
Siamese neural network for
camera identification through
sensor pattern noise

Bachelor’s thesis

September 3, 2022

Student: C.T. van Herwijnen

Primary supervisor: Dr. George Azzopardi

Secondary supervisor: PhD. Student Guru Swaroop

Abstract
For forensic investigations, gathering evidence is one
of the most important jobs. Images can be traced

back to a camera in the same way as bullets can be
traced back to a gun. This can be done by looking at

the unique fingerprint left by the sensor of the
camera, which is called sensor pattern noise.
We have designed a siamese neural network

architecture that is able to compare a pair of images
and that will determine the relationship between
them, either being made with the same camera

model or different cameras. We achieved an F-score
of 74.59% on the natural subset of the publicly

available Dresden Image Database. To the best of
our knowledge, this is one of the first attempts at
linking two images based on the pattern noise of a

camera through the use of a siamese neural network.

Contents
1 Introduction 3

2 Background 4

3 Related work 6
3.1 Sensor pattern noise . 6
3.2 Camera identification . 6
3.3 Siamese neural network . 6

4 Methodology 7
4.1 Image preprocessing . 7
4.2 Implemented network . 7

4.2.1 Feature extractor . 9
4.2.2 Feature comparator and prediction 9

4.3 Training and validation . 10
4.4 Testing . 10

5 Experiments and Results 11
5.1 Data . 12

5.1.1 Data set . 12
5.1.2 Data augmentation . 12
5.1.3 Data splitting . 12

5.2 Experiments . 12
5.2.1 Balancing data set . 12
5.2.2 Determining threshold value . 13

5.3 Results . 14

6 Discussion 16

7 Conclusion 17

8 Acknowledgements 17

A Appendix 20
A.1 Tables . 20
A.2 Listings . 21

1

List of Figures
2.1 Example input and output Convolution layer 4
4.1 General overview of the pipeline . 7
4.2 Input and output of our SNN . 8
4.3 Layering of feature extractor . 9
4.4 Loss graph during training phase . 11
5.1 Skewness during early testing . 13
5.2 Histogram of similarity scores . 14
5.3 Results of the different experiments . 15

List of Tables
2.1 Performance metrics . 5
4.1 Image distribution . 8
A.1 Camera devices . 20

Listings
1 Simplified code for training the model . 21
2 Simplified code for testing the model . 21
3 Code for finding the best threshold value 22

2

1 Introduction
With the speed at which digital content is being created and spread, the chances that
sensitive content (e.g. nude pictures, child sexual abuse material) is spread are higher than
ever. This is problematic for Law Enforcement Agencies (LEAs) since they have to trace
the content back to the perpetrator before they can build a case against the offender. Our
aim for this project is to help the LEAs create more concrete evidence by finding relations
between a pair of images that they could find on the darknet or on confiscated hardware.
Finding relations between someone’s darknet post and social media posts would help a
great deal with fighting the crimes that go on on the darknet.

To find whether two images are related by being made using the same camera, we use
the raw pixel data. This is the most robust way of detecting a relation between cameras
because the metadata of images can easily be changed without a trace. When images are
changed by either compression, resizing or filtering it is possible to identify the operations
as shown by Kang and Wei [10], Kirchner and Fridrich [12], Wang and Zhang [20], this
helps with the integrity of the relations made between a pair of images.

Lots of different methods have been researched in recent years to identify cameras both
through images by Bayar and Stamm [2], Bennabhaktula et al. [3, 4] and frames taken
from videos by Timmerman et al. [19]. These methods use the same underlying principle,
that each camera has a unique fingerprint, also called sensor pattern noise [7, 14], made
by the imperfections on the sensor during the manufacturing process of the camera. Our
project has been built upon the previously done research, however, the big difference is
that we compare a pair of images and find a relationship between the images, being it
either from the same camera or two different camera models, instead of finding the camera
identity of a single image.

With this project, we explore further the barely explored part of linking images together
within the field of camera identification, which is a sub-field of the computer vision field
within computer science. Due to the explorative nature of this project, we have kept the
number of unknowns to a minimum. This means that we use unedited images and keep
the neural network parameters as few as possible so that we can get quicker results and
get a meaningful insight in the direction of camera identification with the help of siamese
neural networks (SNNs). To guide the project we set a research question for ourselves to
answer:

• What is the performance of a siamese neural network at detecting whether the same
camera made a pair of images?

For the model to be feasible to deploy for LEAs, we would like it to be performing
well enough. Our idea of performance is the right balance between time investment into
training and an accurate enough tool so that the LEAs can use it to build evidence. It
would not be feasible for LEAs to train a neural network over and over every time a new
camera appears on the market. For LEAs it is of utmost importance to make an accurate
tool, however, for this project, this would not be feasible due to the time investment
needed to get such models. We have set ourselves the time constraint to train the neural
network within 2 hours, this has the benefit that it can be easily retrained without much
downtime.

Siamese neural networks are well suited for recognizing fingerprints since SNNs are
capable of learning generic image features useful for making predictions about unknown
class distributions even when very few examples from these new distributions are available

3

[13]. These two features are very useful for LEAs since most of the time there is not a lot
of data available to train a network for a specific camera and the fact that an SNN can
make predictions about unknown classes helps against the influx of new camera models all
the time.

The paper is structured as follows: In Section 2 we will describe important concepts
of the project, followed by the state-of-the-art in Section 3, subsequently, the main idea
behind the project, and the pipeline used for the experiments is described in Section 4.
The experiments and results are described in Section 5. Section 6 will go over the results
and further research and the conclusion of the project can be found in Section 7.

2 Background
Digital Forensics

Like normal forensics, digital forensics is the art of gathering, tracing and linking evidence,
but in the digital world. Piva [17] provides a comprehensive insight into the challenges
that come with image forensics, from explaining the physical workings of a camera and
how the signal is being processed, to image editing and attempts at obfuscating the sensor
pattern noise by performing antiforensics techniques. The amount of research on the topic
and the diversity of techniques being explored show how important and urgent progress
in the field is. Our project will explore a barely unexplored piece of the field and will
contribute to the tools used by forensics.

