
I know exactly what I know (and so do you):
constructing an epistemic logic bot in S5 with one or

more agents
Bachelor’s Project Thesis

Darima Budazhapova, s3410609, d.budazhapova@student.rug.nl,
Supervisor: Prof. Dr. L.C Verbrugge

Abstract: Epistemic logic is a field of modal logic that deals with formalizing knowledge of
agents. Using epistemic operators K and M, as well as Kripke’s possible world semantics, it
allows us to explicitly reason about what individual agents know or don’t know via agent-
specific accessibility relations between states. S5 is a subsystem of epistemic logic that is suited
to reasoning with non-human agents, e.g. servers in a network. This project implements a simple
Twitter bot that continuously generates, tests, and posts tautologies in epistemic S5 logic under
the reflexivity, transitivity, and euclidicity constraints. Analysis of the bot’s solving time and peak
memory usage with regards to length and modal depth of the formulas has yielded moderately
positive correlations with modal depth showing the most influence (Spearman’s ρ = 0.61 with
peak RAM usage).

1 Introduction

Epistemic logic is a field of modal logic concerned
with formalizing knowledge of agents. Reasoning
about what agents know and what they consider
possible has applications in many fields of computer
science, such as cybersecurity and multi-agent sys-
tems. The works of G.H. von Wright and Jaakko
Hintikka in the 1950s and 60s are considered to be
seminal for the field and this project draws strongly
on Meyer & van der Hoek’s Epistemic Logic for AI
and Computer Science [1] as well as study mate-
rial for the course Logical Aspects of Multi-Agent
Systems [2] for theoretical grounding.

1.1 Epistemic logic system S5(m)

S5(m) is a subsystem of epistemic logic which con-
sists of system K(m) and three additional axioms.
Subscript m denotes the number of agents; it will
be omitted unless a specific instance is being dis-
cussed. Boolean truth valuations are used in this
project.

Kripke’s model in S5

Model (denoted M) is the formal representation of
the world-state. M is a tuple < S, π,R1, ..., Rm >
where:

• S is a non-empty set of states. States act as “al-
ternate universes" to one another, representing
what is possible, though only one of the states
can represent the true disposition of things at
any time;

• π is the truth assignment for all propositional
atoms in those states;

• Ri is an accessibility relation between states in
the set S for an agent i. In this notation, sRit
means “for agent i state s can access state t".
While truth valuations of propositional atoms
in states of the model are fixed (e.g., φ in
state s would be true regardless of agent), con-
nections between those states are individual
agent-based, i.e. dependent on the agent’s in-
formation (see explanation of epistemic alter-
natives below). All Ri in S5 are subject to a
special set of constraints called the equiva-
lence relation EQ:

1

Figure 1.1: Knowledge operator application ex-
ample on states s1 and s2

– Ri is reflexive: for all s ∈ S, sRis;
– Ri is transitive: for all s, t, u ∈ S, if sRit

and tRiu, then sRiu;
– Ri is euclidian: for all s, t, u ∈ S, if sRit

and sRiu, then tRiu;
– from the above it also follows that Ri is

symmetric, i.e. for all s, t ∈ S, if sRit,
then tRis.

Operators K and M

S5 uses all the connectives of standard proposi-
tional logic (¬,∧,∨,→, and ↔) with the addition
of epistemic operators Kiφ (‘agent i knows φ’) and
Miφ (‘agent i considers φ possible’). For Kiφ to
be true, φ must be true in all the states accessible
from this one (which includes the current state in
S5). For Miφ to be true, φ in one of those worlds is
enough. They are reminiscent of □ and ⋄ symbols.

Using a simple example in Figure 1.1, Agent 1
sends a postcard to Agent 2 (p stands for “post-
card delivered"). Agent 1, located in state s1 does
not know whether the postcard has been delivered
(¬Kp). Agent 2 in state s2 has not received the
postcard (K2¬p with the state s2 on the right be-
ing the true one), but until they communicate and
resolve the matter, for Agent 1 both states with p
and ¬p remain possible, i.e., states s1 and s2 in the
Figure 1.1 are epistemic alternatives [3] for Agent
1.

Accessibility relations (cont.)

States s and t are called epistemic alternatives
if an agent cannot distinguish between them, as far
as that agent’s information allows. Only epistemic
alternatives are accessible to one another and the
web of accessibility relations is individual to every
agent in the model and dependent on their knowl-
edge.

