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Abstract: This paper presents a Python library which provides reinforcement learning environ-
ments for bipedal musculoskeletal control. The environments can be configured with different
rewards, observations and actuator controllers, while enabling easy cooperation between re-
searchers. To demonstrate the library, three different rewards and three different observation
spaces are tested. Our results suggest that the best performing observation space includes local
body part positions but not the imitation data. Additionally, our best performing reward in-
cludes both a goal reward (reward for moving forward) as well as velocity-based and positional
imitation reward.

1 Introduction

Computer simulations have been used extensively
to create novel control algorithms (He et al., 2021;
Adam et al., 2012). However, human-in-the-loop
control is still very challenging (Mayag et al., 2022),
since it is hard to simulate a human alongside
the controlled mechanics. One possible way to get
around this limitation is to simulate a human us-
ing musculoskeletal simulations. These simulations
produce plausible human movements, but still do
not account for the behavior of the operator. This
thesis explores different simulation environments
used for human-in-the-loop control. Paving the way
to control a prosthesis along with the operator in
future research.
The simulated environments consists out of a

musculoskeletal character with or without a pros-
thesis and some supporting geometry. The charac-
ter should perform different tasks, such as walking,
standing, sitting, going up or down ramps, ascend-
ing or descending stairs, or traversing rougher ter-
rain. To achieve this it is necessary to control the
muscles of the character as well as any actuators
used for the prosthesis. Once a suitable controller
is found further work is then needed to control the
mechanical actuators independently from the char-
acter. Controlling up to 22 muscles and up to two
actuators is no easy feat and so a sophisticated con-
trol algorithm is needed.
There are many different control architectures

for musculoskeletal models and prostheses, ranging
from hand written controllers (Huff et al., 2012),
to evolutionary algorithms (Davis et al., 2014). Re-
inforcement learning is a class of algorithms which
create a policy (controller) through interaction with
an environment. Policies can be many different
models, but using a neural network which is up-
dated using gradient decent is often chosen for com-
plex controllers. This gives rise to deep reinforce-
ment learning (DRL). There are many different
DRL algorithms of which I will be using proximal
policy optimization with covariance matrix adap-
tion (PPO-CMA) (Hämäläinen et al., 2020). This
algorithm is based upon proximal policy optimiza-
tion (Schulman et al., 2017) and covariance matrix
adaption, where the former is a different DRL algo-
rithm and the latter is an evolutionary algorithm.
Other usages of CMA include trajectory optimiza-
tion (Babadi et al., 2018), which can be computa-
tionally expensive if a general controller is required.
PPO-CMA has been shown to work well with pros-
thesis simulations (Surana, 2022).

To learn a good controller an accurate simula-
tion environment is needed. Such an environment
must perform the physical simulations, provide the
observation state for the policy, take the policy out-
puts to activate the actuators/muscles, and give
feedback to the model using a reward signal. The
main contribution of this project is in creating a
library which can be used to configure and extend
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such an environment. The physical simulations are
done using OpenSim (Delp et al., 2007), and the li-
brary is written in Python (Van Rossum & Drake,
2009). The library is constructed to facilitate easy
cooperation between different researchers all work-
ing on similar environments, and easily integrates
with different DRL algorithms, through common
interfaces.
In addition to explaining the rational behind the

composable environment, this thesis also compares
multiple different environments. These differ in the
structure of the reward, as well as the observation
state provided to the policy. Three different reward
conditions and three different observation condi-
tions are compared.
Section 2 gives a quick overview over the theory

and explains the terminology used. Then, Section 3
describes the library and other algorithms used as
well as the different experimental conditions used
to test the library. Next, Section 4 shows the results
of the experiments. Finally, Sections 5 & 6 discuss
the results and describe some possible future work.

2 Theoretical background

This section describes the theoretical background
necessary to understand the methods and results
sections. First, reinforcement learning is reintro-
duced, to explain the terminology used in this pa-
per. Then, a quick description of the PPO-CMA al-
gorithm is given, along with a comparison to PPO
and a few implementation details used. Finally, I
explain the fundamentals of the OpenSim simula-
tion software and how it is used to build a rein-
forcement learning environment.