Model vs device level

The comparison between images can be made on two levels: model and device. For
example, the model level comparison would be distinguishing between a Canon Ixus 70
and a Canon PowerShot A640. The device-based comparison would be to differentiate
between a Canon Ixus 70 and another Canon Ixus 70. We choose to work on a model level
since the devices within a certain model should have similar enough pattern noise to see
them as one class and this would reduce the number of classes used for training the SNN

Convolutional neural network (ConvNet)

Figure 2.1: Example input and
output Convolution layer

A convolutional neural network has two different
types of layers, convolutional layers and fully con-
nected layers. Figure 2.1 shows the input and
output of an example convolutional layer. The
convolutional layer works as a sliding frame, called
the kernel (orange in the figure), over the input
array and multiplies the input with the kernel re-
sulting in a smaller feature vector. The speed at
which the kernel moves over the input is called
the stride. The depth of a layer is equal to the
amount of different kernel weight distributions it
has. These weight distributions are set randomly at
the start of training a neural network and changed
by the backpropagation of the loss function, which
happens after each iteration (epoch). The first fully connected layer will combine all the

4

possible feature vectors into a single feature vector. And this single feature vector can be
the input of another fully connected layer with the result of compressing the data to a
more meaningful feature vector.

Loss functions

Loss functions are methods, used in neural networks, that evaluate how well the predictions
from the model come to the ground truth. There are many different loss functions1, and
each has its pros and cons when it comes to using it for a neural network. The loss
function returns a value close to 0 when the ground truth and score from the model are
close together, this means that the values in the kernel will not change to a great extent.

Ground truth

The ground truth is a label given to the input data of a neural network so that the output
of the network can be evaluated against this ground truth. In our case, the ground truth
of an image pair would be 0 if the image pair is made by the same camera model and 1 if
this is not the case.

Performance metrics

Table 2.1 contains the performance metrics used in the project. These performance metrics
are often used to compare the different models. Furthermore, we used histograms together
with the mean and standard deviation to get better insights into our results. The scores
outputted from the loss function, are used to plot a loss graph which is able to show the
under- and overfitting of the model.

Score Comment Equation

Accuracy The fraction of correct instances in all instances TP+TN
TP+FP+TN+FN

Precision The fraction of relevant instances among the re-
trieved instances

TP
TP+FP

Recall The fraction of relevant instances that were retrieved TP
TP+FN

F-score The relation between precision and recall TP
TP+ 1

2
(FP+FN)

TP = True Positive FN = False Negative

FP = False Positive TN = True Negative

Table 2.1: Performance metrics
The different metrics used throughout the project

1https://pytorch.org/docs/stable/nn.html#loss-functions

5

https://pytorch.org/docs/stable/nn.html##loss-functions

3 Related work

3.1 Sensor pattern noise

Every camera has a sensor that captures the light to capture an image. The sensors are
made from silicon and during the manufacturing process, slight imperfections occur on the
sensor [7, 14]. As a result, some pixels will get corrupted. These corrupted pixels spread
over the image combined are what we call sensor pattern noise and this pattern is unique
for every camera, also called the fingerprint of a camera.

The pattern created by the imperfections is somewhat similar for each batch of sensors
but still different enough to be able to identify the individual camera devices. This results
in the fact that the same camera models will have some overlapping pattern noise, which
we use to reduce the number of unknowns within our research. For a more in-depth
explanation, we refer the reader to read the publication by Lukáš et al. [14].

3.2 Camera identification

In the field of forensics determining whether a camera was used to take a certain picture
has been important already since before the 2000s. Geradts et al. [7] were asked by the
court, whether it was possible to determine if an image had been made with a specific
digital camera in 1999. Cameras have become more common in our day-to-day life
with the development of smartphones and the number of pictures taken has skyrocketed.
Additionally, it has become easier to maliciously alter pictures. With the methods proposed
by Bayar and Stamm [2], Fanfani et al. [6], Lukáš et al. [14] it is possible to label altered
images as such. All the more reason to develop the field of camera identification.

Many different methods that work with pattern noise have been developed, like being
able to detect image forgeries Bayar and Stamm [2], Fanfani et al. [6], Lukáš et al. [14],
camera identification through images Bennabhaktula et al. [3, 4] and capturing video
frames [19]. We will use the papers about camera identification as our groundwork to
build upon, however, we will predict a relation between a pair of images instead of linking
a single image back to a camera identity.

Stamm et al. [18] have shown that is it possible to link patches of images together using
a pre-trained ConvNet and training a separate similarity network. We build further upon
this idea with the main difference that our feature extractor is trained on finding the
difference between the images and not extracting the features separately.

3.3 Siamese neural network

The siamese neural network is often used for facial recognition, matching pieces of images
[15], and even used for fingerprint identification [1]. The details of how we have adopted
the concept of an SNN to be able to find a relation between a pair of images can be
found in Section 4.2. One of the benefits of using an SNN is that it works well on small
data sets, which might be the case during investigations done by LEAs when they try
to find evidence from confiscated hardware. Furthermore, SNNs have to be trained only
once, in comparison to the ConvNets [2, 3, 4, 19] used previously, which results in less
time spent on setting up the system. This feature comes from the fact that SNNs are
capable of learning generic image features useful for making predictions about unknown
class distributions [13], while ConvNets are learning the fingerprint of every single camera

6

presented to them. This is why ConvNets are great at linking a single image back to a
camera and thus good at checking the authenticity of the evidence.

4 Methodology
This section describes our approach to the project, where we use a siamese neural network
to predict whether an image pair is made with the same camera. For this project, we have
designed a pipeline, which can be seen in Figure 4.1, for training and testing the SNN.
The pipeline is implemented in Python with the help of the library PyTorch [16]. The
source code for the project can be found in our repository on GitHub2.

