixtures and topics are represented as word
mixtures. The random document-topic distribution generation means that each word in a document
is first assigned to a topic at random. Then, for each word in a document, it randomly selects a topic
given the document’s topic distribution. It calculates the probability of the chosen topic given the
document-topic distribution. After, it calculates the probability of the observed word’s appearance in
the selected topic. The word is finally assigned to the topic the word is most likely to appear in given
the product of the previous two probabilities. With each document, words become more associated
with certain topics over others. Another way to understand this is by summing the assignments:

p(wd|βd,θ) = Σkβdkθkw (1)

The summation comes in a form corresponding to principal component analysis. PCA yields
smaller matrices that explain the variance of another matrix. In this sense, LDA is a “PCA” for term-
frequency matrices (i.e. count of words) that yield two variance-explaining matrices: a document-
topic matrix β and a topic-word matrix θ.

These posterior distributions act as the latent variables of a corpus that we use for prediction and
analysis. The posterior cannot be computed directly (Blei et al., 2003) and is usually approximated.
One common method of approximation uses a Markov Chain Monte Carlo (MCMC) method called
Gibbs sampling (Griffiths & Steyvers, 2004). Another common method is variational inference, which
will be outlined below. While both are effective, both suffer computationally when facing large
datasets. A solution for this is to use an online version of variational inference: online Variational
Bayes.

Traditional Variational Bayes approximates the posterior distribution p(w|θ,β) using a simpler
distribution: q(z,θ,β). For distribution q, z refers to the topic assignments of each word. This simpler
distribution can optimized by maximizing the Evidence Lower Bound (ELBO):

logp(w|α,η)≥ L(w,φ,γ,λ) = Eq[logp(w,z,θ,β|α,η)]−Eq[logq(z,θ,β)] (2)

where w = word count, φ = word-topic assignments, γ = document-topic weights, and λ = topic
distributions. ELBO finds the lower bound where evidence for the posterior distribution is highest.
It does so by minimizing the Kullback-Leibler divergence between the two posterior distributions. A
smaller KL divergence means a smaller difference in expectation between the two distributions, as
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seen in Formula 2. A smaller difference in expectation means the two distributions are more similar.
Thus, minimizing the difference in expectation allows distribution q to approximate distribution p.

By factorizing the sum of expectations and letting it be a function of the ELBO, we get

L = Σdℓ(nd,φd,γd,λ) (3)

This formula not only finds the ELBO for distribution q, it also only requires the word counts of
each document. Thus, solving Formula 3 lets us find the posterior distribution that becomes the topics
we search for.

One final addition is made on top of the VB formula above. While the VB algorithm is faster
than Gibbs sampling, it can be further optimized for much larger datasets. In online VB, topics λ are
recalculated after computing φ and γ. The algorithm’s goal is to maximize:

L = Σdℓ(nd,φd(nd,λ),γd(nd,λ),λ) (4)

To maximize the formula above, λ̃ is computed, which are the topics λ optimized if the whole
corpus consisted of a single document repeated N number of times (where N = corpus length). λ is
then updated by averaging its previous value and λ̃. The online version of the VB algorithm converges
much faster than the traditional version. M. Hoffman et al. (2010), the proposer of online VB, shows
that it converges much faster than traditional VB for larger datasets. The faster convergence is why
this project uses the online VB solver for LDA.

2.1.2 BERTopic

BERTopic is a topic model that utilizes the Bi-directional Encoder Representation transformer to
generate topics. However, the topic model does more than just use BERT. BERTopic create topics
from corpora through three steps. First, it transforms documents into embedding representations.
Second, it reduces the dimensionality of the embeddings and clusters them. Third, it extracts the
topics using modified version of TF-IDF.

BERTopic transforms documents into embeddings using a specific version of BERT called Sen-
tence BERT (Reimers & Gurevych, 2019). The purpose of the document embedding is to compare
the documents in vector space. SBERT uses sentences instead of words for document embedding.
This let’s the model capture the semantics of arguments made in prose. SBERT achieves competi-
tive performance for sentence embedding tasks (Reimers & Gurevych, 2020; Thakur et al., 2020).
BERTopic only uses these embeddings for clustering, thus any embedding technique could be used.
This means clustering can be improved by simply using a better language model.

The embedding clustering is done in two parts. The embedding dimensions are first reduced
before clustering. Large dimensions, which SBERT embeddings have, can lead to problems in clus-
tering (Beyer et al., 1999; Aggarwal & Yu, 2001). Larger dimensions lead to farther distances between
points, causing difficulty for nearest-neighbor problems. Though there are clustering algorithms that
can circumvent this dimensionality issue (Steinbach et al., 2004; Pandove et al., 2018), the simpler
solution, which BERTopic uses, is to reduce the dimensions.

BERTopic uses Uniform Manifold Approximation and Projection (UMAP) for dimensionality
reduction (McInnes et al., 2018). Other possible dimensionality reduction techniques, like PCA or t-
distributed stochastic neighbor(t-SNE) were considered. UMAP, however, has three clear advantages.
It preserves local and global features better than other techniques. Its computational efficiency makes
it viable for general dimensionality reduction. And it has been shown to improve the performance of
clustering algorithms (Allaoui et al., 2020).
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In brief, UMAP does two things to reduce dimensionality. It first constructs a high dimensional
representation of the data. It does this by creating a “fuzzy simplicial complex” representation. In
short, this means each data point connects to other points where their radii overlap. Thus, two points
with overlapping radii are connected. This can, then, be thought of as a graph. Choosing the right ra-
dius length is important. A larger radius can lead to too many connections, while a smaller radius can
lead to no connection. UMAP solves this by choosing a radius locally, setting the distance according
to each point’s nearest neighbors. The resulting graph is made fuzzy by reducing the chances of a
connection as the radius grows. Finally, local structures are guaranteed by forcing each point to con-
nect with its closest neighbor. Once the high dimensional graph is made, UMAP approximates it with
a lower dimensional graph. The lower dimensional representation achieves the same representation
performance while being more efficient.

