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1 Introduction

Issue tracking systems such as JIRA allow developers to
discuss ideas about software projects. Some of these ideas
may contain information relevant for the architecture of the
project. Specifically, some issues may contain information
about design decisions. Design decisions are an important
form or architectural knowledge, because it is important to
not only understand the architecture of a software project,
but also why the architecture is as it is [5]. However, such
architectural design decisions (ADDs) are often not explic-
itly documented [2]. As such, it can be difficult to nearly
impossible to retroactively obtain these ADDs.

Issue trackers, such as JIRA, allow developers to discuss
problems in or enhancements for software in so-called is-
sues. These issues may contain architectural knowledge in
the form of ADDs [1]. The major challenge is identifying
and classifying these so-called architectural issues – issues
containing one or multiple ADDs.

Previous researchers have used traditional machine learn-
ing (ML) approaches to identify and further classify archi-
tectural issues, with promising results [1]. In this report, we
will investigate the effectiveness of applying modern deep
learning (DL) approaches for the same purpose.

Powerful and generalizable automated methods for ex-
tracting ADDs from issue tracking systems could be ben-
eficial. They can save considerable manual effort because
identifying architectural knowledge can be a time consum-
ing process. This information can be used to re-discover
information about an architecture. Future researchers can
also use deep learning tools to mine architectural issues on a
larger scale. The information from them can be analyzed for
future research, possibly leading to the development of ar-
chitectural knowledge repositories – thus leading to a wider
spread ability to share architectural knowledge amongst de-
velopers than currently available [2].

In section 2, we will cover the background of ADDs and
issues in issue tracking systems in more detail. We will then
introduce the research questions in section 3. Next, in sec-
tions 4 and 5, we will introduce the datasets we will be
working with in more detail. In sections 6, 7, 8, and 9 we
describe the main parts of our approach. Sections 10 and

11 explain further optimizations to our approach. We will
then answer the research questions in sections 12, 13, 14,
and 15.

2 Background

2.1 Architectural Design Decisions

Architectural Design Decisions are decisions that contain
some form of information relevant to the architecture of the
system. Kruchten [4] identified three categories of ADDs:
Executive Decisions, Existence Decisions, and Property De-
cisions. We will briefly explain each type below.

2.1.1 Executive Decisions

Executive decisions are decisions driven by the (business)
environment of the system. Such decisions may effect the
development process or the organization developing the soft-
ware itself. Often, such decisions also deal with a choice of
technology [4]. An example of an executive issue is given in
figure 1.

2.1.2 Existence Decisions

Existence decisions are ADDs which state that some func-
tionality or component will show up in the system. When
this is a statement about components, the decision is called
structural. If the statement is about the interaction between
components, the decision is called behavioral. A special case
is a negative expression of an existence decision – a decision
stating that some component or functionality will not show
up in the system. Such decisions are called ban decisions
[4]. An example of an existence decision is given in figure 2.

2.1.3 Property Decisions

Property decisions are ADDs which state enduring, overar-
ching traits or qualities of the system. An example of this
is a decision to not use any software using the GNU GPLv3
license as part of a project, because this license prohibits
closed source distribution. Property decisions are often not
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Figure 1: Example of an executive issue. The issue proposes
to replace one technology with another (parts in red). Jus-
tification is given (in blue). This is hence an ADD which
contains AK about a choice of technology.

Figure 2: Example of an existence issue. The issues states a
problem (blue), discusses some aspects of a solution (green),
and explains how implementing that solution leads to the
addition of new components and new functionality to the
system (red).

Figure 3: Example of a property issue. This issue proposes
increasing the performance of certain processes within the
system. Implicitly, this decision states that performance is
important, making this a property decision.

written down and may be difficult to recognize as such. Of-
ten, they deal with one or more quality attribute [4]. An
example of a property issue is given in figure 3.

2.2 Issue Properties

Issues in issue tracking systems contain various attributes
which can be used for classification. In figures 1, 2, and
3 we already saw that issues have a title and description.
These are the sources of information which allow us humans
to classify issues are architectural. However, issues also have
other properties which can be used for classification. Figure
4 contains examples of all the possible attributes we tested
with. First of all, there is the type of the issue (blue). A
common example of this is the type “bug”. Next, there is the
priority, indicating how urgent an issue is (magenta). The
component field (green) indicates which components of the
software are affected by the issue. Labels (black) can also be
attached to an issue. These labels contain information not
expressed in the other attributes. Labels can express intent
(e.g. “supportability”), but also that an issue is appropriate
to ease someone into contribution to open source projects
(e.g. “beginner”). We also have the status field (light blue).
This field indicates the current status of the issue – meaning
whether is is active, or has been closed. The resolution field
(pink) is closely related to the status, because it contains
the final resolution. Possible examples include “won’t fix”
or “fixed” for bugs. There is also the votes field (brown),
which indicates the amount of votes on an issue. Votes can
be used by community members than an issue is somehow
important. There is also the watches field (grey), which
indicates the amount of people following (“watching”) the
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issue because they find it important.
Issues can also have attachments (yellow). For this work,

we are only interested in the number of attachments. Sim-
ilarly, issues may have links to other issues (orange). For
instance, an overarching coordinating issue may have links
to other smaller issues providing part of the implementation
in some larger effort. We are once again only interested in
the number of links to other issues. Closely related to these
links, is the parent status. The issue in figure 4, has a parent
issue (indicated by the red field). This means that it is part
of some overarching larger effort. For the purpose of this
research, we used the fact whether an issue has a parent as
a feature.

3 Research Questions

In this report, we will attempt to answer the following re-
search questions:

• (RQ1) How accurate are deep learning approaches to
identify and classify architectural issues?

Bhat et al. [1] used traditional machine learning ap-
proaches to identify and classify architectural issues.
However, modern machine learning approaches like
deep learning and word embedding opened the way to
improve the accuracy of textual classification. There-
fore, we ask this RQ to evaluate the accuracy of modern
machine learning approaches to identify and classify ar-
chitectural issues.

• (RQ2) How would the training data-set of architectural
issues impact the generalizability of deep learning ap-
proaches to identify and classify architectural issues?

The issues in the dataset we are using were obtained
using bottom-up and top-down search approaches, and
are thus not necessarily representative of issues in issue
trackers in general [3]. Contrarily, Bhat et al [1] use
a random sampling of issues from projects which they
classify later. We are interested in answering how well
the methods generalize to one dataset when training on
the other (both ways). A well-generalizable approach
is desirable because it allows us to extract other issues
from issue trackers which are not necessarily similar to
issues in the training dataset.

• (RQ3) How generalizable are deep learning approaches
to identify and classify architectural issues from differ-
ent projects?

We are potentially interested in using deep learning to
obtain issues from new projects not contained in the
dataset. An important requirement to do this, is that
the deep learning methods generalize well to projects
not in the dataset. Hence, we ask this research ques-
tion to evaluate the generalizability of deep learning to
projects foreign to the training set.

• (RQ4) What are the keywords used by deep learning
approaches to identify and classify architectural issues?

We are interested in knowing how the deep learning
models classify architectural issues. Most importantly,
we are interested in knowing what words in the descrip-
tion and title of issues are important in determining the
final classification. This interest is two-fold. We want
to know whether the deep learning models use words
humans would expect or use when classifying issues.
On the other hand, it could be that the deep learn-
ing methods find new insightful keywords which human
classifiers would not easily think of, which could lead
to new insights. Therefore, we ask this research ques-
tion to evaluate what keywords are important for deep
learning algorithms when identifying and classifying is-
sues.

4 Dataset Description

The dataset we used was based on [3]. In this work, a dataset
containing both architectural issues and non-architectural
issues was collected using top-down and bottom-up ap-
proaches [3]. The issues were obtained from multiple
projects: Cassandra, Tajo, Hadoop Common, Hadoop
HDFS, Hadoop Map Reduce, and Hadoop Yarn. Originally,
his dataset contained a total number of 1846 issues, where
931 issues were non-architectural, and 915 were architec-
tural. The architectural issues were further subdivided, into
587 existence issues, 199 property issues, and 129 executive
issues.

Note that in the dataset, issues could have multiple la-
bels (e.g. an issue could be both executive and existence).
However, in order to simplify the classification task for the
classifier, we only took the most important label. Here, ex-
ecutive has the highest priority, then property, and finally
existence. This is because executive decisions tend to drive
property issues, which in turn drive existence issues.

Part of our work involved checking the classification of the
non-architectural issues. The primary supervisor found that
in general, architectural issues were classified reasonably
well (around 5% disagreement in a random sampling), while
the non-architectural issues were classified somewhat worse
(up to 30% disagreement in a random sampling). Based on
this observation, we re-classified the non-architectural issues
which did not have the label “bug”. This is because issues
with that labels were generally correctly classified. This
means that a total of 712 issues had to be re-classified.

For the classification, the two authors first classified the
same 50 issues independently and discussed disagreements.
The primary supervisor then checked the re-classification
of this 50 issues. The goal of this step was to establish a
mutually understood baseline for the classification. Next,
each author classified 331 of the remaining issues. All cases
where one author was unsure were also checked by the other
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Figure 4: Examples of the possible properties an issue can have.

4



author. In case of disagreement, a final classification was
determined by the primary supervisor.
In the end, 324 of the 712 issues were identified to be

architectural. 272 were found to be existence issues, 26 were
executive, and 26 were property issues.

Finally, another addition of 403 issues was made by an-
other student project. These issues were obtained by ana-
lyzing Maven files. A total of 155 non-architectural issues,
69 existence issues, 21 property issues, and 158 executive
issues were added. Additional, 9 of the existing issues were
re-classified.
The final dataset we obtained this way is described in

table 1.

5 Analyzing the Bhat Dataset

Part of the work we did, was to perform a qualitative analy-
sis of the dataset collected by Bhat et al. This analysis had
multiple goals. One of these goals was assessing the viability
of using the dataset of Bhat et al. for evaluating the per-
formance of our own deep learning methods. We performed
the analysis by following the following steps:

1. Locate and download Bhat´s dataset : Bhat et al. do not
provide their issues data-set in [1]. Thus, we contacted
the primary author of the paper (i.e. Manoj Bhat) to
ask for the data-set. Manoj Bhat kindly provided us
with the issues dataset1.

2. Evaluate classifications on architectural issues: We
evaluated our agreement with the classification done by
Bhat et al. We took a stratified sample of 300 issues
from Bhat´s dataset. The sample ensures a representa-
tive distribution for all types of issues as classified by
Bhat et al.: non-architectural issues, structural, behav-
ioral and ban decisions. We independently re-classified
the sample of issues using the definitions of Kruchten et
al. [4] to determine the agreement on issues´ classifica-
tions. The two authors of this report and the supervisor
worked together on this step. The authors classified 175
issues, with an overlap of 50 issues between them. Both
authors discussed any disagreements in the overlapping
issues. Moreover, issues which were difficult to classify
were discussed between the two authors and the super-
visor. In cases where no consensus could be reached by
the two authors, the the supervisor provided the deci-
sive classification.

While Bhat et al. classified issues based solely on the
existence types of design decisions, we found some issues
in Bhat´s dataset that contain Executive and Property
design decisions. These issues were re-classified based
on their types of design decisions and according to def-
initions of Kruchten et al. [4]. As a result of this qual-
itative analysis, we determined the agreement on the

1https://server.sociocortex.com/typeDefinitions/

1vk4hqzziw3jp/Task

different types of issues. Table 2 shows the agreement
between our classification and Bhat´s classification. We
can observe that the highest agreement is on splitting
issues between architectural and non-architectural is-
sues. However, we have lower agreement on the types
of architectural issues. For instance, we did not agree
with Bhat´s classification on issues that discuss Ban
design decisions. There were also some issues for which
there was too little information in the issue to come to
a classifiaction.

The main conclusions from this analysis are that the
dataset used by Bhat et al. can be used to test the detec-
tion of architectural issues. However, because of the large
disagreement, the dataset of Bhat et al. will not be used in
evaluating the performance of deep learning methods on the
classification task. Table 3 gives a simple breakdown of the
issues in this dataset of Bhat et al.

6 Prepare baseline

To evaluate our proposed machine learning approaches, we
compare our approaches with the approach from Bhat et
al.. We have chosen the approach from Bhat et al., because
they classify issues among types of design decisions. How-
ever, Bhat et al. use a different dataset of issues (see Table
section 5), and classify issues among the three types of ex-
istence design decisions: structural, behavioral and ban. It
is also important to note that Bhat et al. have a two step
approach for classifying issues. First, they use a classifier to
determine whether an issue is a design decision. This pro-
cess is called detection. Next, they use a second classifier
to determine the type of the design decision. They refer to
this as classification.

To accurately compare the approach from Bhat et al. with
our proposed approaches, we replicated the approach from
Bhat et al.. In this way, we could apply Bhat’s traditional
machine learning approaches on our dataset, and apply our
proposed deep learning approaches on Bhat’s dataset. We
followed these steps to replicate the work from Bhat et al.:

1. Acquire Bhat´s machine learning approach: Bhat et al.
[1] do not provide the implementation of their machine
learning approach. Thus, we contacted the primary au-
thor of the paper (i.e. Manoj Bhat), who kindly pro-
vided us with a helpful source code implementation of
their machine learning approach2. Since the repository
has been updated after the work of Bhat et al. was pub-
lished, we looked at older versions of the repository to
understand Bhat´s approach. Specifically, we looked at
at commit b140c81c1fdcb95364a36965e83850e672f90f13
because the content of this commit seemed to best line
up with the contents of their paper. In the provided
source code repository, we were able to find out some
details on their approach, which the authors did not

2https://github.com/sebischair/DocClassification

5



Non-Architectural
issues

Architectural Issues

Projects Executive Existence Property Total Per
Project

Cassandra 276 149 249 85 759
Hadoop Common 135 64 171 51 421
Hadoop HDFS 95 27 164 46 332
Hadoop Map Reduce 53 10 44 17 124
Tajo 98 38 69 13 218
Hadoop Yarn 91 7 202 25 325

Total per issue type 748
295 899 237

2179
1431

Table 1: Total Amount of issues in the dataset we used after re-classification and additions.

to

from
Architectural
(Ban)

Architectural
(Behavioral)

Architectural
(Structural

Not Architec-
tural

Total

Architectural
(Behavioral)

7 64 4 3 78

Architectural
(Executive)

0 2 6 0 8

Architectural
(Existence)

0 1 0 0 1

Architectural
(Structural)

3 4 19 0 26

Not Architec-
tural

22 2 13 148 185

Indeterminable 0 1 1 0 2

Total 32 74 43 151 300

Table 2: Agreement with the original classification done by Bhat et al. For 300 issues. The columns denote the original
classification, while the rows denote our new classification. The Indeterminable row is for issues where we could not come
up with a classification for the issue because of too little information in the issue title and description.
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Project Architectural
Issues

Non-
Architectural
Issues

Total
Per
Project

Hadoop 263 309 572
Spark 465 433 898
Total 728 742 1470

Table 3: Amount of issues in the dataset of Bhat et al.

clarify in their paper [1]. First, we found that they com-
bined the summary and description of issues through
concatenation. Second, we found that the authors used
a custom list of stopwords. Third, we also found that
the authors used Spark’s NGram class3. Additionally,
we were able to find the code for all of the five classi-
fiers. However, the classifiers´ parameters did not agree
with those specified in the work of Bhat et al. [1]. As a
result of this step, we understood Bhat´s approach in
more details to replicate the classification approach.

2. Pre-process issues: In order to train machine learning
algorithms, we need to transform issues into feature vec-
tors (i.e. numeric vectors that correspond to issues).
We performed the same steps as Bhat et al. paper
[1] to transform issues into feature vectors. Format-
ting was already removed from the issues in the dataset
we were given. Hence, we only had to perform the re-
maining processing steps. First, we concatenated the
summary and description for every issue. Second, we
transformed the summary and description into a list
of words. Third, we converted words to their lower
case, and removed stopwords. We experimented with
the custom list of stopwords used by Bhat et al. in
their provided repository, as well as standard stopwords
from the NLTK4 library. Fourth, we applied stemming
(e.g. “developing” becomes “develop”) similar to Bhat
et al., but using NLTK’s implementation of the Porter
stemming algorithm. Fifth, we created ngrams from
the stemmed text similar to Bhat et al., where we ex-
perimented with values of n ranging from 1 to 5. For
example, the sentence “Remove individual commit mes-
sages” contains the 2-grams “remove individual“, “indi-
vidual commit”, “commit messages”. In the code pro-
vided to us by the authors, we were able to see that the
the authors generate n-grams of a specific length (e.g.
at n=3), and append these ngrams to the list of words
to create the feature vector. We followed the approach
taken by Bhat et al. Finally, we transformed the list of
words combined with ngrams into vectors of numbers.
In accordance with the approach of Bhat et al, we used
term-frequency inverse document frequency (tf/idf) to
do this for detection, and term frequency for classifica-

3https://spark.apache.org/docs/3.1.1/api/python/reference/

api/pyspark.ml.feature.NGram.html
4https://www.nltk.org/

Classifier Parameters
Support Vector
Machine

SVM Type: C-CSV
Kernel Type: Linear

Decision Tree maxDepth: 20
impurity: entropy
minWeightFractionPerNode:
0.25
minInfoGain: 1

Logistic Regression elasticNetParam: 0.8
regParam: 0.001
maxIter: 10

One-vs-Rest Nested Classifier: Logistic
Regression

Naive Bayes smoothing: 1

Table 4: Parameters used for the classifiers while replicating
the work of Bhat et al.

tion. We used the sklearn5 library to compute ngrams,
the tf/idf vectors, and term-frequency vectors, while
Bhat et al. used the Spark library to apply ngrams,
tf/idf, and term frequency.

With term frequency, we create a vocabulary of words
from all issues in the dataset. Every word in this vo-
cabulary has a unique index in the vector. Thus, each
issue can be converted to a vector (with the size of the
vocabulary) that reflect words in this issue and their
frequency, by counting the number of occurrences of
every word in the issue, and set that count as the cor-
responding value in the vector.

TF/IDF is similar to term frequency, but attempts to
account for words which occur more rarely across is-
sues [8]. To compute the TF/IDF value, we multiply
the normalized frequency (TF) of a word (given by the
term frequency divided by the length of the issue in
words), with a measure of how common or rare a word
appears among all issues (IDF). We calculated IDF us-
ing equation 1 [8].

IDF (word) = log
# issues

# issues containing word
(1)

3. Implement classifiers: We experimented with all ma-
chine learning classifiers used by Bhat et al. and us-
ing the same technologies and parameters (see Table
4). We used the PySpark6 library to implement the
decision tree, logistic regression, one-vs-rest, and naive
Bayes classifiers, and we used LibSVM7 to implement
the Support Vector Machine (SVM) classifier. For lo-
gistic regression, we used sklearn’s polynomial kernel to
implement a dot kernel similar to Bhat et al..

5https://scikit-learn.org/stable/
6https://spark.apache.org/docs/latest/api/python/
7https://github.com/ocampor/libsvm
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7 Develop deep learning ap-
proaches

In this section, we explain our proposed deep learning ap-
proaches to identify and classify architectural issues. Our
proposed deep learning approaches follow the design de-
picted in Figure 5, which consists of 4 major steps. We
explain each of these steps in the following paragraphs.

7.1 Pre-Processing

Jira issues involve some textual contents that can disturb
classifiers to identify and classify architectural issues. Ex-
amples of these textual contents are source code blocks and
formatting tags. Thus, in this step, we identify and process
these noisy textual contents.
In details, we performed the following cleanup steps:

• We removed formatting tags from the issue summary
and description according to Jira text formatting nota-
tion8.

• We identified tracebacks and logging output in issue de-
scriptions, possibly not located within formatting tags,
and replaced them with special markers. In order to
detect tracebacks and logging output, we used regular
expressions to test whether a sentence in an issue de-
scription contains a traceback or a logging output. We
developed these regular expressions after inspecting a
sample of issues from our dataset that contain trace-
backs and logging outputs. We did this by word search-
ing for the phrases “DEBUG”, “INFO”, “WARNING”,
“WARN”, “ERROR”, “CRITICAL”, “SEVERE”, “Er-
ror”, and “Exception” (case sensitive). Table 5 gives an
overview of the regular expressions we used, along side
some the example output they were designed to cap-
ture.

• We removed dates from the text, and replaced them
with them with a marker. The numbers in the dates we
checked for could be separated either by dots or slashes.
We removed dates with the year in the front and at the
end.

• We removed IP addresses from the text, and replaced
them with markers. We also checked for IP addresses
where part of the address was obscured by “xx”, such
as the address xx.xx.xx.142:51010.

• We removed web links, as well as links to attachments,
and user profiles. Links to other issues and reposito-
ries were replaced by special marker words. Remaining
links were replaced with generic web link markers. We
also searched for links without formatting by looking
for words separated by dots, ending with a top level
domain name (e.g. .com, .org, and .edu).

8https://jira.atlassian.com/secure/WikiRendererHelpAction.

jspa?section=all

Figure 5: Steps of the deep learning pipeline we used.
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• We removed the contents of code blocks, and replaced
them with placeholders to allow classifiers to use this
information to identify architectural issues. Moreover,
we replaced noformat blocks that contain program out-
puts, such as tracebacks or the result of SQL queries
with marker words. We used the regular expressions
for detecting tracebacks and logging output mentioned
before to check the content of the code and noformat
blocks. We replaced the blocks with special markers
when we encountered logging output or exceptions. If
not, the blocks were replaced with generic code block
and noformat block markers. We also experimented
with keeping the content of the blocks (but replacing
class and package names with markers), but this did
not result in any major difference in classification per-
formance.

