
Linear algorithms for Parity Games with the Signature
of a Potential

Andrei Dumitriu

August 2022

Supervisors:
Jorge A. Pérez

Oliver Lorscheid

Abstract
Solving parity games has been an important problem in Computer Science, not only because

of the applications of this infinite duration game in satisfiability checking and model checking,
but also because it is one of the few problems that is both in UP and in co-UP, but not also in P.
We propose two new algorithms for solving parity games, based on the newest developments in
regards to mean payoff games. The first will solve the parity game using its equivalent mean payoff
game. The second one will have a similar structure to the mean payoff game solver, except the
winning positions will be found directly in the parity game, with the use of a strategy improvement
algorithm. Both algorithms will have linear time complexity for a certain type of games, known
as games with the "signature of a potential".

1

1 Introduction
Definition. Parity games are two-player games played on a finite graph G = (V,E), with V being
the finite set of vertices of the graph and E ⊆ V × V being the set of edges. The two players, P1

and P2, each get assigned a subset of the graph’s vertices: V1, V2, V1 ∩ V2 = ∅, V1 ∪ V2 = V . We
refer to a vertex v ∈ V1 as being owned by P1 and similarly for P2. The function Ω = V → N∗ is a
priority function that assigns a natural number value to each of the vertices of the graph G. The
game is played using a token that is moved from vertex to vertex on the edges of a graph, forming
a sequence of vertices v0, v1, v2, ... ∈ V , where (v0, v1) ∈ E, (v1, v2) ∈ E and so on. This sequence
of vertices is called the play. The choice of which vertex will follow a given vertex vx is down to
the owner of that vertex: if vx ∈ V1, the P1 chooses vy ∈ V such that (vx, vy) ∈ E and similarly if
vx ∈ V2, then P2 makes the choice. If the play reaches a vertex with no outgoing edges, known as
a sink, then we refer to this situation as a finite duration game, with the player that owns that
vertex being declared the loser. Otherwise, in the case of an infinite duration game, the victor is
decided based on the parity of the largest priority of the infinitely repeating vertices of the play: if
the priority is odd, then P1 wins, otherwise P2 is the winner. From the rest of the paper, a parity
game will be described as the following tuple: P = (V,E, V1, V2,Ω).

It is said that P1 and P2 have positional strategies [1]. This means that the best choice for Px

at a given vertex v ∈ Vx does not depend on the previous moves in the play. For a player Px to
have a winning strategy at v, it means that there is a play that contains v such that Px wins the play.

This game is part of the field of scientific computing and has an important role in both satis-
fiability checking and model checking. Satisfiability refers to checking whether the variables of
a boolean formula can be assigned values of either true or false such that the entire formula is
evaluated as true. Model checking refers to verifying that a finite-state model meets a given spec-
ification.

Parity games are known to be in the UP complexity class (unambiguous non-deterministic polyno-
mial time). Problems in this complexity class have at most one solution and a proposed solution
can be verified in polynomial time. This problem is also known to be in the complement of UP,
co-UP, given that the complement of the problem from the perspective of one player is the same
game, but from the perspective of the other player. There have been many attempts to prove that
parity games can be solved in polynomial time, however the best time complexity that has been
achieved so far is, for n nodes and m distinct priorities, O(nlog(m)+6) [2].

In an upcoming paper, Marianne Akian, Stéphane Gaubert, Oliver Lorscheid, and Matthias Mnich
have developed a new algorithm for mean payoff games [3]. Based on their research, we will de-
velop two algorithms with two different approaches for solving parity games: a basic approach,
which solves the parity game by transforming it into a mean payoff game and then uses Akian et
al.’s algorithm [3] as is, and a strategy improvement approach, where we use the general struc-
ture and ideas of Akian et al’s algorithm [3], without using the equivalent mean payoff game, and
combine it with Fearnley’s strategy improvement algorithm for solving parity games [4]. We will
also show that for a certain subset of games, known as games with the "signature of a potential",
the two algorithms provide a solution in linear time. Additionally, implementations in C of the
algorithms were created and their performance was compared on a variety of parity games.

2 Solving mean payoff games
First, we need to define mean payoff games. There are multiple variations of mean payoff games,
but we will go with the definition used by Akian et al. [3]. Changing from one type of mean payoff
game to another is done in polynomial time [3].

2

2.1 Mean payoff games
Definition. Mean payoff games are another type of zero-sum games played on finite graphs
G = (V,E), with two players: P− and P+. The vertices are once again divided into two sets,
each belonging to one of the players: V−, V+, V− ∩ V+ = ∅, V− ∪ V+ = V . Additionally, each edge
is assigned a weight based on a function µ : E → Z. At a vertex v ∈ Vx, x ∈ {−, +}, the playerPx

chooses an adjacent vertex w ∈ V , (v, w) ∈ E. As such, we have a finite or infinite sequence of
the type (v0, v1), (v1, v2), ..., also known as the play π = (v0, v1, ...). A finite play π = (v0, v1, ...vn)
occurs if vn ∈ Vx, x ∈ {−, +} has no outgoing edges, in which case Px loses and the other player
wins. Otherwise, in the case of an infinite play, if lim infn→∞

1
n

∑n
i=0 µ(vi, vi+1) < 0, then player P−

wins, whereas if lim supn→∞
1
n

∑n
i=0 µ(vi, vi+1) > 0, player P+ wins. If neither player can reach their

winning condition, then there is a draw.

2.2 Solving mean payoff games via reachability games
This subsection describes Akian et al.’s algorithm for solving parity games[3]. Note that this de-
scription is based on a draft of the paper and as such there may be some minor differences between
what will be said here and the final, published version of the paper.

K-obsolete edges. An edge (v, w), with v ∈ Vx is a k-obsolete edge if after Px chooses this edge,
Py has a position strategy such that no matter what other choices Px makes, the play returns to
the vertex v, forming a cycle of maximum length k with a payoff favorable to Py. This means that
it is never advantageous for Px to play that edge, so they would never choose it in favor of other
options. As such, we can remove the edge from the graph without the outcome of the game being
affected.

In order to determine if the vertex v ∈ Vx has outgoing edges that are k-obsolete, we use the
following functions:

• ϵ : V → {−1, 1}, ϵ(v) =

{
−1 if v ∈ V−,

1 if v ∈ V+,

• ηi : V → Z, ηi(w) =

ϵ(v) ∗∞ if i = 0, v ̸= w,

ϵ(w) ∗max{ϵ(w) ∗ (µ(w, u) + ηi−1(u)) | (w, u) ∈ E} if i > 0, v ̸= w,

0 if w = v.

