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aventura bellı́sima juntos.

Lastly, I would like to thank Mr. Otter for being an excellent rubber ducky.



6

Abstract
A crucial component of the software development process is the performance of regression
testing, which ensures that a piece of software remains functional under changes. However, for
large or frequently changing software projects, the volume of required testing can outpace the
resources and/or time available, resulting in the need for more efficient testing practices. In this
work, we explored test runtime forecasting, outcome correlation and predictive test selection.
We find that predictive test selection can also be efficiently used for test prioritization, outper-
forming several heuristics common in the literature. In addition, we propose improvements to
predictive test selection by implementing an asymmetric loss function and pre-selection of tests
based on historical runtimes, which lead to a test-time reduction of 31.1% whilst still main-
taining a recall of above 0.9. We also found that runtime based forecasting at the level of test
suites, rather than the traditionally used test cases, performed well and led to a reduction in
test execution time of 24.3% whilst still preserving a precision of over 0.98. We have evalu-
ated correlation-based minimization on the level of suites, and obtained a time save of 7.89%
whilst maintaining a precision of 0.99%. Lastly, we propose methodological improvements to
correlation-based minimization and runtime based prediction by suggesting the use of a val-
idation set. Due to the nature of the dataset on which these models have been evaluated, it
remains to be shown how these systems interact with regards to the time they can save in total,
if deployed at the same time.
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1 Introduction

In order to ensure stability of a piece of software it is vital that regression testing is performed
when sections of a codebase are changed. Such tests are dedicated pieces of code meant to ver-
ify that the program still meets a series of requirements after alteration, and thus are executed
after changes to the code, or on a periodic basis. However, such frequent testing gives rise to
a variety of problems in larger software projects. The amount of resources and time needed to
execute every test can become substantial, and even infeasible to do on a frequent basis. The
solutions to this scaling problem fall in three categories: Test selection aims to identify tests that
might fail from those that will be unaffected by (certain) changes, test minimization techniques
identify tests that are redundant in order to reduce the run-time of all tests without affecting
the quality of testing, and finally, test prioritization induces an ordering over all tests such that
the chances of finding the most faults in the least time are maximized. Of note is the rise of
machine learning approaches for these tasks, in particular, the works of Philip et al. [1] and
Machalica et al. [2]. In this thesis, we will explore their approaches, in an attempt to improve
and combine both state-of-the-art systems. Philip et al. introduce the FastLane system, which
utilizes data-driven methods for both selection and minimization. In the Machalica et al. pa-
per predictive test selection is presented, an approach which uses historical information about
file changes and tests to perform selection. These systems have a number of favourable fea-
tures in common. They can be re-trained frequently and automatically, allowing the system to
stay up-to-date with its predictions. This does require running some tests on changes that have
previously been labelled as either unecessary, or low-risk. However, this can be done during
moments of relatively low load on the testing infrastructure, which will not interfere with the
work of developers. Both systems can automatically do this process, making the use of such
systems in a production environment feasible. Finally, both systems provide the administrator
of such a system with a useful set of thresholds that can be adjusted to suit any degree of con-
servatiness with regards to the tests that should be run. This allows the system to be tuned to
work well in any production environment. In this thesis, we will investigate these automated
testing systems, attempt to improve on these methods, and combine them. FastLane offers a
data-driven approach for test minimization, whilst predictive test selection offers a more so-
phisticated approach to test selection. Neither of these works address test prioritization, but the
predictive test selection methodology at first glance appears to be very suitable for this task as it
performs selection by assigning a risk score to each test case, which can be used as an ordering
for a given change. The combination of these systems is expected to give rise to a potential sys-
tem that will cover all three primary aspects for dealing with scaling issues in software testing.
We will explore these approaches using the data of tests which have been performed in 2021 on
the codebase of the ASML metrology department.

Moreover, we will suggest improvements to the methodology for both systems. One specific as-
pect that is not covered in both papers is the granularity at which test selection takes place. Test
cases are often grouped together in sets called test suites (referred to as suites in this thesis),
which cover the testing of a higher-level functionality in the program. Both aforementioned
works only explore selection on the level of cases. We hypothesize that a selection on the level
of suites could be more robust, that is, better at catching faults, than a selection at the case level.
We envision that it may be easier to identify that a fault is likely to occur within an area of the
code which is associated with a suite, than it is to identify which specific region within that area
is resonsible for the fault. In order to further explore this idea, we will also consider another
unit of organisation of tests that is not commonly used, but exists within the code organisation
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in ASML, the building block. Each building block has a set of suites associated with it, and
corresponds to a full test of complex functionality.