From the relational constraints above it follows
that any state can access itself and that any state
that can access a different state would also be able
to access any state the other one is related to and
vice versa. Thus each relational ‘set’ forms a net-
work of interconnected states where each and every
new state is able to access any and all of the states
already in the set and they are able to access the
new state in return.

World <M, s>

The agents are not directly depicted in S5-models
while their knowledge can be inferred from the
model representations. Moreover, any statements
about the knowledge or beliefs of agents can only be
evaluated at a specific state (e.g., in Figure 1.1 the
statement K2p correct in the state s2 on the right).
To represent that, this project uses the term world
(or pointed Kripke model) <M, s>: it consists of a
Kripke model M and a distinguished (‘focal’) state
s. This allows us to make pronouncements about
the state of the agents’ knowledge at that focal
state: in Figure 1.1 < M, s1 >|= ¬K1p ∧ ¬K1¬p
and <M, s2 >|= K2¬p.

Axioms of S5

Axioms from system K(m):

• A1 all tautologies from propositional logic

• A2 (Kiϕ ∧Ki(ϕ→ ψ))→ Kiψ
Alternatively, Ki(ϕ→ ψ)→ (Kiϕ→ Kiψ)

• R1 ϕ, ϕ→ ψ ⇒ ψ (Modus Ponens)

• R2 ϕ ⇒ Kiϕ (Necessitation. also see discus-
sion on logical omniscience complaint). Not
the same as ϕ→ Kiϕ (which is wrong)!

New axioms of S5:

• A3 Kiϕ→ ϕ

• A4 Kiϕ→ KiKiϕ

• A5 ¬Kiϕ→ Ki¬Kiϕ

Axioms A4 and especially A5 may seem contentious
when applied to humans, but they are appropriate
and valuable for discussion of non-human agents.

2

Tableau rules

The formulas in epistemic logic S5 are checked us-
ing tableaux by applying tableau rules [4] similar
to those of modal logic with some amendments for
epistemic operators and relational constraints re-
spectively:

Kiϕ, s
sRit

ϕ, t

¬Kiϕ, s

sRit
¬ϕ, t

Miϕ, s

sRit
ϕ, t

¬Miϕ, s
sRit

¬ϕ, t

Note on accessibility relations in these rules:

• For the rule for Ki and ¬Mi, it is applied for
all states t already appearing on the branch
and all t discovered later;

• For the rule ¬Ki andMi, tmust be a new state
for that branch.

•

sRis

sRit
tRiu

sRiu

sRit
sRiu

tRiu

sRit

tRis

Soundness and completeness

Σ ⊢S5 ϕ means ‘φ is provable in S5’ — in this case
a closed tableau can be constructed from the set
of premises Σ and the negation of the conclusion φ
using the rules and axioms of S5 (syntactic conse-
quence).
Σ |=S5 ϕ means ‘φ is entailed ’ (semantic conse-
quence), i.e. a set of interpretations that makes all
statements in Σ true, also makes φ true.
Axiom system S is called sound with respect to
class of Kripke models M if S ⊢ ϕ⇒M |= ϕ.
Axiom system S is called complete with respect
to M if M |= ϕ⇒ S ⊢ ϕ.

The soundness and completeness of the tableau
system for S5 have been proved in [4] for the single-
agent case (S5(1)), which can be adapted for mul-
tiple agents.

Formula length and modal depth

The length (|ϕ|) of a formula and modal depth
(d(ϕ)) follow the inductive definition based on [5]:

|p| = 1
|¬ϕ| = |ϕ|+ 1
|(ϕ ∧ ψ)| = |ϕ|+ |ψ|+ 1
Kiϕ = |ϕ+ 1|

Table 1.1: Definition of length of epistemic for-
mulas

d(p) = 0
d(¬ϕ) = d(ϕ)
d(ϕ ∧ ψ) = maxd(ϕ), d(ψ)
d(Kiϕ) = 1 + d(ϕ)

Table 1.2: Definition of model depth of epistemic
formulas

In definitions from Tables 1.1 and 1.2 we take ∧
to stand for any binary connective and Ki to mean
any epistemic operator.