Explanation. If the play of maximum length i + 1 that starts in the vertex w ̸= v does not
end in v, then ηi(w) = ϵ(v) ∗ ∞. However, if it does end in v, then we have a play of length
j + 2 created by the positional strategies of the two players, (w, v1, v2, ..., vj , v). As such, ηi(w) =
µ(w, v1) + µ(vj , v2) + ... + µ(vj , v), ∀i ≥ j + 1. P+ wants to maximise the sum of all edge weights in
a play, while P− wants to minimize it. As such, at vertex w ̸= v, P+ will choose the edge (w, u+)
such that ηi(w) = max{µ(w, u) + ηi−1(u) | (w, u) ∈ E}, while P− will choose the edge (w, u−) such
that ηi(w) = min{µ(w, u) + ηi−1(u) | (w, u) ∈ E}.

Identifying k-obsolete edges. We can observe that for the edge (v, w) ∈ E, v ∈ Vx, to be ob-
solete, ηk−1(w) ̸= ϵ(v)∗∞, meaning that the play from w does reach the vertex v and ϵ(v)∗ (µ(v, w)+
ηk−1(w)) < 0, meaning that the payoff of the cycle is disadvantageous to Px.

3

Algorithm 1: Identifying k-obsolete edges from the graph of a Mean Payoff Game
Input: k, V−, V+, E, µ
Output: F
Function MPGObsolete(k, V−, V+, E, µ):

F = ∅;
for e ∈ {−,+} ∧ v ∈ Ve do

for i = 0, .., k − 1 do
ηi(v) = 0 ; /* Initialize values */

end
for w ∈ (V−, V+)− {v} do

η0(w) = e ∗∞;
end
for i = 1, .., k − 1 do

for w ∈ (V−, V+)− {v} do
ηi(w) = ϵ(w) ∗max{ϵ(w) ∗ (µ(w, u) + ηi−1(u)) | (w, u) ∈ E} ; /* Compute the new
iteration */

end
end
for (v, w) ∈ E do

if e ∗ ηi−1(w) < −e ∗ µ(v, w) then
F := F ∪ {(v, w)} ; /* Add all obsolete edges */

end
end

end
return F

Strongly connected components. A subgraph with the set of vertices X ⊆ V and the edge set
{(w, u) | (w, u) ∈ E, w, u ∈ X} is a strongly connected component if for all vertices v ∈ X, there
is a path to all other vertices in X. Strongly connected components can be identified using a
depth-first-search algorithm.

4

Algorithm 2: Identifying strongly connected components of a graph.
Input: X,E
Output: s, Ys, ..., Y1
Function StrConnComp(X,E):

s := 0;
i := 0;
F := {(v, w) | (v, w) ∈ E, v, w ∈ X};
while Y1 ∪ ... ∪ Ys ̸= X do

if i = 0 then
i := 1 ; /* We begin a new subset of vertices */
m1 := 1 ; /* ∀x ∈ (mi, i), vertex vx is reachable from vertex vi */
v1 := randomV ertex(X − (Y1 ∪ ... ∪ Ys)) ; /* Choose a random vertex not yet
accounted for */
j := 1;

end
while j ≤ i do

for (vj , w) ∈ F do
F := F − {(vj , w)} ; /* w is reachable from vj */
if ∃ k, k < mi, w = vk then

for l = k + 1, ..., i do
ml := mk ; /* vmk

is reachable from all vl */
end
j := mk;

else
if w /∈ {vmi

, ..., vi} then
i := i+ 1;
vi = w ; /* New vertex added to the list */
mi := i;
j := i;

end
end

end
j := j + 1;

end
s := s+ 1 ; /* If j > i then there is no edge leaving vmi , ..., vi */
Ys = {vmi

, ..., vi} ; /* New component found */
i := mi − 1;
j := mi;

end
return (s, Ys, ..., Y1)

Akian et al.’s algorithm[3] is not an entirely original algorithm. It instead uses Zwick and Pater-
son’s algorithm for solving mean payoff games[5] to determine some of the winning positions of
the graph for the two players (the sets of vertices W− and W+, where if the play reaches a vertex
in Wx, Px will win the game), as well as some of the draw positions (the set of vertices W0, where
if the play reaches a vertex in W0, then the game ends in a draw, as neither player can reach its
winning condition).

Using finite plays to examine infinite ones. For a subgraph with the set of vertices X, n = |X|,
and the set of edges F , let ν(v) be the value of the infinite game that starts at vertex v ∈ X and
M = max{|µ(v, w)| | (v, w) ∈ F}. We also define the function νk:

5

νk(v) : X → Z, νk(v) =

max{µ(v, w) + νk−1(w) | (v, w) ∈ F} if k > 0, v ∈ V+,

min{µ(v, w) + νk−1(w) | (v, w) ∈ F} if k > 0, v ∈ V−,

0 if k = 0.

We can observe that limk→∞
νk(v)

k = ν(v). It can also be shown that:

ν(v)k − 2nM ≤ νk(v) ≤ ν(v)k + 2nM .

Proof. We begin by assuming that v ∈ V+. Ehrenfeucht and Mycielski have shown that P+ and
P− have positional strategies in a mean payoff game[6]. Let π+ : V+ → V be an optimal positional
strategy for player P+ in a finite game, with at most k steps, that starts at v. If in a finite play
a cycle is formed, from the fact that P+ has an optimal positional strategy, and as such average
weights of edges in that cycle is at least ν(v). Given that the cycle has at most n edges and that
the weight of each edge is at least −M , we can say that νk(v) ≥ (n−k)ν(v)−nM . Because ν(v) ≤M ,
we can conclude that ν(v)k−2nM ≤ νk(v). Similarly, if v ∈ V−, we conclude that νk(v) ≤ ν(v)k+2nM .

Determining winning positions. Given that νk(v) ≤ ν(v)k + 2nM , if νk(v) > 2nM , then 2nM <
ν(v)k+ 2nM and as such ν(v) > 0. This means that in this case P+ wins the game from the vertex
v. Alternatively, if νk(v) < −2nM then ν(v) < 0, meaning that P− wins from the vertex v. If neither
condition is meat after k = 4n2M + 1, we can conclude that ν(v) = 0 and that therefore the play
from v results in a draw.

Explanation. An infinite play is formed by infinitely repeating the edges of a cycle. This cycle
has at most n edges, given that a cycle of n edges implies that all vertices of X are part of the
cycle. As such, we can say that ν(v) is a rational number with a denominator whose value is at
most n. The difference between 0 and the closest rational number with a denominator of at most
n is 1/n. Therefore, if − 1

n < ν(v) < 1
n , then ν(v) = 0. From ν(v)k − 2nM ≤ νk(v) ≤ ν(v)k + 2nM , for

k = 4n2M + 1, we get that:

νk(v)
4n2M+1 − 2nM

4n2M+1 ≤ ν(v) ≤ νk(v)
4n2M+1 + 2nM

4n2M+1 .

