
Backtracking with Tree Decomposition for

Solving Constraint Optimization Problems

Bachelor’s Thesis

Tran Duy Hieu Nguyen, s3751147, t.d.h.nguyen.1@student.rug.nl
Supervisors: Prof. A. Lazovik & Mr. M. Medema

July 11, 2022

Abstract:
Solving Constraint Satisfaction Problems (CSP) and its sibling the Constraint Optimization

Problems (COP) is a prominent research subject in Computing Science in general and in Artificial
Intelligence in particular. A notable technique for solving CSPs is using the decomposition of
the problem to divide it into independent sub-problems. The algorithm Backtracking with Tree
Decomposition (BTD) was developed to solve CSP using the tree decomposition of the constraint
network between the variables. In this thesis, we explored the idea of using BTD as a method to
solve optimisation problems. We designed and implemented the BTD* algorithm which performs
recursive search on the tree decomposition of the constraint network. Following the structure of
the tree decomposition, BTD* tries to find the optimal solution to the problem by recursively
optimizing the cost of the subtrees until it has determined that no other solution can be more
optimized than the one last found, or until it has proven that the problem is unsatisfiable. We then
made comparisons between BTD* and the existing COP solver Choco by performing benchmarks
using 96 instances selected from the website of the XCSP3 framework. Based on these comparisons,
we determined that the performance of BTD* is not comparable to that of the Choco solver, both
in terms of time complexity and space complexity. Even though our algorithm and implementation
is not entirely efficient, it is still a good starting point for future researches of BTD-like algorithm
for solving COP.

1

Acknowledgement

Before we start with the thesis, I wish to extend my gratitude to all my families and friends whom have
supported me through out the project. You all have made the process easier with your kindness.

I would like to thank my supervisors Prf. Dr. Lazovik and Mr. Medema for their instructions and
guidance, as well as their patience. Especially to Mr. Medema, with whom the weekly meetings and
towards the end of the project, bi-weekly meeting are has helped me progressed so much.

2

1 Introduction

The formalism Constraint Satisfaction and Optimization Problems (CSP and COP) are powerful frame-
works that can represent many academic as well as real life problems. For example, the Eight Queen puzzle
is an academic problem that can be modelled using CSP, whereas real life budgeting can be represent by a
COP. Finding a solution efficiently for constraint satisfaction problems (CSP) and constraint optimization
problems (COP) has always been an important research subject for Artificial Intelligence and Computing
Science. This is because problems that can be represented by a CSP or COP tends to have a large search
space, thus solving CSP and COP are NP-Complete. One of the known set of techniques for this is
decomposition techniques. Taking advantage of the constraints between variables in a CSP, decomposition
techniques try to divide a CSP into smaller and more manageable sub-problems. Generally when using this
divide and conquer method, after decomposition the original problem has a lower worst case complexity
and thus making it more likely that finding a solution would be more efficient. One of the notable method
for decomposing a constraint problem is Tree Decomposition. Tree Decomposition separate the problems
into smaller sub-problems that are connected via a tree. Algorithms can this navigate the search space
following the structure of this tree and exploits certain characteristic of it to lessen the workload.

The Backtracking with Tree Decomposition (BTD) algorithm was developed to solve CSP following
this very idea[6]. The algorithm uses standard backtracking search on the tree decomposition of the
structure of the constraint network, and at the same time exploiting this structure to prune the search
space. Proven to be useful for solving CSP, though out time BTD has been developed further and further
as a CSP solving algorithm, with a few work that present BTD or tree decomposition as a method for
solving Weighted-CSP. This begs the question of how would an algorithm based on BTD that solves
a COP be defined and how would it behave? In this thesis, we explored the idea of altering the BTD
algorithm and design a BTD-based COP solving algorithm, named BTD*. After having defined and
implemented the algorithm we compared the results produced by our BTD* algorithm with a well known
open-source Constraint Programming solver, the Choco solver.

This thesis is organised as follows. Section 2 contains background information on CSP and COP,
the Tree Decomposition method, and the BTD algorithm and framework. In section 3, we address
several related works to give a clear view of our position with regards to the current state of the art.
Section 4 explains the conceptual definition of BTD* and some design choices that was made during the
implementation process of BTD*. In section 5, we show the result of the BTD* implementation, using
benchmark tests sourced from available tests on the website www.xcsp3.org/instances/ as well as discuss
these results along with making comparison with the results produced by the Choco solver. Section 6 is
where we draw our conclusion for the thesis and possible future improvement for BTD WMC is described
in section 7. Finally, the bibliography finalised the paper.

2 Background Information

In this section, we will go over information and definitions that are deemed necessary for the best
understanding of important parts of the thesis paper. The definitions are that of: CSP, COP, Tree
Decomposition, and the BTD algorithm. We will also mention some information regarding the BTD
framework.

2.1 Constraint Satisfaction and Optimization Problems

These definitions regarding CSP are taken almost verbatim from that of S.J.Russell, P. Norvig, et al. in
[10].

A CSP can be defined as a triplet, consisting of three components, X,D, and C. The definition of
these components are as follows:

X = {X1, ... , Xn} is the set of variables in the problem,

D = {D1, ... , Dn} is the set of domains, each variable possess one domain.

C = {C1, ... , Cm}, is the set of constraints that specify permissible combinations of values.

A domain Di in D is a set of allowable values, {v1, ... , vk} for variable Xi. This means that only values
chosen from the domain Di can be used to assign to the variable Xi. A constraint Ci ∈ C consists of a
pair ⟨S, r⟩. S is a tuple of variables that participate in the constraint, it can also be referred to as the
scope of the constraint; r is a relation that defines the combinations of values that are valid with respect

3

to the constraint (i.e. satisfies the constraint) that can be assigned to variables in S. Should a CSP only
have constraints of arity two, it is known as a binary CSP. A solution to a CSP needs to be a consistent
and complete assignment of values to the variables in the set X. A consistent assignment does not
infringe on any of the constraints in C, i.e. no constraints are violated, whereas an assignment in which
all of the variables in X are assigned is called a complete assignment. A CSP can have either 0, 1, or
multiple solutions; it would have no solution in the case of no complete assignments toX are consistent to C.

A COP can be defined as a 4-tuple ⟨X,D,C,O⟩, with X,D, and C defined exactly as in a CSP,
whereas the objective O is defined as a pair consisting of a goal and an objective function obj(). The
objective function obj() computes the cost of a assignment to X by mapping it to a real value. It can also
compute the cost of assignments to individual variables in X. obj() computes the cost of a complete
assignment by summing up the cost of the individual assignments i.e.:

obj() =
∑n

i=1 obj(xi ← vxi
) with xi ∈ X and Vxi

∈ Dx.

This implies that obj() can compute the cost of partial assignments as well. The goal specifies how the
value of obj() should be optimized, either maximized or minimized, by a solution to the COP. A solution
to the COP is a complete assignment to X and it is consistent to C while at the same time optimize
the value of obj(). Similar to a CSP, a COP can have 0, 1, or more than 1 solutions. A COP can have
multiple solutions because there could be multiple complete and consistent assignments to X which all
optimize obj.

The algorithm we defined in this paper was made with the a few assumptions regarding the Objective
O. These assumptions are:

• Instead of assignments to real values, obj() maps assignments to integer values.

• For every variable in X, when assigned a value from its domain, would never have a negative cost,
i.e.:

∀x ∈ X (∀v ∈ Dx (obj(x← v) ≥ 0))

• The cost of assigning a variable x with value v is computed as:

∀x ∈ X (∀v ∈ Dx (obj(x← v) = v ∗ cx))

where cx is the coefficient of x in the Objective.