Reinforcement learning The goal of reinforce-
ment learning is to learn a policy through interac-
tion with an environment. The policy π is a proba-
bility distribution over actions a depending on some
parameters θ and the current state st.

at ∼ πθ(st) (2.1)

For continuous action control, which is necessary to
control the actuators of a prostheses, the policy is
generally a multivariate gaussian distribution.
Using the policy and the environment, trajecto-

ries can be sampled. The environment provides an

initial state, which is then used to sample an action
from the policy. This action is then used to perform
a step in the environment, which produces a new
observation. These steps are repeated until the en-
vironment reports that a terminal state is reached,
leading to a trajectory τ .

τ = (s0,a0, s1,a1, ...) (2.2)

To learn from the environment, a reward r is pro-
vided for every time step t. The reward may depend
on the current state st, the action at, and the next
state st+1. However, for the environment presented
in this paper the reward only depends on the cur-
rent state. It is computed by the reward function R.
Note, in our case, the reward function also depends
on the imitation data ΘI, although the subscript
will be omitted for brevity.

rt = RΘI
(st) = R(st) (2.3)

Using the reward, the return can be computed.
Which is defined over the entire trajectory, using
a discount factor γ to ensure convergence.

R(τ) =

∞∑
t=0

γtR(st) (2.4)

For DRL, besides the policy there is also a
learned approximation of the value function V̂ π(s).
The value function V π, which is approximated by
V̂ π, is the expected return from the current state
under the current policy. It is defined as follows:

V π(s) = E
τ∼π

[R(τ) | s0 = s] (2.5)

The learned value function often shares some pa-
rameters θ with the policy, to improve sample effi-
ciency.

Note, vectors are being typeset in boldface.

PPO-CMA Hämäläinen et al. (2020) based their
PPO-CMA algorithm on PPO (Schulman et al.,
2017). However, they do not use the clipped sur-
rogate loss. Hence, it is not necessary to fully un-
derstand PPO to grasp PPO-CMA, so only an
overview over general policy gradient learning is
given. After the description of PPO-CMA a small
comparison with PPO is given. First, to learn from
the experience gathered in the trajectories, the pol-
icy needs some means to estimate the quality of any
action at.
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For this, the generalized advantage estimate Aπ

(Schulman et al., 2015) is used. The estimate is
computed using the value function approximation
V̂ π
θ and intuitively represents the difference be-

tween the value of the current state and the value
of the state after taking action at. Next, we split up
the policy into two policies, producing two vectors
µπ(s) and cπ(s), the mean and diagonal covariance
of the multivariate gaussian respectively. Leading
us to the policy loss below:

Lθ =
1

M

M∑
i=0

Aπ
i

∑
j

[
(ai,j − µπ

j (si))
2

cπj (si)

−1

2
log cπj (si)

] (2.6)

Here, M is the size of a minibatch, each minibatch
may contain multiple trajectories. The index vari-
able i refers to a specific timestep within a specific
trajectory within the minibatch, while j refers to
a component of the action vector. Note, the first
part in the angle brackets is a mean square error
like term, updating the mean of the action, while
the second part acts to increase or decrease the di-
agonal covariance component.
PPO-CMA improves over the simple policy gra-

dient method presented above using three key dif-
ferences.

1. Negative advantages are clipped to zero, or
mirrored and converted to positive advantages.
The authors claim that without this the neg-
ative advantages tend to ”push” the policy
actions to far. Since the gradients will tend
to drive the actions away from negative ad-
vantages they can overshoot the correct value.
Unfortunately, setting negative advantages to
zero discards about half of the gathered expe-
rience, so the authors propose to mirror the
actions along their mean and negate the ad-
vantages. This might not always be completely
correct, but it allows the policy to also learn
from negative advantages.

2. The policy variance and means are trained sep-
arately. The variance is trained first, and the
mean is trained after. Note, for this to work
µπ(s) and cπ(s) may not share any weights.
Inspired by covariance matrix adaption, this
results in the variance being elongated along

the best exploration direction. Which is an im-
provement over PPO, since PPO often suffers
from premature reduction of variances.

3. The variance is trained using a history buffer,
which contains multiple trajectories from pre-
vious epochs. This makes PPO-CMA partially
work off-policy, which significantly increases
sample efficiency. Additionally, using the his-
tory buffer further improves the elongation of
variances along the best exploration direction.