The UMAP-reduced embeddings are then clustered using Hierarchical Density-Based Spatial
Clustering of Applications with Noise (HDBSCAN) (McInnes et al., 2017). HDBSCAN works by
using density to cluster data points together. The algorithm measures density using a mutual reacha-
bility distance, which is defined as:

dmreach−k(a,b) = max{corek(a),corek(b),d(a,b)} (5)

Function d(a,b) measures the distance between a and b. Function “core” measures the distance
between a given point and its furthest neighbor within k-closest neighbors. For example, if k = 5,
then the core distance of each point is the distance to the 5th closest neighbor. With this metric, dense
points remain the same distance from each other while spare points are pushed away through their
core distance. The algorithm then clusters groups together using a density threshold. That is, a group
of points are only considered a cluster if their density is above a certain threshold.

The final step comes in the hierarchical addition to DBSCAN. Due to varying densities, global
thresholds can yield bad clusters. The density of points can be thought of as a “mountain” with
multiple peaks. “Peaks” are regions in the data that are denser compared to the “base” of the mountain.
Incorrect thresholds can yield bad clusters when there are more points in a base than its peaks or vice
versa. To solve this, HDBSCAN split clusters depending on local density. Simply put, clusters are
combined when the base has more points than the peaks, or they are split if the peaks have more
points. This automates the threshold for clustering and also yields better clusters. These clusters are
the bases for the topics.

One final step is necessary before the clusters can be used as topics: generate the topic-word
distribution. BERTopic does this by using a modified term-frequency inverse-document-frequency
(TF-IDF) function. TF-IDF itself is a modified term-count matrix, and is defined as:

Wt,d = t ft,d · log(
N

d ft
) (6)

Term frequency t ft,d is a matrix of counts of all terms that occur in each document. The inverse
document frequency log( N

d ft
) measures how much a given term provides to a document by calculating

the logarithm of a terms count in all documents. The IDF function ensures that rare terms are not
overpowered by frequent terms.

BERTopic applies TF-IDF to the clusters of documents to generate the topics. In this case, the
clusters can be considered as a corpus and each cluster as a single document. To do the latter, all
documents in a cluster are concatenated together. The result is a cluster-based TF-IDF that measures
the importance of words in clusters rather than individual documents. The final product results in a
topic-word distribution for each cluster of documents.
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2.2 Coherence Measures
Researchers first evaluated topic models using extrinsic methods. These methods did not use the
topic models themselves and required other resources. For example, they were evaluated on their
performance in summarizing or information retrieval. Wallach et al. (2009) presented the first intrinsic
method by evaluating topic models with perplexity. This measured the topic model’s probability for
unseen documents held out from the training corpus. Better models would have higher probabilities
for these unseen documents. Perplexity was used up until human judgment measures appeared.

Chang et al. (2009) developed the first human evaluation of topic models. Human participants
were presented with a list of five topic words from topic models. Each list switched one word with
a word from another topic. Participants were asked to identify the switched word. Better topics
were those that had the switched words consistently identified. Interestingly, they also found that
better topics had higher perplexity. This suggested that perplexity does not necessarily lead to more
interpretable topics.

Newman et al. (2010) developed the first coherency measure. They aimed to correlate different
evaluations with the human evaluation method from Chang et al. (2009). They found that pointwise
mutual information (PMI) correlated the most with human evaluation. Lau et al. (2014) corroborated
this finding by also comparing human correlations with other coherences measures. Due to its strong
human correlation, most topic models are evaluated using coherence measures. This project focuses
on four coherence measures: UCI, UMass, NPMI, and Roder’s CV. These measures were chosen
because they currently correlate the most with human judgment and are currently most commonly
used when evaluating new topic models (Röder et al., 2015).

2.2.1 UCI

UCI is the first coherence measure developed by Newman et al. (2010). The measure uses the top N
words of each topic to calculate coherency. UCI is defined as:

UCI =
2

N · (N −1)

N−1

∑
i=1

N

∑
j=i+1

PMI(wi,w j) (7)

N = length of top N words and is chosen. PMI is the rate of co-occurrence between words in a
given corpus. It is defined as:

PMI(wi,w j) = log
P(wi,w j)+ ε

P(wi) ·P(w j)
(8)

Word probabilities P are estimated using a sliding window moving through an external corpus.
P(w) is the probability of observing a single word as the window slides through each document.
P(wi,w j) is the probability of observing words wi and w j co-occurring as the window slides through
each document. Simply put, as words co-occur more, the PMI increases. The original UCI sets ε =
1 as logarithm requires non-zero probabilities. UCI, as can be seen, is the average PMI of the top N
words in each topic.

2.2.2 UMass

UMass, developed by Mimno et al. (2011), also computes co-occurrence between pairs of words.
However, it does not use an external corpus and only uses the model’s training documents. UMass is
defined as:
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UMass =
2

N · (N −1)

N

∑
i=1

i−1

∑
j=1

log
P(wi,w j)+ ε

P(w j)
(9)

As with UCI, N = length of top N words and is chosen. Though the formula between UCI and
UMass look similar, they are computed differently. Word probability P(w j) is calculated using the
frequency of word presence in a document. That is, the count of how many documents have word
w. P(wi,w j) is the probability of words wi and w j co-occurring in the same documents. It uses the
count of how many documents have both words wi and w j. As with UCI, an increase in co-occurrence
results in better UMass. This measure, however, looks for co-occurrence in documents rather than
sliding windows. UMass averages the log document co-occurrence between all words for each topic.