• The goal can be optimizing the cost of a subset of X, this subset is to be referred to as the scope
of the Objective.

2.2 Tree Decompostion

A CSP can be represented by a hypergraph H (or just a graph G for binary CSP) where each variable
in the CSP is a vertex in H (or G) and each constraint scope of the CSP is a hyper-edge in H (or an
edge in G). We need to first acknowledge the fact that Tree Decomposition is a notion for graph and not
hypergraph. However, any hypergraph can be represented by a primal graph (also known as clique-graph
or 2-section graph) thus Tree Decomposition can be performed on this primal graph instead. A primal
graph G of a hypergraph H possesses the same vertices as H, an edge in G connects two vertices if they
are connected by a hyperedge in H. After having formally defined tree decomposition, an example of a
primal graph of a hyper graph would be shown.

As described in [8], a tree decomposition of a graph can be defined as follows: Let G = (X,C) be a
graph with X being the set of vertices and C being the set of edges, note that we use the name G, X,
and C to relate to a binary CSP. A tree decomposition of G is a pair (E, T) in which T = (I, F) is a tree
where:

I is the set of nodes and

F is the set of edges of T,

E is {Ei : i ∈ I} a family of subsets (also called clusters) of X

Ei is a node of T and satisfies all three conditions:

4

• (i) ∪i∈IEi = X,

• (ii) For each edge x, y ∈ C, there exists i ∈ I so that x, y ⊆ Ei, and

• (iii) For all i, j, k ∈ I, if k is in a path from i to j in T, then Ei ∩ Ej ⊆ Ek

The width of a tree decomposition (E, T) is determined to be the size of the largest cluster minus
one, i.e. maxi∈I |Ei| − 1. The tree-width w of G is the minimal width over all tree-decompositions of G.
An optimal tree decomposition is one whose width is equal to w, however, to compute an optimal tree
decomposition is an NP-hard problem [8]. Therefore in practice, the tree decomposition computed would
have the width w+ ≥ w referred to as an approximation of w. Among the vast amount of works that
focus on computing a tree decomposition that minimize w+ as much as possible, an algorithm that can
effectively compute a tree decomposition of a constraint network while at the same time allowing the
user to choose certain heuristics to guide the decomposition process was created by P. Jégou et. al. [8].
This algorithm is named Heuristic Tree-Decomposition-Without Triangulation (H-TD-WT). H-TD-WT
proves to be effective both in terms of computing time and in terms of the quality of the generated tree
decomposition [8].

An example of creating a tree decomposition of a CSP is to first create the primal graph G from the
hypergraph H of said CSP. The next step is to create an acyclic hypergraph H ′ from G. Afterwards,
simply select an edge of H ′ to be the root cluster, leaving other edges to be other clusters in the tree, and
a tree decomposition is found.

(a) The hypergraph H
of (X,C).

(b) The primal
graph G of H.

(c) An acyclic hyper-
graph H′ of G.

(d) A possible tree decom-
position of (X,C)

Figure 1: An example of steps for creating a tree decomposition of a hypergraph.

Let X be {a, b, c, d, e, f} and C be {a ≤ b ≤ c, a ̸= e, b ̸= d, c ̸= d, d ≠ f}, an illustration of these steps
can be found in Figure 1. Figure 1a is the hypergraph H that represent (X,C), 1b is the primal graph G
of H, 1c is a possible acyclic hypergraph H ′ of G, and 1d is the tree decomposition if the edge containing
{a, b, c} of H ′ was chosen to be the root cluster.

It is obvious that a parent cluster and a child cluster have shared variables, such sets of shared
variables between two clusters are called separators. These separators play an important role in the
BTD algorithm as well as the BTD* algorithm.

2.3 Backtracking with Tree Decomposition

In 2003, the work of P. Jegou and C. Terrioux on an original framework for solving CSP was published [6].
This is the Backtracking with Tree Decomposition (BTD) algorithm.

The BTD algorithm is described to be a hybrid algorithm, since as the name suggest, BTD solves
a CSP based on both backtracking techniques and the notion of tree decomposition. Assuming a tree
decomposition of the constraint network has been computed and is available to BTD. It then uses the
tree decomposition as a partial variable order to perform enumerative search by always instantiating the
variables in the parent cluster first before the ones in the children clusters. BTD assigns value to variables
in a cluster Ci in a certain order that can be decided with the help of a heuristic. When assigning variables
in the cluster, BTD of course will try to maintain the consistency of the assignments. Should any variable
can not be assigned due to constraint violation, BTD will perform Backtrack and change the current
instantiation of the variables either in Ci or in a ancestor of Ci. Once Ci has no more variable unassigned,
BTD will select a child Cj of Ci to continue with the search process by instantiating variables in Cj . Should
Ci have no children to explore, BTD will move to a sibling of Ci and continue with the search there.

In order to prune the search space, BTD exploit the fact that a cluster Ci and its child Cj have
a separator between them, which is a set of shared variables. The variables in the separators will be

5

instantiated before the ones in Cj and the assignments in Cj is dependent on the assignments in the
separator. Due to this, when BTD has determined certain assignments to the separator will lead to
consistent assignments to both Cj and Descendant(Cj) or will definitely lead to inconsistency either in Cj
or Descendant(Cj), it will record these assignment in separate sets to later on check if the separator of Ci
and Cj has been assigned with one of the ”(in)consistent-guaranteed” assignments. Goods and nogoods
are, respectively, the name for the consistent-guaranteed and the inconsistency-guaranteed assignments.
By recording these goods and nogoods, BTD can ”skip” certain parts of the search space when a (no)good
is encountered. This is the notion of structural good and structural nogood [6]. Should the assignments
of the separator of Ci and Cj is a good, BTD will move on to another child of Ci, if there is still an
unexplored sibling of Cj . If a nogood is encountered, BTD will perform backtracking and change the
current assignment, either in Ci or an ancestor of Ci. In the case of the assignments on separator not
being a good or nogood, BTD will continue the search on to the subtree rooted at Cj and later on record
the newly found good or nogood accordingly.

Immediately, one can see that BTD uses Chronological Backtracking to change the current assignments
should the search process found inconsistency. This method of backtracking is known to be inefficient
in practice. However, in [6], BTD is also implemented with extensions that took this into account.
Experiments in [6] shows results found when BTD is implemented with extensions either using filtering
techniques based on filtering algorithms (Forward Checking - FC, Maintaining Arc Consistency - MAC),
non-chronological backtracking (Backjumping - BJ), or both. It was shown that for solving classical
random CSPs, FC-BTD and MAC-BTD respectively are comparable to the classical algorithms FC and
MAC. When it comes to solving structured random CSPs, FC-BTD-BJ and MAC-BTD-BJ are respectively
significantly faster than FC and MAC due to the ability of BTD to exploit (no)goods. In term of real word
instances, BTD produced better or comparable results when compared to the classical algorithms. [6] also
showed that when it come to required space, BTD was proven usable in practice unlike Tree-Clustering[5],
which is another decomposition method that was deemed too costly memory wise.