PPO uses a clipped surrogate loss function to to
prevent large updates to the policy.

LCLIP
θ =

1

M

M∑
i=0

[
min

(
π(ai | si)
πold(ai | si)

Aπ
i ,

clip

(
π(ai | si)
πold(ai | si)

, 1− ϵ, 1 + ϵ

)
Aπ

i

)] (2.7)

The loss function clips the ratios of old vs new pol-
icy, to prevent the policy from changing too much
during policy updates. PPO-CMA achieves a sim-
ilar objective by mirroring/removing negative ad-
vantages. Note, there are large differences between
PPO implementations, especially on how they han-
dle variances. Some implementations tune the vari-
ance as hyper parameters and some learn it similar
to how it is done in PPO-CMA, albeit without the
separate variance phase. Next, some implementa-
tion details of PPO-CMA are explained.

The PPO-CMA implementation used for this
thesis was adopted from Surana (2022). The algo-
rithm is used as above, with an action repeat of
two, so every action will be used for two time steps.
Additionally, this implementation normalizes the
observations to be roughly normally distributed.
Which is performed using individual running av-
erages for each observation space dimension.

To improve performance on modern system the
experience trajectories are collected in parallel.
Note, the system only runs in parallel while the
experience is collected, the PPO-CMA updates are
computed on a centralized worker. During the par-
allel sections, the parallel workers advance the en-
vironment and send the resulting observations to
the central worker, the central worker evaluates the
policy and then sends the actions back to the cor-
responding worker.
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OpenSim To simulate the dynamics and inter-
actions between muscles, skeleton, prosthetics and
the supporting geometry, the OpenSim framework
is used (Delp et al., 2007). OpenSim has been used
for similar simulations, with good results (van der
Krogt et al., 2012; Steele et al., 2010). Internally,
OpenSim reduces the model to multiple differential
equations (Sherman et al., 2011) which are then in-
tegrated using the Runge-Kutta-Merson Algorithm
(Merson, 1952, as cited in Burgin, 1970). Many dif-
ferent models are supported by OpenSim, including
simple rigid bodies connected by actuated joints, up
to complex musculoskeletal simulations with hun-
dreds of muscles.
The environment presented here works with mus-

culoskeletal models with up to 17 degrees of free-
dom (DOF). Five in each leg, six for the position
and orientation of the pelvis, and one for the lum-
bar extension. However, generally the lumbar ex-
tension and hip rotations are locked and can not
be moved, resulting in 14 DOF. The exact position
of all rigid bodies in the simulation can be recon-
structed from the DOF. Hence, it is sufficient to
store the DOF to replay the simulation. The vec-
tor containing all the DOF is called the joint state
Θ. Additionally, the velocities of the joint positions
are referred to as Θ̇ and as mentioned above the
imitation data is referred to as ΘI. Note, there are
more variables within the simulation besides the
joint state, since the muscles themselves are state-
ful. Thus, even though we can replay the simulation
using the history of joint states, we can not repro-
duce muscle activations or joint torques.

3 Methods

In the methods section, first the environment is ex-
plained from an organizational and collaborative
standpoint. Additionally, the three main compo-
nents of each environment: observation, reward and
action are explained. Finally, the different simula-
tion conditions presented in the results will be given
along with quick explanations.

3.1 Environment

Below, the environment library will be presented.
The goal of the library is to facilitate easy cooper-
ation between a team of researchers, reducing code

duplication and enabling easy switching between
different environments with different reinforcement
learning algorithms. There are multiple standard-
ized interfaces for reinforcement learning, the most
commonly used interface is OpenAI’s Gym (Brock-
man et al., 2016), but others like ACME (Hoffman
et al., 2020) do exist. Our environment implements
an interface similar to Gym and provides wrappers
to work with multiple interfaces. The next para-
graph gives a high level overview of how the library
can be used.

There are two possible use cases for the library,
the first being the usage of already existing compo-
nents to create an environment and using that for
DRL. The second use case is more advanced and
requires creation of new source files to create a cus-
tom environment. The benefit of modifying files in
the library and pushing them back to the central
repository is that other researchers can take advan-
tage of this new environment, by simply fetching
the new code. Next, I explain the architecture of
the library and how the components can be com-
bined to create an environment.

