
On Conceptor Control in Continuous Time

Bachelor’s Thesis

Daniël Woonings, s3992497, d.a.woonings@student.rug.nl,

Supervisors: S. Abreu, MSc & G. A. Pourcel MSc

Abstract: Conceptors have been a successful mechanism used in a variety of tasks ranging
from machine learning to neuroscience. As of now, they have always been used in discrete-
time contexts. This report extends the theory of conceptors to continuous time objects such
as the leaky-integrator echo state network and liquid state machine. In particular, the pattern
regeneration task is solved for the continuous-time leaky integrator echo state networks using
two different methods. The first method is derived from the assumption of a hard conceptor and
is based on orthogonal vector projection. The second method is derived for arbitrary conceptors
and the negation of a conceptor is used to construct a vector projection. As a consequence
of the first method, several properties of hard conceptors are derived and proved. The derived
theory is illustrated by two experiments, the first studies pattern regeneration in continuous time.
The second experiment uses the conceptor classifier mechanism in combination with a spiking
reservoir. Finally, pattern regeneration for spiking reservoirs is discussed

1 Introduction

The goal of this report is twofold, the first part aims
to develop and study the theory of conceptors in
a continuous-time setting. The second goal of the
report is to unify the results from (Jaeger, 2014)
and (Maass et al., 2002), integrating conceptors
with liquid state machines. Conceptors (Jaeger,
2014) are tools to control the internal dynamics
of discrete-time echo state networks (Jaeger, 2001).
We extend the theory to models that deal with con-
tinuous time. All in all, we will see that the pattern
regeneration problem (in this report called the con-
trol task) for both model paradigms is stated equiv-
alently, while it will be solved differently. Inher-
ent differences in model structure lead to different
methods to obtain control. Liquid state machines
are often seen as the spiking neuron equivalent to
ESNs and are continuous time objects. To put the
study of conceptors into a more ’biologically plau-
sible’ setting, we aim to integrate conceptors and
LSMs. First, we shortly discuss why we investigate
conceptors in continuous time with possibly spiking
neurons.

1.1 Motivation

Arguably, the most important reason to study con-
ceptors is their ability to represent ’symbols’ and
mediate between neural and symbolic dynamics.

This ability makes conceptors interesting in the
field of machine learning, using them as classifiers
(Qian & Zhang, 2018), learning mechanism (He &
Jaeger, 2018), and tools for explainable AI (Jaeger,
2014). However, many of these applications do not
require conceptors to be continuous time objects.
We now discuss two distinct challenges where con-
ceptors in continuous time arise. The first is con-
tained in the field of cognitive science, the second
arises in the study of computation.

Two cornerstones of cognitive science question
how cognition arises and how to simulate intelli-
gent behaviour. The simulation of intelligent be-
haviour is realised using a cognitive architecture, a
description of how cognition arises at a certain level
of abstraction. The two most common abstraction
levels yield symbolic and neural-dynamic architec-
tures. The problem of integrating these two differ-
ent modelling paradigms remains an unsolved prob-
lem. Cognition studied at the symbolic level has
been effective at studying high-level cognition such
as reasoning, skill acquisition and attention (Ander-
son, 2007), (Kieras & Meyer, 1997). Theories and
ideas developed at the symbolic level abstract away
from neural dynamics and low-level cognition, they
cannot explain how low-level cognition is integrated
within the symbolic paradigm. On the other hand,
studying cognition at the neuron level has also been

1

successful, but at a different set of tasks. Cogni-
tive models that explicitly incorporate some form of
neural dynamics are known to be more successful at
explaining low-level cognitive phenomena, namely,
object recognition (Redmon & Farhadi, 2016) and
memory recall mechanisms (Hopfield, 1982). They
are useful for modelling this set of tasks but fail to
scale to higher cognitive functions.
Conceptors have been proposed as a possi-

ble mediator between the symbolic and neural
dynamical-level since they arise naturally from
neural dynamics and can be seen as symbolic
representations. Additionally, several sets of oper-
ations have been defined on them, such as Boolean
logic. These operations can be interpreted at both
the neuron and symbolic levels. Conceptors thus
provide a method to mediate between the neuron
and symbolic level that is interpretable at both
levels. It is therefore of interest to study conceptors
in a biologically plausible setting. Nearly all biolog-
ically plausible network architectures, such as the
Liquid State Machine are modelled in continuous
time. Moreover, if one ever wants to simulate
constructed architectures on a neuromorphic chip,
models need to be able to deal with continuous
time. From here we obtain the first motivation of
extending conceptors to continuous time.

For some time, the study of ’computation’ has
been placed into a broader perspective. Unconven-
tional, non-digital computational frameworks and
formalisms have been investigated (for a review
see Jaeger (2021)) as alternatives to Turing-like
computing. Specifically, unconventional computing
mechanisms that arise from high-dimensional non-
linear dynamical systems have been of interest.
Examples of such modelling paradigms include
neuromorphic computing (brain-like computing)
and computing using physical phenomena (such as
optical computing). Specifically, in neuromorphic
computing, conceptors are tools that could aid
in understanding how computation can occur
in brain-like systems and what the concept of
computation entails in this context.
Another reason to study conceptors in

continuous-time models is the applications of
continuous-time models in machine learning. For
instance, leaky-integrator echo state networks
provide a way to easily change the time scale of
the reservoir, making it possible to learn patterns

at different time scales.

1.2 Summary

The structure of this report is as follows; first
discrete-time echo state networks are treated af-
ter which the theory of conceptors is discussed.
To bridge the gap between discrete and continuous
dynamics, leaky-integrator echo state networks are
discussed. The Liquid State Machine is studied to
introduce spiking neurons. The theoretical part of
the report is concluded by adapting pattern regen-
eration to continuous time using continuous-time
leaky integrator echo state networks. To illustrate
the outlined theory two experiments are performed,
to gain more insight into how conceptors act in con-
tinuous time and an illustration of the conceptor
classification mechanism for spiking networks. Fi-
nally, the discussed theory and results are put into
a broader perspective and the pattern regeneration
problem is discussed for spiking networks.

2 Related Work

2.1 Echo state networks

Echo state networks (Jaeger, 2001) are non-linear
dynamical systems with a complete observable
state x(n), representing the activation of all neu-
rons at time step n. The network can be presented
with an input function u(n), which acts on the
state. The central thesis of echo state computing
(and reservoir computing in general) is that the
state of the network can be understood as an
’echo’ function of the input history under some
conditions. The activation signal of a neuron is a
response signal to input u(n).

Formally, an echo state network is a recur-
rent neural network consisting of K input units, N
internal units and L output units. The activations
of the three components are represented by the
vectors u(n) ∈ RK , x(n) ∈ RN and y(n) ∈ RL

respectively. The input units are connected to the
internal units by W in ∈ RN×K , and the internal
units are connected to themselves by W ∈ RN×N

and the internal units are connected to the output
units by W out ∈ RL×N . Finally, each neuron has
a bias represented by the vector b ∈ R Giving the

2

following dynamics:

x(n+ 1) = f(Wx(n) +W inu(n+ 1) + b) (2.1)

y(n) = g(W outx(n)) (2.2)

2.1.1 Echo state property

The dynamics of Equation (2.1) describe an arbi-
trary RNN, we now discuss the defining property
of the ESN architecture, the echo state property.
As stated in the previous paragraph, the state of
an ESN can be seen as an echo function of the in-
put history of the network. For ESNs to be useful
computational tools the network must satisfy the
echo state property (ESP). When the system has
the ESP it ensures that the initial condition of the
network does not determine its trajectory, meaning
that the trajectory of the network is asymptotically
independent of its initial condition. For discrete
ESNs conditions for the ESP can be algebraically
derived (for a review see Yildiz et al. (2012)), they
are linked to both W and the driving input u. It
can be shown that a discrete-time ESN generally
has the ESP if the spectral radius (largest absolute
eigenvalue of a matrix) |λmax| of the reservoir ma-
trix W is less than 1 (i.e |λmax| < 1). Note that this
is neither a necessary nor a sufficient condition, but
rather a general rule of thumb. In all simulations,
we want to ensure that our models have the ESP.

2.1.2 Training

Finally, we consider how ESNs can be optimised on
supervised learning tasks. Contrary to other recur-
rent learning schemes, only the readout units Wout

are adapted in reservoir computing. As we have al-
ready stated, feeding the ESN a signal, evokes a
response signal for every neuron. The output of the
ESN is learnt to be a linear combination of these
neural response signals. In later sections, we will see
how the readouts are learnt using ridge regression.

2.2 Discrete conceptors

In the previous section, we noted that ESNs con-
struct a representation of an input signal in a high
dimensional space and compute output signals by
linearly combining the neural response signals. The
constructed temporal nonlinear high-dimensional
expansion of the input signal is useful for both com-
putation and machine learning. It is in many cases

possible to learn the characteristics of these expan-
sions as solutions to supervised machine learning
tasks. Conceptors (Jaeger, 2014) build on the idea
that expansions constructed by the ESN can be
used to symbolise input signals. The guiding idea of
conceptors is the fact that when a system is driven
by an input signal, its dynamics are approximately
contained in a certain region of the state space,
meaning the dynamics do not cover the state space
entirely. A conceptor is simply a characterisation
of this area. Besides being a characterisation of the
area occupied by the input signal, they can also
be used for controlling the reservoir. Conceptors
can map arbitrary states into this characteristic re-
gion, which is why they are sometimes referred to
as ”soft” projection matrices. Additionally, concep-
tors are sometimes called neural dampeners/filters
because when the network is fed u(n), the state is
contained in a region of the state-space and concep-
tors damp/filter the part of the state that is not in
this region. We now derive some theory of concep-
tors in the context of linear algebra. Section (2.2)
of this report closely follows (Jaeger, 2014).