Furthermore, in the paper on predictive test selection, a standard gradient boosting regressor
is utilized. This approach uses a symmetrical loss, in which overestimating the risk of a test,
and underestimating it, are both considered equally wrong insofar as the deviation from the
correct answer is the same in absolute terms. The consequences of not running a test that would
fail, and running a test that will pass, are quite different. A missed failing test could result in
(temporarily) incorrect software, whereas running a passing test only has as a consequence the
resources and time necessary for its execution. We hypothesize that we can achieve a better per-
formance in terms of recall by taking this risk asymmetry into account during training by using
an asymmetric loss function. Lastly, tests can vary wildly in duration, meaning that the required
resources to execute such a test also vary drastically. As a result, two different methods for test
selection that are equally good in test selection by quantity may vary in their performance on
tests with differing durations. We envision that for tests with a shorter duration, it may not be
worth it to predict an outcome, as the cost of execution associated with these tests is minimal,
as compared to the cost of excluding failing tests. The latter will result in a delay of fault dis-
covery, which can be a source of frustration for developers who have to go back to earlier work
to resolve the issue, after which the test still needs to be executed. We will investigate how such
a pre-selection based on runtime will affect the tradeoff between fault detection, and the time
saved by applying test selection methods.

It should be noted that all of the aforementioned methods are unsafe, which has as a conse-
quence that there exists a possibility of a test not being selected that would have failed on the
code change for which we are selecting tests. In such methods, critical versions or sections of
the program that is being developed still require a test with the full set of tests available. How-
ever, these methods still serve a purpose in that they can be used in earlier stages of testing, if
they are capable of detecting most of the failing tests whilst providing a sufficient reduction in
test execution time.

1.1 Research Questions
To summarize, this thesis focuses on the following research questions:

Q1. Does a system combining predictive test selection, outcome correlation and runtime-
based outcome prediction outperform either of the individual systems in terms of
reduction in test execution time and fault detection capacibilities?

Q2. Can predictive test selection be effectively used to perform prioritization?

Q3. Will the introduction of different granularity levels in which the tests are grouped
influence the performance of predictive test selection, outcome correlation and
runtime-based outcome prediction?

For the first question, we will examine the approaches as proposed by Machalica et al. [2] and
Philip et al. [1], which both adress different approaches to reducing the cost of running tests on
testing infrastructure. In addition, we will attempt to improve the performance of both systems.
In order to address all three topics common in the literature and to answer the second research
question, we aim to assess the feasibility of using predictive test selection for prioritization. For



Chapter 1 INTRODUCTION 9

the third question, we will explore how the recall-time saved tradeoff is influenced by varying
at which level of hierarchical organization models are fitted over.

1.2 Thesis Outline
Chapter 2 introduces the works of Philip et al. [1] and Machalica et al. [2], as well as the
literature on test selection, minimization and prioritization, and finally the machine learning
techniques which have been utilized in this thesis. Readers familiar with these topics can safely
skip these sections. Chapter 3 covers the creation of the dataset, as well as the variety of
experiments that have been performed. Chapter 4 covers the results of these experiments. In
Chapter 5 we will touch upon the implications of our findings. Finally in Chapter 6, we will
summarize our findings as well as touch upon future work.
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2 Background Literature

The techniques that are used to improve regression testing can in general be split up into three
categories, namely selection, minimization and prioritization [3]. Test selection addresses the
issue of finding which tests are relevant given a specific change, and therefore reduces the over-
all time spent on testing. Test minimization addresses the issue that some tests may monitor the
behaviour of the software on similar requirements, and thus seeks to remove any tests that are
redundant. The last category is test prioritization, which addresses the order in which the tests
are performed. If a potential issue is present within the code, the time in which it is found is
important, as the faster the developer receives feedback, the lower the risk of incurring a pro-
ductivity penalty as a consequence of having to switch contexts between their new and old tasks
[4, 5]. In addition, there may not be sufficient time to run all tests, even after an initial selec-
tion, and as such, prioritization seeks to maximize the errors found within a limited timeframe.
In this chapter, we will first briefly introduce the systems as proposed by Philip et al. [1] and
Machalica et al. [2] for adressing regression testing. Afterwards we will introduce a variety of
approaches for selection, minimization, and prioritization, in order to provide an overview of
the field. Lastly, we will provide a brief background to the machine learning techniques that are
used for the methods that are utilized in this thesis.