Figure 4.1: General overview of the pipeline

4.1 Image preprocessing

Before we can input the images from the data set into the network we have to preprocess
them to uniform input size. Because, as Table 4.1 shows, the images of the data set are
not uniform in width and height. The table shows the different amounts of pixel usage by
Bennabhaktula et al. [4], Bayar and Stamm [2] and us respectively. We decided, due to
GPU memory limitation, on an input size of 800x800 pixels in greyscale. This meant we
had to drop the 640x480 pixels image out of the data set, since cropping only makes the
image smaller.

Our reasoning behind using a larger input size than [2, 3, 4, 15], is that we believe that
using more pixels results overall in more noise and thus a better fingerprint of the camera
sensor. However, using only greyscale instead of the full RGB spectrum means that we lose
some of the noise. To get all images uniform we use the transformation composite function
from the PyTorch library. The composite consists of a centre crop followed by turning the
image into a grey scale and finally storing it as a tensor, a multidimensional array, inside
the main memory of the machine. Doing this before and not during the training/testing
phase saves time during each epoch, so it becomes more efficient with more epochs ran.

4.2 Implemented network

The input of the network is a pair of images and the ground truth of the pair. These pairs
of images and ground truth are prepared in batches by the data loader, which is a function
inside the PyTorch library. The data loader takes a batch size as input and will split the
given data set into equal batches. We have set up the data loader in a way to create a
balanced data set, meaning it will randomly pick two images either from the same camera

2https://github.com/Liulangzhe98/CID-SNN

7

https://github.com/Liulangzhe98/CID-SNN

(Width x height
Pixels) # img 128x128

RGB [4]
256x256
Grey [2]

800x800
Grey

(640, 480) 1 5.33% 7.11% Too small
(2560, 1920) 1003 0.33% 0.44% 4.34%
(2592, 1944) 585 0.33% 0.43% 4.23%
(2748, 3664) 272 0.16% 0.22% 2.12%
(3008, 2000) 676 0.27% 0.36% 3.55%
(3072, 2304) 2234 0.23% 0.31% 3.01%
(3264, 2448) 2175 0.21% 0.27% 2.67%
(3456, 2592) 541 0.18% 0.24% 2.38%
(3648, 2736) 5040 0.16% 0.22% 2.14%
(3664, 2748) 2042 0.16% 0.22% 2.12%
(3872, 2592) 673 0.16% 0.22% 2.13%
(4000, 3000) 638 0.14% 0.18% 1.78%
(4032, 3024) 462 0.13% 0.18% 1.75%
(4352, 3264) 842 0.12% 0.15% 1.50%

Average pixel usage 0.19% 0.26% 2.52%

Table 4.1: Image distribution
The distribution of image sizes within the data set.

model or from different ones. Furthermore, the data loader will take the preprocessed
images from the main memory, instead of reloading and processing the images every single
time it has to make a new batch.

Figure 4.2 shows the input and the output of the SNN. The input shown in the figure
is a batch size of 1, resulting in only one image pair being shown to the SNN. Our SNN
has been trained with a batch size of 15, in comparison to the 128 used by Timmerman
et al. [19] and 512 used by Bennabhaktula et al. [4], which is rather small. The fact that
we use pairs of images instead of single images already halves our batch size potential.
Furthermore, using the 800x800 greyscale image crops instead of the 128x128 RGB crops
uses up 13x the amount of memory. This is why we were forced to use a smaller batch
size.

Figure 4.2: Input and output of our SNN

Following the pipeline shown in Figure 4.1, we have 3 steps within the SNN. These will
be described in the following sections.

8

4.2.1 Feature extractor

The feature extractor is a simple ConvNet, however, due to the nature of a siamese neural
network, we have a feature extractor that is used twice consecutively. This results in two
feature vectors that can be compared in the next step of the pipeline. The shared weight
property of an SNN makes sure that it does not matter in which order an image pair is
presented, the two output vectors will not change due to the order.

Figure 4.3: Layering of feature extractor
Between each layer we use the ReLU activation function and a maxpool

The feature extractor consists of 3 convolutional layers and 3 fully connected layers,
as shown in Figure 4.3. This is different from the previous research done by [2, 3, 4, 19]
who used 4 convolutional layers. One of the reasons for using fewer layers is to reduce the
number of parameters of our network, as this project was mainly focused on seeing if using
an SNN was feasible at all. Furthermore, the previously mentioned studies were focusing
on image-to-camera identification, while our study focuses on identifying a relationship
between a pair of images. Due to these reasons, we had to change most of the architecture
and use empirical experiments to create a baseline neural network.

All our kernels were made bigger than the previously done research because we were
using larger images and using a small kernel size would lead to memory overflow. Using a
bigger stride also has helped with memory constraints. The tanh activation function was
substituted with a ReLU activation function, this was done because our input is always
positive and this means that ReLU is more efficient. The output of the feature extractor
is a tensor with 1024 values, we kept it on the larger side so that we did not lose too much
information.

4.2.2 Feature comparator and prediction

The two feature vectors are pairwise compared using euclidean distance, this is one of the
simplest ways to compare the vectors. We capped the euclidean distance to 1 so that the
result would be between 0 (similar) and 1 (different). This similarity score is compared
against the ground truth and the loss is calculated through a loss function, in our case the
Mean Squared Error (MSE). MSE is chosen because it is one of the least complex loss
functions. The MSE function will penalize the similarity scores that are far away from the
actual values more heavily than the similarity scores close to the ground truths.

The part of forming the similarity score into a prediction about the connection of the
image pair using Equation 4.1 is only used during the testing of our model. Because now
we can use the similarity scores to calculate the mean and standard deviation of our model.
And use statistics to tell the accuracy of a prediction.