• We removed version numbers (e.g. 2.7.0, 3.6.x) from
the text and replaced these with markers.

• We removed file size indicators (e.g. 1.2MB, 1.5GB),
float literals (e.g. 100.0f), and Amazon instance type
names (e.g. c4.large) from the text.

• We removed source code within textual con-
tent, these come in between brackets {{ }} (e.g.
{{System.currentTimeMillis() + ttl(20 years)

> Integer.MAX VALUE}}). However, we replaced the
names of methods, classes, and components with
special markers, using the regular expression
[a-zA-Z.\.:#]+(\(.*\))?, because developers use
class names to refer to architectural components
[12]. This regular expression was designed to account
for classes and method names containing ., # (e.g.
SnapshotManager#createSnapshot), and : (e.g.
ColumnFamilyStore::getSSTables), and possibly
followed by brackets. Such names were replaced
with marker words indicating the presence of a class,
method, or package. We tested for class names by
testing for UpperCamelCase. We tested for meth-
ods/fields by testing for lowerCamelCase. We tested
for packages by checking whether the string we found
was a substring of any known Hadoop, Cassandra, or
Java standard library package. If no checks succeeded,
we classified the string as method/field.

We also searched for class or component names not lo-
cated within inline formatting tags. We search for such
class names in two different ways. First, we searched
for words combined together with dots. These could
be potential class names, prefixed by their location or
package. We excluded a number of different construct
from the result of this search. We tried to detect file
names by looking whether the part after the last dot
was a file extension. We also included a list of common
abbreviations to ignore. We also removed version num-
bers. The previous removal of version numbers, file size
indicators, float literals, Amazon instance type names

and missed web links also helped in eliminating false
matches. The second way we searched was by looking
for words spelled in lowerCamelCase or UpperCamel-
Case. The results of this second search were manually
examined to come up with a list of technologies and
abbreviations to exclude. Next, we classified the re-
maining search results as either a class, method/field,
or package names, as described earlier.

• We removed formatting tags (e.g. {panel}, {nopanel},
hn., bq., *strong*), but kept the textual content in
between formatting tags to allow classifiers to use their
textual contents for classifications. Moreover, we re-
moved images. We also did not remove -delete- for-
matting, because we found that removing this also re-
moved other information between - symbols.

• We removed list markup. Lists are lines starting with
-, #, or *. Additionally, we removed manually formed
numbered lists which use the 1) or 1. format. We
removed the list syntax, but kept the actual text.

• We removed file paths without any additional format-
ting, and replaced them with markers. Here, file paths
were detected by looking for words combined using /

symbols, optionally starting with one. Optionally, the
first symbol can be a dot, to account for relative paths.
We discarded items where the part after the last slash
was a number, because this was most likely not an ac-
tual file path. An example of this is /10, which is most
likely not a file but does follow the format.

We also tried to detect and extract class and method
names in the text without a package name. We did
this by testing for words written in UpperCamelCase
and lowerCamelCase. The results of this search were
inspected manually, and we created a list of technologies
and abbreviations which should not be classified as class
names. The remaining UpperCamelCase names were
replaced with a class marker, and the lowerCamelCase
names were replaced with a method/field marker.

• We removed numbers and punctuation from the sen-
tences. The main purpose of this was that we found
that this resulted in better results when using NLTK’s
tokenize sent function to split the text into sentences.

Second, we processed the textual content of issue descrip-
tions and summaries after cleanup. We concatenated the
textual content of the summary and description similar to
Bhat et al. ([1]), and converted all words to lowercase.
Then, we removed stop words using the list of English stop
words from NLTK. Next, we used lemmatization in combina-
tion with part of speech analysis to eliminate inflected form
of words. Finally, we limited the number of words from an
issue summary and description to 400 words, because most
issues do not exceed 400 words in their issue description (see
figure 6). Limiting the number of words is required, because
few issues have large descriptions that would enforce large
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Regex:
\s*at [$#]?\w+([\.$#]\w+)*\(.*\)\s*

Example Target Text:
at org.apache.hadoop.ipc.Client.call(Client.java:1337)

Regex:
\s*Caused by: \w+(\.\w+)*: .*\s*

Caused by: java.nio.channels.ClosedByInterruptException: null

Regex:
\s*(\w+\.)*\w+(Error|Exception)(: (\w+\.)*\w+(Error|Exception))*\s*

Example Target Text:
org.apache.cassandra.io.FSReadError: java.nio.channels.ClosedByInterruptException

Regex:
\s*\d\d/\d\d/\d\d \d\d:\d\d:\d\d (DEBUG|INFO|WARNING|WARN|ERROR|CRITICAL|SEVERE) .*\s

Example Target Text:
07/05/20 20:45:38 INFO mapred.JobClient: Running job: job_0029

Regex:
\s*\[(DEBUG|INFO|WARNING|WARN|ERROR|CRITICAL|SEVERE)\] .*\s*

Example Target Text:
[INFO] +- org.apache.cassandra:cassandra-all:jar:4.0-alpha3:provided

Regex:
\s*\d\d\d\d-\d\d-\d\d \d\d:\d\d:\d\d,\d\d\d (DEBUG|INFO|WARNING|WARN|ERROR|CRITICAL|SEVERE) .*\s*

Example Target Text:
2015-09-13 15:59:57,884 ERROR org.mortbay.log: Error for /query_exec

Regex:
\s*(DEBUG|INFO|WARNING|WARN|ERROR|CRITICAL|SEVERE) .*? \d\d\d\d-\d\d-\d\d \d\d:\d\d:\d\d,\d\d\d .*\s*

Example Target Text:
ERROR [main] 2016-07-20 15:34:50,176 CassandraDaemon.java:698 - Exception encountered during startup

Regex:
\s*[A-Z][a-z]{,3} \d\d?, \d\d\d\d \d\d?:\d\d?:\d\d? (AM|PM) .*?\s*

Example Target Text:
Apr 3, 2013 7:46:12 AM com.google.inject.servlet.GuiceFilter setPipeline

Regex:
\s*(DEBUG|INFO|WARNING|WARN|ERROR|CRITICAL|SEVERE): .*\s*

Example Target Text:
INFO: Initiating Jersey application, version ’Jersey: 1.8 06/24/2011 12:17 PM’

Regex:
\s*(DEBUG|INFO|WARNING|ERROR|CRITICAL|SEVERE) - .*\s*

Example Target Text:
ERROR - Error in ThreadPoolExecutor

Table 5: Overview of the regular expressions used to capture logging output and exceptions in the text of issues.
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Figure 6: The number of words in the description of the
issues.

feature vectors with negative impact on the classifiers and
less benefit on the accuracy of classification.

7.1.1 Ontology Classes

As an additional possible step before generating feature vec-
tors, we included a possibility to simplify the text using on-
tology classes. We replaced specific words in the text with
the name of their respective ontology classes. We hoped that
this would possibly lead to patterns which help to improve
the accuracy of the deep learning models. We started out
with the simple ontology classes and lexical triggers from
[13]. We then selected potential candidate words from the
issues in our dataset to add to these classes. We only looked
for candidate words in the issue title and description. We
looked for these words in two different ways. First of all, we
counted how often all words occurred across all issues, and
we included all words for 50 or more occurrences in our list
of potential candidates. We also used a modified version of
TF/IDF. We took the word counts from the previous step,
and we multiplied this with the IDF of every word. We in-
cluded all words with a score of 200 of greater in our list
of candidates. The two authors determined independently
which words should be added to the existing classes. For
cases where agreement could not be reached, the primary
supervisor made the final decision. Lists of the ontology
classes and lexical triggers, as well as some example entries,
are given in tables 6 and 7.

7.1.2 Part-of-Speech Tagging

One optional pre-processing step we added is part-of-speech
(POS) tagging. When doing this, we obtain the parts of
speech for the words in the text using NLTK (at the moment
that stopwords are still included). Then (after all other pre-
processing steps), we concatenate the words with their POS.
For instance, if “support” has POS tag “verb”, then this
becomes “support verb”. After pre-processing all the words
in this manner, we feed these concatenated words into the
feature generators.

7.2 Generating Feature Vectors

In order to train deep learning models, we need to trans-
form text in issues into representative numerical values. We
experimented with a number of approaches to generate nu-
merical feature vectors from the lists of words in issues. We
will describe these approaches below.

• Bag of words (frequency): This is the same as term
frequency as mentioned in section 6.

• Bag of words (normalized): To consider the different
sizes of the issues, we divide the frequency of a word by
the total number of words in an issue. Thus, the occur-
rences of words have less values in large issues compared
to small issues.

• Bag of words using term frequency inverse document
frequency (TF-IDF): This is the same as TF/IDF as
mentioned in section 6.

• Ontology Features: In stead of counting the occurrences
of all separate words, we also experimented with count-
ing the amount of words from any given ontology class
(see section 7.1.1 - Ontology Classes), and using this as
a feature. For instance, if there are 3 words from the
Technology Decision ontology class, the corresponding
field in feature vector will be 3. In addition to the
ontology classes and lexical triggers, we also included
fields for the amount of occurrences of marker words
we placed while removing the formatting from issues.

• Word2Vec: Bag of words techniques consider each
word separately, independent of its relationship to other
words in the same issue. Word2Vec represents words
as vectors, such that words that are similar also have
similar vectors [7]. We experimented with pre-trained
vectors from Stack Overflow9, which provide vectors
for words that appear in Stack Overflow posts. More-
over, we created our own vectors from issue summaries
and descriptions. To create these vectors, we per-
formed word embedding training on all issues from vari-

9https://github.com/vefstathiou/SO\_word2vec
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Class Name Example Words
Component Ele-
ment Names

classes, endpoints, event, field, fields, files, interface, job, jobs, procedure

Component Names beans, consumer, consumers, context, host, machines, producers, queue, records,
thread

Connector Data
Names

calls, information, lists, map, message, messages, results, socket, structures, updates

Connector Names calling, checking, communication, connect, connectivity, consume, implements, link-
ing, read, sharing

Pattern Names REST, RESTful, blocking, filter, interceptor, remote-procedure, repository, routing,
shadow, structured

Quality Attribute
Names

debuggable, dependable, effectiveness, flexible, integrate, mobility, operability, reli-
able, securability, usable

Technology Names Java, Java JMS, ProtoRPC, codeigniter-2, grails, ironpython, sencha-touch-2, ssrs-
2008, stanford-nlp, xamarin.android

Table 6: The ontology classes, with up to ten example words per class.

ous projects10 using the Word2Vec embedding from the
Gensim library11.

• Doc2Vec: The Doc2Vec model training is similar to
the Word2Vec training [6]. Both approaches train word
vectors based on the context of the words. The main
difference is that with the Doc2Vec training, an addi-
tional document vector is added for the training. This
document vector is essentially a memory vector for the
context of the document. Therefore at the end of the
training, this document vector is a vector that repre-
sents the context of the document and is called the
Doc2Vec vector. For a visual representation of the dif-
ference between Word2Vec and Doc2Vec training, re-
fer to the paper [6]. This paper also contains the de-
tails about the Doc2Vec training. This embedding also
needs to be trained on the various projects10 using the
Doc2Vec embedding from the Gensim library[6]12.

• Properties of issues: In addition to looking at the text
of issues, we also looked at other properties of issues.
We explain the properties we experimented with in the
following section. That section also contains the issue
property model optimization, i.e. what issue properties
yield the best performance.

Determining useful issue properties

For the issue properties deep learning model, we extracted
many issue properties. These properties can be found in
table 8. In order to test how effective each property is for the

10The word2vec and doc2vec embeddings were trained on 16054
Hadoop issues, 17597 Cassandra issues, 2183 Tajo issues, 15821 HDFS
issues, 7070 MapReduce issues, and 10912 Yarn issues. The embed-
dings for the tests with the Bhat dataset also included 39293 Spark
issues. These issues were all issues available for the mentioned projects
on the 4th of July 2022.

11https://radimrehurek.com/gensim/models/word2vec.html
12https://radimrehurek.com/gensim/models/doc2vec.html

detection or classification of issues, we tested each property
individually first. We did this for two models initially: one
model without hidden layers and one model with a hidden
layer of size 16.

The results for the detection task can be found in tables
9 and 10. For both models we see impressive performance
for the issuetype property. We also see that most of the
properties do contain information useful for detecting ar-
chitectural issues. These properties have a f-score above the
random guessing threshold of 0.5757. Furthermore, for most
properties we see a performance improvement when using a
hidden layer. Therefore we expect more improvement when
doing a hyper-parameter optimization for the hidden layer
of this model.

Tables 11 and 12 contain the results for the classification
task. We see bad performance for all properties. Only very
few properties perform above the random guessing f-score
value of 0.2461. Issue properties therefore do not seem to be
suitable for classifying issues. However, we did experiment
with combinations of issue properties to find out if this can
improve the performance.

Determining useful combinations of issue properties

We also tested which combinations of issue properties yield
good performance. Since an exhaustive search for the opti-
mal combination of issue properties is infeasible (due to the
many combinations), we applied another approach. This
approach starts with the best performing individual issue
property. Then each iteration, we will add the next best
issue property to the set and test the performance. We do
this until all issue properties are in the set. Again we did
this for two models. One without a hidden layer and one
with a hidden layer of size 16.

The tables 13 and 14 show the issue detection performance
of the combinations for both models. We start with the
best performing issue property from the previous section
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Class Name Example Words
Alternative alternative, choice, direction, option, solution, tendency, trend, way
Appropriate adequate, appropriate, convenient, convenient, desirable, favorable, proper, suitable, suited
Better better, defeat, exceed, outdo, outgo, outmatch, outperform, outstrip, surmount, surpass
BigNumber all, hundreds, hundreds, lots, many, much, multiple, piles, thousands, tons
Choose choose, favor, go, opt, pick, select, take, use, utilise, utilize
Complex complex, complicated
Constraint constraint, limitation, restraint, restriction
Depend build, count on, depend, implement, rely
Difference compare, difference, dissimilarity, distinction, distinctness
Evaluate appraise, assess, evaluate
Fast efficient, fast, quick, rapid, robust
Forced forced, have to
Good brilliant, cool, fine, good, magnificent, nice, superb, top, well
Hard backbreaking, difficult, effort, hard, laborious, much work, overhead, punishing, tough, un-

manageable
Important critical, crucial, eminent, high, important, significant
Integrate complement, fit, hook, incorporate, integrate, play, run, work
Learn acquire, learn, study, teach
Need ask, demand, desire, hope, like, need, plan, require, want, wish
Problem hurdle, issue, obstacle, problem, snag, trouble
Programming
Activities

acquire, compress, deploy, enable, expand, fix, hardcode, open, set, switch

ProsCons benefit, cons, deficiency, disadvantage, favor, favour, flaw, fragility, prononess, strength
Recommend advice, advise, commend, encourage, favor, motivate, proceed, propose, recommend, suggest
Recommendationguidance, recommendation, suggestion
Requirement condition, criteria, demand, essential, necessary, necessity, request, requirement, requisite,

worry
Search consider, explore, look, research, search, seek
Simple comfortable, easy, effective, flexible, lightweight, painless, productive, simple, uncompli-

cated, unproblematic
Slow heavy, slow, slowly
Stick adhere, avert, avoid, bind, bond, evade, impel, stay, stick
Support allow, offer, provide, supply, support
Versus against, contrary, contrast, counter, differ, opposed, opposing, opposition, versus, vs

Table 7: The classes of lexical triggers, with up to ten example words per class.
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Property Description
n attachments Number of files added as attachment

to the issue
n comments Number of comments left on the is-

sue
len comments Total length of the comments, in

words
n issue links Number of links to other issues
n sub-tasks Number of sub-tasks (child-issues)

this issue has
n votes Number of votes on the issue
n watches Number of people “watching” this

issue
len description Length of the issue description, in

words
len summary Length of the issue summary, in

words
components Components of the software the is-

sue affects
n components Number of components of the issue
labels Labels added to the issue (e.g. “be-

ginner issue”)
n labels Number of labels added to the issue
priority Priority of the issue (e.g. “Major”)
resolution Final resolution of the issue (e.g.

“Unresolved”)
status Current status of the issue (e.g.

“Open”)
issuetype Type of the issue (e.g. “Bug”)
parent Flag indicating whether this issue

has a parent (i.e. this issue is a sub-
task)

Table 8: Potentially useful issue properties.

and each iteration we extend it with the next best perform-
ing properties, hence the naming scheme ‘previous + next
best property ’. For the model without hidden layer we see
a major improvement when combining issuetype with issue
priority. We also still see that issuetype individually per-
forms really good compared to the combinations. A few
combinations achieve 78% f-score, which is quite good but
still worse than the issuetype only and issuetype with prior-
ity.

The results for the classification task can be found in ta-
bles 15 and 16. For the combinations we do see an improve-
ment compared to the individual attribute results. Many of
them score above the random guessing threshold of 0.2461
f-score. However, issue properties still do not seem to be
useful for classifying issues.

Based on both the result of the individual issue properties
and the combinations of issue properties, we selected three
combinations for detection and two combinations for classi-
fication for which we do the hyperparameter optimization.

For detection we selected issuetype for the hyperparam-
eter optimization. This issue property has by far the best
performance for detection on its own and it performs on
par with the best combinations we tested. For detection we
also included the set with issuetype and priority. This set
also had similar performance. We also do a hyperparameter
optimization for a larger set with good performance: (is-
suetype, n issuelinks, n attachments, priority, len summary,
n watches, n components, parent, len description, status,
resolution, components, labels, n labels, n votes).

The classification performance of the individual proper-
ties were as good or worse than random guessing perfor-
mance and therefore we do not perform a hyper-parameter
optimization on these. Combinations of properties were
slightly better and therefore we only did hyperparameter
optimizations for the best combinations of properties of
each model: (n comments, n watches, n issuelinks, com-
ponents, n attachments, issuetype, priority, len description,
len summary, n components, parent, labels, status, res-
olution, n labels, n votes, n subtasks) and (compo-
nents, n issuelinks, issuetype, n watches, n comments,
n attachments, priority).

7.3 Deep learning network architectures

We experiment with three kinds of deep learning models:
Feed forward neural networks (FNN), Convolutional neural
networks (CNN), and Recurrent neural networks (RNN).
We will first briefly elaborate on the high-level architecture
of these networks, then explain how we determined the spe-
cific hyper-parameters in the next section, and finally discuss
how we combined models together in an attempt to obtain
even better models. We implemented the classifiers using
Keras13.

• Feed Forward Neural Network (FNN): Feed forward
neural networks are the simplest neural networks [10].