2.2.3 NPMI

NPMI, introduced by Aletras and Stevenson (2013), replaces the PMI in UCI with normalized PMI.
Normalized PMI (Bouma, 2009) rescales the probabilities of word co-occurrence and is defined as:

NPMI(wi,w j) =
log P(wi,w j)+ε

P(wi)·P(w j)

−log(P(wi,w j)+ ε
(10)

NPMI applies a negative log co-occurrence probability to each PMI result to normalize them.
Aletras and Stevenson (2013) found that UCI performed better using NPMI. Lau et al. (2014) showed
that NPMI correlated better with human judgment. As with UCI, the NPMI between all top word
pairs in a topic are averaged for the final score.

2.2.4 Roder’s CV

Roder’s CV was developed within the coherence measure framework under Röder et al. (2015). The
authors took the different elements in coherence calculations to develop a single framework. In that
framework, they developed new coherence measures, one of which was labelled Cv. For readability,
this project labels this measure as CV. Their results showed that CV correlated with human evaluations
the most.

CV, in contrast with the previous three measures, does not use co-occurrence frequency. Rather,
it uses context vectors. Context vectors count the words that appear within ± five tokens of a given
top word. CV restricts this count to only the topic’s top words so that vectors share the same length
and words. Thus, a context vector is a count of all top topic words seen within ± five tokens of
all observations of the given word in all documents. The context vector then computes the NPMI
between the given word and the count of top topic words in the vector.

For example, given a topic whose top three topics are “game, sport, team”, the vector for game
v⃗game would be:

v⃗game = [NPMI(game,game),NPMI(game,sport),NPMI(game, team)] (11)

Once the elements of each context vector are computed, the similarity between vectors is used for
coherence. CV uses cosine similarity:

cos(⃗u, w⃗) =
∑
|W |
i=1 ui ·wi

||⃗u2|| · ||w⃗2
(12)
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where W = all top word context vectors. Vectors u⃗ and w⃗ refer to the context vectors being
compared. The theory behind context vector similarity over co-occurrence counts is in its indirectness.
It is possible that some words are semantically similar but rarely co-occur. Some top words may
rarely co-occur directly. Checking the similarity in co-occurrence with all other top words allows
more sensitivity to the semantics.

2.3 Classifiers
Two requirements had to be met for the classifiers. The first was that they could predict multiple
classes. The second was that they could produce a feature importance metric. The second research
question asks if individual topic coherence correlates with feature importance. This requires us to
measure a topic’s influence on a classifier’s prediction. Doing so is simple for classifiers that can
yield feature importance metrics. For this reason, logistic regression and decision trees are used as
classifiers. What follows is a brief reminder of both classifiers and how they can calculate feature
importance.

2.3.1 Logistic Regression

Logistic regression is a modified version of linear regression. The latter is a predictor of continuous
values. It works under the assumption that target values are a linear combination of all features.
For instance, when plotted for two features, a linear regression generates a line. In general, linear
regression predictions are defined as:

ŷ(w,x) = w0 +w1x1 + ...+wpxp (13)

where ŷ = predicted values, x = input features, and w = weight coefficients with w0 = intercept.
Regression training involves adjusting w such that the predicted values are as close to the actual values
as possible.

Linear regression can generalize for binary and multi-class prediction. Because the project is only
interested in multi-class prediction, we will focus on multinomial logistic regression. In logistic re-
gression, each class k gets its own coefficient vector. Thus, each feature weight is different depending
on the class. The regression model predicts a class that has the highest probability given the input
features. It calculates probability as follows:

p̂k(Xi) =
exp(XiWk +W0,k)

∑
K−1
k=0 exp(XiWl +W0,l)

(14)

where X = input features, Wk = weight coefficients for class k, Wl = weight coefficients for not-
class k, and W0 = intercept. In short, the probability computes the likelihood that the input features
predict class k given k’s coefficients compared to the other classes and their coefficients.

Logistic regression models are evaluated using the log-loss functions (also known as the cross-
entropy loss). Log-loss is a measure of how much predicted probabilities deviate from true values.
For multinomial logistic regression, the log-loss is defined as:

Llog(ŷ, p̂) =−
n

∑
i=1

K−1

∑
k=0

[yi = k] · log(p̂k(Xi)) (15)

where ŷ = predicted values, y = true values, n = length of input data, K = classes, and p̂ is
computed using Formula 14. The lower the log-loss, the better the classifier’s performance.
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Log-loss can be used to determine the importance of a given feature. For binary logistic regres-
sion models, the weights can be directly taken. However, the multiple coefficients used to calculate
probabilities in multinomial models prevent us from doing this. Instead, we can compare the log-loss
between models with and without a given feature. This difference measures how much contribution a
given feature adds to the model. We use this method to measure the feature importance of a given in
a logistic regression classifier.

2.3.2 Decision Trees

Decision trees are simple and intuitive. They classify by splitting the input dataset into smaller
datasets. The splitting results in a tree graph where the leaf nodes – the final nodes – are classifi-
cations. The optimization goal of the decision tree is to keep splitting the dataset until each leaf is as
“pure” as possible.