9

We used ϵ as our threshold value so that the similarity score which was a range is
changed into a binary label. The output is a bit unintuitive since 1 is normally seen as
True and in our case it is False, meaning that the pair is made by two different camera
models.

Pred =

{
0 similarity score < ϵ

1 otherwise
(4.1)

4.3 Training and validation

The training of a neural network has two parts, the training itself and the validation part.
We use the validation step to see if our neural network is not overfitting to the train data.
Overfitting means that the model is getting more accurate on the training data set and
getting less accurate on a data set not used for training. We would like our SNN to be as
generic as possible so that it is compatible with as many cameras as possible. So we use
the validation step to make sure the model is not overfitting. A simplified version of the
training and validation algorithm can be found in Listing 1.

The SNN is trained over multiple epochs. We choose to train our SNN for a maximum
of 50 epochs and applied early stopping. Early stopping means that the training can be
terminated before the maximum amount of epochs is hit. This is done via a condition
based on the output of the Mean Squared Error (MSE) loss function from the validation
step.

Furthermore, for the optimization of the model’s parameters, we have used the Adam
optimizer [11], with a learning rate of 0.0002 and an exponential decay of 0.9 after every
epoch. We had to use a very low learning rate, otherwise, the model would not converge
at all. The exponential decay is used to converge the neural network along the epochs.

In each epoch, we train the neural network by presenting the neural network with all
the image pairs in the training data set in a shuffled order. These pairs are presented
in batches and after each batch is shown to the network, the weights of the kernels is
being updated through the value of the loss function. Once the training for the epoch has
finished, the neural network will start the validation step in a similar way to the training
step, but it does not affect the weights of the kernels. The average loss scores of the
training and validation step are gathered and once the training terminates, either through
early stopping or hitting the maximum epochs, the scores are plotted in Figure 4.4.

4.4 Testing

The testing of our model is done separately from the training of our model so that we
can test the neural network multiple times afterwards. The testing phase starts with
dividing the test data set into separate batches and balancing the batches into a 50:50
ratio of image pairs made by similar and different camera models. The batches are then
fed through the neural network and the similarity score is turned into a prediction about
the relation of the image pairs with the help of Equation 4.1. The binary prediction is
then compared to the ground truth of said image pairs and the results are stored so that
we are able to calculate the precision, recall, and F-score of the model. Furthermore, the
similarity scores are stored grouped by the camera model and the ground truth label so
that we can plot a histogram of each of the camera models and a combined overview of

10

Figure 4.4: Loss graph during training phase
The average loss of each epoch is plotted and the mean of the averages of 5 epochs is used

for early stopping

the whole neural network. A simplified version of the testing algorithm can be found in
Listing 2.

5 Experiments and Results

We started off our experiments with lots of trial and error, due to the novelty of machine
learning as a researched and explored domain. Section 5.2 describes two of the more
significant improvements made during this trial and error period. During this phase,
the code got changed a lot and the figures in this section only show the results of the
experiments done after. Since we got decent and stable results only after this phase.

The experiments have been run on one of the nodes of the HPC3 at Rijksuniversiteit
Groningen. The node has the following hardware specifications:

• 6 cores @ 2.7 GHz (12 cores with hyperthreading)

• 128 GB memory

• 1 Nvidia V100 GPU accelerator card (32GB VRAM, 5120 cuda cores)

3https://www.rug.nl/society-business/centre-for-information-technology/research/
services/hpc/facilities/peregrine-hpc-cluster

11

https://www.rug.nl/society-business/centre-for-information-technology/research/services/hpc/facilities/peregrine-hpc-cluster
https://www.rug.nl/society-business/centre-for-information-technology/research/services/hpc/facilities/peregrine-hpc-cluster

5.1 Data

5.1.1 Data set

The publicly available Dresden Image Database [8], will be mentioned as data set from
now on, and will be used since it is specifically created for bench-marking digital image
forensic tools. The data set is split up into three categories: dark, JPEG and natural. For
our study, we have decided to use the natural subset, since it consists of 84 different scenes
(e.g. trees, indoor, buildings). Resulting in the most complex data set and most realistic
real-world scenario. This subset contains more than 17,000 images from 74 devices and 26
different models.

To perform the learning each image needs to have a label, which depends on the camera
used to make the picture. The labelling is done on a model-level basis since each device
from the same model (e.g Canon Ixus70_0, Canon Ixus70_1, and the Canon Ixus70_2)
shares some of the pattern noise. This is done to have fewer different labels and hopefully
increase the accuracy of the model. The labels and the number of images per device can
be seen in Table A.1

5.1.2 Data augmentation

“Data augmentation in data analysis are techniques used to increase the amount of data
by adding slightly modified copies of already existing data or newly created synthetic data
from existing data. It acts as a regularizer and helps reduce overfitting when training a
machine learning model.”4 To make up for the loss of information due to greyscale and
cropping, we implemented data augmentation by randomly flipping the image pairs either
horizontally or vertically5. This should help the model get more and different data and
thus be able to generalize more with the existing data.

5.1.3 Data splitting

The qualified images are split with an 80:20 ratio between the training and testing set.
The training set is further split into a 90:10 ratio, 10% of the training set is used for
validating the model during the training process. This set of images does not influence
the training of the parameters of the model, it is used for checking that the model is not
under- or overfitting to the presented data.

5.2 Experiments

5.2.1 Balancing data set

In this set of experiments, we started by comparing the results of different models to each
other by looking at the mean and standard deviation of the similarity score grouped by
label (similar and different) as well as through the histograms made from the similarity
scores, like Figure 5.1a, where we would like to see a left-skewed distribution for the same
camera pairs and for the different pairs a right-skewed distribution. We added the accuracy
score as a performance metric as an extra guide to build upon. To get the accuracy scores
we had to change the similarity score into a binary prediction this was done through the

4https://en.wikipedia.org/wiki/Data_augmentation
5https://pytorch.org/vision/stable/transforms.html, (RandomHorizontalFlip, RandomVerti-

calFlip)

12

https://en.wikipedia.org/wiki/Data_augmentation
https://pytorch.org/vision/stable/transforms.html

use of a threshold value, seen in Equation 4.1, we had set this to an initial value of 0.2,
based on our findings from the histograms. The histograms and accuracy scores looked
very promising as shown in Figure 5.1. Sadly these scores came from the unbalance in our
testing method.