For this project, BTD* was built using the available resources in the source code of the BTD framework
that was made available to us. The source code is written in C++ and uses a variant of the XCSP3
Core Parser in C++ that parses the XML format of CSP/WCSP/COP instances named XCSP 3.0 [3]
[2]. It has an implementation of the algorithm H-TD-WT with the heuristic H5 [7] for computing a tree
decomposition and several heuristics that aides the solver in making ”choices” while solving, as well as a
filtering system to filter values from domains as the search progresses. More information on the XCSP3
framework and parser developed at the Computer Science Research Institute of Lens (CRIL) at University
of Artois can be found on the website: xcsp.org.

3 Related Works

Before discussing our design and implementation of the BTD* algorithm, we need to address the related
work that surround this thesis to position our work w.r.t the current state of the art, as well as refer to
certain work we will be using for the thesis.

Let us first take a look at a standard technique for solving COPs using backtracking search known
as the Branch and Bound algorithm (BB). Unlike BTD* which performs recursive search, BB perform
iterative search instead. The way searching works for BB is to build up partial assignments in a depth-first
manner while exploiting bounds to prune the search space. Given a COP C being a reduction of the
original COP, and the goal is to minimize the objective function. BB takes in C and an upper bound
value UB. It then first approximates a lower bound and upper bound for the cost of the best solution to C.
Afterwards, BB chooses a variable x to assign and tries all possible values for it. With each of these tries,
BB will start a ”new” search on the further reduced C with a tightened UB using the smaller between
UB and the approximated upper bound, subtracting the cost of assigning x. The bounds returned by
these tries are then used to tighten the approximated bounds even more before returning them. In the
beginning of each search, should the approximated lower bound be greater than or equal to UB, BB will
cancel the search and perform backtracking since the partial solutions at hand will not lead to a better
solution, effectively pruning the search space. When BB has finished searching, the returned bounds
would have the same value being the minimum cost of C. Though not similar to the way BB works, in
section 4 we will see that BTD* would also be exploiting bounds during search to prune the search space
should the goal of the objective be to minimize the objective function.

Secondly, the algorithm Russian Doll Search with tree decomposition (RDS-BTD) in [11] that uses
BTD to solve the subproblems induced by RDS when solving a Weighted CSP (WCSP). WCSPs can be
described as CSPs in which violation of constraints is allowed and has a certain penalty cost. Solving

6

www.xcsp.org

WCSP generally means minimizing this penalty cost. Even though RDS-BTD is designed to solve WCSP
instead of COP, it is still an expansion of BTD to solve problems involving cost and bounding which
makes it related to our work. This algorithm was implemented in the toulbar2 solver and competed in
the Max-CSP competition 2008 for solving WCSPs hosted by CRIL. It won first place and performed
much better than other solvers having solved 89% of the instances while the others solved at most 70%
instead.∗ This result further suggests research on using BTD as a method for solving COPs should be
carried out. Still, at the time of research for this project, there seemed yet to be an algorithm or solver
that is a variation of BTD or use BTD as a method for solving COP.

The closest work to using BTD or tree decomposition as a method to solve COP is one by M.Kitching
and F. Bacchus in [9]. In this work, an iterative search algorithm that is designed to solve a COP is
proposed. This algorithm is named OR-Decomp. OR-Decomp searches like BB, i.e by bounding until an
optimal cost is found, but it takes in a decomposed problem instead of a reduced problem. The input
problem is decomposed into components and OR-Decomp has the freedom to branch on any unassigned
variable of any active components. Similar to BTD, this algorithm can also exploit tree decomposition as
a partial variable ordering. However, this algorithm can be allowed to not follow the ordering imposed by
the tree decomposition should another variable can be deemed more promising. This is so since it has
the choice to branch on any unassigned variable of any active components and once all the variables in a
cluster are assigned, all of its children became active components. Therefore OR-Decomp can essentially
switch between siblings cluster to assign variables. Adding to that, OR-Decomp is an iterative search
algorithm, which is very different from the recursive search nature of BTD*. Even though OR-Decomp
is designed to solve COP, experiments on OR-Decomp in [9] were performed with WCSP instead and
therefore the result does not really translate to the effectiveness of OR-Decomp when solving COPs.

The latest extension of BTD, the algorithm BTD-MAC+RST+Merge [7], should also be mentioned.
This algorithm exploits restart and merging clusters to improve BTD, it also uses Generalised Arc
Consistency (GAC) to aid the solving process by filtering out value from domains to prune the search
space. BTD-MAC+RST+Merge can restart the search to start with a different root cluster setting a new
partial variable ordering to follow. Not only that, it can also update dynamically the tree decomposition
depending on the need of the solving by merging clusters when needed. This merging method allows
BTD-MAC+RST+Merge to change the variable ordering even more since variables in a child cluster
after having been merged with its parent would be instantiated before the one in the siblings clusters
prior to merging. We can see that BTD has been developed further and more complex for solving CSPs,
but yet to be extended to solve COPs. While the BTD* algorithm does not exploit restart or merging,
it does use GAC enforced by a propagation-based system exploiting events that was implemented for
BTD-MAC+RST+Merge in the source code for BTD we received for this project.

Finally, we must mention the Heuristic-Tree Decomposition-Without Triangulation algorithm for
computing a tree decomposition. This algorithm operates without triangulation of the graph to find
cliques and then compute clusters. It instead computes set of clusters by traversing the graph using
properties related to separators along with their associated connected components [8]. Implemented with
different heuristic, H-TD-WT can affect the solving progress differently with the tree decomposition it
produces. H-TD-WT is also implemented in the source code for the BTD framework which we received,
however it is implemented with the heuristic H5 described in [7]. We find that this heuristic is not suitable
for computing a tree decomposition to solve a COP and thus decided to implement a different heuristic.

4 Design and Implementation

This section goes over the design of the BTD* algorithm and reasons for the design choices made regarding
BTD* and the heuristics chosen.

4.1 Definition of BTD*

We choose to define BTD* to a be a recursive search algorithm that follows a tree decomposition of
the constraint network. This means that BTD* will recursively optimize each subtrees in the tree
decomposition in order to optimize the entire tree and thus find an optimal solution if the constraint
network is satisfiable. We opted to define BTD* this way to explore the effectiveness of recursive search
using tree decomposition for solving COPs.

The way BTD* performs search is as follows. Assuming we have a consistent assignment from the root
cluster of the cluster tree to the current cluster Ci and no variables in Ci has been assigned. BTD* will

∗As shown on the website of the Max-CSP 2008 competition: https://www.cril.univ-artois.fr/CPAI08/

7

first try to consistently assign all variables in Ci one by one until Ci has no unassigned variable left. Then,
BTD* proceeds to a child cluster Cj of Ci to recursively search for an optimal solution to the subtree
rooted at Cj if the assignments on the separator between Ci and Cj is not a (no)good. If BTD* succeeded
in optimizing the subtree of Cj , meaning the optimal solution to this subtree has been found, BTD* will
record a good on the separator between Cj and Ci; BTD* will so record the solution to Cj along with
the good it has just recorded. Should BTD* determined that the subtree rooted at Cj does not have a
solution, i.e. leads to inconsistencty, it will record a nogood on the separator between Cj and Ci then
change the current assignment on Ci to start searching again. If BTD* has found an optimal solution to
all the subtrees of the children of Ci, it will computes the cost of the subtree rooted at Ci and compare
this to the last know best solution of this subtree and then update the last known best solution with
the newly found solution to the subtree at Ci if needed. BTD* will perform a backtrack and change the
assignments on Ci and repeat the whole process. If BTD* found that Ci has no variables left that can
be reassigned, it will return the last known best solution of the subtree rooted at Ci since this the most
optimal solution to the subtree w.r.t the assignments on the separator between Ci and its parent cluster.
Another important detail about how BTD* works is that when it is exploring the children of a cluster Ci,
if BTD* encountered a good for the child cluster Cj it will reconstruct the most optimal solution to the
subtree rooted at Cj . This is made possible by the fact that when BTD* records a good, it also record the
assignments to the child cluster induced by the good. Therefore, it can reconstruct the optimal solution to
the subtree by first reconstructing the optimal the solution for Cj and then for each cluster in the subtree
of Cj .