The classifier splits the dataset using impurity measures. Specifically, it measures the impurity
of a feature at each split. There are two possible impurity measures: Shannon’s Entropy and Gini
Impurity. Decision trees achieve approximately the same performance with both measures, but Gini
Impurity is faster for computation. Gini impurity is defined as:

Gini = 1−
n

∑
i=1

p2
i (16)

where pi = the probability of each value in a given feature. For instance, given a feature with
values [a,a,b], the probability of a = 2/3 and of b = 1/3. The Gini index of this example feature
is then 0.444. At each split, the Gini impurity of every feature is computed. The feature with the
smallest Gini impurity is then selected for the split. The dataset is then split depending on whether
the feature was categorical or continuous. Given that the input data of our experiments are continuous
probabilities (i.e. the topic distributions of each document), the split would be binary. The algorithm
finds a criterion that yields the lowest Gini impurity for a given continuous feature. We use the Gini
impurity to measure the importance of a given topic for the decision trees classifier.
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3 Methods

Figure 1: Experimental pipeline used to determine the correlation between topic model coherency
and classifier accuracy.

Each experiment requires four necessary parts: a corpus, topic models, coherence measures, and
classifiers. Topic models must be trained on the corpus. Coherence measures must measure the
performance of the topic models. And classifiers must be trained using the topics of the topic models.
The experiments correlate the coherence measures and the classifier performance at two levels.

Figure 1 shows the pipeline for the experiments. As can be seen, there are five factors involved
in the experiment. Each of these factors is detailed further in this section. Each factor has a different
number of elements. The corpus, “arXiv”, and its preprocessing only have one as they do not change.
The topic models have two elements: LDA and BERTopic. The classification has two elements as
well: logistic regression and decision trees. Finally, the coherence measures have four elements:
UMass, UCI, NPMI, and CV.

3.1 Experiments

Two experiments were designed to answer the research questions. The first experiment investigates
the relationship between topic model coherency and the accuracy of classifiers using topics as fea-
tures. Topic model coherence refers to the average coherence used to approximate its performance.
This experiment aims to answer the first question: whether there is a significant correlation between
a coherence measure and classifier accuracy. This correlation would show that a change in coherence
follows a change in accuracy. A variation in coherence is, therefore, required.

To achieve this, each topic model is trained to have varying amounts of topics: 25, 50, 75, and
100 topics. Furthermore, for each topic amount, five topic models were created. This resulted in
20 trained models with varying topic amounts for each topic model. Spearman rank correlations are
computed between the coherency measures of each topic model and the accuracy of their correspond-
ing classifiers. Each coherency measure will have a separate score to determine its correlation with a
given classifier’s accuracy.

The second experiment investigates the relationship between individual topic coherency and clas-
sifier feature components. This experiment aims to answer the second question: whether there is a
significant correlation between individual topic coherency and feature importance scores. Coherence
measures compute a score for each topic in a model. Classifiers use each topic for prediction. The
feature importance score measures how informative a given feature is for the prediction. A correlation
between coherence and feature informativity would show that the latter approximates how useful a
single topic is for a classifier.
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3.2 arXiv Dataset

ArXiv is an open-access digital archive hosting over 1.9 million scientific articles. The archive pri-
marily contains papers from physics, mathematics, and computer science. The experiment uses a
dataset containing metadata from roughly 1.7 million arXiv articles. The data contains fields such as
the title, author(s), category, and abstract. Though the dataset gives access to each article’s full text,
only the abstract was used. The abstracts were enough to generate the topic models. Furthermore,
due to limited time and resources, using the full texts would have resulted in fewer papers sampled.
Sampling many papers was preferred to generate broader topics that better approximate the whole
corpus.

Not all 1.7 million articles were used in the experiments. Only articles published after 2018 were
used. This was done for two reasons. The first was to ensure that scientific terminology shared across
papers was similar. ArXiv contains papers from the 1990’s up until 2022. The language across the
domain may have evolved over the 30-year range. To minimize variance and use of resources, a
smaller time range was chosen. This yielded 530,710 articles for sampling.

The topic models and the classifiers were trained with separate amounts of articles. The topic
models were trained using all 530,710 articles while the classifiers were trained using 200,000. This
was primarily done to address the category imbalance. The classifier learns to predict the category
of an arXiv paper given its topics. The arXiv subset used in the experiments contains 23 different
categories, each varying in the paper count. Computer science, the category with the highest count,
has 158,368 papers. Functional analysis and algebraic geometry, in contrast, have one paper each.

To solve this imbalance, only the categories with at least 40,000 papers were kept. Further-
more, only 40,000 papers were kept from each category. This resulted in a dataset with 200,000
documents split evenly across five different categories: computer science, mathematics, physics, con-
densed matter, and astrophysics. The topic models are trained with as many documents as possible to
approximate the arXiv corpus.

The dataset was preprocessed in the same way for both model and classifier training to ensure
validity. Preprocessing was also shared between LDA and BERTopic. Each word of each abstract was
tokenized and lowercased. Stopword tokens existing in Gensim’s English corpus were removed. Each
tokenized document was then transformed into a bag-of-words (Rehurek & Sojka, 2011). Tokens that
appeared in 2% of the documents were removed for being too rare. Those in more than 95% were
removed for being too common. These thresholds were recommended by the BERTopic author and
extended for LDA to ensure validity.