To test our model, we compared 9 images each from a different camera model to the rest
of the data set. This resulted in a 96.7 % accurate model, the histogram and scores can
be seen in Figure 5.1. This high accuracy score came mainly from the fact that the true
negatives took a big part of the results. After realizing this was not the correct method of
testing our model we changed the testing phase completely to the algorithm described in
Section 4.4.

(a) Skewed histogram (b) Skewed scores

Figure 5.1: Skewness during early testing
During the trial and error period we reached high accuracy due to bad testing.

5.2.2 Determining threshold value

During this set of experiments, we started using the F-score, precision and recall for
better comparison between the different iterations. This was mainly done so that we
would notice skewness easier than in the previous set of experiments. The threshold value,
ϵ = {x ∈ Q : 0 ≤ x ≤ 1}, was determined after some early experiments resulted in bad
accuracy when we used ϵ = 0.20. A low threshold value would lead to a high precision
score and a high threshold value would lead to a high recall score, so we decided to do the
experiments with ϵ = 0.5. However, after doing multiple experiments with this threshold
value, we wondered if there is a better threshold value to use. So we decided to make
a script that analyzes the similarity scores achieved by the model to see if a different
threshold value would yield better results.

This script used the similarity scores and searched for the highest F-score, using the
pseudo-code in Listing 3 going over all the possible values within the range of ϵ. When the
script shows that we can use a higher threshold value, it means that the model is trained
better to make the distinction between the patterns of similar camera models and different
ones.

The results of the script showed that using a threshold value between 0.59 and 0.67
would increase the F-score by an average of 1 percentage point. For our final experiments,
we went with a threshold value of 0.61. The script is now integrated into the main part of

13

the code, so we can have a better indication of how our model performs with regards to
the possible maximum F-score with the current architecture and (hyper)parameters.

5.3 Results

After the big impact experiments described in the previous sections, we started making
smaller changes to the base model to further improve our results. After the creation of
the model we test the model in the same script, and at least ten times more after this
to ensure that the results are stable and not a lucky hit. We have created a boxplot,
Figure 5.3, which shows the results of the different trained models. From the boxplot, we
left out the experiments that failed completely and resulted in an F-score of below 5%.
For each test run of each model, we got the F-score and the best achievable F-score via
the script mentioned in Section 5.2.2.

At the start of these experiments, we changed the format of our histogram. We have
added the threshold value (red divider line) and the green and red areas, so that is more
clear which scores are TP, FN, FP, and TN respectively. This was done to further improve
the ability to compare our models against each other.

Figure 5.2 shows the new format of the histogram. This figure was made with the results
of the test that ran right after the creation of iteration 6. The top part clearly shows a left
skew, which we would like to see and expected, while the histogram for different camera
pairs does not show the right skew as hoped. But looking at the mean and standard
deviation of the model, we can clearly see a difference between the same camera pair
predictions and the pairs consisting of different camera models. And thus the difference
the model makes between the two binary classes.

Figure 5.2: Histogram of similarity scores

14

For iterations 1 and 2 after the base model, we decided to lower the number of epochs
the neural network would be trained for because the loss graph of the base model showed
that the training loss score was converging, but the validation loss score was not converging
as fast.

After seeing that lowering the epoch did not help we implemented early stopping so that
in the future the neural network would stop itself once it converged. Iteration 3 showed us
that we needed to change the strictness of our early stopping condition. We used patience
of 2, meaning that if the loss score of the validation step would increase in 2 consecutive
epochs we would terminate early.

Iterations 4 and 5 had very similar results, however, iteration 4 converged a lot faster
than iteration 5. Iteration 4 was stopped by the new condition after 29 epochs while
iteration 5 was not stopped and ran for the full 50 epochs. These iterations showed us the
randomness while working on neural networks and that changing one parameter can have
different impacts which might not be seen right after one training run.

Up to iteration 6, we flipped our pairs of images randomly either horizontally or
vertically6 to add more data to the model. Literature suggested that data augmentation
would increase the accuracy of our model [5]. So we expected the scores of iteration 6
to be lower because we turned off the flipping of images, however, our scores increased
slightly almost equal to the scores of our base model. This model was trained with only 26
epochs instead of the 50 epochs used for the base model resulting in only half the training
time used.

Lastly in iterations 7 to 10, we changed the early stopping condition to look at the mean
loss over the last 5 epochs. This early stopping condition needs a lot more attention for
it to be feasible to use with our model. Theoretically, this method would be the best at
spotting when the loss graph is converging. Since it is calculating the steepness of the loss
graph, however, we did not get the results that we wanted with this condition.

Iteration Comment

Base Baseline model
1, 2 Changed the max epochs to 30 from

50
3 Early stopping with patience of 2
4,5 Early stopping patience set to 3 from

2 and max epoch to 50 from 30
6 No longer randomly flipping horizontal

or vertical
7 Changed early stopping to mean loss
8 - 10 Finetuning the early stopping thresh-

old

Figure 5.3: Results of the different experiments
The highest F-score is 74.5925%, achieved in the base model.