If −2nM ≤ νk(v) ≤ 2nM , we get that:

νk(v)
4n2M+1 − 2nM

4n2M+1 >
νk(v)

4n2M+1 − 2nM+ 1
2n

4n2M+1 = νk(v)
4n2M+1 − 1

2n ≥ −2nM
4n2M+1 − 1

2n > − 2nM+ 1
2n

4n2M+1 − 1
2n = − 1

n ,

and similarly that:

νk(v)
4n2M+1 + 2nM

4n2M+1 <
1
n .

Therefore, if − 1
n < ν(v) < 1

n means that ν(v) = 0.

6

Algorithm 3: Solving the mean payoff game on the subgraph with the vertices in X

Input: X,V−, V+, E, µ
Output: Y−, Y+, Y0
Function StrConnComp(X,V−, V+, E, µ):

Y− = Y+ = Y0 := ∅;
C := {(v, w) ∈ E | v, w ∈ X} ; /* The set of all edges between the vertices of the
subgraph */

if C = ∅ ∧X ⊂ V− then
Y+ := X ; /* Only one vertex in the subgraph. */

end
if C = ∅ ∧X ⊂ V+ then

Y− := X;
end
if C ̸= ∅ then

n := #X;
M := max{|µ(v, w)| | (v, w) ∈ C};
for v ∈ Vx do

ν0(v) := 0;
end
for k = 1, ..., 4n2M + 1 do

for v ∈ X do
if v ∈ V− then

νk(v) := min{µ(v, w) + νk−1(w) | (v, w) ∈ C};
end
if v ∈ V+ then

νk(v) := max{µ(v, w) + νk−1(w) | (v, w) ∈ C};
end
if νk(v) < −2nM then

Y− := Y− ∪ {v};
end
if νk(v) > 2nM then

Y+ := Y+ ∪ {v};
end

end
end
Y0 := X − (Y− ∪ Y+);

end
return (Y−, Y+, Y0)

Reachability games. Reachability games are zero-sum games played on a graph G = (V,E) by
two players: P1, P2. The two players each get assigned a subset of vertices:V1, V2; V1 ∩ V2 = ∅,
V1 ∪ V2 = V . At vertex v ∈ V1, P1 chooses an adjacent vertex w ∈ V , (v, w) ∈ E, while at vertex
v ∈ V2, P2 makes that choice. As such, as they make their choices, the two players form a list of
vertices, (v0, v1, v2...), known as the play, with (v0, v1) ∈ E, (v1, v2) ∈ E and so on. Let X be a subset
of vertices, known as the winning set. If the play reaches at least one vertex from X, then P1 wins.
Otherwise, P2 is the winner.

Discovering additional winning positions. If v ∈ Wx, meaning that it is a winning position
for Px in a mean payoff game, then for w ∈ Vx, (w, v) ∈ E, w is also a winning position. Addi-
tionally, if w ∈ V−x and ∀(w, u) ∈ E, u ∈ Wx, then w ∈ Wx. As such, we can determine additional
winning positions by playing the reachability game on the graph G with Wx as the winning set.
We can also use the reachability game to determine additional positions where each of the two
players can force a draw.

7

Algorithm 4: Identifying all vertices from which Pe can reach X

Input: X, e, V−, V+, E
Output: X
Function Reach(X, e, V−, V+, E):

for (v, w) ∈ E ∧ v /∈ X ∧ w ∈ X do
if v ∈ Ve ∨ ∀(v, u) ∈ E, u ∈ X then

X := X ∪ {v};
end

end
return X

The main routine. First we repeatedly eliminate all k-obsolete edges from the graph, with k = #V .
Because removing k-obsolete edges may reveal additional k-obsolete edges[3], we repeat the pro-
cess until there are no more k-obsolete edges found. After that, we recursively split the graph
into its strongly connected components, and for each component, we use Zwick and Paterson’s
algorithm[5] to determine its winning positions. After that, we use the algorithm for solving reach-
ability games to determine additional draw positions and then additional winning positions for
each of the players. Once we have determined a winner or a draw for the plays that start at all the
vertices in the graph, we have completed the algorithm.

8

Algorithm 5: Solving Mean Payoff Games via Reachability Games
Input: V−, V+, E, µ
Output: W−,W+

Function MPGSolver(V−, V+, E, µ):
F :=MPGObsolete(#V− +#V+, V−, V+, E, µ);
while F ̸= ∅ do

E := E − F ; /* Remove obsolete edges */
F :=MPGObsolete(#V− +#V+, V−, V+, E, µ);

end
W− =W+ =W0 = ∅ ; /* Initialize the winning sets */
if V=∅ then

r := 0;
else

r := 1;
end
X1 := V ;
while r > 0 do

X := Xr − (W− ∪W+ ∪W0) ; /* Remove any vertices with an already decided
winner/draw from the subgraph */
(s,Xr, ..., Xr+s−1) := StrConnComp(X,E) ; /* Break down the subgraph into its
strongly connected components */
r := r + s− 1;
(Y−, Y+, Y0) :=MPGSubgraphSolver(Xr, V−, V+, E, µ) ; /* Solve the MPG for this
subgraph */
W0 :=W0 ∪ Y0;
for e ∈ {−,+} do

F := {(v, w) | (v, w) ∈ E, v ∈ Ye, w ∈ Ye ∪W0};
W0 := Reach(W0,−e, V−, V+, F)} ; /* Discover additional draws */
if Ye ∩W0 = ∅ then

We :=We ∪ Ye ; /* Add the winning positions */
end

end
W− := Reach(W−,−, V−, V+, E) ; /* Solve the reachability game for the 2 players
*/
W2 := Reach(W+, 2, V−, V+, E);
while r > 0 ∧ Xr ⊂W− ∪W+ ∪W0 do

r := r − 1 ; /* If this subgraph has already been solved, we move on to the
next one */

end
end
return W−,W+,W0

3 The basic approach and the signature of a potential

3.1 Parity games as special cases of mean payoff games
It is a known fact that parity games are simply a special case of mean payoff games. For every par-
ity game, there is an equivalent mean payoff game, meaning that the mean payoff game is played
on the same graph, with the subsets of vertices V− = V1 and V+ = V2 and the players are the same
between the two games, with the same optimal positional strategies: P− = P1, P+ = P2. In order
to ensure that, we need to construct a weight function µ for the mean payoff game where a fa-
vorable vertex for P1 in the parity game leads to a favorable edge for P− and similarly for P2 and P+.

9

Equivalent mean payoff game. In order to construct the mean payoff game equivalent to a
parity game, the weight function will be µ(v, w) = (−n)Ω(v), (v, w) ∈ E. Because n > 0, for a
vertex v ∈ V with Ω(v) mod 2 = 1, every outgoing edge (v, w) ∈ E has µ(v, w) < 0, meaning
that from the vertex v, every outgoing edge decreases the average of weights, while for a vertex
v ∈ V, Ω(v) mod 2 = 0, µ(v, w) > 0, ∀(v, w) ∈ E, which means that every outgoing edge of v
would increase the average of weights. Additionally, for this weight function, we can observe that
for a cycle containing the nodes {v0, v1, ..., vx} and M = max{Ω(v) | v ∈ {v0, v1, ..., vx}}, we have
|(−n)M | >

∑
{|(−n)Ω(v) | v ∈ {v0, v1, ..., vx}} − |(−n)M |, meaning that the sign of (−n)M determines

the payoff.