1.2 Research question

The goal of the project is to build a bot that reg-
ularly publishes tautologies on the microblogging
platform Twitter, after verifying that they are in-
deed tautologies in the S5 framework of epistemic
logic. Therefore, the bot will be evaluated on the
following criteria:

• Can the bot formulate tautologies in S5?

• How do the length and depth of the formu-
las affect the time- and memory-usage of the
tableau solver? Which one has more influence?

1.3 Twitter bot

The maximum length of a message (tweet) at the
time of this project’s development was 280 Unicode
characters, which sets the limit for the length of
a single formula. To accommodate this limit, the
maximum formula length for the formula generator
is set to 150 elements (not including white spaces
or brackets).

2 Methods
The project is written in programming language
Python due to the author’s familiarity and the con-
venience of many available library packages.

3

The overview of the operation of the bot is as
follows: the formula generator module creates
a random epistemic logic formula of a given com-
plexity, checks it against saved previously gener-
ated formulas for duplicates and passes it on to the
tableau solver. The tableau solver module checks
whether the formula is a tautology and if it is, the
bot module posts it on Twitter.

Some notes on the terms used in this section:

• atoms are denoted as letters of the Latin al-
phabet (a, b, c);

• agents are identified by numbers (1, 2);

• states are also identified by numbers; al-
though they are not visible in the generated
formulas, they must be kept track of during
solving to check whether a given formula is a
tautology;

• connectives from here on mean connectives
of propositional logic (¬,∧,∨,→,↔) as well as
epistemic operators (Ki, Mi), unless otherwise
stated, when discussing elements of a formula;

• formula tree — epistemic logic formula rep-
resented in a tree form.

2.1 Model
Model is a custom class that contains the formula
that is being investigated, the atoms of the for-
mula, the states (along with truth valuations for
the atoms in those states), the agents and their
recorded accessibility relations in a single object. A
model-class object is referred to as world. Its main
purpose is keeping track of the model’s conditions
discovered while solving the tableau for a given for-
mula. When during solving a tableau splits, this is
reflected in two world-objects, each representing its
own branch of the tableau.

2.2 Formula generator
All formulas are first assembled in the formula gen-
erator. The generator receives the basic parame-
ters (desired formula length, as well as how many
atoms and agents it can use while generating a
formula) and randomly selects connectives, atoms,
and agents to construct a well-formed formula in
the language of S5. The formulas are arranged as

binary trees (using anytree package) with con-
nectives serving as parent nodes to the children
atoms/(sub)formulas (see example below). A node
contains information about its type (agent, atom,
or operator), “name", priority tier (see Section 2.3),
ID number, etc.
¬

p

K

agent ϕ

∧

ϕ ψ

The rule for K is also applicable for M ; the agent
node (left child) is always terminal. Binary connec-
tives ∨,→,↔ use the same tree rule as ∧. Formula
stands for either an atom or a branch (i.e., subfor-
mula). Negations share the nodes with the connec-
tives they are applied to, unless an atom is being
negated; in that case, negation is located in its own
node (as in the first example). This modular ap-
proach allows the generator to avoid parsing expres-
sions in brackets and to build formulas of any length
and complexity by simply growing the “tree". The
root (top node) of any tree or branch holds the main
connective of that (sub)formula, which is where the
tableau solver of the project can start investigating.

Figure 2.1: Example of a generated formula of
length 7.

Figure 2.1 demonstrates a sample of a tree that
translates to line-format formula b → ¬(b ↔
K1¬(b ∨ (a ↔ b))). “None" after the atom/opera-
tor name signifies that the formula is not currently
attached to any specific state.

The formula generator starts building outwards
from the “leaves" upwards: inner subformulas first,
then connectives “grow" on top of them. It starts
with some number of atoms (between 1/4 and 2/3
of desired formula length), then it selects a con-

4

https://github.com/c0fec0de/anytree

nective/operator to apply to existing nodes. The
contents of the tree nodes (connectives, atoms, or
agents) are chosen randomly and the formula grows
until it reaches the desired complexity.

If the generator detects too many subformulas
for the remaining number of connectives to be cho-
sen, it limits the choice to non-negated binary con-
nectives. Unfortunately, the variability in the num-
ber of starting atoms was added very late into the
project for the purpose of achieving a range of
modal depths, which resulted in a large number of
“duds" — generated formulas that are not unified
under a single main connective. These “duds" are
therefore excluded from analysis.