6https://pytorch.org/vision/stable/transforms.html, (RandomHorizontalFlip, RandomVerti-
calFlip)

15

https://pytorch.org/vision/stable/transforms.html

6 Discussion

Since our project is exploring new territory within the field of camera identification, it is
difficult to compare our results with the current state of the art. However, reaching an
F-score close to 75% means that this method that we have implemented can be further
explored. The biggest advantage over the state-of-the-art methods is that there is no
need for retraining the network once it gets good results. As mentioned before we use a
relatively small batch size compared to the state-of-the-art models, this could explain the
difference in our loss graph (Figure 4.4) and the loss graph of Bennabhaktula et al. [4,
see fig. 10]. The smaller batch sizes mean a less accurate estimate of the weight changes
of the kernel, which means that the weights of the model will be moving past the ideal
settings easier. This can be clearly seen in our loss graph by the vertical movement on the
validation part of the graph even in the later epochs. Ideally, a loss graph should converge
towards the end and not have a lot of vertical movement.

Due to the high degree of certainty needed for tools used by LEAs, we consider our
model not yet good enough to be used right away. Nevertheless, the model can be used as a
stepping stone towards making more accurate models, before doing the more computational
heavy techniques, like comparing an image against a whole database.

As a consequence of the time constraints we set ourselves, we can say that the training
of the model is more cost-effective than state-of-the-art models. On the flip side, our
model does not outperform the state-of-the-art models, so finding the balance between
time/hardware usage versus accuracy is an important task for the future. The biggest
efficiency gain comes from the fact that no retraining is needed for unknown cameras since
our model generalizes the pattern noise and finds the link between the images. Other
models would have to be retrained to work with unknown cameras.

Our bottleneck with the project was the memory usage of the model. Because we
used larger images and had a pair of images as input, we had to make decisions that
would impact the accuracy of our model. This bottleneck affects the possibility to deploy
the model to LEAs, since the model was trained on a High-Performance Cluster of the
university. It would only be deployable to LEAs with similar HPCs.

A direction for future research is to see if using different image crop sizes or RGB images
makes a difference in the accuracy of our implementation. Our expectations are that
having a larger image crop size will have a positive factor on the accuracy of the SNN,
however, this comes with the downside of using smaller batches and thus reducing the
accuracy again. This sparks interest in finding the right balance between batch size and
input size.

Another direction would be to see if the model is also working with images made by
smartphones since the Dresden Image Database did not include any smartphone cameras.
Furthermore, most sensitive content is made via smartphones and webcams and not with
cameras used in the data set used. Some smartphones use postprocessing on the pictures
taken and this can have a big influence on the ability to extract the pattern noise and be
able to find a relationship between images.

And finally, we suggest looking into the similarity function, because we only used the
simplest similarity function, euclidean distance, to keep the number of parameters we had
to work with down. We expect that different similarity functions, especially the cosine
similarity function, can have a positive influence on the accuracy of the siamese neural
network. As said by Han et al. [9, see 2.4.7]: “Cosine similarity measures the similarity
between two vectors of an inner product space. ... It is often used to measure document

16

similarity in text analysis.”, the feature vector made by our SNN are the attributes that
describe the images. This is very similar to the way documents are described for text
analysis, so it would be interesting to see if this similarity would also work with our model.

7 Conclusion
The results that we got suggest that it is possible to train a siamese neural network to
determine if two images come from the same camera. However, there is a lot of room for
improvement and it is not suitable yet to deploy to LEAs. We managed to train our model
sufficiently enough with the two-hour time constraint that we set ourselves, but this has
to be done with the high-end graphics card due to the sheer amount of memory used for
processing the images during training.

To answer our research question, ‘What is the performance of a siamese neural network
at detecting whether the same camera made a pair of images?’, our best performing model
got a 74.59% F-score, which is the best-reported score on the full ’natural’ subset of the
Dresden Image Database [8] with an image pair to identification model to our knowledge.
This model was trained within 80 minutes resulting, in our opinion, in a well-performing
model for the time invested to train it.

8 Acknowledgements
We thank the Center for Information Technology of the University of Groningen for their
support and for providing access to the Peregrine high performance computing cluster.

17

References
[1] P. Baldi and Y. Chauvin. Neural networks for fingerprint recognition. Neural

Computation, 5:402–418, 1993. doi:10.1162/neco.1993.5.3.402.

[2] B. Bayar and M. Stamm. Constrained convolutional neural networks: A new
approach towards general purpose image manipulation detection. IEEE Trans-
actions on Information Forensics and Security, 13:2691–2706, 2018. ISSN 1556-
6013. doi:10.1109/TIFS.2018.2825953. URL https://doi.org/10.1109/TIFS.2018.
2825953. 2691.

[3] G. S. Bennabhaktula, E. Alegre., D. Karastoyanova., and G. Azzopardi. Device-based
image matching with similarity learning by convolutional neural networks that exploit
the underlying camera sensor pattern noise. pages 578–584. SciTePress, 2020. ISBN
978-989-758-397-1. doi:10.5220/0009155505780584.

[4] G. S. Bennabhaktula, E. Alegre, D. Karastoyanova, and G. Azzopardi. Cam-
era model identification based on forensic traces extracted from homogeneous
patches. Expert Systems with Applications, 206:117769, 2022. ISSN 0957-4174.
doi:https://doi.org/10.1016/j.eswa.2022.117769. URL https://www.sciencedirect.
com/science/article/pii/S0957417422010430.

[5] J. C., R. A., and 27th European Signal Processing Conference, EUSIPCO 2019 27
2019 09 02 - 2019 09 06. Data augmentation for drum transcription with convolutional
neural networks. European Signal Processing Conference, 2019-September, 2019. ISSN
2219-5491.

[6] M. Fanfani, A. Piva, and C. Colombo. Prnu registration under scale and rotation
transform based on convolutional neural networks. Pattern Recognition, 124:108413,
2022. ISSN 0031-3203. doi:https://doi.org/10.1016/j.patcog.2021.108413. URL
https://www.sciencedirect.com/science/article/pii/S0031320321005896.

[7] Z. J. Geradts, J. Bijhold, M. Kieft, K. Kurosawa, K. Kuroki, and N. Saitoh. Methods
for identification of images acquired with digital cameras. volume 4232, page 505 – 512.
SPIE, 2001. doi:10.1117/12.417569. URL https://doi.org/10.1117/12.417569.