3.2 The algorithm
Based on this idea that every parity game has an equivalent mean payoff game, the simplest way
to use Akian et al.’s algorithm [3] to solve parity games is to transform the parity game into its
equivalent mean payoff game and then solve it in the manner discussed above.

Algorithm 6: Solving Parity Games via their equivalent Mean Payoff Game
Input: V1, V2, E,Ω
Output: W1,W2

Function PGSolver1(V1, V2, E,Ω):
for v ∈ V do

for (v, w) ∈ E do
µ(v, w) = (−n)Ω(v);

end
end
(W1,W2,W0) :=MPGSolver(V1, V2, E, µ) ; /* Akian et al. main function */
return (W1,W2) ; /* Draws not possible in PG */

3.3 The signature of a potential for mean payoff games
In their work, Akian et al. identified that their algorithm has its best case when the graph has
the signature of a potential ψ : V → Z [3]. This means that there exists a function ψ : V → Z such
that:

(A0) µ(v, w) = µ(w, v) = ψ(v)− ψ(w) = 0, if ϵ(v) = ϵ(w), (v, w) ∈ E,
(A1) sign(ψ(v)− ψ(w)) = −1, if ϵ(v) ̸= ϵ(w), (v, w) ∈ E, (w, v) /∈ E,
(A2) sign(ϵ(v)µ(v, w)− ϵ(w)µ(w, v)) = sign(ψ(v)− ψ(w)), if ϵ(v) ̸= ϵ(w), {(v, w), (w, v)} ⊂ E,
with:

ϵ : V → {−1, 1}, ϵ(v) =

{
−1 if v ∈ V−,

1 if v ∈ V+,

sign : Z → {0,±1}, sign(x) =

−1 if x < 0,

0 if x = 0,

1 if x > 0.

Linear time. In Akian et al.’s paper[3], it is shown that the winning positions of a mean payoff
game with the signature of a potential are the same as the winning positions of its derived reach-
ability game. Given that the reachability game can be solved in linear time, |V |+ |E|[3], then the
mean payoff game can also be solved in |V |+ |E| time.

Explanation. First, we show that if a mean payoff game has the signature of a potential, then
it still has the signature of a potential, even after all of the k-obsolete edges are removed. We

10

do this by looking at E′, the set of edges that results from removing the 2-obsolete edges of E,
extended by µ′(v, w) = −ϵ(v)∞, ∀(v, w) ∈ V × V :

(v, w) ∈ E, µ(v, w) =

{
µ(v, w) if (v, w) ∈ E,

−ϵ(v)∞ if (v, w) /∈ E.

For (v, w) ∈ E and (w, v) ∈ E−E′, we can observe that for ϵ(v) ̸= ϵ(w), sign(ϵ(w)(µ(w, v)+µ(v, w))) = −1
and as such sign(µ(w, v) + µ(v, w)) = −ϵ(w). This means that sign(ϵ(v)(µ(v, w) + µ(w, v))) = 1 =
sign(ψ(v)− ψ(w)).

In a strongly connected subgraph of a mean payoff game with the signature of a potential, X ⊂ V ,
we can form a path (v0, ..., vn, v0), with v0, ..., vn ∈ X. For ϵ(v) ̸= ϵ(w), ∀(v, w) ∈ E; v, w ∈ v0, ..., vn, v0),
0 ≤ ψ(v0)− ψ(v1), we have that 0 ≤ ψ(v1)− ψ(v2),...,0 ≤ ψ(vn)− ψ(v0). As such, ψ(v0) ≥ ψ(v1) ≥ ... ≥
ψ(vn) ≥ ψ(v0). This means that ψ(v0) = ... = ψ(vn). Therefore, ∀(v, w) ∈ E, ϵ(v) ̸= ϵ(w), ψ(v) = ψ(w)
and as such µ(v, w) + µ(w, v) = 0.

Based on this, ∀(v, w) ∈ E′:

1. If ϵ(v) = ϵ(w), µ(w, v) = 0,

2. If ϵ(v) ̸= ϵ(w), µ(v, w) + µ(w, v) = 0.

Let Z− and Z+ be the set of sinks in G′ = (V,E′), Z− ⊂ V−, Z+ ⊂ V+. If from a vertex v ∈ V−, P−
has a positional strategy for reaching a vertex in the set Z+, then v is a winning position for P−.
Similarly, if from a vertex w ∈ V+, P+ can reach a vertex in the set Z−, then w is a winning position
for P−.

If however, the play does not reach a vertex in either Z− or Z+, then it is an infinite play. The
payoff of this play will be equal to 0, given that µ(v, w) + µ(w, v) = 0, ∀(v, w) ∈ E′, ϵ(v) ̸= ϵ(w), or
µ(v, w) = 0, ∀(v, w) ∈ E′, ϵ(v) = ϵ(w). As such, this play results in a draw.

Therefore, we can say that W− := Reach(Z+,−, V−, V+, E), W+ := Reach(Z−,+, V−, V+, E), W0 =
V − (W− ∪W+), where W− and W+ are the sets of winning positions for each of the two players,
while W0 is the set of draw positions.

Because the reachability game is linear in |V | + |E|, we can therefore conclude that mean pay-
off games with the signature of a potential are solvable in linear time.

3.4 The signature of a potential for parity games
Definition A parity game has the signature of a potential ψ : V → Z if its equivalent mean payoff
game has the signature of a potential ψ : V → Z.

We will be using the following helper functions:

• ϵ : V → {−1, 1}, ϵ(v) =

{
−1 if v ∈ V1,

1 if v ∈ V2,

• θ : V → {−1, 1}, θ(v) =

{
−1 if Ω(v) mod 2 = 1,

1 if Ω(v) mod 2 = 0.

Theorem If the parity game P = (V,E, V1, V2,Ω) abides by the following conditions, then it is a
parity game with the signature of a potential and can be solved in |V |+ |E| linear time:

(P0) ∀(v, w) ∈ E, ϵ(v) ̸= ϵ(w),
(P1) If (v, w) ∈ E, but (w, v) /∈ E, then ϵ(v) ∗ sign(θ(v)Ω(v) + θ(w)Ω(w)) = −1.

11

Proof. We show that for the parity game that abides by the conditions outlined above, its equiv-
alent mean payoff game has the signature of a potential. As previously established, for mean
payoff games obtained from parity games, µ(v, w) = (−n)Ω(v). For (A0) to be true, it is obvious that
µ(v, w) = 0 which is impossible, as n > 0. For determining how the conditions (A1) and (A2) apply
to parity games, ψ(v) = ϵ(v)θ(v)Ω(v) was used. (A2) is always true with this potential function and
(P1) was derived from (A1).