2.1 FastLane and Predictive Test Selection

In the work of Philip et al. [1] the FastLane architecture is introduced, which reduces the amount
of tests that are run in a three-step process. First, a classifier is trained which separates code
changes that most likely are safe from those that need further testing. For this purpose features
are extracted on the level of a commit, that is, when one or more files that have been altered,
added or deleted. Examples of such features are the file types involved in the commit, the num-
ber of lines changed per file, and information with regards to the frequency of alteration of files
in the commit over one, two, and six months, and since the creation of the file. A commit is
deemed safe if, for example, it involves few alterations to file types that do not typically induce
test failures, such as configuration files. Second, all tests that relate to the code that has been
changed are selected. An initial set of tests is selected by considering for each program the set
of all tests corresponding to it. This selection is then refined by inspecting tests that frequently
run together, in order to identify any tests that correlate strongly in test outcome. For every set
of correlating tests that is found, all but the test with the lowest average runtime are removed.
Third, the remaining tests are then executed. The time a test takes to run is monitored, as there
exist certain tests of which the runtime is bi-modally distributed. For such cases, the outcome
of a test and its duration tend to be correlated. For example, the runs of a test that succeed
swiftly typically pass, but those that fail tend to take longer. Such behaviour could be caused
by failing tests that are waiting on time-outs to expire, among other reasons. For each test for
which this behaviour is observed a threshold is determined via logistic regression, such that if
a test execution reaches it, the outcome can be predicted with a high certainty. These tests are
then aborted, and the prediction is used to assign the test outcome. With their system, Philip et
al. perform minimization, by analyzing which tests correlate strongly in outcome, as well as a
crude form of test-case selection by their identification of safe commits.

The work of Machalica [2] et al. takes a different approach which focuses on selecting the
tests which are most likely to break. Their system, predictive test selection, utilizes only one
model and analyses changes on a per-commit basis. Initially the set of all potentially relevant
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tests is selected by finding all files that relate to the changed code. Then, for each test t in the
set of selected tests T and the commit C, the pair ⟨C, t⟩ is given to a regressor that assigns a
score between 0 and 1, which can be interpreted as the risk of t failing due to the changes in
C. After all such pairs have been scored, the tests which are associated with the highest scores
are selected and actually tested. More specifically, the system always tests a percentage of the
highest scoring tests, as well as any other test whose estimated risk surpassed a configurable
threshold. This system only performs test case selection, in a more sophisticated manner than
the approach chosen by Philip et al. [1].

2.2 Regression testing approaches
2.2.1 Selection

The goal of Regression Test Selection (RTS) is to find a subset of all tests available such that for
a given set of changed files each test that could potentially identify an issue on the basis of those
changes is included. An approach that does this consistently is deemed safe [6]. An important
finding in this field is that there cannot exist any efficient procedure in selecting exactly this
set [7]. Even the identification of test cases that are modificiation traversing, that is, tests that
execute either new code, modified code, or used to execute deleted code, is an NP-hard problem
[7]. Fortunately these stringent constraints hold only in the case of exactly selecting all tests that
fufill these conditions. Therefore all approaches for test selection attempt to identify a superset
of all modification-traversing tests.

Evaluation: The performance of RTS methods is primarily measured in recall. Let T denote
the set of all available tests t for a particular version v of a Software Under Test (SUT), C the set
of all changes in a software change to the SUT at version v, S : P (T )×C 7→ P (T ) a selection
function, and O : T ×C 7→ {True,False} an oracle function such that O(t,C) = True iff the set
of changes C causes test case t to fail. A test t ∈ T is said to be a true positive iff O(t,C) = True
and t ∈ S(T,C), or, in other words, S correctly identifies t as a test affected by the code changes
C. Then the set of all true positives can be defined as in Equation 1:

TP = {t ∈ T | O(t,C)∧ t ∈ S(T,C)} (1)