2.2.1 Storing signals in the reservoir

One control task for which conceptors are used is
to retrieve signals from a reservoir in the absence
of a driving input. To do this, a signal must first be
stored in the reservoir. This is done by adjusting
the reservoir matrix W such that it approximates
the input-driven system in the absence of a driv-
ing input. Formally, we want to adjust the internal
weights such that they are the solution to the fol-
lowing criterion:

W = argminW̃

∑
i=1,...,j

(W ∗x(n)+

W inuj(n+ 1)− W̃xj(n))2 (2.3)

Where W ∗ is the original randomly initialised
connection matrix. Finding a solution to Equation
(2.3) means the set {u1, u2, . . . , uj} of signals are
’loaded’ into the reservoir. The reservoir is trained
to approximate the state in the absence of driving
inputWx(n+1) ≈ W ∗x(n)+W inu(n+1). When we
refer to the reservoir as being loaded, we mean that
Equation (2.3) has been computed and the adjusted
matrix W is used for the reservoir dynamics.

3

2.2.2 Definition

Suppose we have a discrete-time ESN as in Equa-
tion (2.1), loaded with a periodic signal u(n). In
this section, our goal is to obtain a matrix C ∈
RN×N , such that the system responds as if the in-
put u(n) was fed in, similar to:

C tanh(Wx(n)) ≈ tanh(W ∗x(n) +W inu(n+ 1))
(2.4)

Suppose we feed the system u(n) for T time-
steps, we obtain a set of T , N -dimensional vectors
{x(0), x(1), . . . , x(T)}. Each vector in this set is an
observed state of the network when it is fed the sig-
nal. The sampled states can be collected into a so-
called state matrix formalised by Definition (2.1),
which concatenates all observed state vectors.

Definition 2.1. Given a set of T , N -dimensional
state vectors {x(0), x(1), . . . , x(T)} corresponding
to input signal u(t). The state matrix is defined as;

X =
[
x(0) x(1) . . . x(T)

]
(2.5)

Ideally, the matrix C should constrain the net-
work dynamics to the subspace spanned byX. Note
that X gives a full characterisation of the dimen-
sionality of the network response. The state ma-
trix provides a direct expression for all states that
were observed when feeding the system u(n). To
characterise the space spanned when driving the
discrete-time ESN on an input signal we introduce
the following definition.

Definition 2.2 (Characteristic subspace). Given a
state-matrix X ∈ RN×T as in Definition (2.1). The
characteristic subspace of X is defined as;

Im(X) = span{u1, u2, . . . , um} = Ũ (2.6)

When m ̸= N , the space spanned by the network
Ũ does not span all dimensions of the state space.
It means that Ũ is a proper linear subspace and
the ’area’ that the system response covers does
not vary in every dimension of the state space.
The case when m ̸= N is important for later study
since we can use tools from linear algebra to study
the dynamics in a mathematical setting.

The case when m = N , means that the ’area’
of the system response varies in all dimensions,

i.e the span of Ũ is RN . Even though the net-
work response might vary in all dimensions, the
’area’ does not necessarily cover the entire state
space. Therefore, we only want the conceptor to
project in the directions of the state space that
X actually varies significantly. This is formalised
using the PCA of X, or equivalently the SVD of
the correlation matrix R = XX

′
/T , where the

′ denotes the transpose of a matrix. The matrix
Σ containing the singular values of R = UΣU

′
,

tells us how large the response of the system with
respect to the orthonormal column vectors of U .
For small singular values, it means that for this
dimension the system has nearly no response,
meaning that the state is nearly not varied in
this direction. To control how much the conceptor
projects into a given direction a parameter α called
aperture is introduced. The aperture parameter
acts on the singular values of the conceptor, we
will later discuss the role of aperture in more detail.

As stated previously, given an arbitrary state
a conceptor should tell us how the state should
evolve when feeding the system the input u(n). So,
given a state that is already in Ũ , the conceptor
should act as the identity map. However, if the
state is not in the ’area’ covered by X, the con-
ceptor should project the state towards that area.
Additionally, we want to control how ’strongly’
we project into a given dimension of Ũ using the
aperture. Putting these criteria together we define
a conceptor in terms of an optimisation problem.

Definition 2.3 (Conceptor). Given a state-matrix
as in Definition (2.1) and its corresponding correla-
tion matrix R = XX ′/T , α ∈ (0,∞), the conceptor
associated with R and the aperture α is defined by;

C(R,α) = argminCEx[||x− Cx||2] + α−2||C||2fro
(2.7)

Where the fro subscript denotes that the Frobe-
nius norm is used. The first term suggests that C
dampens regions of the state space that are not
covered by X and the latter that it aims to be the
smallest matrix to do so (with respect to the Frobe-
nius norm). It can be shown that C(R,α) can be
directly computed from R, as stated in the follow-
ing theorem:

Theorem 2.1. The conceptor as in Definition
(2.7) associated with R and α can be obtained by

4

computing;

C(R,α) = R(R+ α−2I)−1 (2.8)

For a proof see (Jaeger, 2014).

2.2.3 Aperture adaptation and hard con-
ceptors

The previous section introduced the aperture of a
conceptor arising when the characteristic subspace
Ũ spans the entire state space. Abstractly, aperture
controls the contraction/expansion of the space to
which the conceptor projects. Practically, aperture
is a real number α ∈ (0,∞) that acts on the sin-
gular values of a conceptor. An important property
of aperture is that conceptors from the same data
source (same state matrix) with different apertures
can be recovered from one another. The operation
that scales the aperture of a conceptor is called
aperture adaptation, it is denoted by ϕ(C, γ), where
C is a conceptor and γ the factor by which the
aperture of the conceptor is scaled. Let C1(R,α0),
C2(R,α1) be conceptors as in Definition (2.7), with
0 < α0, α1 < ∞, we define a scaling factor γ = α1

α0
.

To obtain C2, from C1 compute:

C2 = ϕ(C1, γ) = C1(C1 + γ−2(I − C1))
−1 (2.9)

As stated previously, the aperture acts on the sin-
gular values of a conceptor. It is possible to de-
rive an algebraic expression for the singular values
of an aperture-shifted conceptor. Namely, given a
conceptor with singular values si and scaling fac-
tor γ, scaling the aperture of C by factor γ yields
a conceptor with singular values determined by the
expression:

si/(si + γ−2(1− si))) 0 < si < 1, 0 < γ < ∞

0 0 < si < 1, γ = 0
1 0 < si < 1, γ = ∞
0 si = 0
1 si = 1

(2.10)

From Equation (2.10) we define the notion of a hard
conceptor and state two immediate results, these
will be important in later sections of the report.

Definition 2.4. A conceptor C is called hard if all
its singular values satisfy si ∈ {0, 1}.

Corollary 2.1. If a conceptor C is hard it is in-
variant under aperture adaptation

Proof. Follows from Definition (2.4). Suppose a
conceptor C(R,α) is hard. Additionally, let γ ∈
R be an arbitrary scaling factor, we show that
ϕ(C, γ) = C. Write the SVD of C as C = USU ′,
the aperture shifted conceptor can be written as
ϕ(C, γ) = ϕ(USU ′, γ) = Uϕ(S, γ)U ′. The aper-
ture shifted singular values ϕ(S, γ) can be obtained
using Equation (2.10). Since C is hard, by Defi-
nition (2.4), s ∈ {0, 1} for all singular values on
the diagonal of S. Suppose s = 0, by Equation
(2.10) ϕ(s, γ) = 0 = s. Additionally, if s = 1 by
the same line of reasoning ϕ(s, γ) = 1 = s. So,
ϕ(S, γ) = S, implies that ϕ(USU ′, γ) = USU ′ = C.
Stated equivalently, C is invariant under aperture
adaptation.

Corollary 2.2. A conceptor C is hard iff it is a
projection matrix

Proof. if Suppose C(R,α) is hard. To show C is
a projection matrix it is sufficient to show C2 =
CC = C. Consider the SVD of C = USU ′, squaring
C we obtain C2 = CC = USU ′USU ′. Since U is
an orthogonal matrix, we have that C2 = US2U ′.
Recall that C was assumed to be hard, meaning
the diagonal of S only contains unit or zero values,
from which it is obvious that S2 = S. Therefore,
C2 = C, means that C is a projection matrix.

only if Suppose C is a projection matrix. If C is
a projection matrix it satisfies a different definition
of a conceptor. That is, C is a positive semi-definite
matrix with singular values in [0, 1], which means
C is a conceptor matrix. Moreover, since C is also
a projection matrix, its eigenvalues are either unit
or zero, hence by definition of a singular value, so
are the singular values of C. From this, it follows
that C is also hard.

2.2.4 Boolean operations (negation)

One of the motivations to study conceptors was
their ability to construct symbols from neural data.
There are different forms of symbol manipula-
tions defined on conceptors ranging from fuzzy- to
Boolean logic. We will not cover in depth the se-
mantics associated with the Boolean logic of con-
ceptors. However, one operation is important to

5

mention for our concerned region of study, that is
the negation operation.