Because turning a parity game into a mean payoff game is linear in |E|, if the mean payoff game
can be solved in |V | + |E|, then a parity game with the signature of a potential can be solved in
|V |+ |E|.

Bipartite and symmetric graphs. Berwanger and Serre[7] have previously proven that games
played on bipartite and symmetric graphs can be solved in linear time: |V | + |E|. In this case, a
bipartite graph means that ∀(v, w) ∈ E, v ∈ V1 and w ∈ V2 or v ∈ V2 and v ∈ V1. For a graph to be
symmetric, ∀(v, w) ∈ E, (w, v) ∈ E. Evidently, bipartite and symmetric graphs have the signature
of a potential, as they the conditions set above. However, our research shows that the set of parity
games that are solvable in linear time is not limited to bipartite and symmetric games, as is made
evident by (P1).

4 The strategy improvement approach
In addition to the trivial modifications we made to to the mean payoff game algorithm to turn
it into one for parity games, we are also looking to develop an algorithm that works similarly to
Akian et al.’s[3], but without transforming the parity into a mean payoff game in the process.
Therefore, this new algorithm would have the same general structure of the original, but modified
to specifically fit parity games.

4.1 The main routine
As previously stated, we want this algorithm to be modeled after the one for mean payoff games.
This means that we maintain the same strategy of first eliminating outgoing edges from each ver-
tex that lead to undesirable cycles for the player that owns that vertex, then we break down the
graph into its strongly connected components, and for each of those we determine the winning
position for each player, ending in using a reachability game to determine the outcome of the game
from each vertex.

The modifications. Because we use the same general steps, the main routine is very similar
to the original, but for the lack of the W0 set and the commands that relate to it. That is because
a tie is impossible in parity games, given that the infinitely repeating maximum value is always
either even or uneven. As such, searching for positions that lead to a tie is useless.

12

Algorithm 7: Solving Parity Games via Reachability Games
Input: V1, V2, E,Ω
Output: W1,W2

Function PGSolver2(V1, V2, E,Ω):
F := PGObsolete(#V1 +#V2, V1, V2, E,Ω) ; /* Determine obsolete edges */
while F ̸= ∅ do

E := E − F ; /* Remove obsolete edges */
F := PGObsolete(#V1 +#V2, V1, V2, E,Ω) ; /* Determine new obsolete edges */

end
W1 =W2 = ∅;
if V=∅ then

r := 0;
else

r := 1;
end
X1 := V ;
while r > 0 do

X := Xr − (W1 ∪W2);
(s,Xr, ..., Xr+s−1) := StrConnComp(X,E) ; /* No changes to this function */
r := r + s− 1;
(Y1, Y2) := PGSubgraphSolver(Xr, V1, V2, E,Ω);
W1 :=W1 ∪ Y1;
W2 :=W2 ∪ Y2 ; /* We don’t need to check for draws, not possible in PG */
W1 := Reach(W1, 1, V1, V2, E) ; /* No changes to this function */
W2 := Reach(W2, 2, V1, V2, E);
while r > 0 ∧ Xr ⊂W1W2 do

r := r − 1;
end

end
return W1,W2

The functions StrConnComp and Reach require no modifications from how they are defined in the
algorithm for mean payoff games.

4.2 Eliminating k-obsolete edges
Definition. A k-obsolete edge in a parity game is an outgoing edge of v ∈ Vx, such that by playing
it, no matter what other choices Px makes, Py has a positional strategy through which the play
returns to v, forming a cycle of maximum length k, where the parity of the maximum priority in
this play corresponds to that of the player Py, meaning that it is never advantageous for Px to play
that edge. Therefore, that edge can be eliminated from the graph without the outcome of the game
being affected; {Px, Py} = {P1, P2}.

Evaluating a given play. Before we focus on how the two players make their choices, we look
at how we determine the maximum priority of a given play and whether that play ends in v or
not, where v is the vertex whose outgoing edges are verified for being k-obsolete. For a given play
(vi, ..., v0) obtained from the positional strategies of both players, we have:

η′i : V → N∪{∞}, i = 0, ..., k−1, η′i(vi) =

max{Ω(vi),Ω(vi−1), ...,Ω(v1), η

′
0(v0)} if i > 0, vi ̸= v, {u | (vi, u) ∈ E} ≠ ∅,

∞ if i > 0, vi ̸= v, {u | (vi, u) ∈ E} ≠ ∅,
∞ if i = 0, v0 ̸= v,

0 if vi = v.

Explanation. In the case that the play does not end in v (v0 ̸= v), we need a value for η′0(v0)

13

that is so large that η′i(vi) = η′0(v0), indicating that the path does not lead to v. As such, we
choose η′0(w) = ∞, ∀w ∈ V − {v}. Meanwhile, if v0 = v, we need a value for η′0(v) such that η′i(vi)
will always be equal to the maximum priority of the vertices. We choose η′0(v) = 0, as the prior-
ities of vertices are natural numbers. This will be the value associated with v in all iterations:
η′i(v) = 0, i = 0, ..., k − 1.

How the players make choices. At a given vertex w ∈ Vz, w ̸= v, z ∈ {1, 2}, Pz, chooses the
vertex u′ ∈ {u | (w, u) ∈ E}. Since the players play optimally, they will choose the best option
available to them. We can rank their options for the vertex u′, from best to worst, in the following
order:

1. η′i(u′) = ∞, if Pz = Px and ∞ ∈ {η′i(u) | (w, u) ∈ E} - the priority of Px is to avoid any plays that
lead to v. For the edge (v, t) ∈ E to be k-obsolete, in the play that starts at t, Px should only
be able to choose paths that lead to v.

2. η′i(u′) = max{η′i(u) | (w, u) ∈ E, η′i(u) ̸= ∞, η′i(u) mod 2 = z mod 2}, if {η′i(u) | (w, u) ∈ E, η′i(u) ̸=
∞, η′i(u) mod 2 = z mod 2} ≠ ∅ - there are plays that lead to v with the maximum of the
preferred parity of Pz, and they choose the play with the largest of those values.

3. η′i(u′) = min{η′i(u) | (w, u) ∈ E, η′i(u) ̸= ∞, η′i(u) mod 2 ̸= z mod 2}, if {η′i(u) | (w, u) ∈ E, η′i(u) ̸=
∞, η′i(u) mod 2 ̸= z mod 2} ≠ ∅ - this means that the only available plays that lead to v have
values of the opposite parity to z, so the best choice is to select the smallest of these values.

4. η′i(u′) = ∞, if Pz = Py and ∞ ∈ {η′i(u) | (w, u) ∈ E} - in verifying if the edge (v, t) ∈ E is obsolete,
Py must be able to force the play to return to v. However, at this vertex w, none of the plays
available to Py lead to v.