13https://keras.io/
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Issue Properties Precision Recall F1-score Imp. over
Random

labels 0.7260 0.2873 0.3239 0.54x
n votes 0.7396 0.3505 0.4094 0.68x
parent 0.6708 0.4047 0.4657 0.78x
n subtasks 0.7168 0.5343 0.4804 0.80x
components 0.7216 0.4438 0.5380 0.90x
len summary 0.5284 0.5647 0.5402 0.90x
n labels 0.6660 0.6050 0.5776 0.96x
n attachments 0.6842 0.5843 0.5832 0.97x
status 0.6637 0.5847 0.5845 0.97x
n comments 0.5396 0.7036 0.6001 1.00x
resolution 0.6822 0.7120 0.6184 1.03x
n components 0.6504 0.6336 0.6366 1.06x
len comments 0.6004 0.7706 0.6513 1.08x
len description 0.6624 0.7577 0.6663 1.11x
n watches 0.6929 0.7405 0.6757 1.12x
n issuelinks 0.6559 0.8266 0.7083 1.18x
priority 0.6825 0.7898 0.7263 1.21x
issuetype 0.7653 0.7586 0.7564 1.26x

Table 9: Individual issue property detection performance, for a model without hidden layer

Issue Properties Precision Recall F1-score Imp. over
Random

len comments 0.1968 0.2986 0.2372 0.39x
n comments 0.3911 0.4441 0.3793 0.63x
n subtasks 0.7965 0.3852 0.3863 0.64x
n votes 0.7200 0.4489 0.4690 0.78x
n labels 0.6734 0.4761 0.4820 0.80x
labels 0.7154 0.5363 0.4969 0.83x
components 0.7221 0.3814 0.4985 0.83x
resolution 0.7233 0.5673 0.5231 0.87x
status 0.6633 0.6315 0.5818 0.97x
len description 0.5742 0.7544 0.6299 1.05x
parent 0.6464 0.7736 0.6722 1.12x
n components 0.6567 0.7647 0.6957 1.16x
n watches 0.7038 0.7824 0.7093 1.18x
len summary 0.5912 0.8910 0.7105 1.18x
priority 0.6951 0.7414 0.7126 1.19x
n attachments 0.6661 0.8838 0.7489 1.25x
n issuelinks 0.6785 0.8953 0.7653 1.27x
issuetype 0.7532 0.8455 0.7947 1.32x

Table 10: Individual issue property detection performance, for a model with a hidden layer of size 16

15



Issue Properties Precision Recall F1-score Imp. over
Random

n subtasks 0.1287 0.2519 0.1192 0.48
n votes 0.1329 0.2470 0.1402 0.57
n labels 0.1205 0.2481 0.1426 0.58
len description 0.1724 0.2486 0.1527 0.62
labels 0.2569 0.2575 0.1539 0.63
status 0.1564 0.2354 0.1615 0.66
resolution 0.2255 0.2651 0.1620 0.66
parent 0.1344 0.2624 0.1699 0.69
len summary 0.1635 0.2576 0.1708 0.69
len comments 0.1601 0.2734 0.1770 0.72
n components 0.1734 0.2642 0.1889 0.77
priority 0.2157 0.2470 0.1965 0.80
n attachments 0.1812 0.2849 0.1968 0.80
n comments 0.1639 0.2970 0.1980 0.80
n watches 0.2000 0.3012 0.2051 0.83
issuetype 0.2125 0.2608 0.2151 0.87
n issuelinks 0.2198 0.2949 0.2308 0.94
components 0.2709 0.2731 0.2400 0.98

Table 11: Individual issue property classification performance, for a model without hidden layer

Issue Properties Precision Recall F1-score Imp. over
Random

len comments 0.1210 0.2608 0.1255 0.51
n subtasks 0.1793 0.2602 0.1332 0.54
n votes 0.1666 0.2674 0.1490 0.61
n labels 0.1338 0.2570 0.1543 0.63
resolution 0.2497 0.2603 0.1544 0.63
status 0.1571 0.2391 0.1589 0.65
labels 0.2544 0.2562 0.1621 0.66
parent 0.1280 0.2617 0.1633 0.66
n components 0.1374 0.2436 0.1709 0.69
len summary 0.1425 0.2496 0.1726 0.70
len description 0.1635 0.2583 0.1783 0.72
priority 0.2493 0.2518 0.2052 0.83
issuetype 0.2262 0.2608 0.2209 0.90
n attachments 0.2262 0.2914 0.2281 0.93
components 0.2721 0.2634 0.2424 0.98
n issuelinks 0.2435 0.2928 0.2469 1.00
n watches 0.2383 0.3124 0.2531 1.03
n comments 0.2640 0.3469 0.2677 1.09

Table 12: Individual issue property classification performance, for a model with a hidden layer of size 16
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Issue Properties Precision Recall F1-score Imp. over
Random

issuetype 0.7653 0.7586 0.7564 1.26x
previous + priority 0.7634 0.8315 0.7953 1.32x
previous + n issuelinks 0.7888 0.7484 0.7675 1.28x
previous + n watches 0.7612 0.7401 0.7444 1.24x
previous + len description 0.7838 0.7266 0.7482 1.25x
previous + len comments 0.8112 0.6401 0.6839 1.14x
previous + n components 0.6697 0.6229 0.6012 1.00x
previous + resolution 0.7727 0.7247 0.7347 1.22x
previous + n comments 0.7537 0.7726 0.7417 1.23x
previous + status 0.7590 0.7598 0.7411 1.23x
previous + n attachments 0.6712 0.6507 0.6463 1.08x
previous + n labels 0.7807 0.7493 0.7440 1.24x
previous + len summary 0.7504 0.7767 0.7412 1.23x
previous + components 0.8169 0.7277 0.7626 1.27x
previous + n subtasks 0.7990 0.7072 0.7430 1.24x
previous + parent 0.8008 0.7098 0.7457 1.24x
previous + n votes 0.8182 0.6806 0.7429 1.24x
previous + labels 0.7997 0.7221 0.7518 1.25x

Table 13: Combinations of issue properties detection performance, for a model without hidden layer

Issue Properties Precision Recall F1-score Imp. over
Random

issuetype 0.7532 0.8455 0.7947 1.32x
previous + n issuelinks 0.7745 0.7624 0.7673 1.28x
previous + n attachments 0.7712 0.7771 0.7723 1.29x
previous + priority 0.7651 0.8035 0.7809 1.30x
previous + len summary 0.7606 0.7996 0.7780 1.29x
previous + n watches 0.7675 0.7840 0.7745 1.29x
previous + n components 0.7650 0.7994 0.7808 1.30x
previous + parent 0.7740 0.7896 0.7813 1.30x
previous + len description 0.7850 0.7854 0.7831 1.30x
previous + status 0.7972 0.7232 0.7578 1.26x
previous + resolution 0.7957 0.7394 0.7648 1.27x
previous + components 0.7989 0.7457 0.7706 1.28x
previous + labels 0.8120 0.7470 0.7775 1.29x
previous + n labels 0.8055 0.7562 0.7791 1.30x
previous + n votes 0.8068 0.7581 0.7813 1.30x
previous + n subtasks 0.8110 0.7471 0.7772 1.29x
previous + n comments 0.8023 0.7547 0.7770 1.29x
previous + len comments 0.8447 0.4071 0.4649 0.77x

Table 14: Combinations of issue properties detection performance, for a model with a hidden layer of size 16
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Issue Properties Precision Recall F1-score Imp. over
Random

n components 0.1734 0.2642 0.1889 0.77
previous + n issuelinks 0.2796 0.2894 0.2660 1.08
previous + issuetype 0.2998 0.2949 0.2922 1.19
previous + n watches 0.3281 0.3246 0.3168 1.29
previous + n comments 0.3030 0.3138 0.2956 1.20
previous + n attachments 0.3134 0.3221 0.3057 1.24
previous + priority 0.3227 0.3267 0.3185 1.29
previous + n components 0.3120 0.3178 0.3076 1.25
previous + len comments 0.3257 0.3193 0.3011 1.22
previous + len summary 0.2954 0.2949 0.2683 1.09
previous + parent 0.3152 0.3181 0.2794 1.14
previous + resolution 0.3188 0.3129 0.2918 1.19
previous + status 0.3173 0.3184 0.2913 1.18
previous + labels 0.3124 0.3036 0.2576 1.05
previous + len description 0.2667 0.2950 0.2450 1.00
previous + n labels 0.2535 0.2859 0.2176 0.88
previous + n votes 0.2341 0.2724 0.2004 0.81
previous + n subtasks 0.2946 0.3319 0.2787 1.13

Table 15: Combinations of issue properties classification performance, for a model without hidden layer

Issue Properties Precision Recall F1-score Imp. over
Random

n comments 0.2640 0.3469 0.2677 1.09
previous + n watches 0.2403 0.3319 0.2583 1.05
previous + n issuelinks 0.3344 0.3475 0.3032 1.23
previous + components 0.3056 0.3286 0.3044 1.24
previous + n attachments 0.3128 0.3163 0.3056 1.24
previous + issuetype 0.3281 0.3363 0.3235 1.31
previous + priority 0.3169 0.3144 0.3083 1.25
previous + len description 0.3065 0.3136 0.3023 1.23
previous + len summary 0.3274 0.3324 0.3232 1.31
previous + n components 0.3100 0.3205 0.3080 1.25
previous + parent 0.3227 0.3283 0.3199 1.30
previous + labels 0.3335 0.3392 0.3306 1.34
previous + status 0.3286 0.3369 0.3265 1.33
previous + resolution 0.3381 0.3420 0.3352 1.36
previous + n labels 0.3411 0.3417 0.3347 1.36
previous + n votes 0.3395 0.3367 0.3315 1.35
previous + n subtasks 0.3437 0.3432 0.3378 1.37
previous + len comments 0.1975 0.2710 0.1783 0.72

Table 16: Combinations of issue properties classification performance, for a model with a hidden layer of size 16
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Figure 7: Example of a feed forward neural network archi-
tecture. This is not the final architecture we used. The
hyper-parameters in this drawing are small for simplicity.
Our actual architectures can be found in table 17

They consist of a number of layers, where all neurons
in one layer are connected to all neurons in the next
layer. The connections between neurons hold weights
that need to be adjusted through training to improve
the performance for the classification tasks. The first
layer in the FNN accepts the input and the final layer
produces the outputs [10]. An example of a network
with such an architecture is given in figure 7. We will
further explain the exact architectures we used in table
17. For FNNs, we will list what hidden layers we used.

• Convolutional Neural Network (CNN): FNN do not
consider the relationships between words, because each
input word is specified separately. CNNs try to resolve
this problem by performing convolution operations on
closely related words to create different perspectives on
the relationships between words. To achieve this, CNNs
use two different types of layers: convolutions and pool-
ing layers. Convolution layers transform input words
into other dimensions with a focus on a specific num-
ber of related words, while pooling layers condense the
input into smaller vectors to produce a specific result.

The architecture for our CNNs consists of a number of
convolutions operating in parallel, all followed by a max
pooling layer. Next, the outputs of all these pooling
layers are combined in a concatenation layer, followed

by a flattening layer. The concatenation layer combines
the outputs of all incoming layers. The output of every
incoming layer is a tensor, and the concatenation layer
combines these by concatenating them together. At this
point, we have tensors of shape 1×1×n. The flattening
layer gets rid of the additional dimensions, resulting in
a vector of length n. The output of the flattening layer
feeds into the output layer. This type of architecture
is commonly used for text classification and has been
successfully used for other purposes, such as identifying
Self-Admitted Technical Debt (SATD) [9, 7].

In table 17, we explain the exact hyper-parameters we
used for our CNN models. We will give the number
of filters, the amount of parallel convolutions, and the
sizes of the kernels. We will also give the size of the
vectors in the Word2Vec embedding we used.

• Recurrent Neural Network : RNNs can be distinguished
by the fact that they have a form of memory [7]. In
FNNs, the input remains isolated. However, in RNNs,
previous inputs can be taken into account for the cur-
rent input. RNNs are therefore able to cope with se-
quential data, such as time series and also natural text.
Hence, we experimented with RNN on our dataset,
since classifying our data is a form of natural language
processing (NLP). An example network is given in fig-
ure 9. In this network, the RNN part is the bidirectional
layer consisting of so-called LSTM units. Optionally,
the network can have a hidden (dense) layer after the
bidirectional layer.

In table 17, we explain the exact hyper-parameters we
used for our RNN models. We will give the number of
LSTM units in the bidirectional layer, and the layout
of the hidden layers after the bidirectional layer. We
will also give the size of the vectors in the Word2Vec
embedding we used.

We tested different combinations of neural networks and
input encodings. Table 17 lists all combinations we investi-
gated, including a mnemonic used to reference the models
in the remaining part of the paper.

All the networks use the same structure for the outputs.
For detection, we used a simple Boolean as the label. This
means that the output of the network is also given by a layer
with a single neuron. We use a sigmoid activation function
for this neuron, because we want to have the values 0 and 1
as output.

For classification, we used a one-hot encoding. This means
that the label is represented as a tuple of length four, with
one element set to 1. This element determines the class an
issue belongs to. For example, a 1 in the last position means
that an issue is non-architectural, while a 1 in the first po-
sition means that it contains an executive ADD. The neural
network uses four output neurons. Of these neurons, one
must be 1 and the others must be 0. This can be achieved
using an argmax function. However, because neural net-
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Figure 8: Example of a convolutional neural network architecture with two convolutions. This is not the final architecture
we used. The hyper-parameters in this drawing are small for simplicity. Our CNN architecture can be found in table 17.
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Figure 9: Example of a recurrent neural network architecture. This is not the final architecture we used. The hyper-
parameters in this drawing are small for simplicity. Our RNN architecture can be found in table 17
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Model
Name

Input Encoding Model
Type

Architecture Detec-
tion

Architecture Classifi-
cation

BOWFreq Bag of words (fre-
quency)

FNN One hidden layer of size 2 Two hidden layers. The
first one of size 32, the sec-
ond one of size 16.

BOWNorm Bag of words (nor-
malized)

FNN Two hidden layers, both of
size 32.

Two hidden layers. The
first one of size 32, the sec-
ond one of size 16.

TFIDF TF-IDF FNN Two hidden layers. The
first one of size 64, the sec-
ond one of size 2.

Two hidden layers. The
first one of size 256, the
second one of size 128.

Doc2vec Doc2Vec FNN One hidden layer of size
64; Input vectors of length
25

One hidden layer of size
256; Input vectors of
length 100

CNN Word2Vec CNN One convolution with ker-
nel size 75 and 32 filters;
Input vectors of length 25

One convolution with ker-
nel size 50 and 64 filters;
Input vectors of length 10

RNN Word2Vec RNN Bidirectional layer size of
128, followed by dense
layer of size 4; Input vec-
tors of length 25

Bidirectional layer size of
128, no dense layer; Input
vectors of length 300

Issue Prop-
erties

Issue Properties FNN Two hidden layers. The
first one of size 16, the sec-
ond one of size 4.

Two hidden layers. The
first one of size 16, the sec-
ond one of size 8.

Ontology-
Features

Ontology Features FNN Two hidden layers. The
first one of size 128, the
second one of size 16.

Two hidden layers. The
first one of size 64, the sec-
ond one of size 32.

Table 17: Combinations of input encodings and model architectures we tested.
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works require differentiable activation functions, we use the
softmax activation function.

7.3.1 Optimizing Classifiers

One important step in creating the classifiers, is making sure
that their architectures are optimized. This means that we
must optimize the so-called hyper-parameters which dictate
the shape of the network. The way in which we optimize
these hyper-parameters, is by training the neural networks
with different hyper-parameters, evaluating their accuracy,
and picking the hyper-parameters resulting in the best per-
formance.

For FNNs, we optimized the amount of hidden layers and
the size of those layers. We varied between one or two hidden
layers, and with layer sizes 2, 4, 8, 16, 32, 64, 128, 256, 512.
We inspected those results and performed smaller steps if
the results indicated that the larger layers performed better.
We did an exhaustive search of the entire hyper-parameter
space spanned by these values.

For the CNNs, we did not perform an exhaustive search
because of the large amount of possible combinations. In
stead, we first optimized the size of the kernel by testing a
number of models with a single convolution for a number of
kernel sizes, ranging from 1 to 10 and a few larger kernels
with sizes 25, 50, 75, and 100. Once we found a size that
seemed to give good results, we performed an exhaustive
search with combinations of convolutions with kernels close
to the size we found. After optimizing the kernel size, we
optimized the number of filters and the size of the fully con-
nected layer. We tried 2, 4, 8, 16, 32, 64, 128, 256, and 512
for both, with a more find-grained search performed when
appropriate. For this part, we did perform an exhaustive
search over all combinations.

RNN models make use of so-called bidirectional layers.
We tried the sizes 1, 2, 4, 8, 16, 32, 64, and 128. Then we
selected the best performing layer size and started experi-
menting with a follow-up dense layer. For this we tried the
sizes 1, 2, 4, 8, 16, 32, 64, 128, 256, and 512. In the end we
selected the combination which gave the best results.

For the models that use either the word2vec or doc2vec
embeddings (see table 17), we also optimized the vector
length. We trained embeddings with sizes 5, 10, 25, 50, 100,
200, and 300. The idea behind this is that we have a much
smaller vocabulary than state of the art embeddings such
as Google News14. Therefore it can be sufficient to have a
smaller vector size and thus reduce training time, while still
keeping good performance.

The complete results of this hyper-parameter optimiza-
tion are not presented in this work. In stead, we will only
discuss the final resulting architectures. The results of the
hyper-parameter optimization can be found in section 10.
The final architectures can be found in table 17.

14https://code.google.com/archive/p/word2vec/

7.3.2 Combining Classifiers

In order to further improve the accuracy of our classifiers,
we tried to combine them. We tried various combinations.
Specifically, we looked at combining all the best performing
text models, combining all best performing text models with
issue properties and the ontology features, and we combined
every best performing text model with issue properties and
ontology features separately. We tested every combination
in three different ways: using model concatenation, using
voting, and using stacking.

When concatenating models, we take the basic deep learn-
ing models we want to combine and combine all their out-
puts together in a concatenation layer, which effectively
combines all outputs together into a single vector [7]. This
concatenation layer then feeds into one or more hidden lay-
ers, which feed into the final output layer. When doing
concatenation, all models are thus combined into one single
network [7].

This is different for voting and stacking. For both meth-
ods, the base classifiers are trained independently. For stack-
ing, the outputs of the base classifiers are then combined
into vectors. These vectors are used as the input for a new
neural network (a FNN). In stacking, the classifiers are thus
trained separately, and the final classification is then made
using their outputs by a final meta classifiers [11].

When doing voting, we also train the base classifiers sepa-
rately and take their outputs. However, we do not combine
them using a new classifier. In stead, we classify based on
the labels with the most votes from the base classifiers [11].
Ties are resolved by looking at the highest sum of the pre-
dicted probabilities (un-rounded outputs).

Examples of all these ways of combining classifiers are
given in figure 10.

8 Training and evaluating classifiers

For all classifiers we implemented, both the Bhat and deep
learning classifiers, we used 10-fold cross validation. We split
the issues into 10 equally sized subsets. For every subset,
we conduct a stratified sampling, where we ensure that the
proportions of issues from any project with any label are
the same as in the full dataset. For example, the proportion
of executive issues from the Hadoop project in any fold is
equal to the proportion of executive Hadoop issues in the
full dataset. For the Bhat classifiers, we used 9 folds for
training and 1 for testing. For deep learning, , where we
used 8 folds for training, 1 for validation, and 1 for testing.

In order to test RQ2, we implemented a special variant
of 10-fold cross-validation. We test RQ2 by training on one
dataset (e.g. our dataset) and testing with the other (e.g.
the dataset of Bhat et al.). We split the training set once
again into 10 folds. 9 folds are used for training, and 1 for
validation. The test set remains the same.

Additionally, we also implemented project cross-
validation to answer RQ3. When doing this, one of the
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Figure 10: Schematic representation of (a) a stacking classifier, (b) a classifier obtained by concatenating models, (c) a
majority voting classifier.
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projects (e.g. HADOOP) is taken from the dataset and used
as the test set. The other projects are used to construct
the training and validation sets. For all evaluation methods
mentioned here, we computed the average accuracy over all
training/testing sessions.

8.1 Deep Learning

In order to avoid class-imbalance, we used class weights and
class limits for deep learning. Specifically, we used class
weights for the detection task. Class weights tell the deep
learning algorithm to attach more or less value to samples
from some given class. We computed class weights accord-
ing to equation 2. Here, WL is the weight of class L, SL

the amount of samples with label L, S the total amount of
samples, and C the amount of classes. The S/C term is
there to normalize the loss to the same magnitude as if no
class weights were used.

WL =
1

SL

S

C
(2)

For the classification task, we used class limits. Class
limits specify a limit to the amount of samples from any
given class. We used class limits because we found that
even with class-weights, we obtained models which (almost)
exclusively outputted the existence label, because there are
many more existence issues than any other type. We use
the class limit 237.

The goal of the deep learning algorithm is to minimize the
so-called loss function. This is done by updating the weights
and other trainable parameters in the network. How these
parameters are updated is managed by the optimizer. For
the CNNs, we used the SGD (stochastic gradient descent)
optimizer with a momentum parameter of 0.25, and we used
Hinge loss function. For other models, we used the Adam op-
timizer in combination with cross-entropy. We have decided
on these optimizers and loss functions because they result
in the most stable (non-fluctuating) results during training
compared to other optimizers and loss functions. We let the
models train for a maximum of 1000 epochs, with a possi-
bility to stop earlier if the validation f-score did not improve
any more for 20 epochs in a row. Hence, the validation is
used to determine when the training should stop. We used
a batch size equal to the size of the dataset. The amount of
epochs determines how many times the algorithm will pro-
cess the entire dataset in order to update the weights. The
batch size determines how many samples are processed be-
fore updating the weights. The average of the gradients of
all samples in a batch is used for the update step.

For every epoch, we calculate the accuracy of the classi-
fiers on the test set. Specifically, we calculate the true pos-
itive count, false positive count, true negative count, false
negative count, accuracy (eq. 3), precision (eq. 4), recall
(eq. 5), f-score (eq. 6), training loss, validation loss, loss on
the test set, and the actual predictions. When doing clas-
sification, we also record class-specific precision, recall, and

f-score. When doing classification, we compute the preci-
sion, recall, and f-score as the arithmetic mean of the cor-
responding class-specific metrics. All metrics, except the
training and validation loss, are computed using the test
set. By collecting all these results, we were able to thor-
oughly investigate the training process whenever that was
necessary.

accuracy =
tp+ tn

tp+ tn+ fp+ fn
(3)

precision =
tp

tp+ fp
(4)

recall =
tn

tn+ fp
(5)

f-score =
2 ∗ precision ∗ recall
precision + recall

(6)

8.2 Machine Learning

To avoid effects from class imbalance for the machine learn-
ing task, we followed the approach taken by Bhat et al. They
used class limits [1]. When working with their dataset, we
used the limit 790 for detection. For our own dataset, we
used 750 for detection and 237 for classification.

For the machine learning methods developed by Bhat et
al., we can only record metrics at the end of the training
process. We recorded the accuracy, average F-score, and
class-specific precision, recall, and f-score.

For every test we did with the approach of Bhat et al., we
will list the results corresponding to the test with the best
value of n for the n-grams, together with that value of n.

9 Analyze Important Keywords for
the Deep Learning Models

To answer RQ4, we have to be able to determine what key-
words are important for the deep learning algorithm. This is
difficult to do in general, but this can be done for our CNN
models. In order to do this, we use an approach based on
the work done in [9], with some slight modifications. The
basic idea behind this approach is as follows:

1. We train a CNNmodel. Suppose that the outputs of the
concatenation layer are given by X = (x1, x2, . . . , xn)

T .
Then, the outputs of the final output layer are given by
WX + B, where W is a matrix of learned weights and
B is the bias.

2. We feed input vectors into the CNN model one-by-one,
and we obtain the activation X in the concatenation
layers. One important observation to make is that, due
to the architecture of the neural network, each entry
xi in the vector X corresponds to exactly one filter in
the convolution layer. Now, for each individual xi, we

25



compute the probability p(L | xi) usingW andB. Here,
L is the true label of the vector we gave as input to the
model. When using the softmax activation function,
this probability is given by equation 7, where ℓ is the
number of classes.

P (L | xi) =
exp(wjixi)∑ℓ
k=1 exp(wkixi)

(7)

3. If p(L | xi) > 1/2, then we say that the value xi corre-
sponds to a candidate keyword. We extract the corre-
sponding words by obtaining the activation in the con-
volutional layer corresponding to the value xi. We then
look for the index in the input where the convolution
gave the response xi, and we look up the corresponding
words in the input vector.