3.3 Topic Models

3.3.1 Latent Dirichlet Allocation

LDA modeling was done using the Scikit-Learn Python package (Pedregosa et al., 2011). Sklearn
uses the online variational Bayes algorithm outlined in the theoretical framework section. Online
VB’s efficiency is useful to handle the 530,710 documents. For the experiment, four different amounts
of topics were created: 25 topics, 50 topics, 75 topics, and 100 topics. The different amounts of topics
were built to generate noise in the coherence scores. Five models were trained for each topic amount,
resulting in a total of 20 LDA models.

LDA has a number of parameters capable of changing the training results. However, for simplic-
ity, the parameter settings set to default in the Sklearn package were used. The document-topic and
topic-word prior distributions (α and β parameters in (M. Hoffman et al., 2010, 2012)) were kept to
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1/n, where n = number of topics. Each LDA model took roughly 20 minutes to train, thus taking
around six and a half hours in total.

3.3.2 BERTopic

BERTopic modelling was done using the original developer’s Github implementation (Grootendorst,
2022). As with LDA, four kinds of BERTopic models were built that varied in topic amounts. Due
to BERTopic’s dynamic topic modelling, it trains until it converges to a specific amount of topics.
After convergence, it can then be reduced to a specified amount. With the 530,710 documents, each
BERTopic model would train to have between 750-850 topics before reduction. Reduction involves
clustering topics together until the specified amount.

Default parameters set by the author were used for training. A summary of the model’s method is
required to understand the parameters. The algorithm uses language models to create document em-
beddings. These embeddings are then reduced in dimensions and clustered. Each cluster is assumed
to represent a topic. Finally, the word-topic distribution for each cluster is computed using c-TF-IDF.

The first parameter is the minimum topic size. This parameter is the threshold for how many
documents are required before a cluster is considered a topic. A larger minimum size results in a
smaller number of topics and vice versa. It also determines how fast a BERTopic model takes to
train. The author recommends a topic size of 50 as a trade-off between time limitation and topic
approximation. Thus, each BERTopic model used a minimum topic size of 50.

The second parameter is the top n words. This parameter refers to how many words represent
each given topic. For example, if set to five, then each topic is represented by its top five words. The
top words are those that score the highest c-TF-IDF. Computing this metric takes time; the larger the
n, the longer it takes. Based on the author’s recommendation, an n of 10 is set.

Each BERTopic model took around nine hours to train. With a total of 20 models, this resulted in
around 180 hours of training. Each model was trained in parallel to speed up this process.

3.4 Coherence Measures
Coherency scores for each model were measured for the experiments. As previously stated, four
different coherency scores are used: UCI, UMass, NPMI, and CV. In total, 40 topic models had to be
measured four times each, which results in a total of 160 measurements. The coherency scores were
computed using Gensim’s coherence model. BERTopic uses the coherence model directly right while
LDA uses “tmtoolkit”. Tmtoolkit is a package that computes the coherence model in parallel, which
was necessary for LDA’s measurements.

Coherency is measured using a specified number of a topic’s top words. The larger the number
of selected top words, the longer computation takes. Röder et al. (2015) found that more top words
correlate stronger with human rating of top words. To balance between coherence quality and com-
putation time, five top words were chosen for measurement. Five top words correlate with human
judgment and are more efficient than ten or more.

3.5 Classifiers
The classifiers used for the experiments are Logistic Regression and Decision Trees. These classifiers
are preferred over other classifiers for their interpretability. That is, compared to other competitive
classifiers, these classifiers provide simple feature-level metrics that measure the importance of a
given feature. For the logistic regression model, this comes in the form of the log-loss difference. For
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decision trees, this comes in the form of the Gini index. Both scores measure a feature’s contribution
to the classifier’s prediction. The second experiment correlates these metrics with topic coherence.
The first experiment correlates the classifier accuracy with average topic coherence.

Each classifier predicts an arXiv category using the word-topic distributions. The topic models
transform documents into a word-topic distribution. That is, a model transforms a document into a
topic distribution using the document’s words. A single datapoint is, therefore, represented as an array
of a topic distribution. With 40 total topic models and two different classifiers, 80 fitted classifiers
were created for the experiment. Five-fold cross-validation was used to measure the accuracy of each
classifier.

Both classifiers are implemented using Sklearn. Logistic regression classifiers were trained with
an L2 regularization to prevent overfitting. It used the “lbfgs” solver (Liu & Nocedal, 1989) to op-
timize the multinomial predictions efficiently. For the decision trees, Gini impurity was chosen as
the criterion for splitting. Gini impurity results in approximately the same performance as Shannon’s
entropy but is faster. No depth limit was specified to ensure each feature would receive a Gini index
score. All other parameters were set to default.
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4 Results

4.1 Data Loss

Four of the LDA models returned invalid values as coherence scores. The invalid values were caused
one topic per faulty model. Three of the 100-topic models and one of the 75-topic models had this
issue. The invalid coherence scores were all measures that used an external corpus (i.e. Wikipedia).
The issue may be caused by a topic containing a token that is not present in the external corpus. The
token could be a consistent error (e.g. formatting symbols) or an incorrectly processed word.

To fix this issue, the faulty topic was removed and each coherence measure was recomputed for
the faulty model. This was done in both models to ensure a valid comparison. This should not affect
the outcome because model coherence is only an average of all topic coherence scores. As such, the
comparisons between faulty and non-faulty models should remain valid.

4.2 General Results

Figure 2 shows the coherency scores as a barplot and Table 4 (in the appendix) shows the scores in
table format. Both the table and figure show us that the BERTopic coherency scores appear to be
better than the LDA coherency scores. This can be seen by the lower UMass score and the higher
NPMI, UCI, and CV scores, all of which translate to having better topic coherency in general.