In our library an environment is represented by
the Environment class. To create such a class, four
components are needed. The first is a configura-
tion object, holding parameters like step size, and
a path to the OpenSim model file. The second is
an Observer object, which defines how the obser-
vation state is created from the actual state of the
simulation. The third component is an Evaluator

object, which defines the reward R(st) as well as
whether a state is terminal. Finally, the fourth com-
ponent is a Controller object, which defines how
the output from the policy are used to actuate the
muscles and actuated joints. The latter three com-
ponents will be described in more details below. For
an overview of the architecture, see Figure 3.1.

After the environment was created it can be used
in multiple ways. It can either be wrapped using
different wrapper classes to be used with Gym or
ACME, or the corresponding methods can be called
directly. To start a trajectory the reset method is
used. It optionally accepts a reset pose Θr to start
the model in a specific pose. The reset method
returns an observation state s0, to be passed to the
policy to compute the first action a0.

s0 := e.resetΘr
() (3.1)

Where e is the environment.
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Figure 3.1: Software architecture of the environment and a simple DRL-algorithm. Blue: the three
components Observer, Evaluator and Controller; green: the interface between the environment and
the DRL-algorithm.

To advance the environment, the step method
needs to be called, it requires an action and returns
a tuple of four values:

(st+1, rt+1, κt+1, dt+1) := e.step(at) (3.2)

Where κ is a boolean value that is true when a
terminal state is reached and d is a dictionary, con-
taining user defined values. d can be used to extract
values from different components within the envi-
ronment.
In the following paragraphs the three main

components making up each environment are ex-
plained. These are all implemented as abstract
classes which need to be inherited by concrete im-
plementation classes to be used with the environ-
ment.

Observation The observation states s are com-
puted by an Observer class, as explained above.
This is done by calling the observation method
on the Observer which returns s. The Observer

has access to a Context, which contains references
to all relevant objects of the environment. Using
the Context the Observer may access the current
joint positions Θ and joint velocities Θ̇; the posi-
tion and orientation of all rigid bodies in the simu-
lation; current simulation time and step size; inter-
action forces between colliders (like ground reaction

forces); as well as muscle forces and joint torques.
For the exact parameters used, see Section 3.2.

Each observation state si is assigned a unique
name when the vector is generated. The names are
completely ignored by the DRL algorithm, but can
be recovered from the index i. Assigning a name to
every observation value has a small run time per-
formance impact, but it greatly improves the abil-
ity to debug observations. When specific entries fall
outside the expected distribution or contain invalid
values, the name can be looked up and used for de-
bugging. Our library provides utility functions to
quickly add different collections of values, like joint
state vectors Θ or three dimensional vectors to the
observation space. These utility functions automat-
ically assign corresponding names to each vector
component.

Reward The rewards r are computed by an
Evaluator class. Additionally, the Evaluator class
determines if a state is terminal. Hence, each eval-
uator must provide two methods. First, the reward
method calculates the reward, using the same
Context as the Observer, returning a number. Sec-
ond, the is done method computes whether the
state is terminal, returning a boolean.

In most cases, to learn human like locomotion
with reinforcement learning imitation data is re-
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quired. For this purpose, a special TrainingData
class has been created. This class is instantiated
with a path to a character separated value (CSV)
file, which contains values for all the DOF given in
Section 2, OpenSim. A TrainingData object, pro-
vides methods to get ΘI,t for any t within the range
of the data. Additionally, the data may be shifted
in time, slowed down or sped up.
Often times, it is easier to create a penalty in-

stead of a reward. For example, the squared dis-
tance between components of Θ and ΘI:

ρI =
∑

j∈DOF

(Θj −ΘI,j)
2 (3.3)

Where ρI is the imitation penalty and j iterates
over all DOF or a subset of them. A similar penalty
may be constructed for the velocities, called ρIv.
Note, we assume that a penalty is never negative.
There are many possible ways to turn such a

penalty into a reward. In the following, two sim-
ple functions are proposed as well as a combination
of them which allow for more precise tuning.

The first function Rlin turns the penalty into a
reward using a linear relationship. It is necessary
to clamp the reward at zero to avoid negative re-
wards, unless that is desired. This function has two
parameters, a controlling the maximum possible re-
ward, and b controlling the lowest penalty for which
zero reward is given. a and b also control the inter-
section of the linear part with the y- and x-axis
respectively.