We made the following modifications to the original ap-
proach defined in [9]:

• For detection, we use a single output neuron with a
sigmoid activation function, instead of two neurons with
a softmax activation function. Hence, we estimate p(L |
xi) as p(L | xi) = sigmoid(wixi).

• We do not merge the overlapping h-grams into longer
key-phrases. In stead, we collect the h-grams resulting
from the extraction process directly.

We collected keywords for both the detection and classi-
fication tasks. We identified unique and common keywords,
and investigated these.
One important thing to note is that during our hyper-

parameter optimization, we found that very large kernel
sizes result in the best performance. However, such large
kernel sizes result in keywords which occur very infrequently
in the dataset, making them difficult to analyze. This is be-
cause the length of the identified key phrases is equal to the
size of the kernel [9]. In stead, we performed this keyword
extraction with models with kernel sizes 1, 2, and 3. These
models still perform similarly to their optimized counter-
parts, but the resulting keywords are easier to analyze.

10 Hyperparameter Optimization

In this section, we will elaborate on the results of the hyper-
parameter optimization. In general, we will choose the
hyper-parameters that give the best result. The exception
to this rule is when there seems to be a pattern in the data
which the maximum value does not follow. In this case, a
particularly lucky outlier run is more likely.
The hyper-parameter optimization was done with a

slightly older version of the dataset (before the final addition
to the dataset described in section 4). Because of this, the
f-scores presented in this section may be somewhat higher
than those in the remainder of the papar.

10.1 BOW (frequency)

For the BOW frequency model, we optimized the amount of
hidden layers and the size of the hidden layers. The results
for detection can be found in figure 11, and the results for
classification can be found in figure 12.

For detection, there is no clear layer size around we get
consistently good results. We do observe that in general, we
already obtain good results for very small layer sizes. Be-
cause of this, we choose the hyperparameters corresponding
to the maximum: one hidden layer of size 2.

For classification, we observe that most good performing
runs seems to lie around the point (32, 16) (i.e. the first
hidden layer has size 32, the second one size 16). Because
of this, we choose for this architecture. The run with the
model with two layers of size 64 has better performance,
but that result is more of an outlier compared to the model
with the layer of sizes 32 and 16. Hence, we did not use the
(64, 64) model. The (32, 16) model has the added benefit
of being simpler, which is desirable.

10.2 BOW (normalized)

For the BOW Normalized we did a hyper-parameter op-
timization in the same fashion as for the frequency vari-
ant. The results for detection are given in figure 13. We
once again do not see really clear patterns, but the maxi-
mum of (32, 32) does seem to be surrounded by other well-
performing models. As such, we choose to use the model
with two hidden layers of size 32 for detection.

The results for classification are displayed in figure 14.
For this model, we also went for the best performing model,
which is the model with one hidden layer of size 32, followed
by a hidden layer of size 16.

10.3 TF/IDF

The results for the detection hyper-parameter optimization
for TF/IDF can be found in figure 15. We can see that
there seem to be multiple “peeks” where the performance is
good: (2, 1), (32, 16), (64, 2), and (128, 128). The latter
three models are all surrounded by other well-performing
models. We discarded (128, 128) as an option, because the
other two models could achieve similar performance with
simpler models. The choice between the latter two models
was difficult, but we ended up using the model where the
first hidden layer contains 64 neurons and the second one
2. We had two reasons for this: first of all, this model
had slightly better performance than the (32, 16) model.
Additionally, this model can be considered simpler. This
is becaues there are 2 ∗ 64 = 128 connections between the
two hidden layers, while there are 32 ∗ 16 = 512 connections
between the hidden layers for the (32, 16) model.

The results for classification can be found in figure 16. We
can see a clear peak of well-performing models around the
(256, 128) model. Hence, we chose the model with a first
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Figure 11: Results of the hyper-parameter optimization for the BOW frequency model, for the detection task.

Figure 12: Results of the hyper-parameter optimization for the BOW frequency model, for the classification task.
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Figure 13: Results of the hyper-parameter optimization for the BOW normalized model, for the detection task.

Figure 14: Results of the hyper-parameter optimization for the BOW normalized model, for the classification task.
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hidden layer of size 256 and the second layer of size 128 as
the best model.

10.4 Issue Properties

In figures 17 and 18, the results of the hyper-parameter op-
timization for the issue properties model can be found – for
detection and classification, respectively. We did not observe
any clear patterns in the data, so we went for the simplest
high-performing models. This means that for detection, we
chose the model with one hidden layer of size 16, followed
by a hidden layer of size 4.
For classification, we chose the model with hidden layers

of size 16 and 8. We did not choose the model with two
hidden layers of size 256, because this model is considerable
more complicated and offers little to no benefits.

10.5 Ontology Features

In figure 19, we find the results of the detection hyper-
parameter optimization for the ontology features model. Af-
ter we get to a first layer of size 128, there are many well
performing models. We went with the model with a first
hidden layer of size 128, and a second hidden layer of size
16. We chose this model because a) it has the best per-
formance b) models with similar hyper-parameters perform
really well, c) it is one of the simplest well-performing mod-
els.
The results for the classification hyper-parameter opti-

mization can be found in figure 20. For this case, we also
went for the best model: two hidden layers, of size 64 and
32, respectively.

10.6 Doc2Vec

The vector size benchmark for the Doc2Vec detection model
(figure 21) shows that a vector size of 25 has the best per-
formance. Vector sizes smaller than 25 show much worse
performance and vector sizes larger than 25 either show no
benefit or even a decrease in performance. Therefore we
used vector size 25 in the next benchmarks for the Doc2Vec
detection model.
For the hidden layer size benchmark (figure 22) we see

that larger hidden layers tend to perform better than smaller
layers. Also combinations of larger layers show good perfor-
mance. However, we see that single layers perform as well
or better than combinations of layers. Since we should not
make the models unnecessarily complex and because larger
layers and combinations of layers slow down the training of
the model, we opted for the smallest good performing single
layer, which is 64. This layer turns out to have the best per-
formance, but this can also be the result of slight variations
in the results. However, it is clear that a hidden layer of 64
is able to obtain good performance and hence we selected
this size for the Doc2Vec detection model.
The vector size benchmark for the Doc2Vec classifica-

tion model (figure 23) shows that larger vector sizes achieve

higher performance, up till a vector size of 100. Vector size
larger than 100 show a decrease in performance. Therefore
we selected a vector size of 100 for the Doc2Vec classification
model.

For the Doc2Vec classification model we again see that
larger layers have better performance (figure 24). There
are multiple peak performances: (256), (16, 16), (128, 16),
(256, 128), and (512, 64). As the results contain quite some
fluctuations, we selected the simplest good performing layer,
which is a hidden layer size of 256.

10.7 CNN

Figure 25 shows that a vector size of 25 performs better
than smaller vector sizes for the CNN detection model. It
also shows that vector sizes larger than 25 do not seem to
improve upon that result. Therefore we decided to use a
vector size of 25, as this reduces training and testing time
and also reduces memory usage while not decreasing the
performance.

In figure 26 we see that that larger kernel sizes (¿ 9) per-
form better compared to smaller vector sizes (¡ 9) for the
CNN detection model. Do note that these results contain
a bit of variation and therefore it is not clear if there is
an optimal kernel size. However, since we see the gradual
improvement when the kernel size gets larger, we opted for
a kernel size of 75. We also experimented with combining
some of the best kernel sizes, but this did not yield a sub-
stantial improvement.

The results in figure 27 suggests that more filters improve
the performance. Furthermore we see that 8, 16 and 32
filters perform good. When taking both conclusions into
consideration, we opted for a filter size of 32 for the CNN
detection model.

For the CNN classification model we see that all vector
sizes except 5 perform quite well (figure 28). Vector size 10
seems to perform the best, but this could be due to some
variation in the results. Since a vector size of 10 seems to be
sufficient for this task, we opted for this vector size in order
to reduce training and testing time and memory usage while
maintaining good performance.

For the CNN classification model we see that larger kernel
sizes seem to yield better results, with a small exception for
kernel size 2 (figure 29). Since kernel size 75 scores the best
of all, we chose that for the CNN classification model. We
also experimented with multiple kernel sizes, but this did
not improve the performance.

In figure 30 we see a clear optimum for 64 filters. Hence
we chose to use 64 filters for the CNN classification model.

10.8 RNN

The vector size benchmark for the RNN detection model
(figure 31) shows that there is no significant difference in the
performance between the vector sizes. Since a vector size of
25 obtained the best result, we opted for that size. Another
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Figure 15: Results of the hyper-parameter optimization for the TF/IDF model, for the detection task.

Figure 16: Results of the hyper-parameter optimization for the TF/IDF, for the classification task.
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Figure 17: Results of the hyper-parameter optimization for the issue properties model, for the detection task.

Figure 18: Results of the hyper-parameter optimization for the issue properties model, for the classification task.
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Figure 19: Results of the hyper-parameter optimization for the ontology features model, for the detection task.

Figure 20: Results of the hyper-parameter optimization for the ontology features model, for the classification task.
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Figure 21: Doc2Vec detection vector size benchmark

Figure 22: Doc2Vec detection hidden layer size benchmark
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Figure 23: Doc2Vec classification vector size benchmark

Figure 24: Doc2Vec classification hidden layer size benchmark
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Figure 25: CNN detection vector size benchmark

Figure 26: CNN detection kernel size benchmark
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Figure 27: CNN detection number of filters benchmark

Figure 28: CNN classification vector size benchmark
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Figure 29: CNN classification kernel size benchmark

Figure 30: CNN classification number of filters benchmark
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Figure 31: RNN detection vector size benchmark

benefit is that the size is quite small, which reduces training
and testing time and also reduces the memory usage.

Figure 32 shows that with bidirectional layer sizes smaller
than 16 a lot of performance is lost for the RNN detection
model. For larger layer sizes we see a slight improvement
for a layer size of 128. Therefore we opted for 128 for the
RNN detection model.

When we look at an additional hidden layer after the bidi-
rectional layer, we see that there is a slight benefit for small
bidirectional layer sizes (figure 33). A layer size of 4 seems
to be giving the best performance and therefore we chose
this layer size for the RNN detection model.

For the RNN classification model we see more difference
between the different vector sizes (figure 34). Up till vector
size 25 we see much improvement regarding performance.
After this there does not seem to be much performance ben-
efit, except for a vector size of 300. Therefore we opted for
vector size 300.

Increasing the bidirectional layer size up till and including
64 seems to gain performance for the RNN classification
model (figure 35). Larger layer sizes do not seem to be an
improvement. Hence we chose a bidirectional layer of 64 for
the RNN classification model.

For the RNN classification model we see no additional
benefit from a hidden layer after the bidirectional layer (fig-
ure 36). Therefore we chose to abandon this hidden layer
at all. This keeps the model simpler and it also reduces
training time and memory usage.

Set
number

Issue property combination

1 issuetype
2 issuetype, priority
3 issuetype, n issuelinks, n attachments,

priority, len summary, n watches,
n components, parent, len description,
status, resolution, components, labels,
n labels, n votes

Table 18: Selected combinations of issue properties for the
detection task

10.9 Issue properties

In section 7.2 we determined which issue property combina-
tions we wanted to do hyper-parameter optimizations. For
the detection task these are the sets described in table 18.
For these models we optimized a single hidden layer. The
results of this optimization can be found in figures 37, 38,
and 39.

For most combinations we see that the performance in-
creases for larger layer sizes. For set 1 the optimal layer size
was 128, for set 2 it was 16, and for set 3 also 128. In the
end our best result was 0.8082 f-score for set 1 with a hid-
den layer of size 128. We used this set and hidden layer for
answering the detection task questions for RQ1, RQ2, and
RQ3.
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Figure 32: RNN detection bidirectional layer size benchmark

Figure 33: RNN detection hidden layer size benchmark
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Figure 34: RNN classification vector size benchmark

Figure 35: RNN classification bidirectional layer size benchmark
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Figure 36: RNN classification hidden layer size benchmark

Figure 37: Issue properties set 1 hidden layer size benchmark for the detection task
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Figure 38: Issue properties set 2 hidden layer size benchmark for the detection task

Figure 39: Issue properties set 3 hidden layer size benchmark for the detection task
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Set
number

Issue property combination

1 components, n issuelinks, issuetype,
n watches, n comments, n attachments,
priority

2 n comments, n watches, n issuelinks,
components, n attachments, issuetype,
priority, len description, len summary,
n components, parent, labels, status,
resolution, n labels, n votes, n subtasks

Table 19: Selected combinations of issue properties for the
classification task

For the classification task we also determined which com-
binations of properties we would use for the hyper-parameter
optimization. These sets are described in table 19. We again
optimized a single hidden layer for these combinations. Fig-
ures 40 and 41 show the results of these optimizations.
For set 1 we see the best performance with a hidden layer

of size 64. We also see that the performance without a hid-
den layer is quite good. However, the f-score can be slightly
improved by adding this hidden layer of size 64.
We obtained the highest classification f-score of 0.3431

with set 2 using a hidden layer of size 8. Again we see
that the model without a hidden layer already had quite
good performance. However, again we can slightly improve
upon this by adding the hidden layer of size 8. Since this
configuration achieved the highest f-score, we will use this
for answering the classification questions of RQ1 and RQ3.

11 Optimizing Text Pre-Processing
and Features Generation

11.1 Description of Experiments

After optimizing the hyper-parameters, we optimized the
text pre-processing and the feature generation. In this sec-
tion, we first describe what parameters we wanted to opti-
mize, and how we did this. Next, we will present the results
of this optimization.
First, we will give a list of the things we can tweak and

optimize:

1. We can simplify words using either stemming, lemma-
tization, or neither of these two – meaning that we do
not remove inflected forms. (e.g. lemmatization would
change “implementing” to “implement”, but this would
then not be done)

2. We can optionally annotate words in the issue text with
part of speech information.

3. We can apply ontology classes to the text, meaning that
we replace belonging to ontology classes with the class
names. Additionally, we can do this with and without
lexical triggers

4. For the models which make use of word2vec embed-
dings, we can train the embedding either on all issues
from all the projects from which the dataset consists,
of use a pre-trained Stack-Overflow word embedding.

5. We can either remove code and noformat blocks in the
text and replace them with markers, or we can keep
their content (but with class names within the content
still replaced with markers)

These tests are in turn relevant for the following models:

• TFIDF, BOWFreq, BOWNorm, Doc2Vec, CNN, and
RNN are all affected by (1), (2), (3), and (5)

• CNN and RNN are afffected by (4)

• Ontology Features are affected by (5)

• Issue Property features are affected by none

Performing an exhaustive search requires performing more
than 400 different experiments for all possible combina-
tions. This was considered both unpractical and infeasible.
In stead, we performed the experiments in different steps.
Specifically, we performed the following experiments, in or-
der:

1. We tested (1) for all models. For CNN and RNN, we
experimented with both types embeddings (point 4).

2. We tested all combinations of (3) and (5), leading to a
total of 6 experiments per model per task. For CNN
and RNN, we once again experiment with both types
of embeddings (point 4)

3. We tested POS tagging (point 2) with all the text based
models (i.e. TFIDF, BOWFreq, BOWNorm, Doc2Vec,
CNN, and RNN)

11.2 Results

In this section, we describe the results of optimizing the
pre-processing of the text and the feature generation. The
experiments we did in this section were described previously
in section 11.1.

11.2.1 Removing Inflected Forms

We tested the influence of using stemming and lemmatiza-
tion for the removal of inflected forms of words. We also
experiment with using neither of the two and keeping in-
flected forms as-is. The results for the detection task are
shown in table 20. The main conclusion we draw based on
this table, is that there is very little difference between the
different approaches. In fact, for most cases, the difference
is so small that it can be explained by the randomness in-
herent to the deep learning process. Because lemmatization
was consistently among the top performing combinations for
all models, we simply used lemmatization for all models.
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Figure 40: Issue properties set 1 hidden layer size benchmark for the classification task

Figure 41: Issue properties set 2 hidden layer size benchmark for the classification task
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The results for classification are shown in table 21. For
similar reasons, we decided to always go with lemmatization
here.
There is one exception to this rule. The Stack Overflow

embedding (SO) was trained without stemming or lemmati-
zation, so we did not perform any of those either when work-
ing with the Stack Overflow embedding. A surprising result
from table 21 is that RNN SO with lemmatization performs
considerable better than the two other options, which is not
in line with our expectations. However, we still decided not
to use lemmatization because this was consistent with how
the embedding was trained.

11.2.2 Ontology and Formatting

We tested the effect of ontology classes and the handling of
formatting (replacing code and noformat blocks with mark-
ers versus keeping their content). The results for detection
can be found in table 22, and the results for classification
can be found in table 23. We observe that there is very
little difference between the results. However, in general
no ontology classes and the removal of code and noformat
blocks seems to yield (one of) the best results (with the only
noteworthy exception being RNN classification). Hence, we
went with this option. This option also has the benefit of
being the simplest, and being more generalizable. Keeping
formatting may introduce language-specific bias, and ontol-
ogy classes might be incomplete or may have to be updated
for new projects.
A similar thing holds for the ontology features. The best

results seem to be obtained when replacing code and nofor-
mat blocks with markers.

11.2.3 Part of Speech

In tables 24 and 25, we can find the results for testing the
models with part-of-speech tagging. The first table contains
the results for detection, the second one contains the result
for classification. When comparing with the best results
from tables 22 and 23, we see no improvement by adding
this pre-processing step. Hence, we did not use part-of-
speech tagging anymore after this test.

12 RQ1 - Accuracy of machine
learning approaches

12.1 Base Models - Detection

Table 27 shows the results for the detection task on our
dataset. For these results we used the model configurations
described in table 26. In general we see that deep learning
massively outperforms machine learning on our dataset. Us-
ing deep learning we obtained a 9.09% higher f-score than
traditional machine learning. We also have a general note
about the Decision Tree model. This model sometimes pro-
duces only positive predictions or only negative predictions.

This leads to either a very high recall (1.0) or a very low
precision (0.0).

CNN performs best for the detection task on our dataset.
This is closely matched by other models such as BOW (fre-
quency), CNN (SO), RNN, RNN (SO), and TF/IDF. BOW
(normalized) performs a bit worse than BOW (frequency),
but since those models have a very similar word embedding
and use the same model, we recommend using BOW (fre-
quency) instead of BOW (normalized) for this task.

We also see that Doc2Vec has poor performance. On top
of that, training the Doc2Vec embedding requires a lot of
time compared to the other embeddings. Hence we do not
recommend using this model and embedding for detecting
architectural issues.

The ontology feature model performs similarly to the
Doc2Vec model. As it takes much effort to obtain the on-
tology classes, this approach is not worth it.

The issue properties model on the other hand has good
performance. It performs slightly worse than the best text
models, but with 80.82% f-score it is certainly usable. This
indicates that issue properties distinguish architectural is-
sues from non-architectural issues.

We also tested the text models using ontology classes and
lexical triggers. This however did not yield better perfor-
mance, while it took effort to obtain these classes and trig-
gers. Therefore this approach is not worth it.

We also tested the detection performance of the model
on the Bhat dataset (table 28). Whereas we saw a clear
advantage for deep learning on our dataset, the performance
of deep learning and machine learning is similar for the Bhat
dataset.

The best deep learning model is RNN with the Stack
Overflow embedding and for machine learning the best
model is SVM. They are both able to achieve approximately
88% f-score. These models are closely matched by the issue
properties model and logistic regression respectively. Espe-
cially the issue properties model performance is noticeable.
Again we can conclude that issues with certain issue proper-
ties are more likely to be architectural or non-architectural.
Furthermore we also see good performance for the RNN
model with a word embedding trained on issue text and
the naive bayes model.

There are also two models that should not be used for
this task. These are the Doc2Vec and the ontology features
models. These have a major performance loss compared to
the best performing models: 19% and 23% worse f-scores
respectively.

The models we did not mention have a performance loss
in the range of 2%-5% f-score. All these models have decent
performance, but are lacking compared to the best models.