If none of these options are available, it simply means that there is no outgoing edge from w.

Function definition. Now that we covered the positional strategies of the players, we can fi-
nally give a full definition for the function η′i:

η′i : V → N ∪ {∞}, i = 0, ..., k − 1,

η′i(w) =

max{Ω(w), ϵ(w) ∗ ϕ(max{ϵ(w) ∗ ϕ(η′i−1(u), v) | (w, u) ∈ E}, v)} if i ̸= 0, w ̸= v, {u | (w, u) ∈ E} ≠ ∅,
∞ if i ̸= 0, w ̸= v, {u | (w, u) ∈ E} = ∅,
∞ if i = 0, w ̸= v,

0 if w = v,

,

where ϕ : (Z ∪ {±∞})× V → Z ∪ {±∞}, ϕ(n, t) =

ϵ(t) ∗ n if n = ±∞,

−n if n ̸= ±∞, n mod 2 = 1,

n if n ̸= ±∞, n mod 2 = 0.

Explanation. The cases where i = 0 and w = v have already been covered above, so we will
now focus on the other two cases.If w has no outgoing edges, then the play that starts at w can
only contain itself and not v, so the value of η′i(w) should be ∞. Looking at the case where w has
outgoing edges. For a, b, c, d ∈ N, a < b, c < d, we have:

ϵ(w) ∗ ϕ(2b, v) < ϵ(w) ∗ ϕ(2a, v) ≤ 0 ≤ ϵ(w) ∗ ϕ(2c+ 1, v) < ϵ(w) ∗ ϕ(2d+ 1, v) if w ∈ V1,

ϵ(w) ∗ ϕ(2d+ 1, v) < ϵ(w) ∗ ϕ(2c+ 1, v) ≤ 0 ≤ ϵ(w) ∗ ϕ(2a, v) < ϵ(w) ∗ ϕ(2b, v) if w ∈ V2.

For w ∈ Vx, ϵ(w) ∗ ϕ(∞, v) = ∞, while for w ∈ Vy, ϵ(w) ∗ ϕ(∞, v) = −∞.

This means that max{ϵ(w) ∗ ϕ(η′i−1(u), v) | (w, u) ∈ E} = ϵ(w) ∗ ϕ(η′i(u′), v).

Finally, we can observe that ϵ(w) ∗ ϕ(ϵ(w) ∗ ϕ(η′i(u′), v), v) = η′i(u
′).

14

Proposition. Once the values of η′k−1(u), ∀u ∈ V have been determined, for an edge (v, w) ∈ E
to be k-obsolete, it needs to abide by the following condition:
η′k−1(w) ̸= ∞∧ ((max{η′k−1(w),Ω(v)} mod 2 = 1 ∧ v ∈ V2) ∨ (max{η′k−1(w),Ω(v)} mod 2 = 0 ∧ v ∈ V1))

Explanation. For the edge (v, w) to be k-obsolete, the play of maximum k vertices that starts
at w needs to end in v (η′k−1(w) ̸= ∞) and the maximum priority in the play is of the parity associ-
ated with Py.

As such, the algorithm for identifying k-obsolete edges is the following:

Algorithm 8: Removing k-obsolete edges from the graph of a Parity Game
Input: k, V1, V2, E,Ω
Output: F
Function PGObsolete(k, V1, V2, E,Ω):

F = ∅;
for e ∈ {1, 2} ∧ v ∈ Ve do

for i = 0, .., k − 1 do
η′i(v) = 0 ; /* Initialize values */

end
for w ∈ (V1 ∪ V2)− {v} do

η′0(w) = ∞;
end
for i = 1, .., k − 1 do

for w ∈ (V1 ∪ V2)− {v} do
if {u | (w, u) ∈ E} = ∅ then

η′i(w) = ∞ ; /* No outgoing edges */
else

η′i(w) = max{Ω(w), ϵ(w) ∗ ϕ(max{ϵ(w) ∗ ϕ(η′i−1(u), v) | (w, u) ∈ E}, v)} ;
/* Compute the new iteration */

end
end

end
for (v, w) ∈ E do

if η′k−1(w) ̸= ∞ ∧ max(η′k−1(w),Ω(v)) mod 2 ̸= e mod 2 then
F := F ∪ {(v, w)} ; /* Add all obsolete edges */

end
end

end
return F

4.3 Solving the subgraphs
Strategy Improvement Algorithm. Just like Akian et al.[3] used an already existing algorithm,
namely Zwick and Paterson’s[5], as a foundation for their mean payoff game solver, we should also
select a parity game solver, used in determining the winning positions for each of the subgraphs
we obtain by splitting the graph into its strongly connected components. For this purpose, we
will be using John Fearnley’s strategy improvement algorithm, with the greedy all-switches rule[4].
The rest of the subsection will focus on how this algorithm functions.

A positional strategy for P1 is a function τ : V1 → V , for which (v, τ(v)) ∈ E, while one for P2

is a function σ : V2 → V , where (v, σ(v)) ∈ E. The sets of all positional strategies for both P1 and
P2 are referred to as Σ1 and Σ2 respectively. Given the strategies τ ∈ Σ1 and σ ∈ Σ2, from a given

15

vertex v0, there is a unique play Play(v0, τ, σ) = v0, v1, ..., where for vi ∈ V1, vi+1 = τ(vi), while for
vi ∈ V2, vi+1 = σ(vi), i ∈ N. For an infinitely long play Play(v, τ, σ), if the largest infinitely occurring
priority of the play is an odd number, we say that τ is a winning strategy for the vertex v, for every
σ ∈ Σ2. Similarly, if the if the largest infinitely occurring priority of the play is an even number,
we say that σ is a winning strategy for the vertex v, for every τ ∈ Σ1.

Strategy improvement algorithms need to select one player for which to repeatedly improve their
strategy. In this subsection, just like in the original paper, that player will be P2.

Note that this algorithm assumes that the graph has no sinks, meaning that all vertices have
outgoing edges. Given that we only apply this algorithm to strongly connected components, for a
subgraph with at least one edge, that will always be the case.

Graph modifications. At the beginning of the algorithm, the graph is changed by having a new
vertex s added to it. This vertex is a sink, so it has no outgoing edges. Additionally, the graph also
receives some new edges: E = E ∪ {(v, s) | ∀v ∈ V2}. Reaching a sink leads to the play being finite,
meaning that, at any point, P2 can end the game by choosing to move the token to s.

Admissible strategy. An admissible strategy σ ∈ Σ2 is either a winning strategy, or the play
Play(v, τ, σ) ends in the sink s. For P2, the algorithm will consider only admissible strategies.