Definition 2.5 (Negation Operation). If C is a
conceptor matrix, then its negation ¬C is defined
as;

¬C = I − C (2.11)

It is easily that the negation operation flips the
singular values of a conceptor. Since, ¬C = I −
USU ′ = U(I−S)U ′, where USU ′ is the SVD of C.
We will later see that in some cases this will prove
to be useful.

2.2.5 Conceptor-based classification

Another application of conceptors is to use them
as a method for classification, more specifically to
recognise dynamical patterns. Unlike many other
classifiers, conceptor-based classifiers can be incre-
mentally trained and extended. This means that
new classes can be learnt by the system without
having to retrain the entire classifier. Central to
conceptor classification is the fact that when an
ESN is driven on an input signal, its dynamics are
contained in an area of the state space. If the reser-
voir is again driven on a signal from the same class,
it is expected that the state is contained in the same
area.

2.2.6 Classifier formalism

To build the classifier we assume some form of a
dynamical system is available, that can be an ESN,
LI-ESN or LSM. Also, we must have a labelled
dataset that contains n distinct prototypes. The as-
sumption for conceptor based classification is that
inputs belonging to the same prototype come from
the same stationary stochastic process, training and
testing inputs are realisations of these stochastic
processes. To start classification we need a concep-
tor for each class j (j = 1, . . . , n), the procedure
to obtain these conceptors is described in (Jaeger,
2014). To classify an input signal a network re-
sponse vector z is constructed. For each class a
positive evidence E+(z, j) value is computed, the
positive evidence value is defined by:

E+(z, j) = z
′
Cjz (2.12)

To classify the input, the class belonging to the
highest positive evidence value is selected, mean-
ing that the classifier judgement ĵ is obtained by
computing:

ĵ = argmaxj E
+(z, j) (2.13)

2.3 Leaky-Integrator ESNs

Before we continue to frame the theory of concep-
tors in continuous time it is imperative to introduce
a model that deals with continuous time. We dis-
cuss the model that is closest to the discrete-time
ESN. In essence, transferring to continuous time
dynamics is moving from discrete update rules to a
system of ODEs. The leaky-integrator ESN dynam-
ics (Jaeger et al., 2007) is defined by an equation
similar to:

ẋ =
1

τ
(−Ax+ f(Wx+W inu+ b)) (2.14)

where x(t) ∈ RN a vector containing the activation
of all neurons at time t, b ∈ RN a bias vector and

ẋ = dx(t)
dt the time derivative of the network activa-

tion. The matrix W ∈ RN×N contains the weights
defining the strength of connections between neu-
rons. The vector u(t) ∈ RK is the input signal to
the network and W in ∈ RN×K the input connec-
tion matrix. The scalar, τ > 0 a time constant,
adjusting the value of τ changes the speed of dy-
namics of the ESN. Finally, A ∈ RN×N a diagonal
matrix which contains the leaking rates for individ-
ual neurons on its diagonal.

2.3.1 Approximating LI-ESN dynamics

In the previous paragraph, the LI-ESN was intro-
duced as a system of differential equations. Since
the system was introduced as an ODE it must be
numerically solved to obtain an instance of the net-
work. There are many different ODE solvers avail-
able, notably Euler’s method. One advantage of Eu-
ler’s method is that it allows us to express an ap-
proximation of Equation (2.14) in a discrete fashion
(for a comprehensive review of Euler’s method see
Biswas et al. (2013)). If we apply the Euler discreti-
sation on Equation (2.14) and set the discretisation
value δ to 1 we obtain the following expression:

6

x(n+ 1) =
1

τ
((I −A)x(n)+

f(Wx(n) +W inu(n+ 1) + b)) (2.15)

Where commonly the symbol R is introduced as
the retainment rate of the network defined by R =
I − A. Equation (2.15) is important because it al-
lows us to approximate the network dynamics of
Equation (2.14) by an expression similar to the
original ESN dynamics as expressed by Equation
(2.1). It is noted that we set the the discretisation
value δ to 1 for simplicity. In practical situations
this would yield extremely poor approximations of
the system dynamics.

2.3.2 Echo state property

The ESP was already discussed in a previous sec-
tion. It is known that conditions for the ESP in
leaky-integrator ESNs are different from regular
ESNs (Jaeger, 2002). In contrast to the discrete
ESN, the ESP for the leaky-integrator ESN is also
dependent on τ ,A and δ, besides the spectral radius
of the internal matrixW . Since Equation (2.14) will
eventually be solved on a digital machine, it must
be discretised, the step-size between evaluations is
represented by δ (note that δ is the step-size ap-
plying Euler-discretization). The Euler discretisa-
tion is mentioned because it allows us to express
conditions for the ESP algebraically. Generally, the
network as in Equation (2.14) has the ESP if the
matrix W̃ = δ

τW + (1− a δ
c)I has a spectral radius

|λmax| < 1 (for a proof see Jaeger et al. (2007)), but
the ESP for LI-ESNs is also connected to properties
of the input signal.

2.3.3 Some observations

Transferring to continuous-time dynamics has sev-
eral consequences. The first one is that we can no
longer explicitly act on the state of the network
x(t), rather we can manipulate the state indirectly
by acting on its derivative ẋ. The following is a
summary of the key differences between the dis-
crete and continuous models;

Remark. For a continuous-time leaky-integrator
ESN as in Equation (2.14);

• Dynamics are given by a system of ODEs.

• New variables: leaking rate A, time constant τ .

• We can only act on ẋ.

2.4 Liquid State Machines

We now discuss a recurrent spiking neural network
architecture, the liquid state machine. The LSM
(Maass et al., 2002) is introduced to explore what
role conceptors can play in more ’biologically plau-
sible’ systems. Precisely, we will use the concep-
tor classification mechanism in combination with
an LSM and examine how the pattern regenera-
tion problem can be translated into a spiking con-
text. To discuss the liquid state machine we will
first become familiar with the leaky integrate-and-
fire (LIF) neuron model, which introduces spikes as
characteristic events to communicate between neu-
rons. After we have treated the LIF mechanism we
introduce the LSM.

2.4.1 The LIF neuron

Spiking neurons differ from other models discussed
in this report. The dynamics of spiking neurons in-
corporate an action potential, similar to biological
neurons, this change has two major consequences.
Foremost, it means that neurons only ’communi-
cate’ when a spike event occurs. This is unlike non-
spiking neurons where connected neurons influence
each other’s activation at each time-step/point.
Furthermore, it (for most neuron models) means
that an individual neuron becomes a non-linear dy-
namical system that when connected forms an even
more complex system.

The integrate-and-fire is a computationally cheap
model class of a biological neuron (Abbott &
Dayan, 2005). In the LIF model, a neuron is mod-
elled as an electrical circuit. The membrane of the
neuron is modelled as a resistor R and capacitor
C that are connected in parallel, the capacitance
and resistor are fed an input current I(t). These
electrical components model the hypothetical elec-
trical properties of the neuron. To generate spikes
the model assumes that when the membrane po-
tential of a neuron V reaches some threshold µ (i.e
V ≥ µ) the neuron emits a spike. It is readily de-
rived that the dynamics of the model are governed
by Equation (2.16), a single scalar linear first order
differential equation, where τ = RC and Vrest the
resting potential of the model.

7

τ
dV

dt
= Vrest − V (t) +RI(t) (2.16)

While Equation (2.16) describes the dynamics of
the membrane potential, this differential equation
alone is not enough to generate spiking behaviour.
As stated earlier, the LIF neuron emits a spike
when the membrane potential V reaches the spik-
ing threshold µ. The refractory period is not imple-
mented by the equations of the model, but rather
as a computational rule. The membrane potential
of a cell remains constant during a period of trf
after which the potential is set to Vrest, the resting
potential of the cell. So, the full LIF model is the
combination of Equation (2.16) that describes how
the membrane voltage evolves, membrane thresh-
old µ that describes when a spike occurs and the
implementation of a refractory period.
To connect LIF neurons some form of synaptic

dynamics must be defined, a model that describes
how a spike is conveyed from the pre- to post-
synaptic neuron. In this report, LIF neurons are
connected by a weight wij ∈ R. If the ’pre-synaptic’
neuron i spikes, it will change the membrane po-
tential of the ’post-synaptic neuron’ j by adding
wij mV . Thus, when we are dealing with a con-
nected population of neurons we are also dealing
with a weight matrix W that describes the changes
of the post-synaptic voltages when a spike occurs.

2.4.2 Analysis of the neural signal

Since the LIF model treats spikes as uniform events,
the behaviour of a single neuron during a period of
length T is defined by the set {ti}i=0..a, where ti
represents the time of the i-th spike during period
T . The behaviour of a LIF neuron can also be rep-
resented as a sum of Dirac delta functions.

ρ(t) =

n∑
i=1

δ(t− ti) (2.17)

To characterise the state of a neuron we will occa-
sionally use properties of the spike train it gener-
ates, specifically, its firing rate as defined by:

r =
n

T
=

1

T

∫ T

0

ρ(τ)dτ (2.18)

Where r represents the firing rate of the neuron
during a period of length T and n is the number of
spikes during period T.