A false negative on the other hand is a test case t ∈ T that is not selected by S, but for which C
causes t to fail. Then the set of all false negatives can be defined as in Equation 2:

FN = {t ∈ T | O(t,C)∧ t ̸∈ S(T,C)} (2)

Then recall can be defined as in Equation 3.

recall =
|T P|

|T P|+ |FN|
(3)

The reason recall is used as the primary measure of performance is because including a test that
will pass after execution is not as severe as excluding one that fails. Ideally we would like the
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set of selected tests to be as small as possible, so precision is concidered, but it is secondary to
recall. To formally define precision, we first define the set of all false positives, or tests that are
selected by S but for which there is no test t ∈ T such that O(t,C) = True, as in Equation 4:

FP = {t ∈ T |¬O(t,C)∧ t ∈ S(T,C)} (4)

Then precision is given as in Equation 5.

precision =
|T P|

|T P|+ |FP|
(5)

Unfortunately, whilst recall and accuracy are frequently reported, it is difficult to make any
meaningful comparisons between techniques in the literature. This is because there exist few
commonly agreed benchmarks for the field [8]. The performance of a system should only be
seen as indicative of one specific application. Due to this issue some authors compare their
technique to random selections of tests [8].

Taxonomy: Methods for RTS can be subdivided into static and dynamic methods. Static meth-
ods aim to identify which tests are relevant by examining the structure of the project and the
code itself [9]. The relationships between files are analysed and can be used in combination
with information about which files have been changed in order to identify the set of tests that
relates (in)directly to said change, or in other words, a superset of the modification-traversing
tests. An example of such a method is firewall [10], which selects tests on the level of mod-
ules of code. In this approach, all modules that either have changed or use the functionality of
changed modules have their corresponding tests selected. Other static methods examine such
a structure at the level of classes or functions, such as class firewall [11, 12] and control call
graph methods [13]. In more recent work Correia and Santos [14] introduced MOTSD, a static
method that extracts code coverage of tests on the instruction-level and approached selection
as a multi-objective task. They report a subpar performance, obtaining precision scores in the
range of 0% to 1% and recall within 21% to 26%. On the other hand, dynamic methods analyse
which procedures or files are invoked during the execution of tests on the previous version of
the program, and deduce the relevant tests using that information. While there exist both static
and dynamic methods with varying degrees of overhead, it should be noted that the overhead
introduced by dynamic methods is on-line, meaning that additional resources are needed during
testing to monitor which files are involved during a test execution. This has as a consequence
that such methods do incur a speed penalty when executing tests. Nevertheless, this penalty
has been found to not outweigh the benefits of test selection. A recent example of a dynamic
method that has seen real-world adoption1 is EKSTAZI, an approach that selects which tests
to include on the basis of which files have been accessed by each test on previous executions
[15, 16]. The relevant tests are selected by considering each binary file which has been changed
in a newer version. The authors attempt to address the overhead of collecting runtime informa-
tion by suggesting two passes, of which one does not collect new dependency information. The
other can be run in parallel or at a later point in time.

1In open source projects of the Apache software foundation, https://www.apache.org/ [15]

https://www.apache.org/
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As aformentioned, another defining factor between approaches is the coarseness with which it
analyses the relationship between the program and the tests is examined. Fine-grained methods
typically examine how specific functions, basic blocks or lines of code relate to tests, whereas
coarse methods examine this relationship on the level of files or classes. Fine-grained methods
should theoretically be able to capture a smaller subset of all the available tests than coarse
methods, however in practice the difference in test selection is negligible [6, 9]. In addition,
fine-grained methods analyze code in more detail, which has as a consequence that the over-
head necessary tends to be larger than in the case of coarse ones.