[8] T. Gloe and R. Böhme. The ’dresden image database’ for benchmarking digital
image forensics. pages 1584–1590. Association for Computing Machinery, 2010. ISBN
9781605586397. doi:10.1145/1774088.1774427. URL https://doi.org/10.1145/
1774088.1774427.

[9] J. Han, M. Kamber, and J. Pei. 2 - getting to know your data. In J. Han, M. Kam-
ber, and J. Pei, editors, Data Mining (Third Edition), The Morgan Kaufmann
Series in Data Management Systems, pages 39–82. Morgan Kaufmann, Boston, third
edition edition, 2012. ISBN 978-0-12-381479-1. doi:https://doi.org/10.1016/B978-
0-12-381479-1.00002-2. URL https://www.sciencedirect.com/science/article/
pii/B9780123814791000022.

[10] X. Kang and S. Wei. Identifying tampered regions using singular value decomposition
in digital image forensics. In 2008 International conference on computer science and
software engineering, volume 3, pages 926–930. IEEE, 2008.

18

https://doi.org/10.1162/neco.1993.5.3.402
https://doi.org/10.1109/TIFS.2018.2825953
https://doi.org/10.1109/TIFS.2018.2825953
https://doi.org/10.1109/TIFS.2018.2825953
https://doi.org/10.5220/0009155505780584
https://doi.org/https://doi.org/10.1016/j.eswa.2022.117769
https://www.sciencedirect.com/science/article/pii/S0957417422010430
https://www.sciencedirect.com/science/article/pii/S0957417422010430
https://doi.org/https://doi.org/10.1016/j.patcog.2021.108413
https://www.sciencedirect.com/science/article/pii/S0031320321005896
https://doi.org/10.1117/12.417569
https://doi.org/10.1117/12.417569
https://doi.org/10.1145/1774088.1774427
https://doi.org/10.1145/1774088.1774427
https://doi.org/10.1145/1774088.1774427
https://doi.org/https://doi.org/10.1016/B978-0-12-381479-1.00002-2
https://doi.org/https://doi.org/10.1016/B978-0-12-381479-1.00002-2
https://www.sciencedirect.com/science/article/pii/B9780123814791000022
https://www.sciencedirect.com/science/article/pii/B9780123814791000022

[11] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization, 2014. URL
https://arxiv.org/abs/1412.6980.

[12] M. Kirchner and J. Fridrich. On detection of median filtering in digital images. In
Media forensics and security II, volume 7541, pages 371–382. SPIE, 2010.

[13] G. Koch, R. Zemel, and R. Salakhutdinov. Siamese neural networks for one-shot
image recognition. 2015.

[14] J. Lukáš, J. Fridrich, and M. Goljan. Detecting digital image forgeries using sensor
pattern noise. volume 6072, page 362 – 372. SPIE, 2006. doi:10.1117/12.640109. URL
https://doi.org/10.1117/12.640109.

[15] I. Melekhov, J. Kannala, E. Rahtu, and 23rd International Conference on Pattern
Recognition ICPR 2016 23 2016 12 04 2016 12 08. Siamese network features for
image matching. Proceedings - International Conference on Pattern Recognition,
pages 378–383, 2016. ISSN 1051-4651. doi:10.1109/ICPR.2016.7899663. URL https:
//doi.org/10.1109/ICPR.2016.7899663. 378.

[16] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Z. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch:
An imperative style, high-performance deep learning library. CoRR, abs/1912.01703,
2019. URL http://arxiv.org/abs/1912.01703.

[17] A. Piva. An overview on image forensics. International Scholarly Research Notices,
2013, 2013.

[18] M. Stamm, O. Mayer, and 2018 IEEE International Conference on Acoustics, Speech,
and Signal Processing, ICASSP 2018 2018 04 15 - 2018 04 20. Learned forensic source
similarity for unknown camera models. ICASSP, IEEE International Conference on
Acoustics, Speech and Signal Processing - Proceedings, 2018-April:2012–2016, 2018.
ISSN 1520-6149. doi:10.1109/ICASSP.2018.8462585. URL https://doi.org/10.
1109/ICASSP.2018.8462585. 2012.

[19] D. Timmerman, G. S. Bennabhaktula, E. Alegre, and G. Azzopardi. Video cam-
era identification from sensor pattern noise with a constrained convnet. CoRR,
abs/2012.06277, 2020. URL https://arxiv.org/abs/2012.06277.

[20] Q. Wang and R. Zhang. Double jpeg compression forensics based on a convolutional
neural network. EURASIP Journal on Information Security, 2016(1):1–12, 2016.

19

https://arxiv.org/abs/1412.6980
https://doi.org/10.1117/12.640109
https://doi.org/10.1117/12.640109
https://doi.org/10.1109/ICPR.2016.7899663
https://doi.org/10.1109/ICPR.2016.7899663
https://doi.org/10.1109/ICPR.2016.7899663
http://arxiv.org/abs/1912.01703
https://doi.org/10.1109/ICASSP.2018.8462585
https://doi.org/10.1109/ICASSP.2018.8462585
https://doi.org/10.1109/ICASSP.2018.8462585
https://arxiv.org/abs/2012.06277