8

Algorithm 1: BTD*

1: BTD* (A, Ci, VCi)
2: if VCi

= ∅ then
3: Consistency ← True
4: newA ← A
5: F ← Children(Ci)
6: while F ̸= ∅ and Consistency do
7: Choose Cj in F
8: F ← F\{Cj}
9: if A[Ci ∩ Cj] is a Good of (Ci, Cj) in GoodSet then

10: newA = newA ∪ Solution From Good(Cj , newA[Cj ∩ Ci])
11: else
12: if A[Ci ∩ Cj] is a NoGood of (Ci, Cj) in NoGoodSet then
13: (Consistency, newA) ← (False, A)
14: else
15: (Consistency, newA) ← BTD*(newA, Cj , Cj\(Ci ∩ Cj))
16: if Consistency then
17: Record the good A[Ci ∩ Cj] of Ci ∩ Cj in GoodSet with newA[Cj\(Ci ∩ Cj)]
18: else
19: Record the nogood A[Ci ∩ Cj] of Ci ∩ Cj in NoGoodSet
20: end if
21: end if
22: end if
23: end while
24: Return (Consistency, newA)
25: else
26: Choose x ∈ VCi

27: dx ← Dx

28: (best newA, best cost) ← (∅, ∞)
29: while dx ̸= ∅ do
30: Choose v in dx
31: dx ← dx\{v}
32: if ∄c ∈ C such that c is not satisfied by A ∪ {x← v} then
33: (Consistency, new A) ← BTD* (A ∪ {x← v}, Ci, VCi

\{x})
34: if Consistency then
35: cost ← Get Subtree Cost(new A, Ci)
36: if cost < best cost then
37: (best cost, best newA) ← (cost, newA)
38: end if
39: end if
40: end if
41: end while
42: if best cost = ∞ then
43: Return (False, A)
44: else
45: Return (True, best newA)
46: end if
47: end if

Algorithm 1 describes BTD* when minimizing the objective function obj(). The algorithm has input
consist of:

• A: a consistent set of assignments from the root cluster to Ci,

• Ci: the current cluster, and

• VCi
: the set of unassigned variable of Ci.

The algorithm will return True and the most optimal extension of A called newA if A can be consistently

9

extended to VCi
and Descendant(Ci). Should A can not be consistently extended to VCi

and Descendant(Ci),
False and A will be returned instead.

One can see that the pseudo code in algorithm 1 shows BTD* to be an exhaustive search with no
bounding. This is because the way bounding works for BTD* is not easy to describe in pseudo code,
therefore we decided mention it separately. Given one of the assumptions made for this thesis is no
variable when assigned a value will have a negative cost, we can see that this induces a property of the
objective function obj() that it is ascending. having exploited this, when the goal of the objective is to
minimize obj(), we can perform bounding in BTD* as follows. We created a data structure to keep track
of the current best assignment for a cluster and the current best cost of the subtree rooted at said cluster
w.r.t to the current state of assignments; we named this data structure Local Best. If the objective goal is
to minimize obj(), Local Best is set to empty assignment and infinity for every cluster and the Local Best
of a cluster will be reset back to this once a variable in it has been reassigned so that the algorithm can
keep searching for a better solution, hence the name Local Best. When a solution has been found for a
subtree rooted at a cluster C, Local Best of C is set to the cost of this subtree according to this newly
found solution, that is if it is indeed better than the current Local Best of C. However, since Local Best
for every cluster is reset when a variable or more in its parent cluster has been reassigned, it could be
the case that this newly found solution for the subtree rooted at C has a cost smaller than the current
Local Best (∞), but higher than the current Local Best of the root cluster. Since obj() is ascending,
BTD* can conclude that due to this solution to the subtree rooted at C is already higher than the last
best cost of the entire problem, the current assignment on C is suboptimal, thus Local Best of C will not
be updated with the cost from this solution and C will need to have a variable or more reassigned. Should
BTD* have tried all the combination for for assigning C but they all leads to inconsistency or produce
suboptimal solution a nogood will be recorded on the separator between C and its parent cluster. Even
though in such case the assignments on the separator between C and its parent does lead to consistency,
BTD* would still record a nogood because the solutions to the subtree alone is already worse than the last
know best solution to the tree so the assignments on the separator will never be able to lead to a better
solution, even if all the other variables instantiated before the ones in the separator are reassigned. For
that BTD* can record a nogood on the separator, without having to worry about missing out on better
solution in the future. This action of bounding the cost of subtree to the be less than the last best cost
for the entire tree and recording nogood on separator that guarantees to break the bound is how BTD*
prunes the search space using bounds. Another way of bounding that BTD* uses is for when assign a
variable in a cluster. Should the cost of assigning a variable with a certain value is already higher than
the Local Best cost of the subtree rooted at said cluster,i.e there is a current best for the subtree, BTD*
will ignore this value and would assign a different one to the variable.

4.2 Design choices

When designing the BTD* solver, we made several decisions regarding our choice for heuristics that will
be addressed and reasoned in this section.

Heuristics help guide the solver during the solving process, they provide the solver with the ability to
make ”choices”. For this project, these ”choices” are: selecting the next cluster that is to be explored,
which variable is to be instantiated next, which value will be chosen for assignment to a variable. Last but
not least, the ”choice” of how to construct the tree decomposition that the solving process will exploit.
These heuristics were already implemented in the BTD framework that we received for this project.
However, we decided to implement a different heuristic for creating the next cluster when computing the
tree decomposition and a different value heuristic.

Firstly, we address our choice to implement another heuristic for H-TD-WT to compute a tree
decomposition. For the implementation of our solver, this algorithm was used along with the heuristic H1
described in [8] to generate the tree decomposition for which the BTD* solver will traverse to find the
solution to the problem at hand. Based on [8] and [7], the heuristic H5 that was already implemented in
the source code for BTD is the more suitable heuristic out of all five for computing a tree decomposition
in order to solve a CSP. Because of this, we had to evaluate if the H5 heuristic would be good to use for
our implementation of BTD*. We decided that H5 is not suitable for our algorithm since it does not try
to minimize the size of a cluster in a tree decomposition. We decided to implement the H1 heuristics in
[8] to use with this algorithm instead. Due to its functionality of minimizing locally the size of the next
cluster when the tree decomposition is being computed, it was also described to be the one more suited for
solving optimization problems [8]. By doing so, the H1 heuristic ensures the tree decomposition computed
will be ”split” into smaller sized clusters as much as it can. This is beneficial to BTD* since when the