Rlin(ρ) = amax
(
1− ρ

b
, 0
)

(3.4)

The next function Rexp converts the penalty us-
ing an exponential decay. This function also has two
parameters. First, a is the highest possible reward,
when the penalty is zero. Second, b determines the
decay rate, a large b will give more reward for
high penalties. The exponential decay never reaches
zero, hence some reward is always given no matter
how large the penalty.

Rexp(ρ) = a exp
(
−ρ
b

)
(3.5)

Note, exp(x) = ex.
Both of these functions have drawbacks, the lin-

ear function does not contain any information when

ρ > b, so b needs to be sufficiently large. However,
the derivative of Rlin for ρ < b is −a

b , so changes
in ρ produce small changes in Rlin when b is large.
This is undesirable, since the policy learns through
changes in the reward. The exponential function
has a different drawback, which becomes evident
when we take the derivative. R′

exp = − 1
bRexp the

derivative is also an exponential, so for small b
the change in reward quickly goes towards zero for
larger ρ. Additionally, for large b the derivative is
small, since it is inversely proportional. Next, a dif-
ferent function is proposed which addresses both of
these issues.

First, let us consider the derivative of an im-
proved function, it should be constant initially, and
then have a transition period until it is zero. There
are many such functions and one of them is pre-
sented here: Rlog. This function has three param-
eters. a scales the reward, b determines the slope
before the transition period and c determines the
size of the transition period.

Rlog(ρ) =
c

b
log

(
1 + exp

(a
c
(b− ρ)

))
(3.6)

When c approaches zero, the transition period also
approaches zero and the Rlog becomes Rlin, with
a and b controlling intersection with the x- and y-
axis. Increasing c, increases the size of the tran-
sition period which is approximately ρ ∈ [b −
c/ log(a), b+ c/ log(a)]. Note, the transition period
is infinite, but the differences from the linear func-
tion outside the given range are negligible for most
use cases. Finally, if c/ log(a) > b then a does not
represent the maximum possible reward, so care
must be taken if the maximum reward is impor-
tant.

Action In most DRL algorithms the output of
the policy is constrained to be in the range (−1, 1)
or (0, 1), although some algorithms do not constrain
the activation. In any case, the value should be
transformed to actuate either muscles or actuators.
This might be a simple linear function followed by
a clamping operation, but could also be more com-
plicated if different types of control are desired.
In our environment, this conversation is done by
the Controller. To implement a Controller, the
action to control method must be provided.

ψt,j := action to control(at,j , Cj) (3.7)
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Where j is an index over the OpenSim actuators,
ψt,j is the control signal and Cj is a reference
to the OpenSim actuator. Using Cj the method
may access current motor torque and joint position
as well as muscle forces and muscle fibre length.
Note, OpenSim actuators may be muscles, or mo-
tor driven joints.
One possible way to customize a Controller for

joint actuator control is using stable-proportional-
derivative control (Jie Tan et al., 2011). It has been
shown that this can improve the performance of
DRL agents (Ma et al., 2021).

Each of the three classes Observer, Evaluator
and Controller have an additional reset method,
which can be implemented. This method gets called
at the beginning of every trajectory, so that the
three environment components can reset any inter-
nal state. Finally, some care must be taken when
passing the three components to the environment
constructor, as explained below.
The environment constructor does not expect in-

stances of Observer, Evaluator and Controller,
but rather a function which takes a Context and re-
turns an instance. Often, the constructor of a com-
ponent implementation is such a function. However,
if more arguments need to be passed to the con-
structor a different creation function is required.
The simplest way is to create an inline function
which takes a context and returns the desired in-
stance, in python this is done using the lambda key-
word.

3.2 Experimental Conditions

In this thesis I compare five different combinations
of reward and observation components. Three dif-
ferent rewards and three different observations. The
different rewards and observations have the same
hyper parameters, however in the different condi-
tions some summands are omitted from the reward
and some components are omitted from the obser-
vation vector. In the following paragraphs the full
reward and observation are explained, afterwards
the exact conditions are given.