A final property of such test selection methods is the level at which they need to examine the
behaviour of the program that is tested. Many methods that have been formulated (including
the aformentioned control graph methods, and EKSTAZI) require language-specific or domain-
specific solutions and require access to the code of the program, before any modifications have
been made. This has implications with regards to the generalizability of such systems, as when
one of these methods is employed it may not be the case that it is trivial to adapt it to a new pro-
gramming language or to certain features within a language such as pointers and type coercion
(see for instance [17]). In contrast, black-box methods only need to examine the input-output
behaviour of the software on a set of tests, which can be reasonably expected to be present for
any possible programming language. Machine learning approaches to regression test selection
tend to fall in this category. Of particular interest is the study of Martins et al. [18], who ex-
plored the use of a variety of machine learning classifiers, and found that the best results were
obtained by using either a random forest, or a logistic regression. Their methods are similar
to Machalica et al. [2], in that they both utilize machine learning techniques for test selection,
but they differ in that the former trains a direct classifier, and the latter first trains a regressor
resulting in scores for each test, which are then selected over. In addition, Martins et al. did not
consider the technique used by Machalica et al., gradient boosting, which may be more suitable
for regression test selection as it performs well on datasets where there is an imbalance between
samples of different classes. In the work by Memon et al. [19] it was found that the ratio be-
tween passing and failing tests was as skewed as 99:1. This imbalance was addressed in [18] by
using class weights and both over- and undersampling during the process of fitting their models.

It should be noted that the initial test selection as performed in the systems of Machalica et al.
[2] and Philips et al. [1] are related to the firewall method [10] in that the tests get selected on
the basis of involved modules and build dependencies, excluding tests that do not directly relate
to the changed files themselves. This approach should suffice in practice, but depending on the
structure of the test suite, may actually be unsafe as it can be the case that there exists a test
that reveals a fault in the software outside this selection. This can occur if the set of tests that
has been selected for a particular firewall is unreliable. That is, there exists an input-output pair
for which a test is fault-revealing, but it is not evaluated within the set of selected tests. If there
also exists a test outside of the selected tests that exercises parts of the changed code with the
input-output pair that reveals the fault, an unsafe selection of tests can occur [6].
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2.2.2 Minimization

Test minimization, also known as reduction or filtering, is the process of identifying redundant
tests in order to remove them. The key difference between minimization and selection is that
in minimization, we identify tests that are unnecessary for any possible change, given the rest
of the test suite, whereas in prioritization we only aim to filter out tests that are unnecessary
given the set of tests and a specific change. Minimization is often formalized in terms of set
of requirements R, {r1,r2, ...,rn} that must be fufilled for the SUT to be considered correct [3].
Each test t in the set of all tests T covers a set of requirements. Let C : T 7→ P (R) denote a
function that returns the set of requirements covered for any given test t. For a set of tests to
be considered correct, it must hold that all requirements are covered by at least one test, or for-
mally, ∀r∈R∃t∈T r ∈ C(t). Let M : P (T )×P (R) 7→ {True,False} denote a function that is true
iff for a given set of tests and requirements it holds that all requirements are covered by that set.
The goal of a test minimization technique is then to find the minimal hitting set of tests over
the requirements, which is the smallest set of tests such that all requirements are covered, or
formally, we wish to find a set TM ∈ P (T ) such that M(TM)∧∀TO∈P (T )(M(TO)→ |TM| ≤ |TO|).
Techniques for test minimization vary on the basis of how the set of requirements are deter-
mined, as well as how the minimal hitting set is approximated.

Evaluation: The performance of test suite minimization is often evaluated in terms of both the
Percentage of Test Suite Reduction (PTSR), as well as the fault detection capability of the re-
duced set of tests [20]. These measures can also be combined with the Percentage of COVerage
(PCOV) of the original set by the reduced set of tests in order to make comparisons between
methods, where the goal is to maintain a high requirements coverage with the smallest set pos-
sible. Finally, evaluating these techniques only on set minimization does not take into account
that the underlying goal of these methods is to reduce the time spent testing unnecessarily. To
adress this the Percentage of Test Time Reduction (PTTR) can also be calculated as the ratio
between the time spent testing the reduced set versus the total time needed to execute all tests.
To obtain these metrics, programs that have known or seeded faults are typically evaluated.
Unfortunately, for a minimal hitting set over the requirements to also still detect all faults re-
quires that the requirements are entirely correct to begin with. This cannot be guaranteed by
all techniques, and thus there is the possibility of filtering out tests that can identify a fault the
remaining tests cannot [21]. As with RTS, there exists no commonly agreed upon benchmark
for minimization, which makes comparisons between techniques on the basis of papers difficult
[20], and the same precautions apply on the comparisons of techniques that have been evaluated
on different code bases.