10

algorithm traverses the cluster tree, it will be able solve each cluster faster. This is because BTD* only
use chronological backtracking, if a cluster’s size is too big, it would create a bottleneck that would slow
down the solving process significantly. Unlike solving a CSP, we will keep looking for more solutions even
when one has been found. For that to happen, BTD* must perform backtracking and reassigning variables
either in the current cluster or in one of the ancestor clusters. Hence when the size of a cluster is too
large, this is likely to take a long time. A cluster with too large of a size will become a bottle neck because
the BTD* algorithm optimizes the sub-tree rooted at said cluster by trying all possible combinations
of assignments for the variables in the cluster (w.r.t the assignments of its ancestors clusters) and then
choose the best one based on the cost of the entire sub-tree resulted by each assignment. For example,
a cluster C contains 10 variables without counting the separator with its parents, can be assigned so
that 3 variables, no matter how they are assigned to be consistent with previous assignments, will always
leads to inconsistency somewhere down the sub-tree. Assuming between these 3 variables the maximum
domain size is 9, the solver would need to try in the worst case at least 93 = 729 combinations before it
can decide to reassign one of the other variables in the cluster that was assigned before all = 3 or reassign
one of the ancestor clusters. After reassignment has been performed, it could be that the solver would run
into the same case, thus going through the same bottle neck again. In order to avoid described cases of
bottleneck, locally minimizing the size of the next cluster when computing a tree decomposition is the
more suitable choice. However, using the H1-TD-WT most likely results in more memory consumption
given more Good and NoGood will be recorded since the cluster size will be minimized thus the tree
decomposition would have more clusters, i.e. more separators; but it can ensure that such a case of bottle
neck as described above will be limited as much as possible and the Goods and NoGoods will be more
utilized to speed up the solving progress. This seems to be a reasonable trade off between time complexity
and space complexity that we made for this algorithm.

For the heuristic that helps the solver choose the next cluster from the children of the current cluster
to continue with the search process, the currently implemented heuristic in the framework seems to be the
most suitable. This heuristic is called: ”Minimum Size Separator”, as the name suggest, it chooses the
child cluster with the smallest amount of shared variables with the current cluster to keep furthering the
search first. This heuristic can help save some memory for the solver. For example: a cluster C with 5
children, we label them C1 to C5 depending on the size of their separator with C, C1 being the one with the
smallest sized separator and C5 being the one with the largest. In the case of cluster C1 and C2 along with
their sub-trees has been solved, meaning a Good was recorded between C and each of them and other
Goods were recorded on any separator in the sub-trees rooted at C1 and C2, then BTD* may determine
that C3 does not have a solution. Now the algorithm needs to record a NoGood between C3 and C then
reassign a variable either in C or C’s ancestors. If after the reassignment has taken place and C no longer
can have assignments that can use the mentioned Goods with C1 and C2 for the rest of the solving process,
they would never be used and thus will be wasted. Using this heuristics helps the solver minimize the
amount of wasted memory for Goods recording that will never be used again, thus it was decided to keep
using this heuristic for BTD*.

Variable ordering is already partially enforced by the tree decomposition. However, we can still choose
a heuristic for ordering the variables in a cluster. For this heuristic, we again used the same heuristic
implemented in the BTD source code: Dom/Wdeg heuristic. This heuristic guides the solver to choose the
unassigned variable in a cluster which has the smallest ratio of its domain size to the sum of its constraints’
weights. These weights are named Wdeg for Weighted Degree. Dom/wdeg was first introduced in [1]
in 2004. Due to the fact that the main subject of the project is to implement and evaluate BTD*, we
decided not to implement a different heuristic for variable ordering in order to save time and focus on
implementing the actual algorithm.

The implemented heuristic for choosing a value to assign a variable in the source code of BTD is
Lexicographical Ordering. Due to the way this heuristic was implemented in the BTD framework, we were
not certain whether it was performing as expected. We decided to implement a simple Minimum Value
heuristic to be used by the BTD* solver instead. As the name suggest, it simply select the smallest value
currently in the domain of a variable when said variable has been selected for assignment by the solver.

4.3 Implementation

The BTD* algorithm was implemented in C++ as an extension to the the source code we received.
Defined recursively, BTD* is very easy to understand and is quite straightforward. However, in terms of
practicality, implementing this algorithm recursively would not be ideal since the recursion stack would
grow too quickly, which potentially can cause stack overflow. To avoid this, BTD* was implemented

11

iteratively, but it still perform the search recursively.

5 Experiment and Result Discussion

For the purpose of benchmarking the BTD* algorithm, the used benchmark problems were sourced from
the benchmarks available on the website of the XCSP3 framework: xcsp.org. These benchmarks will be
hereinafter referred to as instances.

In order to ensure that the used instances all follows the assumption that were made for this thesis
and all have constraints supported by the BTD source code that we received, we filtered these instances to
find the one that are suitable for our experiments. These instances all have objective goal of maximizing
or minimizing the sum of a list of variables and no variables in the objective scope can have a negative
cost when assigned a variable from its domain. From the instances that were determined to be suitable,
we decided to perform the experiment using 96 instances selected from 11 different sets.

The benchmark tests were run in a fresh Ubuntu 20.04 LTS installation on a Lenovo Legion Y540
laptop. The laptop is equipped with an Intel Core i7-9750H having 6 cores, a clock frequency of 2.6GHz,
maximum turbo clock frequency of 4.5GHz, and 16 Gigabytes of RAM. The time limit was set to 1800
seconds in CPU time for all instances.

Configurations set for BTD* are:

• H-TD-WT algorithm with the H1 heuristic for computing a tree decomposition.

• Minimum Size Separator for next cluster heuristic.

• Dom/Wdeg for variable ordering in a cluster.

• Minimum Value for value heuristic.

• No memory limit.

For us to better assess BTD*, we used the Choco solver to try and solve the same instances and then
compare the results of the two solvers. We downloaded the source code for Choco version 4.10.8, which at
the time was the latest release of the Choco solver, directly from the GitHub repository of the Choco
team [4].

Configurations set for the Choco solver are:

• Conflict History Search for variable ordering heuristic.

• Minimum Value for value heuristic.

• Default released memory limit of 4000 MiB (roughly 4.2GB)

We note that the maximum amount of memory available for Choco is less than the amount available for
BTD*. However, this was not a problem since Choco did not reach the memory limit while trying to
solve any of the instances.

All time measurements in this sections are in CPU time unless stated otherwise.

5.1 Overview of BTD*’s result

BTD* managed to solve 49 out of the selected 96 instances, which is approximately 51% of the total
number of instances used. The number of instances solved in a certain time frame are shown in Table 1.
We can see that 39 of the solved instances were solved in less than 50 seconds, which is roughly 79.6% of the

Total time t (CPU seconds) #instances solved
t < 50 39

50 ≤ t < 100 2
100 ≤ t < 250 2
250 ≤ t < 500 4
500 ≤ t < 1000 1

1000 ≤ t 1

Table 1: Time frame of solved instances by BTD*.

12

https://github.com/chocoteam/choco-solver/releases

solved instances and 40.6% of all selected instances. While this does seems some what impressive, we must
also take a look at the instances that BTD* failed to solved. Among the 96 chosen instances, 47 of them
were not solved by BTD*. 44 of them are due to the time limit having been exceeded, the other 3 are due
to insufficient memory despite having 16GB of RAM at hand. Interestingly, 2 of the instances that timed
out did not reach the solving phase, in fact one after 13 hours and one after 2 hours of wall clock time still
did not make it pass the initial propagation. We had to stop the process in order to continue with other
instances and ruled these 2 instances as having timed out. These instances are: Pb-factor-S9-P005-Q317
(13 hours) of the subset PseudoBoolean-opt-factor and PeacableArmies-m1-07 c18 (2 hours) of the set
PeacableArmies.

Detailed results produced by BTD* can be found in Appendix B.