Interestingly, and already suggestive for our experiments, the other direction is apparent for the
classifier accuracies. Table 1 shows accuracy scores of each classifier and Figure 3 (in the appendix)
shows this in barplot form. The results show us that the LDA classifiers have higher accuracy scores
than the BERTopic classifiers. This would suggest that LDA topics result in better classifiers than
BERTopic topics.

Properly answering the research questions of this paper requires an inspection of the experiments.
Before examining them, however, a brief recap of the research questions is required. The most general
question is whether there is a correlation between model coherency and classifier accuracy at all. The
other questions ask what kind of relationship between the two scores.

For one, is there also a correlation between individual topic coherency and topic feature impor-
tance? This question is investigated in experiment 2. Is there a difference in correlation between
the topic models? This question checks whether the correlation is consistent among the models or
dependent on them. The final question asks whether there is a difference in correlation between the
classifiers. This question is similar to previous in that it checks to see if the relationship is consistent
or dependent on the classifier being used.

4.3 Experiment 1

The first experiment looks at the correlation between model coherency and classifier accuracy. Table
2 show these correlations between all model classifiers and coherency measures. Figure 4 show scat-
terplots between accuracy and coherency for LDA, and Figure 5 show scatterplots for the metrics for
BERTopic. In this experiment, we examine whether there are any significant correlations, whether
such correlations are different in significance or direction between classifiers and/or topic models.
Furthermore, we also closely look at which measures have significant correlations. Spearman corre-
lations were done to determine the relationships between coherency scores and classifier accuracies.
The following correlations are for n = 20.
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Mean Accuracy
Models Topic Amount

Topic Model Classifier 25 50 75 100

LDA
Log. Reg. 0.8431 0.8576 0.8663 0.8694
Dec. Trees 0.7908 0.8020 0.8049 0.8004

BERTopic
Log. Reg. 0.7117 0.7265 0.7489 0.7622
Dec. Trees 0.7668 0.7858 0.8006 0.8100

Table 1: Average accuracy for each classifier using different topic models and topic amount; standard
errors were within 0.005 or lower; Figure 3 shows barplots for these accuracies and is available in the
appendix.

For LDA, two of the measures significantly correlated with the classifier accuracies and the others
did not. The UMass measure had a strong negative correlation with logistic regression (rs = -.90, p
< .001) and decision trees (rs = -.62, p = .004). The NPMI measure also had a moderate positive
correlation with logistic regression (rs = .53, p = .017) and decision trees (rs = .47, p = .036). The
UCI measure had an insignificant and weak relationship with logistic regression (rs = .30, p = .200)
and decision trees (rs = .40, p = .081). The CV measure similarly had an insignificant and weak
relationship with logistic regression (rs = .34, p = .139) and decision trees (rs = .36, p = .115).

For BERTopic, all the measures significantly correlated with the classifier accuracies. For UMass,
there was a positive moderate relationship with logistic regression (rs = .57, p = .009) and decision
trees (rs = .50, p = .024). For UCI, there was a very strong positive relationship with logistic regression
(rs = .87, p < .001) and decision trees (rs = .80, p < .001). For NPMI, there was a very strong positive
relationship with logistic regression (rs = .82, p < .001) and decision trees (rs = .89, p < .001). For
CV, there was a strong positive relationship with logistic regression (rs = .66, p = .002) and decision
trees (rs = .69, p < .001).

Coherency-Accuracy Correlations
Models Coherency Scores

Topic Model Classifier UMass UCI NPMI CV

LDA
Log. Reg. -0.904 0.299 0.528 0.343
Dec. Trees -0.615 0.400 0.471 0.364

BERTopic
Log. Reg. 0.570 0.872 0.821 0.662
Dec. Trees 0.504 0.802 0.892 0.690

Table 2: Spearman’s Rho correlations between coherency scores and classifier accuracy using topics;
Significant correlations are in bold

4.4 Experiment 2

The second experiment looks at the correlation between individual topic coherency and classifier ac-
curacy. This experiment looks at the relationship between coherency and its influence on classifier
accuracy by examining its effect on the classifier directly. Table 3 shows the correlations across topic
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coherence scores and classifier feature importance scores. Figure 6 shows scatterplots of topic coher-
ence scores against feature importance scores within LDA, and Figure 7 shows the same scatterplots
but for BERTopic.

Spearman correlations were also computed to determine the significance in correlation between
topic coherency and feature importance. As a reminder, log-loss difference measures the difference
in log-likelihood caused by the removal of a topic in the classifier, and Gini impurity measures how
well a given topic can be used for classification. In short, a bigger (negative) log-loss difference and
higher Gini impurity means stronger feature importance. The following correlations are for n = 100.

For LDA, four out of the eight correlations are significant. UMass has a moderate negative cor-
relation with log-loss difference (rs = -.55, p < .001) and a weak positive relationship with Gini
impurity (rs = .38, p < .001). UCI have non-significant correlations with log-loss difference (rs =
-.19, p = .059) and Gini impurity (rs = .15, p = .15). NPMI has a weak negative correlation with
log-loss difference (rs = -.22, p = .030) and a non-significant correlation with Gini impurity (rs = .16,
p = .118). CV has a weak negative correlation with log-loss difference (rs = -.36, p < .001) and a
non-significant correlation with Gini impurity (rs = .19, p = .054).