Reward The full reward consist out of four sum-
mands. Positional joint imitation reward, joint im-
itation velocity reward, pelvis position reward, and

reward part parameters
imitation pos. a = 0.6 b = 3 c = 0.4
imitation vel. a = 0.25 b = 10 c = 2

pelvis vel. a = 0.3 b = 0.15 c = 0.02
pelvis pos. ap = 10

Table 3.1: Reward hyper parameters

pelvis velocity reward. The two joint imitation re-
wards are computed from the penalties ρI and ρIv,
see Equation 3.3. Note, the penalties do not include
pelvis position or lumbar extension. Next, Rlog is
used to convert the penalties to reward, for the val-
ues of a, b and c, see Table 3.1. The hyper parame-
ters given in the table were found by starting with
parameters producing similar penalty functions to
the ones used by De Vree & Carloni (2021). Then
the parameters were updated manually to increase
the variation of reward summands as seen in Fig-
ure 4.4.

The pelvis velocity reward is also computed using
a penalty ρv and the Rlog function. The penalty is
computed from the pelvis velocity vp and the target
pelvis velocity vI,p:

ρv = |vp − vI,p| (3.8)

Finally, the pelvis position reward is the sim-
plest of the four, consisting out of the distance tra-
versed since the previous step multiplied by a con-
stant scalar ap. The selected reward components
are added to form the preliminary reward which is
scaled by a factor to form the final reward. The fac-
tor is one when the pelvis is above a threshold, and
goes towards zero the further the pelvis is below
the threshold.

rt =
∑
k

rk,t

{
1 pp,y,t > 0.8

1
1+(10pp,y,t−8)2 otherwise

(3.9)

Where k iterates over the different reward sum-
mands and pp,y,t is the height of the pelvis at
the current time step. The trajectory ends, once
pp,y,t < 0.6.

Observation The observation produces a single
vector, the length depends on what we choose to
include. The smallest observation is of length 32.
This includes the pelvis position (3) and orienta-
tion (3) as well as the linear and angular velocity of
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the pelvis (6); then we include a subset of the joint
state (10), excluding the pelvis and the lumbar ex-
tension; finally we also include the velocity of the
aforementioned joint state (10). For the pelvis ori-
entation an euler axis representation is used, great
care was taken to ensure that the values stay con-
tinuous and do not approach singularities when the
model is walking.
Additionally, we can include the position and lin-

ear velocity of different body parts. There are 12
applicable body parts, each contributing 6 values,
leading to 72 additional observation state compo-
nents. Finally, we may also include the imitation
data in the observation state. Even though the en-
vironment does not depend on the imitation data,
it has been shown that including the data can im-
prove model performance (Ma et al., 2021). For a
table with all states, see Table A.1.
Note, the observation space is not scaled. This

poses a problem for simple DRL algorithms which
expect roughly equally distributed observations.
However, our implementation of PPO-CMA com-
putes a running average of each observation com-
ponent and normalizes them, making prior normal-
ization redundant.

Conditions As mentioned above, five different
experiments are run:

• base: simple observation space (i.e. 32 compo-
nents), with full reward (all 4 summands and
low pelvis penalty);

• no-vel-rew : simple observation space, with re-
ward which does not include the imitation data
velocity summand;

• no-goal-rew : simple observation space, with re-
ward which does not include the pelvis position
or velocity reward, nor the low pelvis penalty;

• body-part-obs: observation includes body part
positions and velocities (i.e. 104 components),
with full reward; and finally

• imi-data-obs: observation includes imitation
data (i.e. 52 components), with full reward.

Each condition is trained for 200 epochs using
the PPO-CMA algorithm. For the hyper parame-
ters, see Table 3.2 The hyper parameters were not
changed between runs, to keep the results compa-
rable.

name value
worker count 20

discount factor γ 0.99
adv. estimation λ 0.95
steps per epoch 20000
time per step 0.01s
MLP

hidden layer count 2
layer neuron count 256

layer activation leaky ReLU
learning rate 0.001

PPO-CMA

mirroring yes
hist. buf. length 3

batch size 2048
batches per epoch 128

Table 3.2: PPO-CMA hyper parameters

4 Results

In this section the results of the five simulations
given above are presented. First, an overview over
the behavior of the trained models is given, then
I will compare the performance of different runs
using multiple metrics.