Once we have generated a well-formed logical for-
mula of a given complexity, we compare it to previ-
ously generated ones recorded in a file. If no match
exists, it is passed on to the tableau solver. If it
matches a previously generated formula, it is dis-
carded. If no such formula is detected, the new for-
mula is recorded into a file with other formulas of
that length.

Writing to file

Conversion of generated formulas to file and re-
trieving them for comparison will be done via the
built-in JSON exporter/importer function of the
anytree package. There are three types of files gen-
erated by the algorithm: formula storage (which
contains all previously generated well-formed for-
mulas of that length), tautology storage (where
only tautologies are recorded for later posting), and
solver data (which records length and depth of for-
mulas, whether it is a tautology, as well as the time
taken to solve it and the peak memory usage of the
solver).

2.3 Tableau solver

Once a newly generated formula arrives, the pur-
pose of the tableau solver is to find whether the
negation of the generated formula has a model (i.e.,
whether there are circumstances under which the
original formula is false and therefore not a tau-
tology). To discover that, the tableau solver adds a
negation on top of the main connective (root node),
marks the (new) root node as existing in state 0,
and investigates the newly negated formula. The
order of resolving connectives (their priority tier)

is as follows:

1 ¬,¬¬
2 ∧,¬∨,¬ →
3 K,¬M
4 ¬K,M
5 ∨,¬∧,→,↔,¬ ↔

Table 2.1: Priority order of connectives and op-
erators.

These priority tiers are built-in properties of con-
nective nodes. Other custom node attributes in-
clude state, i.e., which state the formula is true
in, as well as type of node (atom, agent, or con-
nective). Agents and atoms are marked with pri-
ority 0 so that they’re “resolved", i.e. their truth
valuation recorded in the appropriate state by the
model-object, as soon as they appear in the list of
nodes available for solving.

Since the formula under investigation is shaped
like a tree, expanding the tableau functionally
means resolving (and deleting) connectives from
the root node down: e.g., formula a∧(b∨¬a) gets re-
solved into a, b∨¬a (where a and ∨ are roots of their
respective subformulas). It resolves the tree into
smaller and smaller subformulas until the solver ar-
rives at atoms (terminal nodes). Then the solver
can mark the atoms’ truth valuation at its model
representation for future reference. Hence, “build-
ing the tableau" actually involves dismantling the
formula tree and filling out the model object. A
tableau branch closes when a new truth valuation of
an atom contradicts a previous conclusion recorded
in the model.

The tableau is solved depth-first, as a human lo-
gician would. When the tableau branches, the main
tree is put on hold while the solver works on the
“left branch" — in actuality a copy of the current
world, formula tree included. Should that branch
close, the copy is erased and the solver continues
with the “right branch" using the main world. A
complete and still open branch proves that the for-
mula was not a tautology, hence no further solving
necessary. The world of that branch then contains
a countermodel for the original formula.

5

K and ¬M operators

These tier-3 operators are special cases that can
never be completely resolved — they might need to
be applied again to newly discovered accessibility
relations. Therefore, while being “solved" for the
first time, a copy of that entire subformula is moved
to a sidebar, so that it can be assessed again for a
new state. Checking in with the sidebar every time
a new accessibility relation appears also ensures the
algorithm doesn’t get stuck in a loop, resolving the
same operator over and over.

Representing the equivalence relation EQ

As described in the Section 1.1, the S5 language em-
ploys a special combination of relational constraints
called equivalence relation EQ. Taken together, re-
flexivity, transitivity, and euclidicity produce a sys-
tem where if for agent 1 state 0 can access states
1, 2, 3 and state 3 accesses state 4, then state 4
can also access 0, 1, 2, 3 and vice versa. All states
that share any relation in common (for the same
agent) have direct access to each other as well as
themselves.

Consequently, in this project the accessibility re-
lations are implemented as undirectional “grab bag"
sets of states that are recorded as properties of
agents. For any newly discovered relation that in-
volves one of the states already in the set, the new
state gets added to the set. So in the example above,
agent 1 would have had the set < 0, 1, 2, 3 > al-
ready recorded, which with the addition of state 4
becomes the set < 0, 1, 2, 3, 4 > where any of of
these states can access themselves as well as any
other state in the set.