For BERTopic, none of the feature importance scores correlate with either feature importance
scores. UMass has no significant correlation with log-loss difference (rs = .19, p = .065) or Gini
impurity (rs = .10, p = .340). UCI has no significant correlation with log-loss difference (rs = .06, p
= .559) or with Gini impurity (rs = -.14, p = .17). NPMI has no significant correlation with log-loss
difference (rs = -.01, p = .930) or with Gini impurity (rs = -.10, p = .306). And CV has no significant
correlation with log-loss difference (rs = -.05, p = .647) or with Gini impurity (rs = -.02, p = .877).

Feature Importance - Topic Coherency Correlations
Model Coherency Scores

Topic Model Feature UMass UCI NPMI CV

LDA
Loss Dif. -0.550 -0.189 -0.217 -0.359
Gini Imp. 0.382 0.147 0.157 0.1935

BERTopic
Loss Dif. -0.185 0.059 -0.0089 -0.046
Gini Imp. 0.096 -0.137 -0.103 -0.016

Table 3: Spearman Rho correlations between coherency scores and feature importance scores of each
topic; using first 100-topic models for each topic model; significant correlations are in bold
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Figure 2: Coherency score averages across topic models and topic amounts; lower UMass means
better coherence while higher UCI, NPMI, and CV mean better coherence; the graph suggests that
BERTopic models tended to have better coherence across all coherence measures
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5 Conclusion

5.1 Discussion

This project investigated the relationship between topic coherence and classifier accuracy. The main
focus is whether topic coherence would predict the performance of a classifier using topics. To com-
prehensively explore this question, the project asked five specific questions:

1. Is there a correlation between model coherence and classifier accuracy?

2. Is there a correlation between individual topic coherences and feature importance?

3. Are correlations between coherence and accuracy/feature importance consistent across topic
models?

4. Are correlations between coherence and accuracy/feature importance consistent across coher-
ence measures?

5. Are correlations between coherence and accuracy/feature importance consistent across classi-
fiers?

The first two questions investigate the relationship at two different levels. The first question looks
at whether the coherence of a whole model predicts the performance of a classifier that used all the
topics. The second question looks at whether classifiers primarily use topics with the most coherence
or not. The three remaining questions investigate whether these correlations can be generalized across
the three separate parts – those parts being the topic models, coherence measures, and classifiers.

The first experiment showed that there were significant correlations between model coherence and
classifier accuracy. Most coherence measures correlated with classifier accuracy. With LDA, UMass
had strong correlations with the classifiers and NPMI had moderate correlations. LDA classifiers
had no significant correlation with UCI or CV. With BERTopic, the classifiers correlated with all
coherence measures. In particular, UCI and NPMI had the strongest correlations with the classifiers.
UMass and CV had moderate relationships.

At surface level, these results suggest we use UMass for LDA classifiers and UCI or NPMI for
BERTopic. However, the correlation between UMass and LDA classifier performance is negative.
Theoretically, an increase in UMass is an increase in coherency. Thus, a negative correlation means
classifiers perform better as coherency decreases. In contrast, BERTopic’s correlation with UMass is
positive.

This effect is best explained by how UMass is calculated and how each model generates topics.
Recall that UMass calculates the log probability of two words co-occurring in a document. With this
in mind, recall that BERTopic’s method specifically employs document clustering. This clustering
results in topic words that are more likely to co-occur in documents. LDA’s method, on the other
hand, does not use the document explicitly. For one, this would explain why LDA’s UMass score
decreases as topic size increases while BERTopic’s UMass score increases as topic size increases
(see Figure 2). The UMass-accuracy correlation could then be better explained by the variable topic
amounts. As such, UMass should not be used as a predictor for classifier performance due to its
use of document co-occurrence. Rather, NPMI is better suited as a general predictor for classifier
performance. The measure has a significant moderate-to-strong correlation with both topic models’
classifiers.
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The second experiment found significant correlations between individual topic coherency and
feature importance. As a brief reminder, a lower (more negative) log-loss difference implies stronger
feature importance. A higher Gini index implies stronger feature importance. The only significant
correlations were found in LDA. BERTopic topic did not correlate with any feature importance mea-
sures.

Interestingly, LDA’s UMass negative correlation with log-loss difference would imply a higher-
coherence higher-effect relationship. This is roughly in line with LDA’s NPMI and CV correlation
as well. LDA UMass also correlated with Gini index, while no other coherence measure did. This
would imply that, for individual topics in a single model, higher UMass topics are more useful for
LDA classifiers.

That being said, the second experiment mainly shows that individual topic coherence does not
correlate with feature importance. Very few coherence measures correlated with either classifier.
Furthermore, most correlations were weak, and only one was moderate. This suggests that topic
coherences cannot predict how a classifier will use the topics. It tells us very little about the classi-
fier’s performance. Thus, a topic model’s average coherence is the better method to gauge classifier
performance.

The results of the first experiment answer the three remaining questions. The third and fourth
questions can be answered together. Some coherence measures significantly correlated with model
classifiers. Specifically, NPMI and UMass. Given the issues with UMass discussed previously, NPMI
should be considered the only consistent measure. UCI and CV only correlated with the BERTopic
classifiers. Interestingly, UCI and NPMI have similar correlations strength with the BERTopic clas-
sifiers. Nevertheless, NPMI’s consistent correlation with both model classifiers suggests it can be
generalized for performance prediction.

The previous answer already tells us the answer for the fifth question. However, special attention
is warranted for this answer. The general answer for NPMI’s consistent correlation between model
classifiers is possible because classifier correlations were also consistent. That is, correlations within
models and between classifiers share strength and direction. For instance, NPMI finds strong positive
correlations in both BERTopic classifiers. UMass, though theoretically problematic, also shows these
tendencies within each topic model. For LDA, it finds moderate-to-strong negative correlations with
classifiers, and for BERTopic, it finds moderate positive correlations. This would suggest that signif-
icant correlations can generalize across classifiers. More specifically, NPMI, due to its consistency,
can be used to predict the performance of a classifier using topics.