5.2 Comparison with Choco

Before going into details of the comparison, there are few things that we would like to address:

• The timer for the Choco solver is implemented differently from the timer in the BTD*. Only the
actual solving process of Choco is limited by the time limit set out. The solving process includes
the initial propagation and the resolution, but not the building time for relevant data structure. For
the BTD*, the entire process is limited to the time limit, i.e. the sum of the building time, initial
propagation time, and solving time is limited. Having taken this into account, we decided when
comparing the solving time of the 2 solvers the total time will be compared.

• Choco is implemented using Java which is known to be slower than C++ when performing the same
computing task.

We will now take a quick look over the results of the two solvers before going into details. A quick

BTD* Choco
solved 49 63
failed 47 33

Table 2: Number of solved/failed instances of BTD* and Choco.

comparison of the number of solved/failed instances of the two solvers can be found in Table 2. We can see
right away that Choco managed to solved more instances than BTD*, it successfully solved 63 instances
whereas BTD* only solved 49 instances. This is somewhat expected since Choco did came in third and
second position in solving COPs when competed in the XCSP3 2018 and 2019 international competition
for solving Constraint Problems.†

Total time t
#instanced solved
BTD* Choco

t < 50 39 48
50 ≤ t < 100 2 3
100 ≤ t < 250 2 4
250 ≤ t < 500 4 5
500 ≤ t < 1000 1 2

1000 ≤ t 1 1

Table 3: Number of instances solved in a certain time frame for both solvers.

Table 3 shows how many instanced did BTD* and Choco solved in a certain time frame. Across almost
all time frame, Choco solved more than BTD*, especially within less than 50 seconds.

We will now take a closer look into the results of the 2 solvers.
When the results of the two solvers are put together, we found 48 instances were solved by both

solvers; 15 of the instances BTD* failed to solve were solved by Choco, whereas only 1 instance solved by
BTD* that Choco did not managed to solve.

Let us examine the 48 instances that were solved by both solvers. Table 4 shows the name of the
instances, the total time each solver took to solve them, how many nodes assignment did each solver

†As shown on the XCSP3 website

13

http://www.xcsp.org/competitions/

Instances name BTD* Choco

Time #Nodes #Backtracks Time #Nodes #Backtracks

Knapsack-30-100-09 29.920 8,366,571 2,647,020 1.342 98,431 196

Knapsack-30-100-15 192.394 51,300,043 19,042,633 1.414 103,074 205,028

Knapsack-30-100-18 76.735 21,726,817 6,695,251 1.070 54,745 108,918

LowAutocorrelation-003 0.000 38 6 0.191 7 11

LowAutocorrelation-008 0.045 3,956 225 0.324 802 1,586

LowAutocorrelation-012 4.248 130,723 3,963 0.823 2,724 5,409

LowAutocorrelation-015 313.255 1,228,510 28,742 20.550 203,969 402,563

Pb-bgr-04 0.007 165 33 0.226 83 161

Pb-bgr-05 0.065 2,966 1,393 0.340 489 959

Pb-bgr-06 0.933 19,174 11,054 0.577 1,279 2,535

Pb-bgr-07 11.913 123,387 69,399 3.254 9,363 18,616

Pb-bgr-08 510.104 3,253,967 1,875,579 42.442 72,791 144,846

Pb-aim-050-2-0-yes1-2 3.227 159,548 72,044 1.385 15,156 30,105

Pb-aim-100-3-4-yes1-2 3.831 247,790 131,807 19.233 103,076 205,065

Pb-ii08a1.xml 1.316 106,477 31,032 26.728 555,577 1,104,958

Pb-jnh001.xml 45.164 1,949,454 167,017 8.805 18,449 36,605

Pb-jnh207.xml 0.151 4,880 475 0.762 1,005 2,000

Pb-par08-1-c.xml 0.007 823 50 0.254 35 69

Pb-par08-5-c.xml 0.009 1,053 101 0.278 63 125

Pb-garden-4x4 0.014 1,910 1,037 0.204 49 97

Pb-garden-7x7 7.368 610,641 290,533 434.609 12,538,190 25,006,132

Pb-gr-04 0.116 10,078 2,841 0.233 82 159

Pb-gr-05 0.336 33,763 4,793 0.383 616 1,211

Pb-gr-06 30.237 1,879,078 228,365 0.904 2,254 4,460

Pb-gr-07 333.450 12,609,294 1,885,120 3.927 11,240 22,344

Pb-logic-b1 0.063 9,471 4,081 0.195 43 75

Pb-logic-bbara-r 120.746 26,489,604 13,084,543 0.490 3,753 7,457

Pb-logic-C17 0.002 298 132 0.180 13 21

Pb-msplit-4-30-3 87.621 14,269,492 9,607,678 474.353 9,992,497 19,941,201

Pb-mps-v2-20-10-bm23 1.254 123,317 74,140 0.648 7,059 14,050

Pb-mps-v2-20-10-p033 0.007 1,587 680 0.244 741 1,467

Pb-mps-v2-20-10-stein15 0.042 6,598 2,808 0.209 337 673

Pb-mps-v2-20-10-stein27 4.694 859,252 367,524 1.259 36,762 73,241

Pb-routing-s3-3-3-1 0.442 24,650 11,023 3.853 16,321 32,195

Pb-routing-s3-3-3-3 3.431 157,398 99,268 72.443 331,066 656,921

Pb-circ4-3 0.909 72,074 2,102 3.415 14,201 28,228

Pb-data4-3 0.960 72,074 2,102 3.518 15,357 30,535

QuadraticAssignment-tai10a 445.990 38,897,885 3,628,799 52.117 937,177 1,871,866

QuadraticAssignment-tai10b 4.724 563,611 135,248 1.256 5,141 10,197

QueenAttacking-03 0.000 0 0 0.212 0 0

QueenAttacking-04 0.046 2,791 1,891 0.503 1,264 2,527

QueenAttacking-05 4.319 151,619 84,959 0.691 2,073 4,124

StillLife-03-03 0.006 123 25 0.258 17 27

StillLife-03-12 0.047 3,336 578 1.068 12,487 24,823

StillLife-04-08 0.778 62,801 15,056 0.605 4,086 8,118

StillLife-05-09 29.781 824,281 222,044 2.795 41,823 83,259

StillLife-07-07 24.205 477,149 116,413 9.048 118,610 236,180

StillLife-08-08 1352.129 3,575,766 855,978 229.999 2,259,420 4,501,665

Table 4: 48 instances solved by BTD* and Choco. Total time, number of nodes assignments, and
number of backtracks of both solvers. Bold font means for that instance, BTD* performed better
than Choco in terms of that metric at face value.

performed, and how many backtrack did each solver performed. It also highlight instances that were
solved faster by BTD* which are the one whose total time of BTD* is in bold font.

In total, 26 of the 48 instances were solved faster by BTD*. However, after closer inspection we found
that only for 4 of them was BTD* significantly faster than Choco; these instances are highlighted green in
Table 4. Overall, we can see that Choco performed better and more consistent than BTD* in terms of

14

solving time.
In terms of number of nodes assignment made, due to its nature of recursive search, BTD* assigned

significantly more nodes than Choco for almost all of the instances. There are only 4 instances where
BTD* managed to win over Choco, they are the instances in Table 4 which has the ”#Nodes” field of
BTD* in bold font. Interestingly, these 4 are also the 4 instances where BTD* was much faster than
Choco.