2.4.3 LSM basics

The liquid state machine (Maass et al., 2002)
(LSM) is a computational framework to understand
computation in neural (micro-)circuits. The LSM is
often seen as a spiking equivalent to the echo state
network since they both make use of the RC frame-
work. In contrast to other computational frame-
works such as the finite state machine and the
Turing machine, computation in liquid state ma-
chines is real-time and continuous, making them
appealing to study as models for neural computa-
tion. Maass et al. (2002) showed that the LSM has
universal computational power for analogue, ’fad-
ing memory’, real-time functions if it satisfies the
approximation property (AP) and separation prop-
erty (SP). The SP is concerned with the trajectories
of neurons in the reservoir, it states that different
input signals must lead to different trajectories for
the spiking neurons in the reservoir. The AP is con-
cerned with the properties of the readout map, it
states that the readout map can distinguish the rel-
evant set of liquid states and adapt these states into
the required output signal.

Similar to the ESN, the LSM is a mechanism
to compute output signals y(t) from input signals
u(t), where here both u and y are continuous-time
signals. Similar to the ESN, an LSM M generates
for every point in time t a state xM (t) that should
accurately represent the response of the LSM to
the input history of the presented signal. The state
of an LSM is a continuous signal, similar to the
state of an LI-ESN. Moreover, similar to the ESN
the liquid state machine computes an output signal
by constructing a memory-less readout map that
uses the state of the system to compute the output
signal.

Formally, an LSM M consists of two operators,
a liquid filter LM and a readout map fM . The liq-
uid filter is implemented by a recurrently connected
population of spiking neurons such as LIF neurons
together with an operation that defines a state on
the SNN. The neurons in the liquid filter are called
liquid neurons. The liquid filter computes for each
point in time a liquid state based on the SNN, for-
mally:

xM (t) = (LMu)(t) (2.19)

In many cases, the liquid filter is implemented by
some form of time-averaging performed on the spike

8

trains that are produced by the liquid neurons when
the SNN is presented with an input signal. This
could either be done by an exponential decay filter
or binned time averaging.
The second operator of the LSM is the readout

map fM that computes an output signal based on
xM (t), hence the output of the LSM can be repre-
sented as:

y(t) = fM (xM (t)) (2.20)

The definition of the readout map allows for a broad
range of objects that could be used. For instance,
it can be implemented by linear regression, Bayes
classifiers or a whole new spiking neuron popula-
tion. Similar to an ESN only the readout map is
learnt for a single learning task while the reservoir
remains unchanged.

2.5 Continuous-time conceptors

The first section of this report introduced concep-
tors constructed from echo state networks and dis-
cussed their most important properties in the con-
text of pattern regeneration. We concluded that
conceptors characterise how the state of the ESN
evolved when it is fed a signal by dampening cer-
tain regions of the state space. This was achieved by
directly acting on the internal state of the network
using a conceptor matrix C. The second section in-
troduced the leaky-integrator echo state network as
a model that bridged the gap between discrete and
continuous dynamics. It was noted that dynamics
were described by systems of ODEs instead of up-
date rules. Consequently, the ability to explicitly
act on the internal state of the network was lost. In
this section results from the previous two sections
are combined to obtain expressions and ideas about
the task of pattern regeneration in continuous time.
First, the problem is formally defined after which
two possible solutions are studied. To do this, the
notions of refractive and stable trajectories are in-
troduced.

2.5.1 Pattern regeneration for hard con-
ceptors

This section introduces pattern regeneration as a
formal setting for hard conceptors. It introduces
the notions of a stable and refractive trajectory to
formalise pattern regeneration for hard conceptors

in an attempt to get a better understanding of pat-
tern regeneration in general. In the words of David
Hilbert ”He who seeks without a definitive problem
in mind seeks for the most part in vain” (MacHale,
1993). So far, we have not given a formal statement
of the problem at hand. This section is concerned
with formally stating what properties we want the
controlled systems to have. The term control gen-
erally refers to creating some desired behaviour in
a system. In our case, the desired behaviour is re-
generating a signal from a loaded reservoir. In the
discrete case, this was achieved by restricting the
internal state to an area Ũ of the state space. By re-
stricting the state, the response signals show oscil-
lations similar to those obtained when feeding the
network the input signal. These oscillations gener-
ated an output signal which is similar to the desired
output signal. To formalise the problem at hand we
introduce two definitions which together lead to a
problem statement. We first introduce the notion
of a refractive trajectory.

Definition 2.6 (Refractive trajectory). Given a
continuous time ESN as in Equation (2.14), a sig-
nal u(t) with characteristic subspace Ũ , conceptor
C(R,α) and the trajectory x(t, x0) with initial con-
dition x0 ∈ RN and time t. A trajectory x(t, x0) is
refractive if for some time T ≥ t, x(T, x0) ∈ Ũ .

Intuitively, a trajectory is refractive if it ’reaches’
an internal state that is characteristic of the corre-
sponding input signal at some time. The term re-
fractive is borrowed from optics (as is common in
conceptor literature). It refers to the property of
light (or waves in general) being bent when it is
propagated from one medium to another. The con-
troller should bend the internal state of the net-
work towards a state that is characteristic of the
input pattern that is to be retrieved. Besides ac-
tually reaching a characteristic state, we also want
the state to remain characteristic over time. This is
formalised by the notion of a stable trajectory.

Definition 2.7 (Stable trajectory). Given x(t, x0)
and some T ∈ R, s.t x(T, x0) ∈ Ũ and signal u(t)
with characteristic space Ũ . x(t, x0) is called stable
if for any time t′ > T we have that x′(t′, x0) ∈ Ũ .

For hard conceptors, pattern regeneration is the
problem of obtaining trajectories that are both sta-
ble and refractive, as formally stated:

9

Problem 2.1 (Pattern Regeneration). Given a
continuous time ESN loaded with signal u(t) with
characteristic area Ũ , conceptor C(R,α) and state
x(t, x0) at time t. Change the dynamics of x(t, x0)
such that the resulting trajectory is both stable and
refractive.

To state the problem informally 1) when using
the conceptor as a control mechanism the state of
the network should converge to a state in Ũ after
some time, meaning it should reach a character-
istic internal state for the input signal associated
with the conceptor. Additionally, 2), once such a
state is obtained we want that the state remains
characteristic over time. Now that we have framed
the problem in a rigorous setting we can begin to
study possible solutions. However, one might raise
the question, why even bother constructing these
definitions, why not use the same controller in con-
tinuous time? The reason why becomes apparent
once we study how the discrete controller acts in
continuous time. As we will see, we have no guaran-
tee for controlled trajectories to be either refractive
or stable.

2.5.2 Discrete control does not yield refrac-
tive trajectories

Recall that the autonomous pattern regeneration
rule for discrete ESNs is given by:

x(n+ 1) = Cjf(W̃x(n)) (2.21)

We make two important observations about Equa-
tion (2.21). First of all, control is obtained instan-
taneously, meaning that Ũ is reached in a single up-
date. Additionally, we can act on the state x explic-
itly. We consider what happens when we apply the
discrete controller in continuous time. Interpreting
the idea of discrete control in continuous time leads
to the following equation:

ẋ =
1

τ
C(−Ax+ f(Wx+ b)) (2.22)

It follows from a simple argument that the re-
sulting trajectory is not refractive. Suppose the
trajectory has initial condition x0 ∈ Ũ , obviously
this yields refractive trajectories. Now, suppose
x0 ̸∈ Ũ , then we have no guarantee of ever reaching
Ũ . Since, any output of Equation (2.22) is a point
in Ũ . Therefore, the obtained differential will never

’point’ towards Ũ . Hence, the resulting trajectory
is not refractive.

Now that have seen that trajectories result-
ing from Equation (2.22) cannot give rise to
pattern regeneration, since they are not guar-
anteed to result in refractive trajectories. This
is the case because Equation (2.22) does not
dampen the regions of the state-space that are not
characteristic of the state. Therefore, we need to
construct methods that not only evolve the state
(similar to the discrete case) characteristically but
also project the state into the characteristic area.
We now consider two methods that achieve this.

2.5.3 Projection control

After we derive a possible solution for hard con-
ceptors we generalise it for arbitrary conceptors.
Recall that hard conceptors are projection matri-
ces, meaning that Ũ is a proper linear subspace.
This means that when C is hard we can construct
orthogonal projections from an arbitrary state to
an arbitrary point in Ũ . Specifically, the point in
Ũ which is closest to x(t). This closest point can
be found using orthogonal projections in the di-
rection of Ũ . An orthogonal projection of a vec-
tor is defined as x = x̂ + Px, where x̂ ∈ Ũ and
Px ∈ Ũ⊥, where the ⊥ superscript denotes the or-
thogonal complement of a vector space. This means
that x̂ is orthogonal to Px. More importantly, Px
is a vector that points from Ũ to x(t). For now, we
assume it is possible to construct orthogonal pro-
jections of the form x = x̂+Px. In this case Px can
be used to compute how far the state is from the
closest point in Ũ . In essence, we use the orthogo-
nal projection to construct an error signal for each
neuron. This error signal expresses the distance be-
tween neural response and the characteristic neu-
ral response. The error signal is an indication as
to what activation of neurons should be dampened
by the controller. It is important to note that P is
only of use when Ũ ̸= span(RN), as stated by the
following corollary:

Corollary 2.3. x ∈ Ũ → Px = 0 and x ̸∈ Ũ →
Px ̸= 0.