There is, however, a caveat to this. The significant coherence measures (NPMI specifically) do
not outright predict classifier performance. For example, LDA’s models tend to have lower NPMI
than BERTopic’s (see Figure 3). Yet LDA’s logistic regression models have higher accuracy, and
both model’s decision trees perform roughly the same. This means coherence should only be used to
compare the accuracy of classifiers using the same topic model.

5.2 Conclusion
The experiments tell us that we can predict the performance of classifiers using coherence. In partic-
ular, only NPMI can be used to predict classifier performance. UCI and NPMI were not consistently
correlated between the two topic models. Though UMass was consistent in significance, its direc-
tionality was not. Furthermore, the measure’s dependence on document co-occurrence results in
problematic interpretation. Finally, the correlation only works when comparing classifiers using the
same topic models. NPMI does not directly predict the accuracy of a classifier. Therefore, NPMI can
be used to predict the relative performance of a topic model classifier, but only when compared within
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the topic model.

5.3 Limitations and Future Work
The experiments involved different replaceable factors so that the results could be generalized. Nev-
ertheless, only a limited set of models and measures were used for each factor. Limiting the parts
was done to ensure timely results; implementing each part took time. Still, these results may be only
applicable to the models involved. As such, future work looking into this relationship should include
other topic models and classifiers. Other coherence measures could also be included. However, it
is important to note that the four measures used in the experiments currently correlate the most with
human judgment. As such, any other measure – such as the others in Lau et al. (2014) – would test
with lesser human judgment correlation. Arguably, the ideal coherence measure would be one that
is capable of estimating its contribution to classifier accuracy and, at the same time, correlate with
human judgment. Doing so would be helpful during model training and feature interpretation.

The experiments only use the arXiv corpus. This corpus primarily constitutes scientific and math-
ematical documents. Such documents share a number of commonalities (e.g. statistics, mathematical
notation), which is expected when topic modeling. However, other corpora with varying amounts of
shared commonalities may influence the correlations. Arguably, a different corpus may not be differ-
ent at all from our results given the nature of topic modeling. In fact, it is most likely that a corpus
with less commonality would be captured by the coherence scores as topic models would struggle to
find good topics. Nevertheless, using another corpus would give us a better idea of how generalizable
these correlations in different documents.

For future work, training data should be shared between topic models and classifiers. During
implementation, the category imbalance issue only became apparent after topic model training. It
became unfeasible to retrain the models using the reduced number of training data. It is possible that
the topics generated from the balanced dataset would have led to different classifiers. Nevertheless,
this does not invalidate the results. The focus was on the influence of coherence on classifier accuracy.
That the results found a correlation implies that the same would be found with differently trained topic
models. Still, future experiments should ensure this training data sharing. NLP pipelines that use topic
modeling for feature engineering will most likely do the same.

Finally, the second experiment may not be feasible enough for its purpose. Classifiers use features
differently for prediction. Figure 6 shows that, for LDA, the decision trees mostly used 10 features to
predict the categories. In contrast, logistic regression uses all features to predict the categories. The
classifier-specific metrics may be too different to determine per-topic coherence correlations. SHAP
values could prove to be the solution to this problem (Lundberg & Lee, 2017). SHAP values are a
recent development in the machine-learning domain. In brief, they use game theory to measure the
general contribution of a feature in a classifier. Theoretically, they are applicable to any machine-
learning model. This means correlation comparisons are much easier to make between different
classifiers. This would also mean more competitive classifiers could be used as well. As such, future
work could replace the classifier-specific feature metrics with SHAP values.
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Figure 3: Average classification accuracy across topic models and classifiers; closer inspection sug-
gests that classifiers using LDA topics yield better results compared to those using BERTopic topic

Mean Coherency
Models Topic Amount

Topic Model Measure 25 50 75 100

LDA

UMass -1.9270 -2.1328 -2.3218 -2.4478
UCI 0.7561 1.0646 1.0286 0.9278
NPMI 0.0936 0.1182 0.1198 0.1190
CV 0.6527 0.6784 0.6795 0.6745

BERTopic

UMass -2.8043 -2.8331 -2.6125 -2.6399
UCI 2.0944 2.1605 2.5305 2.6501
NPMI 0.1913 0.2048 0.2330 0.2414
CV 0.8030 0.8050 0.8295 0.8329

Table 4: Average coherency for each topic model with different topic amounts; standard errors were
within 0.15 or lower
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Figure 4: Scatterplots placing coherency scores against classifier accuracies for LDA; the left column
shows all the plots for Logistic Regression and right column shows all the plots for the decision trees;
each row show the plots of each different coherence measure
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Figure 5: Scatterplots placing coherency scores against classifier accuracies for BERTopic; the left
column shows all the plots for Logistic Regression and right column shows all the plots for the deci-
sion trees; each row show the plots of each different coherence measure
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Figure 6: Scatterplots placing topic coherency scores against feature importance scores for LDA; the
left column shows all the plots for Logistic Regression’s log-loss difference and right column shows
all the plots for the decision tree’s Gini impurity; each row show the plots of each different coherence
measure
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Figure 7: Scatterplots placing topic coherency scores against feature importance scores for BERTopic;
the left column shows all the plots for Logistic Regression’s log-loss difference and right column
shows all the plots for the decision tree’s Gini impurity; each row show the plots of each different
coherence measure