The best performing text model that makes use of the
ontology classes and lexical triggers performs quite bad for
the Bhat dataset. It performs more than 3% worse than
the other CNN models. Hence we do not recommend this
approach for detecting architectural issues.
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Model Sub-Type Precision Recall F1-score Imp. over
Random

BOW
(frequency)

Lemmatization 0.7701 0.8965 0.8273 1.44x

No Transform 0.7590 0.8980 0.8211 1.43x
Stemming 0.7722 0.8463 0.8065 1.40x

BOW
(normalized)

Lemmatization 0.7639 0.8756 0.8155 1.42x

No Transform 0.7475 0.9106 0.8187 1.42x
Stemming 0.7544 0.8916 0.8161 1.42x

CNN Lemmatization 0.7771 0.8993 0.8332 1.45x
No Transform 0.7486 0.9254 0.8250 1.43x
Stemming 0.7411 0.9085 0.8153 1.42x

CNN
(SO)

Lemmatization 0.7482 0.9191 0.8235 1.43x

No Transform 0.7626 0.9049 0.8267 1.44x
Stemming 0.6873 0.9658 0.8021 1.39x

Doc2Vec Lemmatization 0.8374 0.6765 0.7464 1.30x
No Transform 0.8119 0.6695 0.7297 1.27x
Stemming 0.8229 0.6340 0.7128 1.24x

RNN Lemmatization 0.7819 0.8706 0.8183 1.42x
No Transform 0.7938 0.8561 0.8234 1.43x
Stemming 0.7909 0.8554 0.8210 1.43x

RNN
(SO)

Lemmatization 0.7801 0.8853 0.8272 1.44x

No Transform 0.7734 0.8911 0.8272 1.44x
Stemming 0.7538 0.8882 0.8142 1.41x

TF/IDF Lemmatization 0.7636 0.9008 0.8262 1.44x
No Transform 0.7615 0.8973 0.8234 1.43x
Stemming 0.7605 0.9000 0.8235 1.43x

Random 0.6589 0.5115 0.5757

Table 20: Test with lemmatization versus stemming vs neither for the detection task.
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Model Sub-Type Precision Recall F1-Score Imp. over
Random

BOW
(frequency)

Lemmatization 0.5212 0.5142 0.5132 2.09

No Transform 0.5201 0.5166 0.5111 2.08
Stemming 0.5261 0.5157 0.5162 2.10

BOW
(normalized)

Lemmatization 0.5337 0.5228 0.5140 2.09

No Transform 0.5187 0.5033 0.4958 2.01
Stemming 0.5145 0.5075 0.5032 2.04

CNN Lemmatization 0.4840 0.4849 0.4816 1.96
No Transform 0.4844 0.4863 0.4821 1.96
Stemming 0.4663 0.4666 0.4607 1.87

CNN
(SO)

Lemmatization 0.4913 0.4798 0.4705 1.91

No Transform 0.5154 0.5077 0.4933 1.97
Stemming 0.4232 0.4220 0.4035 1.64

Doc2Vec Lemmatization 0.4932 0.4915 0.4892 1.99
No Transform 0.4778 0.4744 0.4692 1.91
Stemming 0.4745 0.4735 0.4682 1.90

RNN Lemmatization 0.5682 0.5693 0.5657 2.30
No Transform 0.5772 0.5728 0.5700 2.32
Stemming 0.5721 0.5703 0.5688 2.31

RNN
(SO)

Lemmatization 0.5800 0.5749 0.5743 2.33

No Transform 0.5419 0.5368 0.5366 2.18
Stemming 0.5087 0.5100 0.5059 2.06

TF/IDF Lemmatization 0.5256 0.5180 0.5004 2.03
No Transform 0.5278 0.5119 0.4950 2.01
Stemming 0.5149 0.5060 0.4944 2.01

Random 0.2605 0.2543 0.2461

Table 21: Test with lemmatization versus stemming vs neither for the classification task. See table 51 in section A for
class-specific metrics.
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Model Sub-Type Precision Recall F1-score Imp. over
Random

BOW
(frequency)

No Ontology, Formatting Markers 0.7701 0.0.8965 0.8273 1.44x

No Ontology, Keep Formatting 0.7617 0.8869 0.8180 1.42x
Ontology w/ Lexical Triggers, Formatting Markers 0.7525 0.9028 0.8192 1.42x
Ontology w/ Lexical Triggers, Keep Formatting 0.7698 0.8714 0.8165 1.42x
Ontology, Formatting Markers 0.7502 0.8880 0.8112 1.41x
Ontology, Keep Formatting 0.7752 0.8791 0.8224 1.43x

BOW
(normalized)

No Ontology, Formatting Markers 0.7639 0.8756 0.8155 1.42x

No Ontology, Keep Formatting 0.7483 0.9014 0.8151 1.42x
Ontology w/ Lexical Triggers, Formatting Markers 0.7284 0.9246 0.8134 1.41x
Ontology w/ Lexical Triggers, Keep Formatting 0.7511 0.8896 0.8133 1.41x
Ontology, Formatting Markers 0.7321 0.9188 0.8126 1.41x
Ontology, Keep Formatting 0.7471 0.9036 0.8155 1.42x

CNN No Ontology, Formatting Markers 0.7771 0.8993 0.8332 1.45x
No Ontology, Keep Formatting 0.7485 0.9030 0.8173 1.42x
Ontology w/ Lexical Triggers, Formatting Markers 0.7573 0.9063 0.8232 1.43x
Ontology w/ Lexical Triggers, Keep Formatting 0.7411 0.9245 0.8214 1.43x
Ontology, Formatting Markers 0.7675 0.8931 0.8245 1.43x
Ontology, Keep Formatting 0.7599 0.9112 0.8272 1.44x

CNN (SO) No Ontology, Formatting Markers 0.7482 0.9191 0.8235 1.43x
No Ontology, Keep Formatting 0.7373 0.9222 0.8174 1.42x
Ontology w/ Lexical Triggers, Formatting Markers 0.7155 0.9267 0.8043 1.40x
Ontology w/ Lexical Triggers, Keep Formatting 0.7244 0.9209 0.8087 1.40x
Ontology, Formatting Markers 0.7342 0.9239 0.8146 1.41x
Ontology, Keep Formatting 0.7658 0.8888 0.8219 1.43x

Doc2Vec No Ontology, Formatting Markers 0.8374 0.6765 0.7464 1.30x
No Ontology, Keep Formatting 0.8123 0.6918 0.7450 1.29x
Ontology w/ Lexical Triggers, Formatting Markers 0.8245 0.6681 0.7347 1.28x
Ontology w/ Lexical Triggers, Keep Formatting 0.8356 0.6547 0.7319 1.27x
Ontology, Formatting Markers 0.8403 0.6569 0.7360 1.28x
Ontology, Keep Formatting 0.8137 0.6506 0.7202 1.25x

RNN No Ontology, Formatting Markers 0.7895 0.8671 0.8211 1.43x
No Ontology, Keep Formatting 0.7917 0.8686 0.8236 1.43x
Ontology w/ Lexical Triggers, Formatting Markers 0.7710 0.8867 0.8188 1.42x
Ontology w/ Lexical Triggers, Keep Formatting 0.7573 0.8910 0.8147 1.42x
Ontology, Formatting Markers 0.7827 0.8435 0.8059 1.40x
Ontology, Keep Formatting 0.7986 0.8469 0.8187 1.42x

RNN (SO) No Ontology, Formatting Markers 0.7801 0.8853 0.8272 1.44x
No Ontology, Keep Formatting 0.7261 0.9210 0.8077 1.40x
Ontology w/ Lexical Triggers, Formatting Markers 0.7480 0.8643 0.7985 1.39x
Ontology w/ Lexical Triggers, Keep Formatting 0.7196 0.9197 0.8041 1.40x
Ontology, Formatting Markers 0.7507 0.8817 0.8086 1.40x
Ontology, Keep Formatting 0.7185 0.9176 0.8025 1.39x

TF/IDF No Ontology, Formatting Markers 0.7636 0.9008 0.8262 1.44x
No Ontology, Keep Formatting 0.7615 0.8784 0.8147 1.42x
Ontology w/ Lexical Triggers, Formatting Markers 0.7462 0.9098 0.8192 1.42x
Ontology w/ Lexical Triggers, Keep Formatting 0.7567 0.9057 0.8231 1.43x
Ontology, Formatting Markers 0.7600 0.8889 0.8189 1.42x
Ontology, Keep Formatting 0.7741 0.8806 0.8228 1.43x

Ontology
Features

Formatting Markers 0.7585 0.7156 0.7310 1.27x

Keep Formatting 0.7616 0.6623 0.7048 1.22x
Random 0.6589 0.5115 0.5757

Table 22: Results of testing the effects of ontology classes and formatting handling, for the detection task.
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Model Sub-Type Precision Recall F1-Score Imp. over
Random

BOW
(frequency)

No Ontology, Formatting Markers 0.5389 0.5297 0.5292 2.15

No Ontology, Keep Formatting 0.5360 0.5278 0.5254 2.13
Ontology w/ Lexical Triggers, Formatting Markers 0.5187 0.5150 0.5099 2.07
Ontology w/ Lexical Triggers, Keep Formatting 0.5121 0.5091 0.5013 2.04
Ontology, Formatting Markers 0.5320 0.5238 0.5192 2.11
Ontology, Keep Formatting 0.5098 0.5019 0.4983 2.02

BOW
(normalized)

No Ontology, Formatting Markers 0.5337 0.5228 0.5140 2.09

No Ontology, Keep Formatting 0.5246 0.5113 0.5048 2.05
Ontology w/ Lexical Triggers, Formatting Markers 0.5003 0.4878 0.4804 1.95
Ontology w/ Lexical Triggers, Keep Formatting 0.4866 0.4779 0.4689 1.91
Ontology, Formatting Markers 0.5194 0.5098 0.5050 2.05
Ontology, Keep Formatting 0.5008 0.4939 0.4850 1.97

CNN No Ontology, Formatting Markers 0.4840 0.4849 0.4816 1.96
No Ontology, Keep Formatting 0.4847 0.4868 0.4811 1.95
Ontology w/ Lexical Triggers, Formatting Markers 0.4780 0.4765 0.4735 1.92
Ontology w/ Lexical Triggers, Keep Formatting 0.4650 0.4684 0.4621 1.88
Ontology, Formatting Markers 0.4811 0.4820 0.4774 1.94
Ontology, Keep Formatting 0.4772 0.4798 0.4738 1.93

CNN (SO) No Ontology, Formatting Markers 0.5154 0.5077 0.4933 2.00
No Ontology, Keep Formatting 0.5016 0.4882 0.4774 1.94
Ontology w/ Lexical Triggers, Formatting Markers 0.4802 0.4667 0.4609 1.87
Ontology w/ Lexical Triggers, Keep Formatting 0.4698 0.4516 0.4447 1.81
Ontology, Formatting Markers 0.4855 0.4753 0.4661 1.89
Ontology, Keep Formatting 0.4907 0.4762 0.4669 1.90

Doc2Vec No Ontology, Formatting Markers 0.4932 0.4915 0.4892 1.99
No Ontology, Keep Formatting 0.4795 0.4761 0.4729 1.92
Ontology w/ Lexical Triggers, Formatting Markers 0.4751 0.4729 0.4693 1.91
Ontology w/ Lexical Triggers, Keep Formatting 0.4655 0.4601 0.4585 1.86
Ontology, Formatting Markers 0.4778 0.4682 0.4668 1.90
Ontology, Keep Formatting 0.4591 0.4580 0.4545 1.85

RNN No Ontology, Formatting Markers 0.5682 0.5693 0.5657 2.30
No Ontology, Keep Formatting 0.5482 0.5424 0.5420 2.20
Ontology w/ Lexical Triggers, Formatting Markers 0.5757 0.5716 0.5688 2.31
Ontology w/ Lexical Triggers, Keep Formatting 0.5837 0.5784 0.5772 2.35
Ontology, Formatting Markers 0.5585 0.5562 0.5528 2.25
Ontology, Keep Formatting 0.5423 0.5391 0.5360 2.15

RNN (SO) No Ontology, Formatting Markers 0.5800 0.5749 0.5743 2.33
No Ontology, Keep Formatting 0.5823 0.5793 0.5754 2.34
Ontology w/ Lexical Triggers, Formatting Markers 0.5060 0.5057 0.5019 2.04
Ontology w/ Lexical Triggers, Keep Formatting 0.5077 0.5036 0.4988 2.03
Ontology, Formatting Markers 0.5190 0.5171 0.5139 2.09
Ontology, Keep Formatting 0.5171 0.5172 0.5133 2.09

TF/IDF No Ontology, Formatting Markers 0.5256 0.5180 0.5004 2.03
No Ontology, Keep Formatting 0.5070 0.5024 0.4856 1.97
Ontology w/ Lexical Triggers, Formatting Markers 0.4877 0.4796 0.4669 1.90
Ontology w/ Lexical Triggers, Keep Formatting 0.4689 0.4635 0.4522 1.84
Ontology, Formatting Markers 0.5013 0.4941 0.4785 1.94
Ontology, Keep Formatting 0.4908 0.4830 0.4687 1.90

Ontology
Features

Formatting Markers 0.4289 0.4256 0.4132 1.68

Keep Formatting 0.4133 0.4130 0.3994 1.62
Random 0.2737 0.2749 0.2713

Table 23: Results of testing the effects of ontology classes and formatting handling, for the classification task. See table
52 in section A for class-specific metrics.
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Model Sub-Type Precision Recall F1-score Imp. over
Random

BOW
(frequency)

0.7701 0.9008 0.8286 1.44x

BOW
(normalized)

0.7452 0.9161 0.8197 1.42x

CNN 0.6567 1.0000 0.7928 1.38x
Doc2Vec 0.6581 0.9723 0.7842 1.36x
RNN 0.6567 1.0000 0.7928 1.38x
TF/IDF 0.7598 0.8944 0.8212 1.43x

Table 24: Results of part-of-speech tagging for the detection task.

Model Sub-Type Precision Recall F1-Score Imp. over
Random

BOW
(frequency)

0.5300 0.5294 0.5249 2.13

BOW
(normalized)

0.5397 0.5189 0.5115 2.08

CNN 0.4711 0.4706 0.4674 1.90
Doc2Vec 0.4797 0.4760 0.4722 1.92
RNN 0.5535 0.5496 0.5473 2.22
TF/IDF 0.5178 0.5057 0.4883 1.98

Table 25: Results of part-of-speech tagging for the classification task. See table 53 in section A for class-specific metrics.

Model Configuration
BOW (frequency) One hidden layer with size 2; adam optimizer; crossentropy loss; lemmatization;

no ontology; formatting markers
BOW (normalized) Two hidden layers with sizes 32 and 32; adam optimizer; crossentropy loss;

lemmatization; no ontology; formatting markers
CNN One convolution with size 75 and 32 filters; Word2Vec vector size of 25; sgd

(momentum=0.25) optimizer; hinge loss; lemmatization; no ontology; format-
ting markers

CNN SO One convolution with size 75 and 32 filters; Word2Vec vector size of 200; sgd
(momentum=0.25) optimizer; hinge loss; no lemmatization, no stemming; no
ontology; formatting markers

Doc2Vec One hidden layer with size 64; sgd (momentum=0.25) optimizer; hinge loss;
lemmatization; no ontology; formatting markers

RNN One bidirectional layer with size 64, followed by a hidden layer with size
4; Word2Vec vector size of 25; sgd (momentum=0.25) optimizer; hinge loss;
lemmatization; no ontology; formatting markers

RNN SO One bidirectional layer with size 64, followed by a hidden layer with size 4;
Word2Vec vector size of 200; sgd (momentum=0.25) optimizer; hinge loss; no
lemmatization, no stemming; no ontology; formatting markers

TF/IDF Two hidden layers with size 64 and 2; adam optimizer; crossentropy loss;
lemmatization; no ontology; formatting markers

Issue Properties One hidden layer with size 1; adam optimizer; crossentropy loss; issue proper-
ties: issuetype

Ontology Features Two hidden layers with sizes 128 and 16; adam optimizer; crossentropy loss;
lemmatization; formatting markers

Table 26: Model configurations used for the detection task
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Model Precision Recall F1-score Imp. over Random
BOW (frequency) 0.7701 0.8965 0.8273 1.44x
BOW (normalized) 0.7639 0.8756 0.8155 1.42x
CNN 0.7771 0.8993 0.8332 1.45x
CNN (SO) 0.7626 0.9049 0.8267 1.44x
Doc2Vec 0.8374 0.6765 0.7464 1.30x
RNN 0.7917 0.8686 0.8236 1.43x
RNN (SO) 0.7734 0.8911 0.8272 1.44x
TF/IDF 0.7636 0.9008 0.8262 1.44x
Issue Properties 0.7504 0.8769 0.8082 1.40x
Ontology Features 0.7585 0.7156 0.7310 1.27x
Best Model (CNN) + Ontology 0.7573 0.9063 0.8232 1.43x

Support Vector Machine (n = 4) 0.7381 0.7480 0.7423 1.29x
Decision Tree (n = 1) 0.5007 1.0000 0.6673 1.16x
Logistic Regression (n = 2) 0.7381 0.7253 0.7310 1.27x
One-vs-Rest (n = 1) 0.6815 0.6640 0.6719 1.17x
Naive Bayes (n = 1) 0.6274 0.9080 0.7420 1.29x

Random 0.6589 0.5115 0.5757

Table 27: Best performing base models for detecting architectural issues on our dataset

Model Precision Recall F1-score Imp. over
Random

BOW (frequency) 0.8168 0.8646 0.8389 1.65x
BOW (normalized) 0.8259 0.8567 0.8387 1.65x
CNN 0.8110 0.8529 0.8298 1.63x
CNN (SO) 0.7976 0.8722 0.8320 1.64x
Doc2Vec 0.4987 0.9519 0.6542 1.29x
Issue Properties 0.8086 0.9675 0.8803 1.73x
Ontology Features 0.5746 0.8724 0.6913 1.36x
RNN 0.8583 0.8788 0.8676 1.71x
RNN (SO) 0.8674 0.9011 0.8832 1.74x
TF/IDF 0.7910 0.8347 0.8104 1.59x
Best Model (CNN) + Ontology 0.7841 0.8150 0.7987 1.57x

Support Vector Machine (n = 4) 0.8668 0.8985 0.8816 1.73x
Decision Tree (n = 1) 0.0000 0.0000 0.0000 0.00x
Logistic Regression (n = 4) 0.8680 0.8841 0.8754 1.72x
One-vs-Rest (n = 2) 0.7962 0.8984 0.8435 1.66x
Naive Bayes (n = 2) 0.8835 0.8347 0.8572 1.69x

Random 0.4903 0.5305 0.5083

Table 28: Best performing base models for detecting architectural issues on the Bhat dataset
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12.2 Combined Models - Detection

We also experimented with combining models using concate-
nation, stacking and voting. We combined most of the base
models with each other, except for the BOW normalized and
the TF/IDF models. The models are very similar to BOW
frequency, since they all use similar features and also a simi-
lar FNN model. However, BOW frequency consistently had
the best performance of the three models. Hence we decided
to not include BOW normalized and TFIDF in the results
(table 29).

The best combined model is BOW frequency, CNN, and
RNN combined using stacking. It achieved an f-score of
83.26%, which is slightly lower than the best performing
base model (83.32% f-score). For this task we also see that
stacking consistently outperforms voting and concatenation.
Furthermore we also see that different combinations produce
very similar results, most model combinations achieve 82%
f-score using stacking.

We also performed a test on the Bhat dataset with the
best performing combined model on our dataset (table 30).
This model has a higher f-score of about 1.5% compared to
the best base model (RNN SO).

Since combining models does not yield much better per-
formance, requires a lot of programming effort, requires a
lot of training time, and requires good hardware for train-
ing, we do not recommend using combinations of models for
detecting architectural issues unless the absolute best per-
formance is needed.

12.3 Base Models - Classification

Table 32 shows the results of the classification task on our
dataset. Compared to the detection task, we see a lot more
variation between the models.

The two best performing models are both RNN models.
The RNN model with the SO embedding achieved 57.43%
f-score, and the RNN model with the embedding trained on
issue texts achieved 56.57% f-score. The next best model is
a machine learning model: SVM. This model achieved an
f-score of 54.96%, which is almost 2.5% worse than the best
deep learning model. Therefore deep learning seems to have
an advantage for classifying architectural issues compared
to machine learning.

Most other models show poor performance, except for
BOW frequency and to some extent BOW normalized. Since
BOW frequency is a much more lightweight model compared
to RNN, this option can be considered as well. Still how-
ever, this model loses almost 5% performance compared to
RNN.

For classification we also tested the text models using on-
tology classes and lexical triggers. This performed slightly
worse than the best model without ontology classes. Since
this approach also does not yield better performance, we
recommend not using these ontology classes and lexical trig-
gers.

12.4 Combined Models - Classification

For classifying issues on our dataset, we also experimented
with combining models (table 33). We again did not in-
clude BOW normalized and TF/IDF in the results for the
same reason as explained earlier. We see that both stack-
ing and voting are able to achieve high f-scores of about
56%. However, all of these models include an RNN model.
Therefore we suspect that this is the main driver of the high
f-score. Besides, the performance is worse compared to the
base RNN models. Hence we see no reason for using combi-
nations of models over the base RNN model for classifying
issues.

13 RQ2 - Cross Dataset Generaliz-
ability

Table 34 contains the results of the cross-dataset perfor-
mance of the different models. For this benchmark, the
models were trained on one dataset and tested on the other
dataset. With this benchmark we can determine how well
the performance translates to different datasets, so we can
gain insight in the generalizability of the different models.

The best model is TF/IDF. It achieves 88.69% f-score
when training on our dataset and testing on the Bhat
dataset and it achieves 86.60% when training on the Bhat
dataset and testing on our dataset. Other well performing
models are the other BOW models (frequency and normal-
ized), both RNN models, and both CNN models. We also
see good performance for the issue properties model, which
indicates that for both datasets similar issue property values
determine whether an issue is architectural or not.

Also for this test we see poor performance for the Doc2Vec
and ontology features models. These two models are mas-
sively outperformed by the previously mentioned models and
therefore we do not recommend using these for detecting ar-
chitectural issues.

Similar conclusions can be made for the machine learning
models. The best machine learning models perform slightly
better than the worst deep learning model. This indicates
that the performance of machine learning does not translate
well to other dataset. Some of the deep learning models on
the other hand are able to do this very effectively.