Algorithmic example — excerpt from the
tableau solver

The pseudocode example here is a part of the
tableau solver: specifically the method for resolv-
ing tier-4 operators, M and ¬K. The root node
(operator) of this subformula is the epistemic op-
erator (M or ¬K), its agent represented as its
left child. The variable home_state refers to the
ID number of operator’s current state, i.e., in
which state this epistemic formula is located in the
tableau.

As explained in Section 1.1, the rule for diamond-
like operators requires the solver to generate a new

Algorithm 2.1 Solve diamond-like epistemic op-
erator
1: function solve M or ¬K(operator, world)
2: home_state← operator.state
3: agent← operator.left_child
4: register new state in the world
5: register new accessibility relation between
home_state and new_state for agent

6: current_set ← all states in equivalence
relation with home_state and new_state for
agent

7: if operator is ¬K then
8: inject negation into inner formula
9: end if

10: pass on operator’s state to its children
11: remove epistemic operator node from the

tree
12: function trigger sidebar(agent,

home_state, new_state, world)
13: if new accessibility relation formed for

box-like formula with matching agent then
14: solve box-like formula
15: end if
16: end function
17: end function

state and record a new accessibility relation for the
agent in question between the home state and new
state using the Model-class methods add state and
add relation.

If the epistemic operator in question is ¬K, then
a negation needs to be inserted in the tree between
the parent operator and its right child (next top
node in the subformula). The method insert neg
node makes the appropriate modifications to the
subtree: generating a negation node for atoms,
modifying the right child if it is an operator (e.g.,
∨ node become ¬∨, an already negated operator
¬ → becomes nodes ¬¬ and →).

Model-class methods confer state and remove
epist op respectively assign the new state id num-
ber to the subformula φ (i.e., record that φ is true
in the new state as opposed to the one K1ϕ was in)
and uncouple and delete the root epistemic opera-
tor node.

Finally, since resolving a diamondlike operator
opened up a new accessibility relationship for this
agent, trigger sidebar method checks whether
there are any previously expanded tier-3 epistemic

6

operators (K or ¬M) that might need to be applied
to the new state.

Simple formula example

(a) ¬c ∧ ¬(c → b)

(b) ¬c, ¬(c → b)

(c) c, ¬b

Figure 2.2: Tableau solving progression for for-
mula ¬c ∧ ¬(c → b)

Figure 2.2 shows the steps of the tableau solver’s
work on a simple example formula ¬c ∧ ¬(c → b).
Initially (Figure 2.2a) only one connective (∧) in
state 0 (AND/0) is available for resolving, so that is
what the tableau solver works on and passes the
parent node’s state onto the children. Next, in Fig-
ure 2.2b the formula has two available branches:
¬c and ¬(c → b), both also in state 0, so they
are sorted according to the priority order from Sec-
tion 2.3. NEG/0 is resolved by marking its child-
atom c as ‘false’ in state 0 and connective NEG_IMP
(negation of implication) is resolved into c and ¬b
(Figure 2.2c). Here the tableau solver runs into a
contradiction, as the available subformula claims
that c is True in state 0 when it has already been
recorded as False previously on this branch. There-
fore, the branch closes and, since there are no

other branches, the inverse of the original formula
¬c∧¬(c→ b) has been proven a to be a tautology.

Dealing with infinite branches

A tableau in the language of S5 can unfold into
an infinite branch if a box-like formula contains
a diamond-like formula for the same agent (us-
ing states within the same equivalence relation).
To prevent the solver from getting stuck in an infi-
nite loop, a counter of repeat resolutions was imple-
mented for diamond-like epistemic operators. If it
detects the same M or ¬K node be resolved thrice
on the same branch, the branch is judged infinite
— therefore, open and complete.

Measuring the resource usage

The bot measures the time and maximum RAM
usage of the tableau solver with the help of Python
native packages time and tracemalloc. The mod-
ule time is used to measure CPU time — the time
it takes for CPU to solve the formula, as opposed
to “wall time", which is how much real time has
passed between the start and the end of a process.
CPU time was chosen for measurement so that the
data gathered is not contaminated by outside fac-
tors, e.g. the computer’s resources being occupied
by third party processes.