Having looked into the number of backtracks achieved by the two solvers for these 48 instances, we
find that for 22 instances BTD* performed less backtracks than Choco. There is an instance for which
the solvers tied with each other, it is the QueenAttacking-03 instance. Both of the solvers determined this
instance is unsatisfiable in the initial propagation phase, thus the number of backtracks performed is 0.
Instances where BTD* had to perform less backtrack can be found in Table 4, they are the ones with
#Backtracks for BTD* in bold font. However, we have to note that due to the way Choco is implemented,
its number of backtracks is, most of the time, more than the number of node assigned. This is of course
very unusual. We suspect that Choco was making backup of nodes and therefore the counts is higher
than anticipated. Given this, information on Backtracks counts does not reflect much about the amount
of work done between the two solvers.

Figure 2: Results of the solvers for the subset
PseudoBoolean-opt-garden.

Figure 3: Results of the solvers for the subset
PseudoBoolean-opt-routing.

Interestingly, theres is one instance that BTD* managed to solve, but Choco did not, this is the
instance Pb-garden-9x9 of the subset PseudoBoolean-opt-garden in the set PseudoBoolean. Figure 2
shows the result of the solvers for each instances in this subset. In this subset, BTD* managed to out
shine Choco. For every metrics of comparsion, BTD* show significant better quality than that of Choco.
This subset and the subset PseudoBoolean-opt-routing, are the 2 subsets where BTD* produced results
that can be considered significantly better than Choco. The results of the two solver for the subset
PseudoBoolean-opt-routing can be found in Figure 3.

When it comes to other subsets BTD* either performed comparably or worse than Choco. The common
trends of these subset are that BTD* performs comparably to Choco, or possibly a bit better, for the
easier instances. But as the difficulty grows, by number of variables, number of constraints, contraint
arity, etc. the performance of BTD* quickly deteriorates. Some example of cases like these are the subset
PseudoBoolean-opt-bgr, QueenAttacking-m1-s1, and StillLife-m1-s1. Results for these instances can be
found in, respectively, Figure 4, 5, and 6.

Overall, the experiment show that BTD* is not comparable to the Choco solver. Given the position of
Choco in terms of open source Constraint Problems solver, this result is not unexpected. However, on its
own, the result for BTD* still seems promising enough to warrant more researches.

15

Figure 4: Results of the solvers for the subset PseudoBoolean-opt-bgr.
Showing as the instances gets harder, the performance of BTD* quickly
quickly deteriorates.

Figure 5: Results of the solvers for the subset QueenAttacking-m1-s1.
Showing as the instances gets harder, the performance of BTD* quickly
quickly deteriorates.

Figure 6: Results of the solvers for the subset StillLife-m1-s1. Showing
as the instances gets harder, the performance of BTD* quickly quickly
deteriorates. Note that instance StillLife-06-10 is harder than StillLife-07-7

5.3 Tree Decomposition

Before the experiment, we believed that having a small tree width would be beneficial to the search time
for BTD*. In this section, we show the width, the number of cluster, and the maximum separators size of
the tree decomposition that H1-TD-WT produced for each instances to determine if using H1 helped with
the solving process as we anticipated.

The results of the 2 solvers for all 96 instances and the information on the tree decomposition computed
by H1-TD-WT is shown in Figure 7.

Based on the width, the number of clusters, and the maximum size of separators, we can not conclude
anything about whether or not H1-TD-WT benefited the search time. While it does seems that a smaller
tree width helps, but there are many instances where our anticipation is contradicted. For example, we
look at the set LowAutocorrelation. This set is one of our example for how quickly the performance of
BTD* deteriorates as the difficulty increases. Yet, instances of this set have relatively small tree width.
Furthermore, for the last 3 instances in this set, the amount of backtracking perform by BTD* is very low
compared to the number of nodes assignment. Another example of this is the StillLife set of instances.
All instances have relatively good tree width, but the performance of BTD* still dropped as the difficulty

16

Figure 7: Results of both solver. Along with the width, number of clusters,
and max separator size of the Tree Decomposition computed by H1-TD-
WT

17

level rises. However, if we look at the subset PseudoBoolean-opt-garden, the description applies, but
BTD* out performed Choco here instead.

Considering all these information, we can not draw a relation between the width of the tree decompo-
sition and the solving time of BTD*. It is likely that other factors, may be in combination with features
of tree decomposition, would be able to predict the behaviour of BTD*.

6 Conclusions

The goal of this thesis was to design, implement, and benchmark as well as compare to another solver, an
algorithm for solving Constraint Optimization Problems based on the algorithm Backtracking with Tree
Decomposition which was designed to solve Constraint Satisfaction Problem. We have achieved these
goals with the BTD* algorithm.

Similar to BTD, BTD* is defined to be a recursive search algorithm. BTD recursively search for a
solution to the subtree of the tree decomposition of the constraint network, whereas BTD* recursively
search for the optimal solution to the subtree instead. After having implemented BTD*, we ran benchmark
tests for BTD* and found that as the difficulty of the problem grow, the time that it takes for BTD* to
solve the problem would also be growing quite fast. This is likely due to the recursive search nature of
BTD*. The same benchmarks was also run for the Choco solver, a different and well known COP solver,
to help us interpret the position of BTD* more. From the comparison of the experimental results, we
see that even though BTD* successfully solved over half of the selected instances, it is still not yet to be
consider comparable to Choco due to the fact that it is yet to be efficient. However from said results, it
does seems promising enough to warrant more research towards COP solving algorithms that ultilise BTD.
We can consider our work to be a good starting point for developing, implementing, and benchmarking
BTD-like algorithms that solves COP in the future.

7 Future Work

Various future work can be envisioned for BTD*. They can be separated into two trends: (In)directly
improving the current state of BTD* or ultilising BTD in a different manner for solving COP.

The first one includes but does not limit to:

• Further optimization of the BTD* source code, for example: introduce more bounding if possible

• Implement more heuristics that BTD* can use and experimenting with their effect on performance,
e.g. more value heuristics, variable heuristics, cluster heuristics, and heuristics for H-TD-WT, etc.

• Extending BTD* to consider COP with negative cost for assigning variable.

• More benchmark testing with larger amounts of instances, better hardware, and more diverse settings
for both BTD* and the solver to be used for comparison.

A possibility of future work that follows the second trend is to design an algorithm that uses BTD to
first create a solution to the constraint network. The next step of such an algorithm could be using that
solution and its cost as a bound as it iteratively searches for a better solution and updates the bound if
needed. It could also exploit decomposition of the objective cost to create bound for subproblems should
the problem be decomposable.

Evidently, there are many possibilities for BTD* to be improved. Given the fact that at the point of
research for this project it seemed that BTD* is the first BTD-like algorithm to solve COP, therefore any
improvement to BTD* following any of the two trends are warranted.

References

[1] Frédéric Boussemart, Fred Hemery, Christophe Lecoutre, and Lakhdar Sais. Boosting systematic
search by weighting constraints. In Proceedings of the 16th European Conference on Artificial
Intelligence, ECAI’04, page 146–150, NLD, 2004. IOS Press. ISBN 9781586034528.

[2] Frédéric Boussemart, Christophe Lecoutre, and Cédric Piette. XCSP3: an integrated format for
benchmarking combinatorial constrained problems. CoRR, abs/1611.03398, 2016. URL http:

//arxiv.org/abs/1611.03398.

18

http://arxiv.org/abs/1611.03398
http://arxiv.org/abs/1611.03398

[3] Frédéric Boussemart, Christophe Lecoutre, Gilles Audemard, and Cédric Piette. Xcsp3-core: A
format for representing constraint satisfaction/optimization problems. CoRR, abs/2009.00514, 2020.
URL https://arxiv.org/abs/2009.00514.