14 RQ3 - Cross Project Generaliz-
ability

14.1 Detection

In table 35 the results are shown for the cross-project de-
tection performance for the different models. With these
results we gain insight how well the architectural issue de-
tection performance translates to other projects. To do this,
we tested on a single project and trained on all the other
projects in the dataset. By doing this for every project and
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Model Sub-Type Precision Recall F1-score Imp. over
Random

BOW (frequency) + CNN + RNN Concatenation 0.7731 0.8793 0.8192 1.42x
Stacking 0.7661 0.9155 0.8326 1.45x
Voting 0.7994 0.8448 0.8211 1.43x

BOW (frequency) + CNN + RNN + Issue
Properties + Ontology Features

Concatenation 0.7563 0.8680 0.8034 1.40x

Stacking 0.7522 0.9329 0.8323 1.45x
Voting 0.8235 0.8323 0.8276 1.44x

BOW (frequency) + Issue Properties Concatenation 0.7722 0.8033 0.7833 1.36x
Stacking 0.7138 0.9268 0.8043 1.40x
Voting 0.8495 0.6109 0.7101 1.23x

BOW (frequency) + Issue Properties + On-
tology Features

Concatenation 0.7523 0.8670 0.8008 1.39x

Stacking 0.7330 0.9204 0.8148 1.42x
Voting 0.8157 0.7617 0.7873 1.37x

BOW (frequency) + Ontology Features Concatenation 0.7230 0.8784 0.7875 1.37x
Stacking 0.7120 0.9356 0.8076 1.40x
Voting 0.8518 0.4501 0.5885 1.02x

CNN + Issue Properties Concatenation 0.6914 0.8301 0.7406 1.29x
Stacking 0.7573 0.9029 0.8225 1.43x
Voting 0.8565 0.6605 0.7457 1.30x

CNN + Issue Properties + Ontology Features Concatenation 0.7176 0.8889 0.7855 1.36x
Stacking 0.7561 0.9203 0.8294 1.44x
Voting 0.8169 0.7680 0.7915 1.37x

CNN + Ontology Features Concatenation 0.6878 0.9070 0.7787 1.35x
Stacking 0.7530 0.9049 0.8206 1.43x
Voting 0.8407 0.4855 0.6145 1.07x

Issue Properties + Ontology Features Concatenation 0.7014 0.8426 0.7605 1.32x
Stacking 0.7400 0.9239 0.8210 1.43x
Voting 0.8552 0.4619 0.5991 1.04x

RNN + Issue Properties Concatenation 0.7261 0.9162 0.8067 1.40x
Stacking 0.7775 0.8883 0.8276 1.44x
Voting 0.8713 0.6528 0.7456 1.30x

RNN + Issue Properties + Ontology Features Concatenation 0.7588 0.8379 0.7924 1.38x
Stacking 0.7691 0.9063 0.8295 1.44x
Voting 0.8303 0.7541 0.7890 1.37x

RNN + Ontology Features Concatenation 0.7490 0.8773 0.8027 1.39x
Stacking 0.7803 0.8868 0.8280 1.44x
Voting 0.8627 0.4759 0.6123 1.06x

Random 0.6589 0.5115 0.5757

Table 29: Combined models for detecting architectural issues on our dataset

Model Sub-Type Precision Recall F1-score Imp. over
Random

BOW (frequency) + CNN + RNN Stacking 0.8327 0.9793 0.8998 1.77x

Random 0.4903 0.5305 0.5083

Table 30: Combined models for detecting architectural issues on the Bhat dataset

53



Model Configuration
BOW (frequency) Two hidden layers with sizes 64 and 64; adam optimizer; crossentropy loss;

lemmatization; no ontology; formatting markers
BOW (normalized) Two hidden layers with sizes 32 and 16; adam optimizer; crossentropy loss;

lemmatization; no ontology; formatting markers
CNN One convolution with size 50 and 64 filters; Word2Vec vector size of 10; sgd

(momentum=0.25) optimizer; hinge loss; lemmatization; no ontology; format-
ting markers

CNN SO One convolution with size 50 and 64 filters; Word2Vec vector size of 200; sgd
(momentum=0.25) optimizer; hinge loss; no lemmatization, no stemming; no
ontology; formatting markers

Doc2Vec One hidden layer with size 256; sgd (momentum=0.25) optimizer; hinge loss;
lemmatization; no ontology; formatting markers

RNN One bidirectional layer with size 128; Word2Vec vector size of 300; sgd (mo-
mentum=0.25) optimizer; hinge loss; lemmatization; no ontology; formatting
markers

RNN SO One bidirectional layer with size 128; Word2Vec vector size of 200; sgd (momen-
tum=0.25) optimizer; hinge loss; no lemmatization, no stemming; no ontology;
formatting markers

TF/IDF Two hidden layers with size 256 and 128; adam optimizer; crossentropy loss;
lemmatization; no ontology; formatting markers

Issue Properties One hidden layer with size 8; adam optimizer; crossentropy loss; issue prop-
erties: n comments, n watches, n issuelinks, components, n attachments, is-
suetype, priority, len description, len summary, n components, parent, labels,
status, resolution, n labels, n votes, n subtasks

Ontology Features Two hidden layers with sizes 64 and 32; adam optimizer; crossentropy loss;
lemmatization; formatting markers

Table 31: Model configurations used for the classification task

Model Precision Recall F1-score Imp. over Random
BOW (frequency) 0.5389 0.5297 0.5292 2.15x
BOW (normalized) 0.5337 0.5228 0.5140 2.09x
CNN 0.4840 0.4849 0.4816 1.96x
CNN (SO) 0.5154 0.5077 0.4933 2.00x
Doc2Vec 0.4932 0.4915 0.4892 1.99x
RNN 0.5682 0.5693 0.5657 2.30x
RNN (SO) 0.5800 0.5749 0.5743 2.32x
TF/IDF 0.5256 0.5180 0.5004 2.03x
Issue Properties 0.3529 0.3515 0.3431 1.39x
Ontology Features 0.4289 0.4256 0.4132 1.68x
Best Model (RNN) + Ontology 0.5757 0.5716 0.5688 2.31x

Support Vector Machine (n = 3) 0.5562 0.5525 0.5496 2.23x
Decision Tree (n = 1) 0.0627 0.2500 0.1006 0.41x
One-vs-Rest (n = 1) 0.4334 0.4374 0.4270 1.74x
Naive Bayes (n = 1) 0.5623 0.4982 0.4772 1.98x

Random 0.2605 0.2543 0.2461

Table 32: Best performing base models for classifying architectural issues. See See table 54 in section A for class-specific
metrics.
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Model Sub-Type Precision Recall F1-Score Imp. over
Random

BOW (frequency) + Issue Properties Concatenation 0.4007 0.3961 0.3656 1.49x
Stacking 0.5402 0.5369 0.5332 2.17x
Voting 0.5317 0.5278 0.5268 2.14x

BOW (frequency) + Issue Properties + On-
tology Features

Concatenation 0.3731 0.3707 0.3588 1.46x

Stacking 0.5311 0.5292 0.5258 2.14x
Voting 0.5126 0.5164 0.5087 2.07x

BOW (frequency) + Ontology Features Concatenation 0.3618 0.3612 0.3393 1.38x
Stacking 0.5308 0.5300 0.5266 2.14x
Voting 0.5340 0.5301 0.5274 2.14x

BOW (frequency) + RNN Concatenation 0.3890 0.4161 0.3799 1.54x
Stacking 0.5061 0.4677 0.4560 1.85x
Voting 0.5715 0.5667 0.5659 2.30x

Issue Properties + Ontology Features Concatenation 0.2704 0.3352 0.2731 1.11x
Stacking 0.2429 0.2951 0.2451 1.00x
Voting 0.4526 0.4499 0.4388 1.78x

RNN + Issue Properties Concatenation 0.4125 0.4280 0.4030 1.64x
Stacking 0.5695 0.5661 0.5646 2.29x
Voting 0.5635 0.5595 0.5581 2.27x

RNN + Issue Properties + Ontology Features Concatenation 0.3709 0.3779 0.3679 1.49x
Stacking 0.5557 0.5535 0.5488 2.23x
Voting 0.5390 0.5382 0.5323 2.16x

RNN + Ontology Features Concatenation 0.4134 0.4335 0.4089 1.66x
Stacking 0.5598 0.5570 0.5549 2.25x
Voting 0.5672 0.5612 0.5586 2.27x

Random 0.2605 0.2543 0.2461

Table 33: Combined models for classifying architectural issues. See table 55 in section A for class-specific metrics.
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Model Test Set Precision Recall F1-score
BOW(frequency) Bhat 0.8744 0.8705 0.8724

Our 0.8547 0.8449 0.8498
BOW(normalized) Bhat 0.8634 0.8731 0.8682

Our 0.8490 0.8668 0.8577
CNN Bhat 0.8008 0.9134 0.8526

Our 0.7781 0.9050 0.8345
CNN(SO) Bhat 0.7849 0.9347 0.8518

Our 0.7539 0.9306 0.8290
Doc2Vec Bhat 0.8052 0.6633 0.7271

Our 0.7646 0.7157 0.7348
Issue Properties Bhat 0.7683 0.9265 0.8400

Our 0.7691 0.9228 0.8389
Ontology Features Bhat 0.7481 0.6124 0.6717

Our 0.7239 0.6587 0.6785
RNN Bhat 0.8143 0.8797 0.8441

Our 0.8135 0.8683 0.8376
RNN(SO) Bhat 0.8337 0.9091 0.8689

Our 0.7983 0.9081 0.8450
TF/IDF Bhat 0.8755 0.8986 0.8869

Our 0.8377 0.8962 0.8660

Support Vector Machine (n = 2) Bhat 0.7974 0.4818 0.6696
Our 0.6360 0.4345 0.7049

Decision Tree (ML) Bhat 0.4948 1.0000 0.3276
Our 0.3433 1.0000 0.1754

Logistic Regression (ML) Bhat 0.5109 0.6393 0.5118
Our 0.7122 0.3275 0.6897

One-vs-Rest (ML) Bhat 0.6867 0.4766 0.6242
Our 0.5707 0.4639 0.6876

Naive Bayes (ML) Bhat 0.6471 0.8190 0.6844
Our 0.5897 0.5361 0.7092

Table 34: Model performance for detecting architectural issues cross-dataset
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taking the average performance, we obtain the cross-project
score for each model. We did these tests for both datasets.
Again we see unmatched performance for RNN. The em-

bedding trained on issue texts shows the best result, closely
followed by the embedding trained on Stack Overflow posts.
One surprising result is the issue properties model. The

architectural and non-architectural issue properties of the
issues in the Bhat dataset seem to be more distinguishable
than the issue properties of the issues in our dataset. Hence
the performance of this model on the Bhat dataset is much
higher.
We also see strong performance for both CNN models on

both datasets. However, it does lack some performance for
the Bhat dataset compared to the RNN models. We also see
decent performance from the BOW frequency, BOW nor-
malized, and ontology features models, but the performance
is considerably lower compared to RNN. For the Doc2Vec
model we see similar performance for both datasets, but the
results are marginally worse than the ones for CNN and
RNN.
For the machine learning models we see decent perfor-

mance on the Bhat dataset, but poor performance on our
dataset. In the end, the best machine learning model is
outperformed by 3% on the Bhat dataset and 8.5% on our
dataset compared to the best deep learning model. Hence
we recommend using deep learning for this task, as the per-
formance of deep learning translates better to new projects.

14.2 Classification

We performed a similar test for classification on our dataset
(table 36).
For the classification task we see that the best deep learn-

ing model and best machine learning model have similar
performance, about 50% f-score. For deep learning, only
the RNN models obtain this level of performance and for
machine learning only SVM is able to achieve that. The
next best performing models are BOW frequency and BOW
normalized, but they are still lacking approximately 6% f-
score.
After that, we see a group of poorly performing mod-

els, namely CNN, CNN SO, Doc2Vec, ontology features,
TF/IDF, one-vs-rest, and naive bayes. All of these mod-
els are lacking about 10%-12% f-score compared to the best
models. The issue properties model is the worst model, with
only 29.79% f-score and is not really usable for the classifica-
tion task. This indicates that classification between different
projects using issue properties is not an option.

15 RQ4

In this section, we will cover research question 4. We col-
lected the keywords using the approach described in section
9. For every class, we collected keywords in two ways: we
identified the keywords which occurred the most often, and
we identified the keywords which were associated with the

highest probabilities for some class. The amount of issues
we selected per table was determined by 1) making sure that
we included all keywords ≥ the threshold selected, and 2)
making sure the table fits on 1 page.

15.1 Detection Keywords

For detection, the keywords are give tables 37, 38, 39, 40,
and 41. The first two tables contain the keywords indica-
tive of architectural issues, the next two tables those for the
non-architectural label, and the final table contains a list of
common tables. Tables 37 and 39 contain keywords selected
based on frequency (≥ 4 and ≥ 3 occurrences, respectively).
Tables 38 and 40 contain keywords selected based on prob-
ability (≥ 0.7 and ≥ 0.675, respectively). The keywords in
table 41 were selected based on frequency (≥ 15).

In table 37, we can make several observations about the
keywords. First of all, there are many phrases involving the
word “would” (e.g. “would nice”, “would allow”, “would
great”, “would good”, “similar would nice”). Apparently,
such phrases occur often as keyword for architectural issues.
However, we also observe that such phrases do not occur
much in table 38.

Tables 37 and 38 also list a number of quality attributes,
such as “pluggable interface”, “consistency”, “bad latency”,
and “trunk performance performance”. The classifier hence
feels that quality attributes may be important to identify
an architectural issue. Quality attributes, or words closely
related to them, seem to be more common in table 38. these,
we see multiple phrases about latency, performance, and
consistency – but also security, in the form of key phrases
containing the word “security” or “authentication”.

We also observe some key phrases hinting towards the ad-
dition of components or functionality (e.g. “useful feature”
and “need support”). There are also a number of keywords
about dependencies (e.g. “dependency versionnumber”).

Finally, we can also observe that there are a lot of key-
words in tables 37 and 38 that somehow relate to compo-
nents. For instance, there are simple words such as “ui”
and “manager node”, but also more project specific phrases
such as “hdfs client”. Such words seem to be somewhat
more common in tables 37 and 38 than in the tables for
non-architectural keywords (i.e. tables 39 and 40). Those
two tables still contain component names (e.g. “mapreduce
client”), but such phrases seem to be more rare.

One of the main things we noted in tables 39 and 40,
is that the keywords associated with non-architectural is-
sues are strongly associated with software failure, and of-
ten contain method or class names. Table 39 for instance
contains the keywords “formattedtraceback”, “unformatted-
traceback”, and “formattedloggingoutput”. These are all
markers we used where we removed formatting blocks. All
these keywords are related to program output, and, more
noteworthy, program failure (in the form of exceptions).
There are also many longer key phrases in tables 39 and
40 containing these 3 markers. Additionally, table 39 also
contains some other error related keywords such as “find-
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Model Dataset Precision Recall F1-score
BOW(frequency) Bhat 0.7439 0.7254 0.7305

Our 0.7892 0.8041 0.7956
BOW(normalized) Bhat 0.7615 0.7001 0.7293

Our 0.7727 0.8162 0.7935
CNN Bhat 0.7525 0.7950 0.7692

Our 0.7643 0.8671 0.8115
CNN(SO) Bhat 0.7146 0.8451 0.7731

Our 0.7259 0.9178 0.8062
Doc2Vec Bhat 0.7426 0.7902 0.7572

Our 0.8108 0.6938 0.7432
Issue Properties Bhat 0.7944 0.9620 0.8696

Our 0.7647 0.7897 0.7475
Ontology Features Bhat 0.5367 0.7258 0.6155

Our 0.7643 0.6634 0.6972
RNN Bhat 0.8588 0.8096 0.8318

Our 0.7456 0.9087 0.8149
RNN(SO) Bhat 0.8150 0.8060 0.8105

Our 0.7036 0.9520 0.8023
TF/IDF Bhat 0.7256 0.6706 0.6968

Our 0.7654 0.8474 0.8035

Support Vector Machine (n = 2) (ML) Bhat 0.8405 0.7597 0.7961
Support Vector Machine (n = 2) (ML) Our 0.7454 0.6937 0.7094
Decision Tree (n = 1) (ML) Bhat 0.2416 0.5000 0.3258
Decision Tree (n = 3) (ML) Our 0.2157 0.5000 0.3011
Logistic Regression (n = 2) (ML) Bhat 0.8079 0.7620 0.7746
Logistic Regression (n = 3) (ML) Our 0.7046 0.6887 0.6941
One-vs-Rest (n = 2) (ML) Bhat 0.8253 0.6460 0.7234
One-vs-Rest (n = 1) (ML) Our 0.6271 0.6443 0.6339
Naive Bayes (n = 2) (ML) Bhat 0.7801 0.8290 0.8037
Naive Bayes (n = 2) (ML) Our 0.5967 0.9476 0.7293

Table 35: Cross-project performance for detecting architectural issues

Model Precision Recall F1-Score
BOW (frequency) 0.4555 0.4486 0.4463
BOW (normalized) 0.4622 0.4408 0.4319
CNN 0.4332 0.4054 0.3993
CNN (SO) 0.4603 0.4312 0.4073
Doc2Vec 0.4214 0.4222 0.4092
Issue Properties 0.3367 0.3243 0.2979
Ontology Features 0.4070 0.3980 0.3777
RNN 0.5068 0.4967 0.4933
RNN (SO) 0.5241 0.5109 0.5009
TF/IDF 0.4505 0.4247 0.4077

Support Vector Machine (n = 3) (ML) 0.4869 0.4934 0.5066
Decision Tree (n = 4) (ML) 0.0383 0.2500 0.0443
One-vs-Rest (n = 1) (ML) 0.4018 0.4025 0.4084
Naive Bayes (n = 1) (ML) 0.4469 0.4049 0.3866

Table 36: Cross-project performance for classifying architectural issues. See table 56 in section A for class-specific metrics.
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bugs”, “race condition”, “bug structuredcodeblock”, and
“bootstrap error”. Additionally, there are many class name
markers present among the keywords in table 39.
Similarly, table 40 also contains a number of words ex-

pressing software failure. Examples here include “name
cause error”, “state exception”, and “case problem log”.

15.2 Classification Keywords

In this section, we will describe the keywords obtained for
the classification process. For every class, we have a table
constructed using frequencies and a table constructed using
probabilities. Respectively, we have: tables 42 and 43 for
the executive class, tables 44 and 45 for the property class,
tables 46 and 47 for the existence class, and tables 48 and
49 for the non-architectural class. Additionally, table 50
contains a list of common keywords, which were present for
at least two classes.
We start with table 42. There are two types of keywords

which seem quite logical for existence issues. The first type
is keywords containing the word “upgrade” (e.g. “upgrade”,
“upgrade guaba”, “need upgrade”). This seems logical be-
cause updating software or dependencies may have architec-
tural implications. The other type of keyword, is keywords
containing the name of other software or technologies. Ex-
amples include “html”, “http”, “parquet”, “oauth”, “ssl”,
“rfc”, “jna”, and “avro arpc”.
In table 43, such phrases containing software names or the

word “upgrade” are almost non-existent (one note-worth ex-
ample being the phrase “new available”). In stead, there
are other phases related to the use of external software.
For instance, there are many phrases containing the marker
word “versionnumber” (e.g. “versionnumber used exam-
ple”, “available versionnumber”). More common phrases
are phrases implying the use of some other software for some
purpose, or the intend to support some functionality. Ex-
amples of this include “able support”, “authentication via”,
“nfs interface support”, and “driver need functionality”.
We now move to keywords relevant for coming to a prop-

erty classification. Table 44 does not seem to contain many
words related to property issue, aside from a view. One
example is the phrase “improve performance”. There is
also “connection timeout”, which might be related to per-
formance or quality of service. When also looking at table
45, we can see more patterns. Key phrases containing the
word “cache” are really common, possibly because caches
are tightly related to performance. We also see that in both
tables, but especially in 45, we can find words related to
encryption and security (e.g. “encrypt”, “encryption au-
thentication”, “authentication rpc layer”.
Additionally, in table 45, we see phrases relating to qual-

ity attirbutes. Examples of such phrases include “quickly
performance per”, “secure environment design”, “pluggable
security feature”, “efficiency namenode memory”, and “ex-
tremely quickly performance”.
One observation we cannot explain, is that table 45 also

contains many words referring to memory. For instance, we

have the keywords “large memory”, “row memory”, “mem-
ory jvm”, “reasonably large memory”, and “memory re-
quirement support”. This phrase occurred often enough
that we noticed it during our analysis, but we could not
clearly identify why the machine learning model thought
this phrase was important.

We now move to the keywords the classifier deemed in-
dicative of existence decisions, in tables 46 and 47. We had a
bit more difficulty finding keywords obvious keywords point-
ing the existence issues, although we did find some interest-
ing patterns. First of all, in table 46, we noticed a number
of words possibly related to the removal of code or func-
tionality: “remove dependency”, “disable”, and “deleted”.
However, we do not encounter such words in table 47.

We do encounter the word “cluster” many times in table
47 (e.g. “sub cluster federation”, “node large cluster”, and
“user cluster”). One other thing we noticed, is that there
are many words which are based of the word “fail”: “failure
case functional”, “failed specific”, “fails run”, “failure case”,
and “failed run”. It is not clear why these words are appar-
ently so important for coming to an existence classification
– Especially since we established based on tables 39 and
40 that failure is very strongly related to non-architectural
issues. One possible explanation is that fixing issues is some-
how related to existence decisions; there is also a number of
keywords associated with fixing faults in software: “repair
many”, “try address”, “fix find”, and ‘repair many small”.

We now arrive at the final class: Non-Architectural issues.
The relevant tables are 48 and 49. The most important we
once again make is that markers for formatting output (e.g.
“unformattedtraceback”, and words such as “exception”,
‘unable open”, “ticket error”, and “race condition guaran-
tee” are important keywords. We want to contrast this with
the existence class. For the existence class, words derived
from “fail” or “failure” were important, whereas these words
for non-architectural are closer to actual exceptions, or are
actually exceptions.