2.4 Twitter publisher

An auxiliary script converts formula tree structures
to single-line human-readable string format. The
Twitter bot uses the Python library tweepy to gen-
erate and post formulas proved to be tautologies.
The publisher bot loads a list of generated tau-
tologies of random length (3 to 150 elements) and
posts one on @epistemic_botS5 every 4 hours. If
the number of already prepared tautologies is run-
ning low (less than 3), it runs the generator and
solver modules several times until they provide the
queue with several more ready tautologies. The li-
brary used for triggering and running the code at
specific intervals is the APScheduler package.

2.5 Code repository

The code for the entire project
is available on GitHub at

7

https://github.com/tweepy/tweepy
https://twitter.com/epistemic_botS5
https://apscheduler.readthedocs.io/en/3.x/index.html

https://github.com/budazhapova/epistemic-
bot-s5. The repository contains two branches:
master with the working code version of the
Twitter bot that operates from a Raspberry Pi and
data, which is set to generate and solve formulas in
bulk and contains the CSV file with the acquired
data as well as the JSON files with the generated
formulas.

3 Results and discussion

The system as designed and implemented can in-
deed generate an unlimited number of epistemic
logic formulas for a potentially unlimited number
of propositional atoms and agents (the working ver-
sion of the generator, however, is limited to three
of each for practical reasons). It tests the generated
formulas using the tableau method.

To obtain data for this analysis, a maximum of
200 formulas of lengths 3-15 were generated exclud-
ing duplicates. Three was chosen as a starting point
because that is the length of a shortest possible tau-
tology (e.g., p → p). Naturally, in smaller length
batches it is impossible to generate so many non-
duplicated formulas, which is why the total number
of formulas of that length or depth is included in the
“total" columns. Within any specific length batch
there is some amount of variability with regards to
depth: most of all formulas have modal depth of 3-4
with maximum depth of 8.

length depth total time memory
3 1 4 0.00781 5121
4 1-2 27 0.01563 4545
5 1-4 153 0.01562 6205
6 1-5 180 0.01562 7600
7 1-6 200 0.01562 10146
8 2-6 200 0.01562 8938
9 2-7 200 0.03125 12786
10 2-7 200 0.03125 13600
11 2-7 200 0.03125 15719
12 3-7 200 0.03125 17287
13 2-8 200 0.03125 18516
14 3-8 200 0.04688 27240
15 3-8 200 0.04688 24050

Table 3.1: Median CPU solving time (sec) and
peak memory (bytes) by formula length

depth length total time memory
1 3-7 38 0.01562 4367
2 4-13 340 0.01562 6666
3 5-15 652 0.01562 11100
4 5-15 626 0.03125 18086
5 6-15 356 0.04688 24318
6 7-15 107 0.06250 34532
7 9-15 37 0.2344 55765
8 13-15 8 0.20312 67494

Table 3.2: Median CPU solving time (sec) and
peak memory (bytes) by modal depth

CPU time peak memory
length 0.373 0.489
depth 0.505 0.609

Table 3.3: Spearman’s ρ (rank-order) correla-
tion between factors and resources used.

Figure 3.1: Scatterplot matrix of relations be-
tween formula types and resource usage of the
tableau solver. Numerical coefficients denote
Spearman’s ρ between factors.

As we can see in Tables 3.1 and 3.2, length of a
formula does not hold a lot of influence over time
required for solving it. Peak memory (maximum
RAM occupied during solving) increases more lin-
early both with the length and the modal depth —

8

https://github.com/budazhapova/epistemic-bot-s5
https://github.com/budazhapova/epistemic-bot-s5

the longer the formula, the more nodes it contains;
the more depth it has, the more operators the solver
needs to take care of. Extra memory is allocated for
branching as the solver retains a copy of both the
model object and the formula tree for each branch
of the tableau. CPU time remains comparatively
stable with little variance, as can be seen both in
Tables 3.1 and 3.2 and Figure 3.1.

The strongest correlation between the features of
an investigated formula and the resources usage of
the solver is found for modal depth and peak mem-
ory usage (Spearman’s ρ = 0.61). The RAM us-
age increases almost linearly with the modal depth
with the exception of depth 8 for which only 8
formulas were generated. The correlation results
show moderately positive relationships between for-
mula length, modal depth, solving time, and peak
RAM usage (see Figure 3.1), showing that there
is indeed a positive link between input variables
(length, depth) and the solver’s resource usage, but
it is not strong enough to name either of the for-
mula features a definitive influence.