Since if this is not the case, Ũ spans the entire
state space, hence any state is a point in Ũ . Conse-
quently, Corollary (2.3) states that Px will always

10

be zero, thus the controller will not alter the dy-
namics of the network. The orthogonal projection
can be used to construct a control rule that is re-
fractive under the assumption of a hard conceptor.
One of many ways to construct such a controller
is to perform linear proportional control on Px in
addition to the discrete control rule. This means
that the projection matrix P is coupled with a con-
stant K ∈ R≥0 and added as an additive term in
the differential equation. Hence, the state update
equation becomes:

ẋ(t) = C(−Ax(t) + f(Wx(t)))−KPx(t) (2.23)

We point out two shortcomings of this section.
First, at this point, no formal proof is given that
Equation (2.23) solves the pattern regeneration
problem. Rather, Section 4.1 will be presented to
highlight the derived theory. Additionally, we do
not provide procedure to find a matrix P such that
x = x̂+ Px.

2.5.4 A geometric interpretation of pattern
regeneration for hard conceptors

Another reason why we consider the case where C
is hard is because it has a geometric interpreta-
tion, which is displayed in Figure 2.1. This geomet-
ric perspective illustrates both the essence of Prob-
lem (2.1) and the reason why the discrete rule does
not solve it (in continuous time). For hard concep-
tors interpreting the control task geometrically can
be understood as letting the state x converge to
a point in the red plane (refractive), which is the
characteristic subspace of the conceptor Ũ . And,
once having obtained such a state not leaving the
red plane anymore (stable). In discrete time, the
red plane can be reached in a single step, meaning
that it is possible to jump from x to a point in the
red plane instantaneously. However, in continuous
time we have to ’continuously’ project the trajec-
tory of x to a point in the red plane. If the state
(blue dot) is not already a point in this plane we
can define a vector which is the orthogonal projec-
tion of x onto Ũ , this coincides with the vector Px.

2.5.5 Negation control

The previous section discussed the geometry of
the control problem for hard conceptors, hence the

Figure 2.1: Geometric perspective pattern re-
generation

arguments constructed under the assumption of
hard conceptors do not necessarily hold for arbi-
trary conceptors. In this section, a similar method
is derived for arbitrary conceptors, which is then
used to construct a more general controller. Re-
call that for the previous method an ”error” signal
was constructed by computing the distance from
the current state to the closest point in Ũ (for
each neuron), this was done using orthogonal pro-
jection. Since Ũ was a linear subspace, this re-
solves to finding the solution to a least-squares so-
lution. In essence, both methods rely on finding a
point which is in the characteristic subspace Ũ and
constructing an ”error” signal based on the dif-
ference between the current state and this point.
For the previous method, this point was the point
in Ũ closest to x. However, we can find another
point in the characteristic area using the concep-
tor, namely Cx. We then again can obtain an error
signal (I − C)x = ¬Cx, meaning that the nega-
tion conceptor of C also provides an ”error” signal,
the next section states a condition under which the
two error signals are equal. Similar to the previ-
ous method, when we have a state which is in the
’characteristic’ area corresponding to the input sig-
nal, the control signal is nearly zero. The controller
that works for an arbitrary conceptor is then ob-
tained in a similar method, meaning that we add a
control constant which is added as an additive term
in the differential equation in combination with the
discrete control rule, doing so we obtain:

ẋ(t) = C(−Ax(t) + f(Wx(t)))−K¬Cx(t) (2.24)

11

2.5.6 Obtaining discrete from continuous
control

We now shift our focus to a different but also im-
portant question. We investigate how the discrete
and continuous regeneration dynamics are related.
Specifically, we will try to obtain Equation (2.24),
starting from the discrete-time approximation of
the LI-ESN. To determine whether this is possi-
ble, we begin by obtaining a discrete version of the
network dynamics starting from Equation (2.14).
After which we apply the known discrete regenera-
tion rule. We then attempt to rewrite this expres-
sion back to a system of differential equations. We
start by recalling the definition of the time deriva-
tive.

ẋ(t) =
dx(t)

dt
= lim

ϵ→0

x(t+ ϵ)− x(t)

ϵ
(2.25)

We substitute the definition of the derivative into
Equation (2.14) (assume τ = 1 for simplicity), and
solve for x(t+ ϵ).

x(t+ ϵ) = ϵ(−Ax(t) + f(Wx(t) +W inu(t))) + x(t)
(2.26)

Dynamics described by Equation (2.26) can be in-
terpreted as making the dynamics discrete. The
dynamics are now expressed as a discrete-time ap-
proximation of the ODE, that is if ϵ is not infinites-
imal. Let u(t) = 0, hence W inu(t) = 0 and we plug
in the conceptor similar to Equation (2.21).

x(t+ ϵ) = C(ϵ(−Ax(t) + f(Wx(t))) + x(t))
(2.27)

Finally, by plugging (2.27) into (2.25) we obtain:

ẋ(t) = C(−Ax(t) + f(Wx(t)))− lim
ϵ→0

¬C
ϵ

x(t)

(2.28)

The interesting term in this final equation is
¬C
ϵ x(t). This limit tends toward ∞ as ϵ tends

to 0. This property has a nice interpretation. We
know that the discrete control was instantaneous,
meaning that it was possible to obtain a charac-
teristic state in a single update. If we interpret
this in a continuous setting, instantaneous control
is only possible if we are dealing with an infinitely
large differential towards Ũ . In other words,
instantaneous pattern regeneration in continuous

time is only possible when the initial condition is
a characteristic state, else it requires an infinitely
large differential towards Ũ .

The final paragraphs of this section are dedicated
to giving some more intuition and interpreting the
role of parameters in the derived methods. We have
seen that for both methods a control parameter K
was introduced besides the preexisting parameter
of aperture α. We dedicate a section to the
interpretation of the new constant K. At the time
of writing, we cannot give a complete description
of effects of aperture variation on Equation (2.24),
some remarks are given in the discussion section.

2.5.7 Interpreting K

The control parameter K was introduced in the
previous section and has a relatively straightfor-
ward interpretation. Geometrically, for hard con-
ceptors, K can be seen as a scaling of the vec-
tor that points from Ũ towards x, (refer to Fig-
ure 2.1 for visual representation). Hence, increasing
K grows the effect of the introduced term K¬Cx
during pattern regeneration described by Equation
(2.24). To summarise the interpretation of K, the
following statements characterise the most impor-
tant aspects of the control parameter K.

Remark. Given a conceptor C and K > 0.

• Adjustments of K are linear.

• K¬Cx decreases with ||Cx− x||.

• K scales the singular values C.

• K is a gain factor in proportional control.
Making K too large will lead to instable be-
haviour.

3 Experiments

We began the previous section to study the pattern
regeneration problem in continuous time. We have
seen a method that can theoretically achieve this
for arbitrary conceptors. In deriving this method
we discovered that continuous pattern regeneration
asks different things of the conceptor compared to
pattern regeneration in discrete time. Besides that,
we have seen that this method introduces a new
parameter K.

12

To illustrate and test the theory derived in the
previous section we will conduct two computer sim-
ulations which serve different aspects of the con-
ceptor theory. Both experiments are also directly
derived from the simulations described in (Jaeger,
2014). The first experiment illustrates the validity
of Equation (2.24). The second experiment illus-
trates an LSM classification scheme that uses con-
ceptors.

3.1 Pattern regeneration

Pattern regeneration is the task of retrieving pat-
terns that are stored in a reservoir using conceptors.
Pattern regeneration has been the focus of a large
part of this report. Performing a simulation allows
us to test the derived theory, making sure that the
derived methods actually work as expected. It also
provides an illustration of the fact that regenera-
tion in continuous time is not instantaneous.

3.1.1 Initialising the reservoir

The simulation implements an LI-ESN with dy-
namics governed by Equation (2.14), where N =
200 and f = tanh, both the input and output
size were one (K = L = 1). Additionally, the
system had a leaking rate of a = 1 for all neu-
rons and a time constant τ = 1 was used. The in-
put weights, bias vector and reservoir weights were
sampled from N (0, 1). The internal weight matrix
was re-scaled such that it had a spectral radius of
|λmax| = 1.5, the input weights were re-scaled by a
factor of 1.2 and the bias vector was re-scaled by a
factor of 0.2. The two input signals are defined as
p0(t) = 1

2 sin(
t
7) and p1(t) = sin(t

10).

3.1.2 Preparing the reservoir

Preparing the reservoir consisted of several differ-
ent tasks, the readouts have to be computed, the
signals must be stored in the reservoir and for each
signal, a conceptor must be computed. For both in-
put signals, a simulation was run for 0 ≤ t ≤ 1500,
solving (2.14) numerically, using the lsoda solver for
systems of differential equations. The initial condi-
tion was different for each run and sampled from
N (0, 1). For each integer time-point of the inter-
val (t = 1, 2, . . . , 1500) the state of the network
was collected, of which the first 500 were discarded.

Hence, a single run, yields 1000 sampled states for
each pattern. For each pattern, these states were
collected into two separate state matrices X1 and
X2 which were concatenated to obtain a single
state matrix X = [X1X2]. Likewise, two delayed

state matrices X̂1 and X̂2 were built, by applying
a unit delay to X1 and X2, these were concate-
nated to obtain X̂ = [X̂1X̂2]. Additionally, two
matrices P 1 and P 2 were created such that they
matched the input for the corresponding state ma-
trix, meaning that P i[j] = pi(j + 500). The two
matrices were concatenated to obtain one big in-
put matrix P = [P 1P 2]. Readouts were computed
using ridge regression. Where the regularizer was
set to λ = 0.01.