15.3 Common Keywords

Finally, we look at the common keywords in tables 41 and 50.
We felt that most of these keywords are somewhat generic,
in the sense that they can easily be seen to be related to
coding or version control systems in general. Additionally,
almost all common phrases consist of a single word – this is
the most likely to happen, because in some sense there are
less possible phrases of length 1 than of length > 1. There
also seems to be considerable overlap between the words in
tables 41 and 50.

59



23 order similar would nice
config min share
22 memtable service user
would nice match separate thread
17 manager sense would
discussion linux run command
13 info remote
would allow file system reduce common
list erasure reader
datanodes add simpleclassname proxy user
12 5 protocol rpc
version versionnumber view pluggable interface
11 useful feature please consider
scheduler tool partition key
logic tajo client ohc versionnumber
10 storage format nodetool repair
xml sense need support
web r n
thrift progress multi
page primary memory namenode
introduce ozone mapreduce api
9 mount manager node
unknown make possible management
ui make easy make sense
make sure machine little
line lookup like noformatblock
library long running jvm dtest
history leak jira introduce
format join jdbc jar
8 group information simpleclassname
web ui give index would
wait future increase
row attached hdfs project
placement argument hdfs client
place apis yarn hadoop see
nice analysis hadoop hdfs project
directly alternative family
already 4 expose cql
ability would make sense encryption
7 versionnumber would edits
step versionnumber fixes driver writing
scheduling variable directory path
retry username dependency versionnumber
related use netty datanodes directly
recovery timeline data current version
open ticket make cpu load
http system hdfs consistency
efficient support user connect
edit successfully complexity
6 streaming repair comparators
would great stop client project
would good start simpleclassname bind
transfer standby attached patch
short ssl advantage
serialization simpleclassname table across cluster
rack simpleclassname class

Table 37: Keywords with frequency ≥ 4 for the Architectural class (Detection).
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0.78 - 0.77 hadoop would give tajo hive
log thread http connection production analysis important
0.77 - 0.76 application capacity scheduler version version
consistency latency storage add implementation username
span data compaction partition table mapreduce job execution
0.76 - 0.75 c library info display
method container 0.72 - 0.71 java get problem
src contrib fuse library non issue support log
make sure data want buffer memory add dependency
inlinecodesample cache instance make sure node able send
one page data cpu disk cpu usage
0.75 - 0.74 protocol make priority priority available
handle rm low level data cache thread
support cql process block compaction manual testing junit
return service least job significantly sec fast
run classname test weblink would require sub acl priority
compaction pointer run stream data intensive job cpu
web interface cell hadoop jira significant
rate thread ui filepath run oom heap
0.74 - 0.73 row index underlying container
src githublink ui data log latency data column
ubuntu versionnumber problem deal token quorum read
intel r resource take default service
support c rw mount java memory something
authentication data dfs per node compaction block
see point technology token many security though progress
weblink building linux per disk machine hard run
filepath datacenter sends r x token
current rpc allow native function bit place due
ip per dc http current data web service
fuse rw support latency query select
src data usage classname row hadoop home ant
0.73 - 0.72 storage option consistency behavior
management status sec time hdfs data directory
version security checksum behavior client
level design high driver understand would cause
close transaction log turn container max request useful
state classname tree across k trunk performance performance
plugin technology across thread home able
issue response performance c table min
version library update slf see cassandra allow
buffer write mapreduce network however take consistency active
detail related data module jdbc object method path
available maven 0.71 - 0.70 per queue cluster
protocol via http count column server expected column
make make node make environment variable build
scheduler running enable authentication native versionnumber info
make cql client side encryption state make easy
david r scheduler version separate maven
cluster capacity current compaction result fix analysis
reduce make jdbc driver bad latency
fix compaction compression client interface use version work
example store data capacity throughput big r time coordinator
every message cassandra many good
libhdfs library logging handle block

Table 38: Keywords with probability ≥ 0.7 for the Architectural class (Detection).

61



24 org private
formattedtraceback npe principal
8 metadata simpleclassname preset image
pom mapreduce clover dependency must
7 mapreduce client core length configurable
unformattedtraceback mapreduce client ivy
formattedloggingoutput make compile internal
6 loading auth implementation simpleclassname
compile like simpleclassname handler formattedloggingoutput
5 jvm dtests filepath hadoop
tombstone general weblink fail disk
findbugs filepath unformattedtraceback ed
enum encoding cache descriptor
auth client module db cli
4 cache formattedtraceback column names cql
writes formattedtraceback bug structuredcodeblock colon create
validity simplemethodorvariablename also mapreduce code simpleclassname
title tajo 3 code refactor
system environment would fine clover integration broken
src java without classname clover dependency
simpleclassname v within serializable client core
simpleclassname package stage enum client code
shutdown formattedtraceback specify version classpath
serializable simplemethodorvariablename parent checking
secondary column scan case
recycling design review buffer weblink
rc return udt broken trunk
race condition remove limitation bootstrap error
processing recently attach
prefix methodorvariablename rather add filepath
parent public
output formattedloggingoutput proper package

Table 39: Keywords with frequency ≥ 3 for the Non-Architectural class (Detection).
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0.79 - 0.78 log see prefix mode
src test unchanged kill client linux hadoop may
0.77 - 0.76 core j like stack
name cause error way metric control task
mapred mvn capacity queue b src test
handle service zk running heap rest api result
0.76 - 0.75 hive dependency basis make
src contrib thriftfs sec per cql client require
0.75 - 0.74 page per kb methodorvariablename class-

name proposed
g data methodorvariablename queue b mapred package
run heap ram refine client throw client v
filepath auto standard interface like cluster wide gb
clean maven response response correct version asm
api v future jira storage currently
src core contain per application basis owner request
0.74 - 0.73 simpleclassname task table name cause
handle event node heartbeat many cassandra jvm
python cql state exception simpleclassname write data
artifacts inlinecodesample build see many like size state store
io ipc log hadoop may involve org apache cassandra
org apache 0.70 - 0.69 port gridmix data
usergroupinformation method log cql see arbitrary number principal
0.73 - 0.72 src split distributed cache allow
namespace usage directory link application run
option expose static void b return
lib slf namenode port gridmix gb per node
statement structuredcodeblock result core j affect manner code jira
versionnumber slf driver visible issue see weblink explanation
task cause timeline service store technology
0.72 - 0.71 driver schema methodorvariablename true
replica return methodorvariablename

methodorvariablename throw
tombstone index

data set gb stress versionnumber generator script
common lib result response protocol buffer
client side dfs remove ant lib directory
case reading data project ivy response execute contains
methodorvariablename event complete case problem log response response
mode case insensitive mr code g heap
0.71 - 0.70 queue b sec per application
work yarn forward backward add affect current build
raid jvm 0.69 - 0.675
timed weblink cassandra version

Table 40: Keywords with probability ≥ 0.675 for the Non-Architectural class (Detection).
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148 class long 19
would 41 level userprofilelink
135 user following running
methodorvariablename problem cache run
105 40 26 resource
simpleclassname currently x mechanism
100 38 system local
support protocol separate large
98 patch main githublink
add cluster good failure
96 37 every fail
versionnumber provide 25 bit
95 35 option 18
weblink yarn 24 store
90 per size solution
hadoop default repair property
87 core project path
data 34 native one
76 propose 23 handle
client 33 write call
62 thread type branch
version make structuredcodeblock 17
61 32 range use
simplemethodorvariablename mapreduce method technology
54 error get table
code dependency approach sstables
52 configuration 22 side
time 31 read query
cassandra upgrade new inlinecodesample
50 30 move directory
node way interface 16
column set hdfs technology names
49 server disk stream
jira performance 21 last
implementation package update hard
48 java task cause
issue implement something capacity
create 29 return byte
47 value let us 15
multiple storage compaction without
46 rpc change take
see need c response
block many 20 request
45 let trunk namenode
filepath file tajo message
allow common state maven
44 28 setting latency
classname useful network current
43 start id configurable
number like exception build
name index container access
42 27 connection
remove single api

Table 41: Keywords with frequency ≥ 15 which occur for both the Architectural and Non-Architectural class (Detection).
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54 http java driver
upgrade dev weblink fit hadoop
26 average context
thrift apache license c use
21 7 broken design
c upgrade netty accept oauth
13 upgrade guava 5
html unit html version versionnumber
11 since parquet upgrade guava versionnumber
upgrade thrift netty methodorvariablename support thrift
rfc move maven schemas
10 jna library
lzop dependency filepath java driver versionnumber
9 data join package implementation hdfs
parquet classpath functionality
license boundary version filepath file
8 accept driver
tokens 6 avro rpc
ssl versionnumber structuredcodeblock
oauth trunk branch
mr need upgrade

Table 42: Keywords with frequency ≥ 5 for the Executive class (Classification).
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0.70 - 0.69 side read request versionnumber env however
secure io support package package jackson version
0.69 - 0.68 compile scope dependencies use netty
container heartbeat request partition secondary twitter implement
0.64 - 0.63 release weblink dist connect server certificate
chain client interface 0.52 - 0.51 0.46 - 0.45
use upload design issue problem current probably open new
list access data maven pom bulk loading interface
0.62 - 0.61 0.51 - 0.50 authentication via
inlinecodesample project able support state could make
client server protocol simpleclassname thread per functionality java
0.60 - 0.59 0.50 - 0.49 order useful
classname tajo encryption sse handling maven
index etc server better checksum nfs interface support
0.59 - 0.58 driver need functionality across multiple connection
permit large cluster list partition key eg hadoop
0.58 - 0.57 currently various client simplemethodorvariablename nfs
path dependent configured different following analysis
tie client side jdbc make sql 0.45 - 0.44
0.57 - 0.56 0.49 - 0.48 everyone operation would
classname certificate necessary implement data structure
key counter project compile scope maven pom use
versionnumber branch classname tasks simpleclassname hadoop
config dependency jar hadoop driver java protocol
0.56 - 0.55 fails inlinecodesample track nfs
switch rpc use date time versionnumber currently tajo
0.55 - 0.54 available versionnumber layer data writing
new available protocol particularly http
versionnumber upgrade 0.48 - 0.47
0.54 - 0.53 use open
like use work avoid users
versionnumber used example 0.47 - 0.46
0.53 - 0.52 parquet weblink support
structure structuredcodeblock node methodorvariablename hadoop

Table 43: Keywords with probability ≥ 0.44 for the Executive class (Classification).

15 go length
datanodes cassandra comment key cache
14 7 5
comment us encrypt xml
10 improve performance versionnumber good
old connection timeout thread safe
9 6 take
tmp yarn nm static
8 would make session
usage updates methodorvariablename call
nm solve problem encrypt
native memory page cache coupling
machine logs buffer cache
java implementation less

Table 44: Keywords with frequency ≥ 5 for the Property class (Classification).
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0.76 - 0.75 one configure service would nice
key management instantiation issue track manual refresh command
resource especially resource artifacts many need user service
0.75 - 0.74 0.57 - 0.56 job user
token authentication process high yarn order make
0.73 - 0.72 0.56 - 0.55 first time
token access variable class per second
end network protocol create multi memory jvm
0.70 - 0.69 multiple parallel take time
quickly performance per cache hdfs 0.48 - 0.47
cache improve overall system performance improve namenode
affect network bandwidth 0.55 - 0.54 java fix involves
secure environment design behind processing rest formattedloggingoutput similar
join machine part implementation thread safe directory aware
configuration specify new device high hot much
0.69 - 0.68 order make interface static instance
encryption authentication sstables lot classname 0.47 - 0.46
index lookup cache 0.54 - 0.53 large image
0.67 - 0.66 table time load make environment
authentication rpc layer filepath implement native coupling way
cache load wrong use could find
0.66 - 0.65 config file cache easily
cache different configuration information cassandra cli etc
0.65 - 0.64 java code literal versionnumber faster see
multiple per 0.53 - 0.52 rack may
specific client side like hadoop reporting api external
0.64 - 0.63 like query cache cache wide
java nice way 0.52 - 0.51 make much useful
0.63 - 0.62 java gc set target
heap query large memory large cache
problem scenario list hdfs hadoop yarn log subdirectory
team performance issue like implement edit human
calculation heartbeat allocation 0.51 - 0.50 situation large
pre request model vm allow us reasonably large memory
0.62 - 0.61 row memory notify big
pluggable security feature order make handling integrate
class per set environment end network
cache size authentication cluster provide 0.46 - 0.45
0.61 - 0.60 instead multiple per extremely quickly performance
datanodes fill storage issue flush might memory requirement support
resource utilization 0.50 - 0.49 patch hdfs would
ipc support following versionnumber nodes rf take long
0.60 - 0.59 take run time scenario
new level optimal cpu class thread safe
load scale slow many read write
compaction compression kerberos ticket restart service
following time per like understand goal keep much
spread across entire job cause classname weblink
0.59 - 0.58 efficiency namenode memory every key
like make 0.49 - 0.48
even contention per problem many scheduler
path convenient cache single
try provide every release
0.58 - 0.57 pluggable interface run
storage layer generation

Table 45: Keywords with probability ≥ 0.45 for the Property class (Classification).
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15 handle client similar
range bin tsql ring
12 6 remove dependency
column state store reduce common
11 purpose disable
dc per file deleted
8 methodorvariablename run cluster hadoop
multiple logging java source active rm
mapreduce api interval
7 5
really useful submit

Table 46: Keywords with frequency ≥ 5 for the Existence class (Classification).
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0.71 - 0.70 methodorvariablename make 0.47 - 0.46
mismatch multiple range range name failure case
cpu network disk large scale local configuration
0.69 - 0.68 0.53 - 0.52 specify hdfs
shared cluster feature server interpret json example replace
node large cluster compaction small specific application version
0.68 - 0.67 repair many nm launch container
sub cluster federation script bin tsql try address
blacklist mechanism track 0.52 - 0.51 final status
container cpu like hdfs fix find
0.65 - 0.64 restart yarn delete option
join order join parent user 0.46 - 0.45
0.64 - 0.63 like add slow startup delay
completed dns pipeline 0.51 - 0.50 run problem
0.63 - 0.62 service request feature history storage
admin server update hdfs r failed rm
0.61 - 0.60 could choose generic ui display
used read file add tombstone list
conf file useful unit use filepath patch columns
0.60 - 0.59 0.50 - 0.49 versionnumber used datetime
could specify objective find best job already
dedicate connection likely configuration file docker support
0.59 - 0.58 user cluster appended data would
store r root queue repair many small
writen recovery read state store r reproduce case
path cql node large encourage implement
0.57 - 0.56 mechanism yarn address 0.45 - 0.44
range name slice 0.49 - 0.48 multiple one
app specific failed specific protocol push know
versionnumber add help request r per host
0.56 - 0.55 end multiple unavailable open
classname related store write hdfs cluster readable
cluster coordination engine multiple excess interface join enumeration
0.55 - 0.54 busy cluster recover running
easier mock implementation r r side perform following
partition match properly binary
0.54 - 0.53 0.48 - 0.47
failure case functional fails run
storage handling could use
since client already currently mount
via checkpointing jira store internal
fair scheduler operation bulk

Table 47: Keywords with probability ≥ 0.44 for the Existence class (Classification).
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23 around become
unformattedtraceback argument 5
12 7 startup
formattedloggingoutput title tajo set default
compile reproduce structuredcodeblock see title
11 methodorvariablename formattedtraceback reason separate
type make private query history
10 hadoop built patch githublink
int 6 owner
history world inlinecodesample inlinecodesample
8 trace count zero
per connection title builder around
make compile supported formattedloggingoutput
instance filepath unformattedtraceback

Table 48: Keywords with frequency ≥ 5 for the Non-Architectural class (Classification).

0.76 - 0.75 keyspace one would greatly
use network interface 0.53 - 0.52 kerberos simultaneously let
0.70 - 0.69 debug logging empty group
responsible kerberos ticket 0.52 - 0.51 ticket error
0.67 - 0.66 different eg log tailing
node partial implementation type per 0.46 - 0.45
0.66 - 0.65 0.51 - 0.50 fails following
key search hdfs mapred yarn columns case message id
0.64 - 0.63 0.50 - 0.49 lot data even
case sensitive protocol due issue 0.45 - 0.44
0.62 - 0.61 exception thrown methodorvari-

ablename
unformattedtraceback running describe

race condition guarantee specify support userprofilelink somewhere quite
0.60 - 0.59 responses unformattedtraceback configured use
path retrieve ticket error handling even client
0.58 - 0.57 server principal hdfs network interface ip
unable open client fails following version set
enumeration server current false make
0.57 - 0.56 0.49 - 0.48
exception unformattedloggin-
goutput methodorvariablename

latency long

javadoc may require unit test
0.56 - 0.55 readrepairchance versionnumber
operator ticket focus like pig
lead potential memory artifact patch
key message id warning startup user
0.55 - 0.54 0.48 - 0.47
single network object created
kerberos principal storage pgsql
need provide version patch committed
0.54 - 0.53 0.47 - 0.46
already local container along

Table 49: Keywords with probability ≥ 0.44 for the Non-Architectural class (Classification).
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123 40 multiple release
cassandra new job port
119 39 improve page
weblink like 25 option
109 37 use mapreduce
would filepath due large
105 36 24 group
methodorvariablename support native githublink
101 remove maven 17
versionnumber example gc trunk
98 35 23 ticket
time connection provide though
83 34 disk primary
data user currently object
80 set client map
cluster memory 22 look
77 33 tajo introduce
issue see system discussion
hadoop 32 rm common
70 useful return commit
hdfs key report cli
63 heap netty across
make dependency method 16
java configuration 21 x
add classname work track
62 31 level side
cache list let security
58 interface 20 scheduler
performance code value non
57 30 timeout native protocol
version rpc technology high
54 29 structuredcodeblock format
jira package run fix
implementation following resource build
50 28 even authentication
state since apache 15
api query 19 without
49 problem yarn update
default number technology names service
47 implement table rest
per design store queue
file current policy partition
46 27 logging may
node userprofilelink branch formattedtraceback
44 server 18 enable
simpleclassname please task call
43 26 start
simplemethodorvariablename request specify
patch protocol schema

Table 50: Keywords with frequency ≥ 15 which occur in at least two of the classes used in classification.
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16 Conclusion

This section contains an overview of the conclusions we can
make for each research question. RQ1: How accurate are deep learning approaches

to identify and classify architectural issues?

Using deep learning (CNN) we were able to detect archi-
tectural issues in our dataset with a 83.32% f-score. This
is approximately 9% higher than the best machine learning
model (SVM).

For the Bhat dataset, deep learning (RNN SO and issue
properties) and machine learning (SVM) achieved similar
performance: 88% f-score.

Combining models (BOW frequency + CNN + RNN)
yielded no performance benefit for our dataset, but for the
Bhat dataset it achieved an f-score of 89.98% (1.7% im-
provement over RNN SO and SVM).

For the best performance we recommend using the com-
bined model for detecting architectural issues. However,
since this is a complex model and takes long to train, we
recommend RNN if this is not needed. RNN also performs
outstanding on the classification of issues. If an even more
lightweight model is required, we recommend using CNN or
BOW frequency as these have both good performance for
detecting architectural issues and classifying issues. Ma-
chine learning lacks performance on our dataset and there-
fore we do not recommend using them.

RQ2: How would the training data-set of archi-
tectural issues impact the generalizability of deep
learning approaches to identify and classify archi-
tectural issues?

We determined that the performance of TF/IDF translates
the best to another dataset. Other well performing models
are the other BOW models (frequency and normlaized),
both RNN models, and both CNN models.

The performance of the machine learning models did not
seem to translate to other datasets effectively. On average,
the performance was 18% worse than the best deep learning
model (RNN SO). Therefore we recommend using one of the
mentioned deep learning models instead.
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RQ3: How generalizable are deep learning ap-
proaches to identify and classify architectural issues
from different projects?

We see the most consistent performance for the RNN model
for detecting architectural issues across projects.

The issue properties model performs well on the Bhat
dataset, but it lacks performance on our dataset compared
to RNN.

A more lightweight alternative is the CNN model. However,
this model does lose quite a bit of performance compared
to RNN.

The best machine learning model (naive bayes) only per-
forms well on the Bhat dataset, and again lacks perfor-
mance on our dataset. Hence we recommend using deep
learning for the detection task.

For the classification task we see similar performance for
deep learning (RNN SO) and machine learning (SVM).

A more lightweight alternative to RNN is BOW frequency.
However, it loses almost 5.5% performance compared to
RNN. Therefore we recommend using RNN for the classifi-
cation task if possible.

RQ4: What are the keywords used by deep learn-
ing approaches to identify and classify architectural
issues?

For detection, keywords expression software failure are the
most important pattern we found among the keywords
for the Non-Architectural classification. Especially marker
words for formatting related to exceptions were commonly
part of key phrases. For the Architectural label, we found
a wider variety of keywords – quality attributes, addition
of components, components names. Additionally, phrases
containing the word “would” combined with some positive
phrase (e.g. “would nice”) were common keywords for ar-
chitectural issues.

For classification, we have four different classes. For ex-
ecutive issues, common keywords were related to technol-
ogy names. We also found many keywords containing the
word “upgrade” or “versionnumber”. We also found some
phrases implicitly hinting at the use of external software
(e.g. “authentication via”)
For Property issues, we found quality attributes and words
related to quality attributes, as could be expected. There
were only three major quality attributes, though: “consis-
tency”, “performance”, and “security”. A significant num-
ber of the other keywords were somehow related to one of
these. For instance, “cache” and “latency”, related to “per-
formance”, are common keywords. For “security”, we often
found phrases involving “authentication” or “encryption”.
One thing we cannot explain is that we found many key-
words involving the word “memory”.
For Existence issues, key phrases containing the word “clus-
ter” were encountered often. This may have something to
do that all projects the issues in the dataset were taken
from, use or support clusters. Other noteworthy keywords
for existence issues are phrases containing “fail” or “fail-
ure”, and key phrases expressing the intent to fix a fault,
such as “repair”.
Finally, we looked at keywords for the Non-Architectural
class in the detection task. Words connected to software
failure were still important keywords. However, there is
a clear distinction with the existence class. Whereas the
existence class had keywords containing the words “fail” or
“failure”, keywords for Non-Architectural tended to focus
more on exceptions and the formatting markers associated
with exceptions.
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17 Threats to Validity

In this section, we discuss a number of threats to validity.