Overall, it must be concluded that formula depth
has a stronger effect on the resource demands of the
solver.

4 Conclusion

For this project an autonomously operating algo-
rithm for generating, solving, and publishing tau-
tologies in epistemic logic in the language of S5(m)
was designed and implemented. The system con-
sists of 3 main modules: the formula generator, the
tableau solver, and the Twitter publisher. The for-
mula generator creates random formulas for a given
formula length using a variable number of propo-
sitional atoms. The tableau solver tests the gener-
ated formulas using the semantic tableau method
to find out whether they are tautologies. Generated
and proven tautologies are then published on Twit-
ter with the interval of 4 hours between posts.

The formula generator uses random selection for
constructing epistemic formulas in the language of
S5. The formulas can be of any desired length,
though for purpose of fitting into a single Twit-
ter post the generator’s upper bound is set to 150
elements. Depending on the length, a formula can
use up to 3 atoms (a, b, c) and 3 agents (1, 2, 3),
with the number of atoms and agents used increas-

ing with the length. The algorithm can choose be-
tween a number of propositional logic connectives
(¬,∧,∨,→,↔) and epistemic operators (K, M) as
well as their negations. The generator links the sub-
formulas with arbitrarily chosen connectives, re-
sulting in a randomly constructed formula of de-
sired length and random modal depth.

If the generated formula is well-formed, it is
checked against previously generated formulas on
file and, if novel, is passed on to the tableau solver.

The tableau solver investigates the formula to
determine whether it is a tautology using tableau
rules and Kripke’s possible worlds semantics. If
the formula is proven to be a tautology, it can be
queued for posting on the bot’s Twitter account.

The tableau solver cannot always complete
branches due to the presence of potentially infi-
nite loops. It is possible that some of them could
close with time and that it does not detect some
tautologies because of it. Therefore, the algorithm
cannot be called complete, i.e. it may not provide a
closed tableau for the negations of all formulas that
are entailed in S5. However, all formulas that are
provable (under the restriction of declaring infinite
branches open and complete) are indeed entailed
— the set of truth valuations can be read from the
model object after or at any point during solving.

The generated formula, tautology or not, is
recorded into a JSON file housing all previously
generated formulas of that length for future com-
parison. Additionally, new tautologies are placed
into a queue for publishing on Twitter. The queue
holds several previously tested formulas and pops
one whenever the time comes to publish a new post.
When the queue is close to being depleted, it calls
the formula generator and tableau solver to provide
it with new tautologies. This ensures stable posting
intervals due to ready availability of tautologies to
publish.

Data analysis has shown that while both the
solving (CPU) time and peak memory usage of
the tableau solver are moderately influenced by
formula length and modal depth, it is not a no-
tably strong relationship. Between the length and
depth, modal depth appears to be the stronger af-
fecting factor with Spearman’s ρ of 0.61 correlation
to RAM usage. However, these measurements are
strongly affected by the hardware used during the
project. While the algorithm is very lightweight, es-
pecially in comparison to resource-demanding Ma-

9

chine Learning projects, a weaker machine could
show more of a relationship between complexity of
a formula and the resource usage of the solver. For
example, the Raspberry Pi on which the Twitter
publisher is located takes noticeably longer to solve
formulas it generates. The length of time required,
however, makes it less than suitable for gathering
data.

The variance in the data is most likely due to
the influence of branching tableaux for memory
and epistemic operators for solving time. When a
tableau splits into two branches, each branch is
represented by its own Model-class object (world),
which contains not only the formula tree and its
associated sidebar, but also all the supplemen-
tary model information, such as: the number of
atoms and agents involved, accessiblity relation sets
discovered, total number of nodes generated for
the tree, whether any of the diamond-like oper-
ators were resolved more than once (for the infi-
nite branch stopper), etc. Naturally, each branch-
ing event drastically increases the amount of RAM
involved; thus, multiple branching events would ac-
count for the outliers in the peak memory row of
the scatterplot matrix in Figure 3.1. Similarly, it
is likely that the presence of epistemic operators
in the formulas is responsible for the higher data-
points and outliers in the CPU time measurements.
Resolving box-like operators requires the solver to
check all the relevant accessibility relations for the
agent in question and expand the inner formula for
all appropriate relations found. Diamond-like epis-
temic operators resolve the formula into a new state
and are required to check with the previously ex-
panded box-like formulas and resolve those, if there
are any where it resolution is appropriate. There-
fore, while resolving epistemic operators does not
necessarily create such a demand for memory re-
sources, the time required scales up with the num-
ber of agents, states, as well as previously recorded
relation sets.