W out = ((XX
′
+ λI)−1XP

′
)
′

(3.1)

Similarly, to load the two signals into the reservoir
again ridge regression was used, in this case, the
regularizer is set to λW = 0.01.

W = ((X̃X̃
′
+ λW I)−1X̃P

′
)
′

(3.2)

Finally. for both X1 and X2 the correlation ma-

trices R1 = X1X1
′

/L and R2 = X2X2
′

/L were
computed. Two conceptors C1 and C2 obtained by
computing Equation (2.8) for both state matrices.

3.1.3 Performing Pattern Regeneration

To perform pattern regeneration Equation (2.24)
was numerically solved, using the computed loaded
weights and conceptors. The system was solved for
the same time interval that was used during train-
ing. Additionally, the same time points were col-
lected to compute the retrieved output signal. Dur-
ing regeneration, no reservoir states were discarded
as a washout.

3.1.4 Miscellaneous details

As mentioned earlier, to solve the system of ODEs
a numerical integrator from the python package
SciPy was used, this is the lsoda numerical inte-
grator. The numerical algorithm the lsoda solver
uses is more complex than the Euler-discretisation
commonly used to approximate LI-ESNs.

13

3.2 LSM conceptor classification

This experiment serves as an idea to implement
conceptors in a continuous-time context using
spiking neurons. Specifically, we describe a clas-
sification procedure and test it on a dataset of 4
classes, each a different type of sine wave. The four
classes was based on the following set of signals;
{sin(2πt), sawtooth(8t), cos(12πt), square(4t)},
where square indicates that a square wave was
used and sawtooth that a saw tooth wave was
used. The experiment aims to investigate how
robust the classifier is to noise. The classifier
will ’learn’ 4 periodic signals, the classification
procedure will consist of tests that manipulate the
phase and amplitude of these signals slightly.

3.2.1 BSA algorithm

Since LSMs deal with spiking neurons, we need
a method to encode analogue signals into spike
trains. To encode signals into spike trains the BSA
algorithm was used (Schrauwen & Van Campen-
hout, 2003). The BSA algorithm uses a finite im-
pulse response (FIR) filter to construct a spike train
which represents the analogue signal in the spiking
domain. BSA iterates through the sampled signal
and computes two different error metrics, it then
compares the difference between the errors against
a threshold. If the difference meets the threshold,
a spike is generated at that time step and the filter
is subtracted from the input. The pseudo-code of
BSA is added in appendix A.1.

3.2.2 Initialising neurons

The BRIAN2 framework was used to digitally sim-
ulate LIF neurons. A liquid filter containing 10 neu-
rons was constructed, each neuron had a refractory
period of 3 ms a spiking threshold of 15 mV a time
constant of 30 ms and a reset voltage of 13.5 mV .

3.2.3 Initialising synapses

50% of the population was randomly selected to
be inhibitory, the rest was excitatory. The neuron
parameters of inhibitory neurons were equivalent to
excitatory neurons. The probability of a synaptic
connection was 0.7. The value of synaptic weights
was determined by picking a random number in
[0, 1] and multiplying it by a factor of 0.7 if the

pre-synaptic neuron was excitatory and 0.4 if it was
inhibitory. The unit of all synaptic connections was
mV .

3.2.4 Initialising input signals

Each sample was transformed into a spike-train by
computing its BSA transform using a pre-existing
python library. From the BSA transform exact
spike times were extracted. The extracted spike
times were then filtered based on a refractory pe-
riod, the refractory period was set constant at
15ms. This yielded the final spike trains that served
as an input to the liquid filter. The input was in-
jected into all liquid neurons, with a scaling of 1.2
for excitatory and 0.8 inhibitory neurons.

3.2.5 Initialising the classifier

The four classes learnt by the classifier were the sig-
nals, 4 cos(πt), sin(5t), a saw tooth wave with fre-
quency 8 and a square wave with frequency 1. To
initialise the classifier a conceptor was computed for
each of these four signals. To do this, for all four sig-
nals the filtered BSA transform of this sample was
used as the input to the LSM. To compute a posi-
tive evidence conceptor, the following procedure is
followed. In four independent runs, a filtered BSA
transform was fed into the LSM which was run for
5 s. During this period, the spiking activity of the
liquid neurons was monitored and collected, obtain-
ing 10 sequences of spike trains {s0, s1, . . . , s10}.
These spike trains were placed into bins of 200 ms,
meaning a single run consisted of 25 bins. For each
bin the firing of a neuron during that bin was com-
puted, this yields for each neuron a vector such
that:

xi = [r(1) r(2) . . . r(n)] (3.3)

Where r indicates the firing rate of the neuron dur-
ing bin n of the experiment. The individual firing
rates were collected into a state matrix. From the
four obtained state matrices a conceptor was com-
puted, after which the classifier was considered ini-
tialised.

3.2.6 The classification scheme

Having initialised the classifier, a single trial con-
sisted of a signal p(n) obtained by manipulating

14

one of the signals learned by the classifier. First,
a random integer was used to decide from what
learnt signal the pattern was to be constructed. Af-
ter a signal was selected it was permutated in two
ways, first the amplitude was scaled by uniformly
sampling a random number in the interval [0.8, 1.2]
and its phase was changed by uniformly sampling a
random number in the interval [0, π

2]. The permu-
tated signal was then sampled using these numbers
and its filtered BSA transform was used as an in-
put to the LSM. Again, the activity of the liquid
neurons was monitored during a period of 5s and
a state matrix was computed in the same manner
that was described in the previous section. To clas-
sify the permutated input signal the following this
state-matrix was collected into the vector z such
that:

z = [x(1) r(BSA(p(1))) . . . x(n) r(BSA(p(n)))]
(3.4)

Where r(BSA(u(n))) denotes the firing rate of the
filtered BSA transform of the signal p(t) during bin
n of the experiment. Finally, the judgement of the
classifier was obtained by using Equation (2.13) on
z.

4 Results

4.1 Pattern Regeneration

We first inspect the performance and overall qual-
ity of the constructed model. After we make asser-
tions about the model quality we comment on the
influence of K during simulations.

4.1.1 Model performance

To evaluate the model performance we perform an
analysis by computing an error metric between the
driving/goal signal u(t) and the signal W outx(t),
where x(t) is obtained using two different versions
of Equation (2.24), one for K = 1.5 and one for
K = 0. Note that K = 0 means that no control on
the trajectory is performed. The error metric that
was used is the normalised root mean squared er-
ror (NRMSE). To find the best accuracy for a single
run both signals were shifted over 16 points and the
best NRMSE outcome was used. The error metrics
were obtained by running the procedure described

in Section 3.1 for independent 5 trials, meaning
that for each run a new reservoir was initialised.
For each run, the optimal NRMSE was computed,
and the optimal NRMSEs were collected and av-
eraged, this yielded an average NRMSE of 0.2 for
K = 1.5 and an average of 5.4 for K = 0. The
output signals that were generated during the ex-
periment that were used to compute the NRMSEs
are added as an appendix. This is to highlight the
significant difference in the quality of pattern re-
generation to which NRMSE does not do justice.
To state that controlled pattern regeneration using
Equation (2.24) (i. e K ̸= 0) far outperforms the
uncontrolled trajectories (i.e K = 0) would be an
understatement.

Besides performing a formal analysis it is also im-
portant to present a more graphical interpretation
of the results. Graphical inspection allows us to in-
vestigate other parts of the derived theory. Figure
4.1 summarises the most important graphical inter-
pretations and illustrates the effect the newly intro-
duced control term has. Figure 4.1 illustrates four
attempts of pattern regeneration (of two different
patterns), where for two attempts K = 0 and for
the other two K = 1.5. For the runs where K ̸= 0,
the K¬C appears to have a stabilising function in
the dynamics of the system. It appears that intro-
ducing a non-zero control term makes sure the pe-
riodic oscillations of neurons are centred around an
equilibrium point as if the oscillations are bounded
when K has a large enough value. On the other
hand, looking at the reservoir states when K = 0
no such equilibrium point seems to exist, and the
states seem not to have any recurring oscillations
around the x-axis. In informal terms, having a large
enough value for K seems to quite literally con-
trol the neural response signals into trajectories
obtained when driving the system on the driving
input, as was predicted when deriving Equation
(2.24).

15

Figure 4.1: Graphical representation of a retrieval
attempt. The left column plots the retrieved sig-
nal (dashed) and driver signal, and the centre-left
column shows three neural response signals. The
centre-right column shows a metric used to in-
dicate retrieval success ||Cx − x||, and the right
column plots the singular values of the conceptor
used. The plot contains four rows, the first row
is controlled regeneration using Equation (2.24)
of pattern 0, and the second row is regenera-
tion without the control term K¬C The third row
shows the controlled regeneration goal of pattern
1, the last row shows the uncontrolled regenera-
tion of pattern 1. The apertures of the conceptors
had value α = 100, and the value of K was set at
1.5 (when applicable).

Another important observation becomes appar-
ent once the metric ||Cx − x|| has been computed
for the controlled (K ̸= 0) and uncontrolled runs
(K = 0). Having a large enough K steers the
dynamics of the network towards Ũ while having
K = 0 only seems to move further away from Ũ
over time. The fact that the introduced control
term steered the dynamics of the network towards
the characteristic area of the pattern was another
important theoretical result that is now confirmed
by simulations. In the next section, we comment
on how different values of K behave when used in
Equation (2.24).