Valuation. A valuation is a measure of how good the pair of strategies σ, τ is, given the starting
vertex. In this algorithm, a valuation will be of the form P → Z, where P is the array of all priority
values that occur in the graph, and will count the number of occurrences of each priority in a
given finite play. The set of all functions of these functions is referred to as V alsG. Therefore, for
Lv ∈ V alsG, Lv(p) = #{w | w ∈ Play(v, τ, σ), w ̸= s, Ω(w) = p}. We also define ⊤ as the valuation
of an infinite play with an even maximum priority and ⊣, he valuation of an infinite play with an
odd maximum priority. For the vertex v, a strategy τ ∈ Σ1 and an admissible strategy σ ∈ Σ2, we
have the valuation function:

V alτ,σ : V → V alsG∪{⊤}, V alτ,σ(v) =

⊤ if P lay(v, τ, σ) is infinite with an even maximum priority,

⊣ if P lay(v, τ, σ) is infinite with an odd maximum priority,

Lv if P lay(v, τ, σ) is finite.

Note that because σ is an admissible strategy, σ(v) ̸=⊣ for v ∈ V2. Also note that if V alτ,σ(v) = ⊤,
that means that P2 is the winner at vertex v.

Additionally, the operators ⊑ and ⊏ are introduced. For every L ∈ V alsG, L ⊑ ⊤ is true, and
so is ⊣ ⊑ L. For Lx, Ly ∈ V alsG, if Lx = Ly, Lx ⊑ Ly is true, as well as Ly ⊑ Lx. However, if Lx ̸= Ly,
then for p = max{Ω(v) | v ∈ V, Lx(Ω(v)) ̸= Ly(Ω(v))}, if Lx ⊏ Ly, then p is even and Lx(p) < Ly(p), or
p is odd and Lx(p) > Ly(p).

Best response. The best response to an admissible strategy σ ∈ Σ2 is the strategy br(σ) ∈ Σ1

that minimizes the valuation of each vertex. Strategy improvement for an admissible strategy σ
only works if P1’s strategy is the best response, so we can define V alσ = V albr(σ),σ.

Switchable set. We define an edge (v, u) ∈ E to be switchable if σ(v) ̸= u and V alσ(σ(v)) ⊏ V alσ(u).
A switchable set S ⊆ E is a set of edges, such that for any pair of edges (v, w), (u, t) ∈ E, v ̸= u. This
means that the switchable set contains at most one outgoing edge for each of the vertices of the
graph. For a switchable set S and the strategy σ, we can create a new strategy σ[S]:

σ[S] : V2 → V , σ[S](v) =

{
w if (v, w) ∈ S,

σ(v) if {(v, w) | (v, w) ∈ E} ∩ S = ∅
.

How a strategy is improved. If S is a switchable set with only switchable edges in it, then

16

V alσ(v) ⊑ V alσ[S](v), ∀v ∈ V2, and there are one or more vertices w ∈ V2 for which V alσ(w) ⊏
V alσ[S](w). This means that the strategy σ[S] is an improvement over σ. The way the switchable
set with only switchable edges is found is by using the greedy all-switches rule, meaning that for
every vertex that has outgoing switchable edges, the algorithm chooses the switchable edge (v, w)
that maximises V alσ(w) under the ⊑ ordering. The strategy improvement algorithm keeps iterat-
ing on the strategy for P2 until no more improvements can be found. Because there is a strict ⊏
ordering, this means that the algorithm can not repeat strategies, so it must eventually terminate.

How the algorithm works. First, we create σinit, which is the strategy in which P2 uses just
the edges from all the vertices in V2 to the sink s. This will be the initial value of σ. Next, we
compute the best response. We initially set τ to an arbitrary strategy. Next, we identify odd-
switchable edges (v, w) ∈ E where V alτ,σ(w) ⊏ V alτ,σ(τ(v)). The algorithm repeatedly switches
odd-switchable edges until there are none left, creating the best response. After that, we repeat-
edly find the switchable edges for σ, and switch them in until there are no more switchable edges.
The vertices from which P2 wins are those which form an infinite length path where the maximum
infinitely repeating priority is even, or, in other words: W2 = {v | v ∈ V, V alτ,σ(v) = ⊤}. Conversely,
W1 = {v | v ∈ V, V alτ,σ(v) ̸= ⊤}.

Additionally, because we apply this algorithm to subgraphs, we first check if the subgraph in
question has no edges. Solving this subgraph is trivial. Because of this step, this algorithm has
a linear complexity for games with the signature of potential. The proof from the previous section
applies here as well.

Algorithm 9: The algorithm for determining the switchable set with odd-switchable edges
Input: X,V1, V2, C,Ω, V alτ,σ, τ
Output: F
Function Switchable1(X,V1, V2, C,Ω, V alτ,σ, τ):

S1 = ∅;
for v ∈ X ∩ V1 do

u = σ(v);
for (v, w) ∈ C do

if V alτ,σ(u) ⊏ V alτ,σ(w) then
u = w;

end
end
if u ̸= σ(v) then

S1 = S1 ∪ (v, u) ; /* (v, u) is the best odd-switchable edge at v for P1 */
end

end
return S1 ; /* The switchable set of odd-switchable edges */

17

Algorithm 10: The algorithm for determining the switchable set with switchable edges
Input: X,V1, V2, C,Ω, V alτ,σ, σ
Output: F
Function Switchable2(X,V1, V2, C,Ω, V alτ,σ, σ):

S2 = ∅;
for v ∈ X ∩ V1 do

u = τ(v);
for (v, w) ∈ C do

if V alτ,σ(w) ⊏ V alτ,σ(u) then
u = w;

end
end
Play(−1, τ, σ) = ∅;
if V alτ,σ(u) ⊏ Ls then

u = s ; /* The best switchable edge is the edge between v and the sink */
end
if u ̸= τ(v) then

S2 = S2 ∪ (v, u) ; /* (v, u) is the best switchable edge at v for P2 */
end

end
return S2 ; /* The switchable set of switchable edges */

18

Algorithm 11: The strategy improvement algorithm for solving parity games
Input: X,V1, V2, E,Ω
Output: F
Function PGSubgraphSolver(X,V1, V2, E,Ω):

Y1 = Y2 := ∅;
C := {(v, w) ∈ E | v, w ∈ X} ; /* The set of all edges between the vertices of the
subgraph */

if C = ∅ ∧X ⊂ V1 then
Y2 := X ; /* Only one vertex in the subgraph. */

end
if C = ∅ ∧X ⊂ V2 then

Y1 := X;
end
if C ̸= ∅ then

σ := σinit(X,V2, C) ; /* Initialize strategy */
τ := arbitraryStrat(X,V1, C) ; /* Initialize with random strategy */
S2 = S1 := ∅;
repeat

repeat
for v ∈ X do

if v ∈ V1 then
w = τ(v);

else
w = σ(v);

end
while v ̸= w ∧ w ∈ X do

if w ∈ V1 then
w = τ(w);

else
w = σ(w);

end
end
if w /∈ X then

V alτ,σ(v) = Lv ; /* Finite play, ends in sink */
else

if max{Play(v, τ, σ)} mod 2 = 0 then
V alτ,σ(v) = ⊤ ; /* Infinite play */

else
V alτ,σ(v) =⊣;

end
end

end
S1 := Switchable1(X,V1, V2, C,Ω, V al

τ,σ, τ) ; /* Compute the switchable set */
τ = τ [S1] ; /* Switch edges */

until S1 = ∅;
S2 := Switchable2(X,V1, V2, C,Ω, V al

τ,σ, σ) ; /* Compute the switchable set */
σ = σ[S2] ; /* Switch edges */

until S2 = ∅;
for v ∈ C do

if V alτ,σ(v) = ⊤ then
Y2 = Y2 ∪ {v};

end
end
Y1 = X − Y2;

end
return (Y1, Y2); 19

5 Comparing the algorithms
Implementation. In order to test the performance of the algorithms outlined above, the following
algorithms were implemented in C:

• pgSolver1, an implementation of the basic approach, where the parity game is first translated
into a mean payoff game

• pgSolver2, an implementation of the strategy improvement approach, where we use Fearnley’s
strategy improvement algorithm[4] to solve subgraphs and then solve the entire game using
the equivalent reachability game

• pgSolver3, a sequential implementation of Fearnley’s strategy improvement algorithm[4] used
on the entire graph of the game

• Test Generator, a tool that generates 15 random parity games and 15 random, bipartite,
symmetric parity games. All generated graphs have at most 1000 nodes, no sinks and the
maximum priority of any one node is 10.

Used tests. In addition to the 30 test cases generated by our tool, 15 more tests were taken from
Keiren’s set of benchmark tests[8]. These sets confirm to the same restrictions as the others: a
maximum of 1000 nodes, the maximum priority of any node is 10 and there are no sinks. These
tests were not hand-picked, instead, the tests used were simply the first 40 files that fit the criteria
which were opened with the C readdir() function.

The tests were carried out on a Dell laptop with an Intel Core i7-9750H CPU, clocked at 2.60
GHz, with 12 cores and 16GB of ram.

After using the algorithms to solve the parity games, our program stores the execution times
of each algorithm, along with information about each individual game in a .xlsx file. This file,
along with the program and the test cases are publicly available1. All information on how to use
the programs that were created for this experiment is found in the README.md file found in the
repository.
Note that the algorithm pgSolver1 was only tested on parity games that either had the maximum
priority M ≤ 2 or M ≤ 4, with the number of nodes n ≤ 300. This is because the complexity of the
subgraph solver loop in this algorithm is nM+2, which not only would lead to extremely long execu-
tion times, but also would lead to a technical error, as this implementation needs that value to fit in
the long long data type, which has the range (9, 223, 372, 036, 854, 775, 807, +9, 223, 372, 036, 854, 775, 807).

Table 1. This table showcases the information on 6 of the test that were run from Keiren’s bench-
marks [8]. From here, it is obvious how much the execution time of pgSolver1 can vary. Even
though the other 2 tests shown here had more than 100 vertices over the that particular game,
the fact that the maximum priority was equal to 2, combined with its internal structure, lead to
an execution time of 5 minutes. The nature of the subgraphs that are obtained from the original
game greatly affect the execution time, as they influence how often the loop in mpgSubgraphSolver
is used. Given the time complexity of that loop, it is the reason why it is possible to have such
long execution times on such small graphs.

We can also already notice how efficient pgSolver3 is. In Fearnley’s experimental results [4], the
sequential implementation of the strategy improvement algorithm could solve tests from Keiren’s
set[8] with even 500, 000 vertices in less than 1 second.

1https://github.com/Vortex1711/PG-Reachability-Benchmakrs

20

Test Vertices Max
Priority

pgSolver1
time (s)

pgSolver2
time (s)

pgSolver3
time (s)

StarNesterk=1_n=2.gm 336 1 1 1 0
ABP(BW)datasize=4_infinitely_often_receive_d1.gm 196 2 3041 1 0
StarNesterk=1_n=2.gm 336 1 1 1 0
Pardatasize=8_infinitely_often_read_write.gm 414 2 ! 6 0
Pardatasize=4_infinitely_often_receive_for_all_d.gm 734 2 ! 23 0
randomgame(1000,_10,_1,_20)id=0.gm 1000 10 ! 196 0

Table 1: Results on some of Keiren’s tests. ! marks that the algorithm was not executed for that
test.

Figure 1. This chart shows the execution time of all 3 algorithms across all 45 tests, with the
exception of the test where pgSolver1 had an execution time of 5 minutes, in order to properly
showcase the rest of the data.
Here, we can see that the execution times of the pgSolver2 algorithm greatly increase with the
number of nodes in the graph. The average execution time of this algorithm for tests with at least
500 nodes was 68.68s.

Figure 1: Execution time of all algorithms across almost all test cases.

Figure 2. This chart shows the execution time of all 3 algorithms on the set of random bipartite,
symmetric parity games that we generated. Considering that these games are solved in linear
time, as they are games with the signature of a potential, we see a drastic decrease in execution
time. In this particular subset, average of the execution times for pgSolver2 in parity games with
over 500 nodes is just 33.66s

21

Figure 2: Execution time of all algorithms for bipartite, symmetric parity games.

6 Conclusion
From the experimental results, we can conclude that while we achieved our goal of adapting
Akian et al.’s algorithm [3] to solve parity games, and for a particular set of games, known as
parity games with the signature of a potential, even provide the solution of the game in linear time
complexity, these algorithms are not very efficient in practice.Through future research, perhaps a
better performing algorithm could be discovered that uses the same structure as the algorithms we
focused on here, but uses a different parity game solver for determining the winners in subgraphs.

References
[1] Oliver Friedmann and Martin Lange. The pgsolver collection of parity game solvers. University

of Munich, pages 4–6, 2009.

[2] Cristian S. Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and Frank Stephan. Decid-
ing parity games in quasi-polynomial time. SIAM Journal on Computing, 51(2):STOC17–152–
STOC17–188, 2022.

[3] M. Akian, S. Gaubert, Lorscheid O., and Mnich M. Mean payoff games with the signature of a
potential, 2022. Unpublished.

[4] John Fearnley. Efficient parallel strategy improvement for parity games. In Rupak Majum-
dar and Viktor Kunčak, editors, Computer Aided Verification, pages 137–154, Cham, 2017.
Springer International Publishing.

[5] Uri Zwick and Mike Paterson. The complexity of mean payoff games on graphs. Theoretical
Computer Science, 158(1):343–359, 1996.

22

[6] Ehrenfeucht A. and Mycielski J. Positional strategies for mean payoff games. International
Journal of Game Theory, 8:109–113, 1979.

[7] D. Berwanger and O. Serre. Parity games on undirected graphs. Information Processing Letters,
112(23):928–932, 2018.

[8] Jeroen Keiren. Benchmarks for parity games. volume 9392, 07 2014.

23