Issues and potential improvements

The random nature of the generator has positive
and negative sides. The positive is that it can gen-
erate a formula of any length as desired without
having to first “build up" to it. The negative is
the consequence of the positive: since the user has
no control over the process after specifying the de-

sired length, which produces more and more dupli-
cates as more formulas are generated and recorded.
The system has little mid-process guidance and the
heuristics that are implemented to prevent genera-
tion of split trees (formulas that don’t unify under
a main connective) often fail after the last amend-
ment to vary the number of generated atoms (in
order to ensure some variation in modal depth per
formula length). The resulting “duds" are entirely
excluded from analysis as they are not well-formed
formulas and cannot be evaluated.

Related to the issue of generating unwanted du-
plicates is the problem of impossibility of early clo-
sure of branches. Since a branch needs to work its
formulas down to propositional atoms before it can
detect a contradiction, early closure by compar-
ing subformulas more complex than single propo-
sitional atoms and their negations: meaning that,
say, p ∨ q and ¬(p ∨ q) is not recognized as a con-
tradiction and that branch would not close until
one is discovered among the truth valuations of the
atoms. A modification that would allow to store
previously discovered formulas for comparison in
parallel with the solving would shave off some ef-
fort and time at the expense of memory.

Another potential avenue for improvement would
be to adapt the tableau solver for breadth-first
search or adopt a kind of guidance algorithm to de-
termine which branch to investigate first. The al-
gorithm in its current form traverses the tableau
branches one at a time, when the fastest way
to detect a non-tautology would be to follow the
branch that is most likely to remain open. While
such an approach would be less computationally
and memory-intensive than a breadth-first search
(which would process all the branches simultane-
ously), it would require fairly complicated heuris-
tics in order to replicate the intuition of an expe-
rienced human logician. And neither of these im-
provements would necessarily improve the investi-
gation of tautologies — after all, for a formula to
be proven a tautology, all branches of the tableau
for the formula’s negation need to be investigated,
so the order in which it is done makes no difference.

This project makes no attempt to optimize the
resource usage, so another potential improvement
would be to make it more memory-efficient.

And last, but not least, are the potential expan-
sions into other subtypes of epistemic logic: for ex-
ample, with some tweaks to the handling of rela-

10

tions this project could be adapted for use on dox-
astic logic KD45 (another type of epistemic logic
that deals with belief instead of knowledge). An ex-
tension for dynamic epistemic logic that would al-
low the algorithm to deal with evolving knowledge
or an extension for common (“everyone knows")
and implicit knowledge, which formalizes situations
where a fact can be deduced from other facts known
separately by different members of a group are
among the plausible systems that can be built on
top of this project.

References
[1] Meyer, John-Jules Charles and van der Hoek,

Wiebe, Epistemic logic for AI and computer sci-
ence, ser. Cambridge tracts in theoretical com-
puter science. Cambridge University Press,
vol. 41.

[2] Verbrugge, L.C., “BOK-project: Logics for arti-
ficial intelligence.”

[3] W. van der Hoek and L. Verbrugge, “Epistemic
logic: a survey,” in Game Theory and Applica-
tions, vol. 8, L. Petrosjan and V. Mazalov, Eds.
Nova Science Publishers, pp. 53–94.

[4] G. Priest, An Introduction to Non-Classical
Logic: From If to Is. Cambridge University
Press, google-Books-ID: rMXVbmAw3YwC.

[5] van Ditmarsch, Hans, Halpern, Joseph Y., van
der Hoek, Wiebe, and Kooi, Barteld, “An intro-
duction to logics of knowledge and belief,” in
Handbook of epistemic logic. College Publica-
tions, pp. 1–52.

11

	Introduction
	Epistemic logic system S5(m)
	Research question
	Twitter bot

	Methods
	Model
	Formula generator
	Tableau solver
	Twitter publisher
	Code repository

	Results and discussion
	Conclusion