4.1.2 Influence of K

Equation (2.24) introduced the parameter K that
scales the vector ¬Cx. In this section, it is in-
vestigated how K behaves when it is varied dur-
ing retrieval. Results about the behaviour of K
are illustrated by Figure 4.2. To construct the fig-
ure the reservoir was prepared by the procedure

Figure 4.2: Top plot shows the error met-
ric ||Cx − x|| during pattern regeneration using
Equation (2.24) for several different values of K
for pattern 0. The bottom plot shows the same
for pattern 1. The apertures of the conceptors
had value α = 100, and the value of K was set at
1.5 (when applicable).

described in Section 3.1. This means that pat-
terns were loaded into the reservoir and the output
weights and conceptors were computed. In differ-
ent runs from the same initial condition different
values of K were used in Equation (2.24) to re-
trieve patterns from the reservoir autonomously, i.e
W outx(t) was computed. To indicate how much the
term K¬C constrains the dynamics of the network,
the metric ||Cx− x|| is used.

Generally, Figure 4.2 shows three different be-
haviours when K is varied.

1. The value of K is too small, and the resulting
trajectory is neither refractive nor stable.

2. The value of K is too small, the resulting
trajectory is refractive but not stable. Gen-
erally, it appears that refractive trajectories
that are not stable can result in successful pat-
tern regeneration. It is difficult to reason as to
why this is the case. Perhaps characteristic re-
gions are ”fuzzy”, another reason could be that
||Cx − x|| is not a perfect error metric. How-
ever, the fact remains that when K is too small
to yield a stable trajectory it does not mean
that pattern regeneration cannot be achieved.

3. The value of K is satisfactory. In this case,
the resulting trajectory is refractive and also
stable.

16

All in all, it is hard to predict the quality of the pat-
tern regeneration based on an (||Cx − x||, t) plot
such as Figure 4.2. Besides the error metric, the
quality of loading turns out to be very important,
something that is difficult to access numerically
when loading multiple patterns.

We conclude this section by stating some other
observations made during the analysis of the sim-
ulations. It appears that satisfactory values of K
encompass quite a large interval. For instance, if
K = 30 yields the desired behaviour, so willK = 20
and K = 40. Additionally, ’speed of convergence’
is also not significantly impacted by such changes
and is rather determined by the initial condition
of the trajectory. It is observed that the speed at
which ||Cx−x|| converges to zero slightly decreases
when the error metric becomes smaller, as was ex-
pected. Finally, satisfactory values of K appear to
be pattern and reservoir dependent, as illustrated
by Figure 4.2. This implies that a satisfactory value
of K does not necessarily work for a different pat-
tern, nor for a different reservoir loaded with the
same pattern.

4.2 LSM conceptor classification

The classification procedure as described in the pre-
vious section was independently run 5 times, initial-
ising a new LSM for each trial. The average mis-
classification rate obtained was 12 on a series of
50 queries, meaning that the classifier had an av-
erage classification accuracy of 76%. Note that this
result could be optimised by several different pro-
cedures, such as aperture optimisation, introduc-
ing negative evidence values, BSA optimisation and
other hyperparameter optimisation. However, the
goal of this experiment was not to obtain a state-
of-the-art result using conceptor classification (for
a review on classification optimisation see Jaeger
(2014)). Rather, it was to investigate whether the
classification scheme outlined can also transfer to
other types of reservoirs such as an LSM. More-
over, it also illustrates whether or not rate coding
would be a suitable modelling approach for con-
structing conceptors in spiking contexts. Although
a more rigorous analysis of the classifier is required,
preliminary results suggest that the outlined clas-
sification scheme is a suitable candidate for classi-
fications in LSMs.

5 Discussion

In the final part of the report, we reflect on the
results obtained during the theoretical and practi-
cal sections. After the results are put into a broader
perspective some notable directions for future work
are discussed.

5.1 Continuous-time pattern regen-
eration

This report started with the extension of the pat-
tern regeneration problem to continuous-time mod-
els such as the LI-ESN. For discrete-time ESNs
pattern regeneration was relatively simple, we ar-
gue that for continuous-time models it is not as
simple. Perhaps the most important difference be-
tween continuous-time and discrete-time pattern
regeneration is that in the former it is impossi-
ble to explicitly act on the state of the network,
while this is possible in the latter. This fundamen-
tal discrepancy led us to define the notions of stable
and refractive trajectories and ultimately to Equa-
tion (2.24). While deriving said equation, we re-
established the interpretation of hard conceptors.
Moreover, deriving control methods for continuous-
time models a new parameter K was introduced
which has a clear interpretation. Considering ev-
erything introduced in this section, we look back on
several interesting results, notably Equations (2.24)
and (2.28). We now illustrate some aspects where
the derived theory can be improved upon.

A noteworthy remark arises from the statement
of Problem (2.1). While pattern regeneration is for-
mally stated as a problem it is difficult to ana-
lytically verify whether trajectories will be stable
and/or refractive and solve the control problem.
Also, the statement of Problem (2.1) assumes a
perfect loading procedure, which is very rare in
practical settings. So, while the pattern regener-
ation problem is stated formally, it is difficult to
judge how useful it will be in analytical situations.
In practical situations, the statement of Problem
(2.1) was sometimes useful, but certainly was not
a perfect prediction of the quality of regeneration.

Finally, we note that the additive terms in Equa-
tions (2.24) and (2.23) are added to ensure that the
trajectory reaches the characteristic area of the in-
put signal. We would like to stress that these terms
are not unique and one could think of many other

17

objects that will yield the same behaviour. There
are many other possible controllers that one could
construct that would also be able to that steer the
dynamics of the trajectory towards the characteris-
tic area, think of PID controllers, neural networks
or kernel methods. However, these more compli-
cated controllers do not make use of the conceptor
framework as studied in this text. Simply stated,
this remark illustrates that conceptors can be used
as controllers in high-dimensional non-linear dy-
namical systems, which is remarkable considering
their simplistic nature.

5.2 LSM conceptor classification

The second contribution of this text is aimed at
making a simulation using conceptors in LSMs.
Specifically, the classification mechanism of concep-
tors was implemented using a liquid state machine.
The result obtained by the classifier was satisfac-
tory but not state of the art. Additionally, the re-
sult obtained was not as good as other known con-
ceptor applications, this could have several reasons.
First of all, not much effort was put into the optimi-
sation of the classifier meaning it could be that an
optimisation yields a significant improvement in ac-
curacy. Besides that, the classification task at hand
is not comparable to those found in the literature.
Finally, the classifier architecture was much simpler
than those in the literature. Therefore, future work
should investigate the optimisation of conceptors in
combination with spiking reservoirs. This could be
done by extending pre-existing techniques such as
negative evidence values and aperture optimisation
to spiking reservoirs.

5.3 Future work

5.3.1 Leading C in Equation (2.24)

One important observation about Equation (2.24)
pertains to its leading C. It can be argued that
this leading multiplicative term could be removed
simplifying the equation to:

˙x(t) = −Ax(t) + tanh(Wx(t))−K¬Cx(t) (5.1)

This expression can be simplified to:

˙x(t) = tanh(Wx(t))− x(t)(A+K¬C) (5.2)

It would be interesting to see whether this sim-
plified expression can be used to do pattern re-
generation for two reasons. First of all, the simpli-
fied expression is more elegant and arguably more
transparent. Additionally, it removes a symbol from
Equation (2.24), which is an improvement from a
computational perspective.

5.3.2 Rigorous definition of Ũ

An important addition to the theory derived in this
report would be to construct a mathematically rig-
orous definition of Ũ , such that the definition also
makes sense for arbitrary conceptors. Currently,
Definition (2.2) only makes sense in the context
of hard conceptors that are not the identity. This
is because Ũ is supposed to formalise the notion
of an area of the state space that is covered when
driving the system on an input signal. If this area
does not vary in all dimensions of the state space,
Definition (2.2) makes sense, since it provides some
information about the said area. However, if this
area varies in all dimensions of the state space Ũ
does not provide any information about the area
covered and could be interpreted that the area cov-
ers the entire state space, while this is certainly not
the case. Therefore, a more suitable definition of Ũ
should not rely solely on operators from linear alge-
bra. Rather one objects that have a graded concept
of being in the area of Ũ .

5.3.3 More elaborate simulations

Another line of future work could be to improve
the simulations presented in this report and con-
struct new simulations that can further illustrate
the theory of conceptors in continuous time with
or without spiking neurons. It would be interesting
to see how the performance of discrete and contin-
uous pattern regeneration differs from one another
and what factors influence the performance, to de-
termine these facts further study is required.

5.3.4 Interpreting aperture

In contrast to K, the value of aperture in Equation
(2.24) is not completely understood at the time of
writing. Therefore we, cannot provide a full charac-
terisation at this time, we will however attempt to
describe some observations. Again for hard concep-

18

tors, the interpretation is simple, since hard concep-
tor are invariant under aperture adaptation, mean-
ing that Equation (2.24) is independent of α. For
not hard conceptors, it is important to state one ob-
servation, especially for Equation (2.24). It is the
fact that Equation (2.24) contains both the nega-
tion and the un-negated form of a conceptor in the
same equation. At the time of writing, it is not
understood how changing the aperture of the con-
ceptor in this equation influences the dynamics of
Equation (2.24). Since aperture plays such an im-
portant role for nearly all conceptors, it is of in-
terest to investigate the behaviour of aperture in
Equation (2.24).