Taxonomy: The set of requirements can be established in a variety of ways. Some techniques
simply assume the requirements that each test needs to fufill are already known. This is often
an oversimplification which is applied in order to evaluate the ability of an approach to reduce
the test set, as it may be infeasible to guarantee this in the context of real-world code bases that
are subject to frequent changes. Furthermore, this limits the applicability of these techniques to
code bases where such requirement tracking is not yet in place. Other approaches base the re-
quirements on a metric of code coverage, where each requirement is one line of code, a method
call, or another level of granularity. A suite minimization is then considered correct if each
element that was covered by the full set of tests is also covered by the minimized set. A finer
granularity of the coverage metric can result in a higher fault-detection capability [22], but this
is not always the case [23]. Similarly coverage can also be determined based on the coverage
of test cases of a model of the software rather than the code itself [24]. The requirements can
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also be derived from dynamically obtained execution profiles of the SUT such as in the work of
Smith et al. [25]. It should be noted that, depending on how the requirements are determined,
the resulting reduced test set may detect less faults than the original set [21].

Unfortunately, the minimal hitting set problem is NP-hard, and therefore the techniques used
in minimization either have poor time-complexity (such as linear integer programming), or rely
on approximations (such as genetic algorithms or heuristics) [20]. The heuristics that are fre-
quently used rely on different greedy methods to extend a current candidate set of tests. A less
common method for approximating a minimal hitting set, is clustering. In these methods, tests
are clustered on the basis of each requirement they cover, and then from each cluster, a limited
numbers of tests is selected, and the rest is discarded [26, 27]. This can come at the cost of
discarding tests that detect faults, but are similar to (in the same cluster as) other tests that miss
those faults.

As a notable exception to common approaches that seek to identify whole test cases that are
redundant, the technique proposed by Vahabzadeh et al. [28] performs minimization by consid-
ering redundant statements in different cases . Test cases whose code is similar is then unified
into a single test that performs the behaviour of all separate cases.

2.2.3 Prioritization

In environments where testing occurs frequently such as projects utilizing Continuous Integra-
tion [29], the computational power and time available may not be succifient to execute each test
that has been selected by an RTS method or otherwise [30]. The topic of prioritization aims to
deal with this issue by deducing an optimal ordering of the test cases such that an objective is
maximized [3]. Typically these methods aim for an ordering such that the test cases that are
executed first have a higher probability of failure. Such an ordering would also reduce the time
between code submission and the time at which the first failure is found, and therefore provides
quicker feedback to developers. The problem of prioritization is closely related to RTS in that
a total ordering TO can be treated as a selection, if we select the head of such an ordering up to
some n ∈ N s.t. n ≤ |TO|.

Evaluation: The methods used for evaluating prioritization techniques are more involved than
in the case of selection or minimization due to the added complexity of having to evaluate an
ordering. A commonly used metric is the Average Percentage of Faults Detected (APFD) and
its derivatives such as the Normalized APFD (NAPFD). The APFD metric is the area-under-
the-curve of the total number of faults detected plotted against the fraction of the tests that have
been included [31]. For example, assume we have a set of tests {A,B,C,D} which we apply to
a program with two faults, such that A detects one fault and B the other. Two possible orderings
are ⟨A,B,C,D⟩ and ⟨C,A,D,B⟩, of which the first finds both faults within two tests, and the
second needs to run all tests to find all faults. This is reflected in their APFD (see Figure 1a and
Figure 1b), or the area-under-the-curve of the plot of the fraction of included tests as plotted
against the percentage of faults detected. It can be calculated with Equation 6, in which m is the
number of faults in the program, n is the number of tests, and TFi is the minimum number of
tests that has to be included in order to catch i faults [32].

APFD = 1− ∑
m
i=1 TFi

nm
+

1
2n

(6)
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This metric assumes that it is possible to run any ordering of tests completely, but in settings
where time is limited, not all tests may be considered in the final ordering. For such scenarios
the NAPFD metric is utilized, which also considers the amount of tests that actually could
have been executed under some constraints. Finally, the APFD metric treats all faults as equally
severe, and all tests as equally costly. The APFDc (cost-cognizant APFD) formulation addresses
this by modifying the original APFD formula to account for both [33]. Instead of computing
the area-under-the-curve of the plot of fraction of tests included against the percentage of faults
found, the new metric calculates the area-under-the-curve of the plot of the fraction of test time
executed over the sum of all test times against the fraction of fault severities found over the sum
of all fault severities. It can be calculated as in Equation 7.