From the illustrations of trajectories at epoch 200
in Figure 4.1, it can be noted that the best per-
forming condition is body-part-obs, here the mus-
culoskeletal model learned to take three steps be-
fore falling forward. Next, the base learned to take
one step, but then twists and falls. This is similar
to the no-vel-rew condition, which also takes one
step and then falls forward. The last two conditions
(imi-data-obs & no-goal-rew) also take a first step
forward, but they do not attempt the next step.
Rather, the models just keep standing until they
fall over. Without trying to take a next step, these
two models learn to avoid falling for the longest
duration.

Next, the duration each agent survives is inves-
tigated. This varies a lot from trajectory to trajec-
tory, so the values presented here have been aver-
aged and their standard deviation computed, see
Figure 4.2. Note, the longer trajectories take, the
fewer trajectories there are in each epoch, since the
number os steps is being kept constant. As men-
tioned above, the conditions imi-data-obs and no-
goal-rew achieve the highest step counts, however
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(a) base (b) imi-data-obs (c) body-part-obs

(d) no-vel-rew (e) no-goal-rew

Figure 4.1: Each sub-figure contains a representative trajectory at epoch 200 for the five conditions.
The positions were sampled at an interval of 0.2 seconds.
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Figure 4.2: Step count per trajectory for the five
different runs. The counts have been averaged
over every 100 trajectories with standard devi-
ation given by the highlighted area.
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Figure 4.3: The final pelvis x-position averaged
over trajectories per epoch.

they also have the largest variance in step count, so
although some trajectories lead to the model bal-
ancing for a while, often it also falls over.

The no-goal-rew condition has the highest step
count, this is inline with our expectation, since the
goal reward is the largest incentive pushing the
model forward. Without the goal reward, the model
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(a) base
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(b) imi-data-obs
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(c) body-part-obs
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(d) no-vel-rew
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Figure 4.4: Each sub-figure contains the reward summands for a representative trajectory at epoch
200.
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Figure 4.5: Returns per trajectory for the five
different runs. The returns have been averaged
over every 100 trajectories with standard devi-
ation given by the highlighted area.

learns to stand instead of walking forward. Interest-
ingly, removing the velocity imitation reward, re-
duces the step count and variance in step count,
compared to the base condition.

The next metric presented here is the distance
the model traverses, more specifically the distance
from the origin to the pelvis, right before the tra-
jectory ends. The distances are presented in Fig-
ure 4.3. These distances fluctuates quite a lot for
the imi-data-obs and no-goal-rew conditions, this
is likely due to the model falling in different di-
rections in different epochs. The other three con-
ditions walk forward, so their distances are more
consistent, since they almost always fall forward.
The largest distance is achieved by the body-part-
obs, which is inline with our visual inspection.

The returns are plotted in Figure 4.5. Note, it
does not make sense to compare the rewards be-
tween base, no-goal-rew and no-vel-rew directly,
since the reward function changes between those
conditions. Hence, we first look at the conditions
where the reward function stays constant (base,
imi-data-obs & body-part-obs).

Out of the three, imi-data-obs achieves the high-
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est return. However, this is a local maxima, because
the model does not attempt to walk and so the re-
turns are only high because the model learned to
survive for a long time. The body-part-obs condi-
tion does not survive as long, but after 200 epochs
almost has the same return as the standing model.
Finally, the base model performs the worst, which
indicates that this model is too simplistic and a
larger observation space is required for learning a
good policy.
In Figure 4.4 the individual reward summands

are plotted for one trajectory at epoch 200 for each
condition. The periodic change in reward visible in
Figure 4.4e, comes from the training data playing,
as the model is standing. Whenever the training
data is in a similar position to the standing model,
the positional imitation reward goes up. Likewise,
whenever the imitation velocities are similar the
corresponding reward increases. A similar effect can
be observed in the other partial reward plots.