5.3.5 LSM pattern regeneration

We conclude this report by hypothesising about
two methods that could achieve pattern regener-
ation in a liquid state machine. Recall that pattern
regeneration is the problem of retrieving a signal
from a loaded reservoir in the absence of a driving
input. For ESNs and LI-ESNs pattern regeneration
was achieved by running the system autonomously
using the conceptor to constrain the network dy-
namics to some area of the state space. We now
consider what this would mean if we are dealing
with a spiking reservoir. Especially, what Problem
(2.1) entails in a spiking context.
The first consideration about pattern regenera-

tion in LSMs is connected to the abstraction mecha-
nism of the LSM formalism and in particular Equa-
tion (2.19). The definition of the liquid state as
presented in this paper does not yield a complete
description of the internal dynamics of the system
but rather provides an approximation of the cur-
rent state. Additionally, abstracting away from the
formal state of the system of the liquid neurons
has another consequence. Given Equation (2.19) it
is impossible to directly alter the dynamics of the
network since xM (t) is only an abstraction from
the actual state of the dynamical system. Rather,
one must alter the dynamics of the LSM directly by
acting on the underlying dynamical system instead.
So, to do pattern regeneration (or any other control
task) in an LSM, we can only use the liquid state
indirectly and must act on components of the dy-
namical system to steer the reservoir dynamics. We
now discuss two methods that act on different com-
ponents of the liquid filter, one operates directly on

the membrane voltage while the other acts on the
spiking threshold of liquid neurons. In essence, both
methods perform some form of dampening of cer-
tain regions of the state space as is expected when
discussing pattern regeneration.

The first mechanism manipulates the spiking
threshold of the liquid neurons to dampen cer-
tain neural responses, as a consequence making the
spiking threshold of a liquid neuron a dynamic in-
stead of a static component of the SNN. We already
saw how rate-coding can be used to construct bins
to obtain a ’discretised’ LSM, we also were able
to compute conceptors based on the rate-averaged
bins. We suggest that changing the threshold volt-
ages based on the activity of a neuron during a
discrete bin can give rise to pattern regeneration.
To run this ’threshold-based’ pattern regeneration,
suppose at t = 0 an LSM is loaded with signal u(t)
and conceptor C has been computed. Additionally,
let v ∈ RN be the vector containing the thresholds
of all liquid neurons. After every time interval δ, a
new vector of thresholds are obtained by computing
vnew = CxM (t)v, or a similar expression. Dynam-
ically changing the spiking threshold based on the
current state of the network adds a state variable
to every individual neuron, namely the threshold it-
self can now be described as a function of the liquid
state xM (t).

The second mechanism is more in line with meth-
ods we have already presented such as Equations
(2.24) and (2.23). These methods have the property
that the conceptor acts directly on x or ẋ providing
a manner that influences the dynamics of the sys-
tem. One could suggest that a conceptor could act
directly on the state of the LSM, meaning that the
conceptor influences the membrane voltages of liq-
uid neurons. Arguably, directly acting on the mem-
brane voltage of liquid neurons is more transparent
and similar to the equations derived in this report,
it is however not straightforward how to compute
a conceptor in this context. For this method one
could think of several approaches to the computa-
tion of the state-matrixX, using rate-based coding,
spike-time dependant coding and directly having
the membrane voltage function as a state vector.
Future research could focus on identifying mecha-
nisms that achieve pattern regeneration in LSMs,
truly putting the study of conceptors in a more
general computational setting.

19

References

Abbott, L. F., & Dayan, P. (2005). Theoretical neu-
roscience: computational and mathematical mod-
eling of neural systems. MIT press.

Anderson, J. R. (2007). How Can the
Human Mind Occur in the Physical Uni-
verse? Oxford University Press. doi:
10.1093/acprof:oso/9780195324259.001.0001

Biswas, B., Chatterjee, S., Mukherjee, S., & Pal, S.
(2013). A discussion on Euler method: A review.
Electronic Journal of Mathematical Analysis and
Applications, 1 (2), 2090–2792.

He, X., & Jaeger, H. (2018). Overcoming catas-
trophic interference using conceptor-aided back-
propagation. In International Conference on
learning representations.

Hopfield, J. J. (1982). Neural networks and physical
systems with emergent collective computational
abilities. Proceedings of the national academy of
sciences, 79 (8), 2554–2558.

Jaeger, H. (2001). The “echo state” ap-
proach to analysing and training recurrent neural
networks-with an erratum note. Bonn, Germany:
German National Research Center for Informa-
tion Technology GMD Technical Report , 148 .

Jaeger, H. (2002, 01). Tutorial on training recurrent
neural networks, covering BPPT, RTRL, EKF
and the echo state network approach. GMD-
Forschungszentrum Informationstechnik, 2002.,
5 .

Jaeger, H. (2014). Controlling recurrent neu-
ral networks by conceptors. arXiv preprint
arXiv:1403.3369 .

Jaeger, H. (2021, jul). Towards a generalized theory
comprising digital, neuromorphic and uncon-
ventional computing. Neuromorphic Computing
and Engineering , 1 (1), 012002. Retrieved from
https://doi.org/10.1088/2634-4386/abf151

doi: 10.1088/2634-4386/abf151

Jaeger, H., Lukoševičius, M., Popovici, D., & Siew-
ert, U. (2007). Optimization and applications of
echo state networks with leaky-integrator neu-
rons. Neural networks, 20 (3), 335–352.

Kieras, D. E., & Meyer, D. E. (1997). An overview
of the epic architecture for cognition and perfor-
mance with application to human-computer in-
teraction. Human–Computer Interaction, 12 (4),
391–438.

Maass, W., Natschläger, T., & Markram, H. (2002).
Real-time computing without stable states: A
new framework for neural computation based
on perturbations. Neural computation, 14 (11),
2531–2560.

MacHale, D. (1993). Comic sections: The book of
mathematical jokes, humour, wit, and wisdom.
Boole Press.

Qian, G., & Zhang, L. (2018). A simple feedfor-
ward convolutional conceptor neural network for
classification. Applied Soft Computing , 70 , 1034–
1041.

Redmon, J., & Farhadi, A. (2016).
YOLO9000: better, faster, stronger.
CoRR, abs/1612.08242 . Retrieved from
http://arxiv.org/abs/1612.08242

Schrauwen, B., & Van Campenhout, J. (2003). Bsa,
a fast and accurate spike train encoding scheme.
In Proceedings of the international joint confer-
ence on neural networks, 2003. (Vol. 4, pp. 2825–
2830).

Yildiz, I. B., Jaeger, H., & Kiebel, S. J. (2012). Re-
visiting the echo state property. Neural networks,
35 , 1–9.

20

A BSA algorithm

Algorithm A.1 BSA transform of a sampled ana-
log signal

Require: input, h, threshold ≥ 0
for i = 1, . . . , len(input) do

error1 ⇐
∑M

k=0 abs(input[k + i]− h[k])

error2 ⇐
∑M

k=0 abs(input[k + i])
if error1 ≤ (error2− threshold) then

output[i] ⇐ 1
for j = 1, . . . , len(h) do
input[i+ j − 1]− = h[j]

end for
else
output[i] ⇐ 0

end if
end for

B Simulation Parameters

Reservoir Neuron parameters
Spike threshold 15 mV
Reset potential 13.5 mV
Refractory period 3 ms
Time Constant 30 ms

Global Reservoir Parameters
Reservoir size 10
Connection probability 50%
Scaling weight inhibitory 0.7
Scaling weight excitatory 0.5
Injection probability 100%

Miscellaneous Parameters
Refractory period input 15 ms
Simulation length 5 s
BSA threshold 0.6
Sampling rate 10 Hz

21

C Pattern regeneration out-
put data

The goal of Experiment 1 was to investigate the
quality of pattern regeneration using Equation
(2.24). To do this, two conditions were compared,
these conditions were defined by the value of the
control constant K during retrieval. The first con-
dition had a value of K = 1.5 this condition is
called the control condition, the second condition
had a value of K = 0 called the no-control con-
dition. For each condition, the NRMSE between
the retrieved signal (output using Equation (2.24))
and the goal signal (output obtained by driving the
network on the input signal) was computed. These
values provide a comparison between the control
and no-control condition. However, inspecting the
retrieved signals visually provides another manner
to evaluate the quality of both conditions. The fol-
lowing plots show the data based on which the two
NRMSE values reported in Section 4.1.1 were com-
puted. Additionally, they serve to visually illustrate
that having a non-zero value of K is necessary to
obtain control/achieve pattern regeneration. The
structure of the appendix is as follows; The left col-
umn shows data collected for the control condition,
and the right column shows the data for the no-
control condition. An element consists of two plots,
the top shows the retrieval output and the goal
output and the bottom plots neural response sig-
nals. Note that as per Section 3.1 a single trial con-
sisted of four retrieval attempts, two signals were
loaded into the reservoir and were attempted to be
retrieved with control (2 runs) and without con-
trol (2 runs). This means that each page contains
the results of two different independently created
reservoirs. It is obvious that the control condition
far outperforms the no-control condition. Besides
the performance, the plots also give some insight
into the reservoir behaviour for both conditions, as
seen in the response signals.

22

23

24

25