A Appendix

A.1 Tables

ID Device name # img ID Device name # img
0 Agfa_DC-504_0 166 15 Olympus_mju_1050SW_3 192
1 Agfa_DC-733s_0 528 15 Olympus_mju_1050SW_4 187
2 Agfa_DC-830i_0 695 16 Panasonic_DMC-FZ50_0 265
3 Agfa_Sensor505-x_0 167 16 Panasonic_DMC-FZ50_1 415
4 Agfa_Sensor530s_0 357 16 Panasonic_DMC-FZ50_2 251
5 Canon_Ixus55_0 418 17 Pentax_OptioA40_0 169
6 Canon_Ixus70_0 172 17 Pentax_OptioA40_1 158
6 Canon_Ixus70_1 179 17 Pentax_OptioA40_2 156
6 Canon_Ixus70_2 171 17 Pentax_OptioA40_3 155
7 Canon_PowerShotA640_0 188 18 Pentax_OptioW60_0 192
8 Casio_EX-Z150_0 166 19 Praktica_DCZ5.9_0 194
8 Casio_EX-Z150_1 174 19 Praktica_DCZ5.9_1 185
8 Casio_EX-Z150_2 172 19 Praktica_DCZ5.9_2 190
8 Casio_EX-Z150_3 172 19 Praktica_DCZ5.9_3 189
8 Casio_EX-Z150_4 166 19 Praktica_DCZ5.9_4 184
9 FujiFilm_FinePixJ50_0 210 20 Ricoh_GX100_0 192
9 FujiFilm_FinePixJ50_1 205 20 Ricoh_GX100_1 164
9 FujiFilm_FinePixJ50_2 215 20 Ricoh_GX100_2 175
10 Kodak_M1063_0 449 20 Ricoh_GX100_3 165
10 Kodak_M1063_1 443 20 Ricoh_GX100_4 158
10 Kodak_M1063_2 423 21 Rollei_RCP-7325XS_0 183
10 Kodak_M1063_3 445 21 Rollei_RCP-7325XS_1 179
10 Kodak_M1063_4 554 21 Rollei_RCP-7325XS_2 182
11 Nikon_CoolPixS710_0 171 22 Samsung_L74wide_0 215
11 Nikon_CoolPixS710_1 181 22 Samsung_L74wide_1 209
11 Nikon_CoolPixS710_2 168 22 Samsung_L74wide_2 216
11 Nikon_CoolPixS710_3 156 23 Samsung_NV15_0 202
11 Nikon_CoolPixS710_4 166 23 Samsung_NV15_1 198
12 Nikon_D200_0 335 23 Samsung_NV15_2 199
12 Nikon_D200_1 338 24 Sony_DSC-H50_0 284
13 Nikon_D70_0 165 24 Sony_DSC-H50_1 257
13 Nikon_D70_1 174 25 Sony_DSC-T77_0 362
14 Nikon_D70s_0 163 25 Sony_DSC-T77_1 171
14 Nikon_D70s_1 174 25 Sony_DSC-T77_2 189
15 Olympus_mju_1050SW_0 189 25 Sony_DSC-T77_3 184
15 Olympus_mju_1050SW_1 194 26 Sony_DSC-W170_0 205
15 Olympus_mju_1050SW_2 203 26 Sony_DSC-W170_1 200

Table A.1: Camera devices
All the camera devices from the natural subset of the Dresden Image Database

with their corresponding label and amount of images.

20

A.2 Listings

1 def train_model(model , train_data_set , validation_data_set):
2 # Setup optimizer and learning rate scheduler
3 loss_history = []
4 for epoch in range(MAX_EPOCH):
5 train_loss = train_one_epoch(model , train_data_set)
6 valid_loss = validation(model , validation_data_set)
7 loss_history.append ((train_loss , valid_loss))
8 #Early termination check
9 create_loss_plot(loss_history)

10

11

12 def train_one_epoch(model , data_set):
13 total_loss = 0
14 loss_func = MSELOSS () # From the pytorch library
15 for image_pairs , ground_truths in data_set:
16 # image_pairs & ground_truths are batches (arrays)
17 similarity_score = model(image_pairs)
18 loss = loss_func(similarity_score , ground_truths)
19 # Back propagate this loss score
20 total_loss += loss
21 return total_loss / (number of batches)
22

23

24 def vaidation(model , data_set):
25 total_loss = 0
26 loss_func = MSELOSS () # From the pytorch library
27 for image_pairs , ground_truths in data_set:
28 # image_pairs & ground_truths are batches (arrays)
29 similarity_score = model(image_pairs)
30 loss = loss_func(similarity_score , ground_truths)
31 total_loss += loss
32 return total_loss / (number of batches)

Listing 1: Simplified code for training the model

1 def test_model(model , balanced_data_set):
2 truth_list = []
3 prediction_list = []
4 similarity_scores = []
5 threshold = 0.5
6 for image_pair in balanced_data_set:
7 gt = ground truth of image_pair
8 truth_list.append(gt)
9 similarity_score = model(image_pair)

10 similarity_scores.append(similarity_score)
11 if similarity_score <= threshold :
12 prediction_list.append (0)
13 else:
14 prediction_list.append (1)
15

16 calculate_scores(truth_list , prediction_list)
17 create_histograms(similarity_scores)

Listing 2: Simplified code for testing the model

21

1 # same and diff are the scores achieved in the testing phase
2 def find_threshold(same , diff):
3 best_f = (0, 0) # F-score and threshold value
4 for e in range(10, 100):
5 # Score range between 0.1 and 1.0 to limit calculation time
6 e /= 100
7 tp = len([x for x in same if x < e])
8 fn = len(same) - tp
9 fp = len([x for x in diff if x < e])

10 tn = len(diff) - fp
11

12 prec = tp/(tp+fp)
13 recall = tp/(tp+fn)
14 fscore = 2*(recall*prec)/(recall+prec)
15

16 if fscore > best_f [0]:
17 best_f = (fscore , e)
18 return best_f

Listing 3: Code for finding the best threshold value

22

	Introduction
	Background
	Related work
	Sensor pattern noise
	Camera identification
	Siamese neural network

	Methodology
	Image preprocessing
	Implemented network
	Feature extractor
	Feature comparator and prediction

	Training and validation
	Testing

	Experiments and Results
	Data
	Data set
	Data augmentation
	Data splitting

	Experiments
	Balancing data set
	Determining threshold value

	Results

	Discussion
	Conclusion
	Acknowledgements
	Appendix
	Tables
	Listings