5 Discussion

Even though no model in the conditions managed
to walk more than a few steps, there are still clear
differences in performance. First, both the velocity
reward and the goal reward improve model perfor-
mance, this is inline with our expectations, since
a reward with all those summands is similar to th
reward used by De Vree & Carloni (2021).
The base observation space is likely too simple,

the model learns quick initially, but after about 50
epochs a limit seams to be reached and all the per-
formance measures seem to stagnate. Likewise, in-
cluding the imitation data does not improve the
performance of the model. One possible reason for
the model not learning to walk when including the
imitation data is the noise introduced by the addi-
tional observation space components which do not
correspond to anything physical in the simulation.
Finally, the best performing model used the full

reward and included the local position and veloc-
ities of all body parts. This finding is inline with
current research on DRL and bipedal locomotion
(Brockman et al. (2016), see Humanoid v1).

Hyper parameters In the following paragraphs,
the method used to tune the hyper parameters is
described. The hyper parameters for PPO-CMA

were initially taken from Surana (2022) and were
then tuned using a hyper parameter grid search.
The search included: the learning rate, the num-
ber of units per layer for the policy, the amount of
steps per epoch, the batch size, and the number of
training batches per epoch. After tuning these hy-
per parameters, the history buffer length has been
changed from nine to three. This change did not
alter the performance of a test model significantly,
but decreased the memory usage and runtime per
epoch. After training the PPO-CMA hyper param-
eters, the reward function parameters need to be
tuned.

Initially, the hyper parameters were set to values
which result in similar reward functions as used
by Surana (2022) and De Vree & Carloni (2021).
Then over the course of multiple simulations, the
parameters were adjusted to maximize the variance
of each summand, while minimizing the duration
where the summand is zero. This process was done
manually, but could be automated in the future.
The reason for maximizing reward and minimizing
zero-duration is to increase the information con-
tained in the reward. When the reward is zero, then
a small change in penalty will not change the re-
ward. Otherwise, we want to maximize variance, so
the information contained in the reward is as clear
as possible. Note, the scale (a in Rlog) of each sum-
mand was taken from De Vree & Carloni (2021)
and not changed.

Future research As mentioned in the introduc-
tion, the ultimate goal of this research is to develop
an actuated transfemoral prosthesis. Our library
can be used to simulate transfemoral amputee mod-
els, just as it can be used for able-bodied models.
However, different Observers and Controllers

are needed to interface with the different model.

To improve training results and iteration times,
it might make sense to constrain the models move-
ment to the x/y-plane in future research, as it
is done by De Vree & Carloni (2021). With this
change it should be easier to train different mod-
els, and so hyper parameters could be tuned with
higher precision.

Finally, it might make sense to train a ”narrow”
model. This model would be stopped as soon as
it deviates too much from the training data. Ma
et al. (2021) shows that this can improve perfor-
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mance. However, the model would only train from
joint states very close to the training data. Thus,
it might not be able to recover from unseen joint
states and the training data needs to be of high
quality.

6 Conclusions

This research developed a python library to sim-
ulate musculoskeletal models and learn control al-
gorithms using DRL, more specifically PPO-CMA.
Using the library multiple different reward func-
tions and observations spaces were tested. The
best performing observation space contained joint
states, body part positions and their respective ve-
locities. The best reward function contained joint
state imitation reward, joint state velocity imita-
tion reward, pelvis position reward and pelvis ve-
locity reward. Removing the pelvis rewards, or the
joint velocity reward decreased model performance.
Finally, adding the imitation data joint states to
the observation state decreased model performance.
The library we developed is ready to be used with

different models and different DRL algorithms. The
next step is to build up a repertoire of different
combinations of DRL algorithms, reward functions
(Evaluator), observation spaces (Observer) and
models.
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A Observation Space

state name # exact components
pelvis position 3 x, y, z

pelvis orientation 3 pitch, yaw, roll

linear velocity of the pelvis 3 x, y, z

angular velocity of the pelvis 3 pitch, yaw, roll

10 joint states: 20
ankle, knee, hip-flexion, -abduction,

-rotation for left and right side each.
position 1
velocity 1

Only body-part-obs
12 body parts: 72

left/right femur, tibia, talus, calcn,

toes respectively as well as torso, head
position 3
linear velocity 3

Only imi-data-obs
10 imitation joint states 20 ankle, knee, hip-flexion, -abduction,

and -rotation for left and right side
each.

position 1
velocity 1

Table A.1: Observation space, the left column describes a group of states, the center column gives
the number of states in the group, while the right column gives the components/states/body-parts
forming the group. Note, indented states exist once for every state/body-part listed on the right.
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