• Inconsistency of Deep Learning Results: at times, the
performance of the deep learning process fluctuated
somewhat due to the stochastic nature of deep learning
approach. This could lead to some variety in our re-
sults. We tried to look for patterns or tendencies in our
results. If some results was inconsistent with the pat-
terns we had observed up until that point, we repeated
experiments multiple times to check whether our in-
consistent result was unfortunately a really “lucky” or
“unlucky” run. Additionally,

• Inexperience with Deep Learning : before working on
this research, the two authors were relatively unfamiliar
with deep learning. To attempt to avoid pitfalls, steps
were thoroughly researched before they were performed.
Additionally, the two authors had guidance from their
supervisor and one of their PhD students who was more
experience in deep learning (see section 19)

• Wrong Labels in the Dataset : one potential flaw in this
research, is issues in the dataset being assigned the
wrong labels. For instance, as explained previously in
section 5, we did not find large agreement with Bhat et
al. on the classification on architectural issues. Addi-
tionally, as explained in section 4, we re-classified part
of our own dataset we used after the primary supervisor
found reason for possible wrong classification. This all
suggests that identifying and classifying architectural
issues is hard for humans. This leads to the possibil-
ity that there are issues with the wrong label in the
dataset, which can confuse or hurt the performance of
the classifiers.

• Apache-only projects: using the cross-project validation
we verified that testing on a project that does not oc-
cur in the training set, deep learning is able to achieve
good performance on those projects. However, all the
projects are Apache projects and many of them are sub
projects from Hadoop. Therefore we cannot guaran-
tee that the detection and classification of architectural
issues using deep learning will perform well on non-
Apache projects.

• Java-only projects: another result of the Apache
projects is that all projects use Java as their main pro-
gramming language. Hence, it is not clear if the perfor-
mance will be the same on non-Jave projects.

• All issues from Apache Jira: all issues were obtained
from the Jira issue tracker. Especially for the issue
properties model, we cannot guarantee that it works for
issues from other issue trackers. For the text models the
performance should translate to other issue trackers,
but we cannot guarantee this.

18 Future Work

Future work could include overcoming the limitations and
threats to validity of this research. First of all, we can extend
the dataset using issues from non-Apache projects, non-Java
projects and issues from other issue trackers than Jira.

Furthermore we could apply the BERT model on the de-
tection and classification task. This model is the current
state of the art, but requires a lot of computational power.
Therefore it would be good to find out if this computation-
ally heavy model is worth using for these tasks.

Similarly to our keyword extraction analysis, we could do
an issue property analysis. With this analysis we could iden-
tify which values of the issue properties determine whether
an issue is classified as architectural or non-architectural.
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Executive Existence Property Non-Architectural Average
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Imp.
over
Random

BOW
(frequency)

No Ontology, Formatting Mark-
ers

0.4386 0.4846 0.4571 0.7067 0.6337 0.6651 0.5262 0.5666 0.5419 0.4839 0.4337 0.4525 0.5389 0.5297 0.5292 2.15

No Ontology, Keep Formatting 0.4311 0.4434 0.4323 0.6951 0.6297 0.6567 0.5098 0.5790 0.5374 0.5081 0.4589 0.4751 0.5360 0.5278 0.5254 2.13
Ontology w/ Lexical Triggers,
Formatting Markers

0.4423 0.4695 0.4495 0.6057 0.6264 0.6106 0.5050 0.5503 0.5236 0.5219 0.4138 0.4560 0.5187 0.5150 0.5099 2.07

Ontology w/ Lexical Triggers,
Keep Formatting

0.4462 0.4521 0.4447 0.5942 0.6398 0.6117 0.4852 0.5748 0.5208 0.5230 0.3698 0.4278 0.5121 0.5091 0.5013 2.04

Ontology, Formatting Markers 0.4181 0.4891 0.4478 0.6367 0.6304 0.6303 0.5325 0.5833 0.5526 0.5406 0.3924 0.4461 0.5320 0.5238 0.5192 2.11
Ontology, Keep Formatting 0.3878 0.4425 0.4106 0.6060 0.6252 0.6123 0.5327 0.5404 0.5304 0.5129 0.3994 0.4399 0.5098 0.5019 0.4983 2.02

BOW
(normalized)

No Ontology, Formatting Mark-
ers

0.4373 0.4881 0.4594 0.6708 0.6584 0.6631 0.4988 0.6508 0.5640 0.5279 0.2939 0.3694 0.5337 0.5228 0.5140 2.09

No Ontology, Keep Formatting 0.4399 0.5151 0.4721 0.6639 0.6153 0.6352 0.4789 0.6158 0.5374 0.5156 0.2990 0.3744 0.5246 0.5113 0.5048 2.05
Ontology w/ Lexical Triggers,
Formatting Markers

0.4098 0.4646 0.4308 0.6117 0.5796 0.5876 0.4617 0.5871 0.5146 0.5177 0.3196 0.3888 0.5003 0.4878 0.4804 1.95

Ontology w/ Lexical Triggers,
Keep Formatting

0.3823 0.4356 0.4012 0.5815 0.5704 0.5703 0.4658 0.5828 0.5153 0.5170 0.3229 0.3887 0.4866 0.4779 0.4689 1.91

Ontology, Formatting Markers 0.4387 0.4768 0.4532 0.6118 0.6002 0.6032 0.4967 0.6167 0.5490 0.5305 0.3456 0.4145 0.5194 0.5098 0.5050 2.05
Ontology, Keep Formatting 0.4164 0.4556 0.4310 0.6091 0.5916 0.5967 0.4723 0.6207 0.5352 0.5055 0.3077 0.3773 0.5008 0.4939 0.4850 1.97

CNN No Ontology, Formatting Mark-
ers

0.4088 0.3883 0.3968 0.5109 0.5649 0.5360 0.4868 0.5023 0.4909 0.5296 0.4840 0.5027 0.4840 0.4849 0.4816 1.96

No Ontology, Keep Formatting 0.3995 0.3659 0.3776 0.5746 0.6365 0.6028 0.4544 0.4857 0.4664 0.5104 0.4590 0.4775 0.4847 0.4868 0.4811 1.95
Ontology w/ Lexical Triggers,
Formatting Markers

0.3814 0.3416 0.3577 0.5314 0.5612 0.5428 0.4844 0.5020 0.4899 0.5150 0.5013 0.5035 0.4780 0.4765 0.4735 1.92

Ontology w/ Lexical Triggers,
Keep Formatting

0.4023 0.3838 0.3902 0.5025 0.5271 0.5104 0.4522 0.4685 0.4534 0.5030 0.4943 0.4944 0.4650 0.4684 0.4621 1.88

Ontology, Formatting Markers 0.4105 0.3762 0.3893 0.5259 0.5494 0.5353 0.4783 0.5109 0.4875 0.5095 0.4916 0.4976 0.4811 0.4820 0.4774 1.94
Ontology, Keep Formatting 0.4043 0.4031 0.4012 0.5425 0.6016 0.5684 0.4769 0.4770 0.4692 0.4851 0.4376 0.4565 0.4772 0.4798 0.4738 1.93

CNN
(SO)

No Ontology, Formatting Mark-
ers

0.4780 0.3790 0.4103 0.5380 0.6497 0.5828 0.5375 0.4928 0.4838 0.5079 0.5092 0.4961 0.5154 0.5077 0.4933 2.00

No Ontology, Keep Formatting 0.4566 0.3288 0.3670 0.5286 0.5901 0.5482 0.4900 0.5739 0.5144 0.5313 0.4598 0.4799 0.5016 0.4882 0.4774 1.94
Ontology w/ Lexical Triggers,
Formatting Markers

0.3741 0.4366 0.4012 0.5328 0.5661 0.5432 0.5319 0.4552 0.4708 0.4819 0.4090 0.4282 0.4802 0.4667 0.4609 1.87

Ontology w/ Lexical Triggers,
Keep Formatting

0.3691 0.4212 0.3810 0.4937 0.4803 0.4769 0.5268 0.4405 0.4585 0.4895 0.4643 0.4625 0.4698 0.4516 0.4447 1.81

Ontology, Formatting Markers 0.4227 0.3454 0.3648 0.5170 0.5951 0.5483 0.5316 0.4879 0.4846 0.4707 0.4730 0.4667 0.4855 0.4753 0.4661 1.89
Ontology, Keep Formatting 0.3785 0.4403 0.3938 0.5433 0.5830 0.5570 0.4765 0.4135 0.4321 0.5645 0.4681 0.4847 0.4907 0.4762 0.4669 1.90

Doc2Vec No Ontology, Formatting Mark-
ers

0.4505 0.4130 0.4291 0.5429 0.5480 0.5444 0.5234 0.4767 0.4958 0.4560 0.5283 0.4875 0.4932 0.4915 0.4892 1.99

No Ontology, Keep Formatting 0.4255 0.4158 0.4187 0.5217 0.5416 0.5286 0.5396 0.4647 0.4933 0.4313 0.4825 0.4511 0.4795 0.4761 0.4729 1.92
Ontology w/ Lexical Triggers,
Formatting Markers

0.4227 0.4052 0.4111 0.5200 0.5536 0.5348 0.5039 0.4292 0.4578 0.4537 0.5035 0.4736 0.4751 0.4729 0.4693 1.91

Ontology w/ Lexical Triggers,
Keep Formatting

0.4539 0.4264 0.4374 0.4750 0.4816 0.4742 0.5194 0.4546 0.4807 0.4136 0.4779 0.4418 0.4655 0.4601 0.4585 1.86

Ontology, Formatting Markers 0.4057 0.3796 0.3900 0.4966 0.5440 0.5158 0.5580 0.4634 0.4999 0.4510 0.4859 0.4616 0.4778 0.4682 0.4668 1.90
Ontology, Keep Formatting 0.4468 0.3968 0.4169 0.4638 0.4853 0.4707 0.4759 0.4638 0.4663 0.4498 0.4862 0.4641 0.4591 0.4580 0.4545 1.85

RNN No Ontology, Formatting Mark-
ers

0.4890 0.4730 0.4781 0.6462 0.7130 0.6768 0.5441 0.5194 0.5287 0.5934 0.5717 0.5793 0.5682 0.5693 0.5657 2.30

No Ontology, Keep Formatting 0.4403 0.4594 0.4475 0.6089 0.6096 0.6050 0.5357 0.5526 0.5422 0.6078 0.5482 0.5731 0.5482 0.5424 0.5420 2.20
Ontology w/ Lexical Triggers,
Formatting Markers

0.5230 0.4634 0.4880 0.5792 0.6421 0.6043 0.6057 0.5861 0.5897 0.5950 0.5950 0.5932 0.5757 0.5716 0.5688 2.31

Ontology w/ Lexical Triggers,
Keep Formatting

0.5040 0.5025 0.5007 0.6403 0.5960 0.6112 0.5912 0.6040 0.5945 0.5994 0.6112 0.6023 0.5837 0.5784 0.5772 2.35

Ontology, Formatting Markers 0.4798 0.4391 0.4541 0.5778 0.5713 0.5688 0.5816 0.6205 0.5980 0.5947 0.5938 0.5902 0.5585 0.5562 0.5528 2.25
Ontology, Keep Formatting 0.4551 0.4085 0.4271 0.5949 0.5666 0.5752 0.5512 0.6080 0.5766 0.5679 0.5732 0.5652 0.5423 0.5391 0.5360 2.18

RNN
(SO)

No Ontology, Formatting Mark-
ers

0.5454 0.4855 0.5099 0.6279 0.6417 0.6326 0.6020 0.6254 0.6108 0.5448 0.5469 0.5439 0.5800 0.5749 0.5743 2.33

No Ontology, Keep Formatting 0.5376 0.4756 0.5003 0.6611 0.6527 0.6513 0.5890 0.6337 0.6055 0.5415 0.5552 0.5443 0.5823 0.5793 0.5754 2.34
Ontology w/ Lexical Triggers,
Formatting Markers

0.4538 0.4269 0.4374 0.5614 0.5882 0.5703 0.5242 0.5478 0.5328 0.4847 0.4598 0.4672 0.5060 0.5057 0.5019 2.04

Ontology w/ Lexical Triggers,
Keep Formatting

0.4345 0.4227 0.4205 0.5975 0.5673 0.5750 0.5009 0.5267 0.5068 0.4978 0.4978 0.4927 0.5077 0.5036 0.4988 2.03

Ontology, Formatting Markers 0.4713 0.4344 0.4476 0.5876 0.6038 0.5922 0.4809 0.5074 0.4920 0.5361 0.5226 0.5237 0.5190 0.5171 0.5139 2.09
Ontology, Keep Formatting 0.4535 0.4189 0.4322 0.5941 0.6209 0.6034 0.5186 0.5359 0.5241 0.5020 0.4931 0.4937 0.5171 0.5172 0.5133 2.09

TF/IDF No Ontology, Formatting Mark-
ers

0.4429 0.5095 0.4712 0.6032 0.6888 0.6401 0.5018 0.6334 0.5570 0.5546 0.2405 0.3332 0.5256 0.5180 0.5004 2.03

No Ontology, Keep Formatting 0.4364 0.5225 0.4719 0.6004 0.6801 0.6335 0.4850 0.5790 0.5260 0.5064 0.2278 0.3111 0.5070 0.5024 0.4856 1.97
Ontology w/ Lexical Triggers,
Formatting Markers

0.4177 0.5192 0.4609 0.5601 0.5963 0.5723 0.4691 0.5534 0.5069 0.5041 0.2494 0.3275 0.4877 0.4796 0.4669 1.90

Ontology w/ Lexical Triggers,
Keep Formatting

0.4013 0.4731 0.4302 0.5402 0.5917 0.5603 0.4456 0.5291 0.4826 0.4888 0.2602 0.3356 0.4689 0.4635 0.4522 1.84

Ontology, Formatting Markers 0.4296 0.5185 0.4670 0.5757 0.6346 0.6004 0.4802 0.5880 0.5261 0.5197 0.2354 0.3205 0.5013 0.4941 0.4785 1.94
Ontology, Keep Formatting 0.3988 0.4630 0.4269 0.5716 0.6252 0.5929 0.4712 0.5960 0.5248 0.5216 0.2479 0.3302 0.4908 0.4830 0.4687 1.90

Ontology
Features

Ontology, Formatting Markers 0.3621 0.2528 0.2908 0.4331 0.4549 0.4358 0.5066 0.3998 0.4409 0.4138 0.5950 0.4854 0.4289 0.4256 0.4132 1.68

Ontology, Keep Formatting 0.3438 0.2319 0.2733 0.4089 0.4420 0.4188 0.5060 0.3996 0.4376 0.3946 0.5783 0.4677 0.4133 0.4130 0.3994 1.62
Random 0.3200 0.2812 0.2823 0.2299 0.2625 0.2282 0.2677 0.2529 0.2543 0.2245 0.2207 0.2196 0.2605 0.2543 0.2461

Table 52: Class-specific precision, recall, and F1-score metrics for the test we did with formatting handling and ontology
classes, for the classification task.
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Executive Existence Property Non-Architectural Average

Model Sub-Type P
re
ci
si
on
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l

F
1-
S
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re

P
re
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si
on

R
ec
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l

F
1-
S
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re

P
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R
ec
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l

F
1-
S
co
re

P
re
ci
si
on

R
ec
a
ll

F
1-
S
co
re

P
re
ci
si
on

R
ec
a
ll

F
1-
S
co
re

Imp.
over
Random

BOW
(frequency)
+ Issue
Properties

Concatenation 0.3070 0.4963 0.3647 0.5238 0.3831 0.4208 0.3533 0.3626 0.3323 0.4188 0.3422 0.3445 0.4007 0.3961 0.3656 1.49

Stacking 0.4500 0.4342 0.4368 0.6992 0.6707 0.6815 0.5301 0.5797 0.5481 0.4816 0.4632 0.4663 0.5402 0.5369 0.5332 2.17
Voting 0.4334 0.4519 0.4384 0.6768 0.6504 0.6613 0.5365 0.5500 0.5388 0.4802 0.4588 0.4687 0.5317 0.5278 0.5268 2.14

BOW
(frequency)
+ Issue
Proper-
ties +
Ontology
Features

Concatenation 0.3759 0.4145 0.3841 0.4422 0.3791 0.3958 0.3167 0.3864 0.3421 0.3574 0.3026 0.3131 0.3731 0.3707 0.3588 1.46

Stacking 0.4266 0.3980 0.4095 0.7023 0.6556 0.6741 0.5326 0.5661 0.5456 0.4629 0.4969 0.4739 0.5311 0.5292 0.5258 2.14
Voting 0.4400 0.3544 0.3889 0.5909 0.6440 0.6120 0.5245 0.5109 0.5125 0.4948 0.5562 0.5215 0.5126 0.5164 0.5087 2.07

BOW
(frequency)
+ Ontol-
ogy Fea-
tures

Concatenation 0.3362 0.2460 0.2632 0.3964 0.4949 0.4308 0.3688 0.2935 0.3036 0.3459 0.4103 0.3597 0.3618 0.3612 0.3393 1.38

Stacking 0.4396 0.4276 0.4302 0.6863 0.6553 0.6677 0.5040 0.5656 0.5309 0.4935 0.4713 0.4776 0.5308 0.5300 0.5266 2.14
Voting 0.4480 0.4267 0.4302 0.6950 0.6638 0.6768 0.5027 0.5291 0.5099 0.4904 0.5007 0.4927 0.5340 0.5301 0.5274 2.14

BOW
(frequency)
+ RNN

Concatenation 0.3042 0.3175 0.2901 0.4525 0.4513 0.4331 0.3796 0.4904 0.4262 0.4197 0.4053 0.3702 0.3890 0.4161 0.3799 1.54

Stacking 0.5748 0.2866 0.3613 0.4620 0.6673 0.5420 0.3874 0.5041 0.4340 0.6001 0.4128 0.4865 0.5061 0.4677 0.4560 1.85
Voting 0.4769 0.4808 0.4767 0.6903 0.6640 0.6738 0.5708 0.5826 0.5734 0.5478 0.5393 0.5396 0.5715 0.5667 0.5659 2.30

Issue
Proper-
ties +
Ontology
Features

Concatenation 0.2615 0.2321 0.2007 0.3241 0.4845 0.3814 0.2722 0.3866 0.3052 0.2239 0.2377 0.2052 0.2704 0.3352 0.2731 1.11

Stacking 0.2876 0.4596 0.3528 0.1921 0.1257 0.1468 0.1443 0.0337 0.0542 0.3477 0.5614 0.4267 0.2429 0.2951 0.2451 1.00
Voting 0.3852 0.2691 0.3115 0.4520 0.5347 0.4861 0.5389 0.4214 0.4648 0.4343 0.5744 0.4928 0.4526 0.4499 0.4388 1.78

RNN + Is-
sue Prop-
erties

Concatenation 0.3476 0.2098 0.2513 0.5004 0.6113 0.5390 0.3757 0.3940 0.3762 0.4261 0.4969 0.4456 0.4125 0.4280 0.4030 1.64

Stacking 0.4608 0.4502 0.4532 0.6514 0.6323 0.6386 0.5740 0.6085 0.5869 0.5920 0.5734 0.5797 0.5695 0.5661 0.5646 2.29
Voting 0.4467 0.4709 0.4543 0.6569 0.6459 0.6475 0.5672 0.5489 0.5553 0.5832 0.5724 0.5754 0.5635 0.5595 0.5581 2.27

RNN
+ Issue
Proper-
ties +
Ontology
Features

Concatenation 0.2911 0.2833 0.2801 0.4196 0.4642 0.4341 0.3402 0.3687 0.3472 0.4329 0.3954 0.4103 0.3709 0.3779 0.3679 1.49

Stacking 0.4410 0.4210 0.4260 0.6413 0.6671 0.6494 0.5512 0.5277 0.5354 0.5892 0.5984 0.5845 0.5557 0.5535 0.5488 2.23
Voting 0.4567 0.3791 0.4108 0.5633 0.6556 0.6022 0.5684 0.4810 0.5184 0.5675 0.6370 0.5979 0.5390 0.5382 0.5323 2.16

RNN +
Ontology
Features

Concatenation 0.3552 0.2552 0.2913 0.4524 0.5221 0.4778 0.4547 0.5667 0.4951 0.3913 0.3901 0.3714 0.4134 0.4335 0.4089 1.66

Stacking 0.4513 0.4507 0.4481 0.6336 0.6667 0.6475 0.5621 0.5788 0.5680 0.5923 0.5317 0.5559 0.5598 0.5570 0.5549 2.25
Voting 0.4730 0.4418 0.4539 0.5950 0.6415 0.6133 0.5911 0.6002 0.5889 0.6099 0.5611 0.5782 0.5672 0.5612 0.5586 2.27

Random 0.3200 0.2812 0.2823 0.2299 0.2625 0.2282 0.2677 0.2529 0.2543 0.2245 0.2207 0.2196 0.2605 0.2543 0.2461

Table 55: Class-specific precision, recall, and F1-score metrics for the test we did with combined models for the classification
task.
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