[4] Chocoteam. Chocoteam/choco-solver: An open-source java library for constraint programming. URL
https://github.com/chocoteam/choco-solver.

[5] Rina Dechter and Judea Pearl. Tree clustering for constraint networks (research note). Artif.
Intell., 38(3):353–366, apr 1989. ISSN 0004-3702. doi:10.1016/0004-3702(89)90037-4. URL https:

//doi-org.proxy-ub.rug.nl/10.1016/0004-3702(89)90037-4.

[6] Philippe Jégou and Cyril Terrioux. Hybrid backtracking bounded by tree-decomposition of constraint
networks. Artif. Intell., 146(1):43–75, 2003. doi:10.1016/S0004-3702(02)00400-9. URL https:

//doi.org/10.1016/S0004-3702(02)00400-9.

[7] Philippe Jégou, Hanan Kanso, and Cyril Terrioux. Towards a dynamic decomposition of csps
with separators of bounded size. In Michel Rueher, editor, Principles and Practice of Constraint
Programming, pages 298–315, Cham, 2016. Springer International Publishing. ISBN 978-3-319-44953-1.

[8] Philippe Jégou, Hanan Kanso, and Cyril Terrioux. An algorithmic framework for decomposing
constraint networks. In 2015 IEEE 27th International Conference on Tools with Artificial Intelligence
(ICTAI), pages 1–8, 2015. doi:10.1109/ICTAI.2015.15.

[9] Matthew Kitching and Fahiem Bacchus. Exploiting decomposition in constraint optimization problems.
In Peter J. Stuckey, editor, Principles and Practice of Constraint Programming, pages 478–492, Berlin,
Heidelberg, 2008. Springer Berlin Heidelberg. ISBN 978-3-540-85958-1.

[10] Stuart J. Russell and Peter Norvig. Artificial Intelligence: a modern approach. Pearson, 3 edition,
2009.

[11] M. Sanchez, D. Allouche, S. De Givry, and T. Schiex. Russian doll search with tree decomposition.
In Proceedings of the 21st International Joint Conference on Artificial Intelligence, IJCAI’09, page
603–608, San Francisco, CA, USA, 2009. Morgan Kaufmann Publishers Inc.

19

https://arxiv.org/abs/2009.00514
https://github.com/chocoteam/choco-solver
https://doi.org/10.1016/0004-3702(89)90037-4
https://doi-org.proxy-ub.rug.nl/10.1016/0004-3702(89)90037-4
https://doi-org.proxy-ub.rug.nl/10.1016/0004-3702(89)90037-4
https://doi.org/10.1016/S0004-3702(02)00400-9
https://doi.org/10.1016/S0004-3702(02)00400-9
https://doi.org/10.1016/S0004-3702(02)00400-9
https://doi.org/10.1109/ICTAI.2015.15

A Appendix

Set Sub-set Instances name

Knapsack
Knapsack-m1-s30 3

Knapsack-30-100-09
Knapsack-30-100-15
Knapsack-30-100-18

Knapsack-m1-s40 1 Knapsack-40-150-00

LowAutocorrelation LowAutocorrelation-m1-s1 7

LowAutocorrelation-003
LowAutocorrelation-008
LowAutocorrelation-012
LowAutocorrelation-015
LowAutocorrelation-020
LowAutocorrelation-025
LowAutocorrelation-030

PseudoBoolean

PseudoBoolean-opt-bgr 7

Pb-bgr-04
Pb-bgr-05
Pb-bgr-06
Pb-bgr-07
Pb-bgr-08
Pb-bgr-09
Pb-bgr-10

9

Pb-aim-050-2-0-yes1-2
Pb-aim-100-3-4-yes1-2
Pb-aim-200-1-6-yes1-4
Pb-ii08a1.xml
Pb-ii08a2.xml
Pb-jnh001.xml
Pb-jnh207.xml
Pb-par08-1-c.xml
Pb-par08-5-c.xml

PseudoBoolean-opt-factor 1 Pb-factor-S9-P005-Q317

PseudoBoolean-opt-garden 5

Pb-garden-4x4
Pb-garden-7x7
Pb-garden-9x9
Pb-garden-15x15
Pb-garden-100x100

PseudoBoolean-opt-gr 6

Pb-gr-04
Pb-gr-05
Pb-gr-06
Pb-gr-07
Pb-gr-08
Pb-gr-09

8

Pb-logic-b1
Pb-logic-bbara-r
Pb-logic-c8
Pb-logic-C17
Pb-logic-cm42a
Pb-logic-dk512x-r
Pb-logic-fout-r
Pb-logic-m050-100-10-10-r

5

Pb-msplit-4-30-3
Pb-msplit-6-50-2
Pb-msplit-8-70-4
Pb-msplit-opt-4-30-2
Pb-msplit-opt-5-40-1

PseudoBoolean-opt-mps 7

Pb-mps-v2-20-10-bm23
Pb-mps-v2-20-10-lseu
Pb-mps-v2-20-10-neos5
Pb-mps-v2-20-10-p033
Pb-mps-v2-20-10-stein15
Pb-mps-v2-20-10-stein27
Pb-mps-v2-20-10-stein45

PseudoBoolean-opt-routing 4

Pb-routing-s3-3-3-1
Pb-routing-s3-3-3-3
Pb-routing-s4-4-3-2
Pb-routing-s4-4-3-8

PseudoBoolean-opt-ttp 4

Pb-circ4-3
Pb-circ6-3
Pb-data4-3
Pb-data6-3

PseudoBoolean-opt-vtxcov 1 Pb-vtxcov-v2000-e4000-00

QuadraticAssignment 6

QuadraticAssignment-esc16e
QuadraticAssignment-had12
QuadraticAssignment-lipa20b
QuadraticAssignment-tai10a
QuadraticAssignment-tai10b
QuadraticAssignment-tai25a

QueenAttacking QueenAttacking-m1-s1 7

QueenAttacking-03
QueenAttacking-04
QueenAttacking-05
QueenAttacking-06
QueenAttacking-09
QueenAttacking-12
QueenAttacking-15

StillLife StillLife-m1-s1 9

StillLife-03-03
StillLife-03-12
StillLife-04-08
StillLife-05-09
StillLife-06-10
StillLife-07-07
StillLife-08-08
StillLife-09-09
StillLife-10-11

TravellingSalesman 2
TravellingSalesman-15-30-00
TravellingSalesman-15-30-10

Auction Auction-sum 1 Auction-sum-matching040_c18
PeacableArmies 1 PeacableArmies-m1-07_c18

Rlfap Rlfap-opt 1 Rlfap-graph-05-opt_c18
SumColoring 1 SumColoring-dsjc-250-1_c18

chosen
instances

PseudoBoolean-opt-
dimacs

PseudoBoolean-opt-
logicSynthesis

PseudoBoolean-opt-
marketSplit

QuadraticAssignment-m1-
s1

TravellingSalesman-m1-
n15

Figure 8: Instances used for the experiment of the project.

20

B Appendix B

Figure 9: Benchmark results of BTD*

21

	Introduction
	Background Information
	Constraint Satisfaction and Optimization Problems
	Tree Decompostion
	Backtracking with Tree Decomposition

	Related Works
	Design and Implementation
	Definition of BTD*
	Design choices
	Implementation

	Experiment and Result Discussion
	Overview of BTD*'s result
	Comparison with Choco
	Tree Decomposition

	Conclusions
	Future Work
	Appendix
	Appendix B