APFDc = 1−
∑

m
i=1

(
fi ×

(
∑

n
j=TFi

t j − 1
2t TFi

))
∑

n
i=1 ti ×∑

m
i=1 fi

(7)

Unfortunately these metrics are only easy to calculate on datasets where the faults are known,
as the metrics consider faults and not failing tests. There are several approaches to deal with
this mapping. Datasets where all faults are known, such as DEFECTS4J [34], can be used (as
in Paterson et al. [35]), faults can be introduced by creating mutants [36], or by seeding faults
by hand [37]. The latter two methods create artificial faults which may not be representative of
real-world faults, or need a manual process to create them, thus reducing the size of datasets
used in such studies due to the effort required. The first approach comes closer to a realistic
evaluation, but still diverts from real-world datasets in that the data has been cleaned and care-
fully selected prior to publication. If one wishes to evaluate the performance on real, possibly
complex software suites, to more accurately gauge the real-world performance of approaches,
some assumptions need to be made. Specifically, some studies consider the two extremes that
can easily be evaluated, namely that each failed test corresponds to one fault, or that one fault
is responsible for each failed test (see for instance [38]). Both of these approaches are over-
simplifications, as a single fault could cause multiple, but not all, tests to fail, or a single failed
test can be due to multiple faults [39]. In addition, the APFD metric and its variants can only
increase by detection of a number of distinct faults, but it also may be desirable for a method
to detect a single fault multiple times. As developers only obtain feedback in the form of failed
tests, different tests failing due to the same fault can help with localization [32]. When priori-
tization techniques are used in a situation where not all faults can be known, other metrics are
used, such as evaluating how many tests in an ordering must be executed before a failing test is
found (or the time required to do so). As with RTS and minimization, few benchmark datasets
exist [40], but there are a number of heuristic-based ordering techniques that can be used in
order to estimate the performance of a new method. Techniques are often compared against
random orderings, as well as orderings simply based on the frequency of failure or execution
time [32, 38]. Whilst it has been shown that the performance of techniques can differ drastically
depending on what dataset it is evaluated on, in most cases performance improves as compared
to these heuristic-based orderings [32].

Taxonomy: The approaches for obtaining such an ordering can be grouped into point-wise,
pair-wise and list-wise methods [40]. Point-wise methods induce an ordering by first assigning
a score to each case in isolation, by which each test case can be ordered to obtain O(Ts). An
example of a point-wise method is G-clef, which uses simple features such as frequency of re-
visions, that are then decayed over time [35]. These are used to score the risk of failure of each
changed file, which then can induce an ordering over the tests related to these classes. Pair-wise
methods aim to learn a partial ordering on test cases which can be used to obtain a total order-
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(a) ⟨A,B,C,D⟩ (b) ⟨C,A,D,B⟩

Figure 1: An example of how APFD is calculated, on a set of tests {A,B,C,D} applied to a
program with two faults, and A and B both detect a different fault.

ing, and finally, list-wise methods obtain an ordering of test cases directly by considering each
selected test together.

Prioritization is not solely done on the estimated probability of test case failure. As this tech-
nique is often utilized in a time-sensitive context, approaches have been formulated that also
take the time for a test to execute into consideration [30]. Such methods are known as cost-
aware, and are typically evaluated with APFDc [30, 38]. In contrast, cost-unaware methods
avoid this issue by assuming that each test case will have an identical cost, for example, an
identical execution time.

Unlike in RTS, it is not necessary to know what has been changed in the SUT for prioritiza-
tion. It is possible to obtain an ordering which outperforms heuristic based orderings by only
considering the test cases themselves. These methods are known as change-unaware. Such
an ordering can be obtained by considering features of the test, for example, the frequency of
which a test has failed prior, as well as features that are obtained either statically or dynamically,
such as code coverage [38]. Methods that use several features based on the history of a test are
common in the field [30]. It is possible for a prioritization technique to be both change-unaware
and history-unaware. In such techniques the goal is to obtain a general, as opposed to version-
specific ordering, that maximizes the probability of finding faults earlier without any context.
This can be treated as a starting order for a new set of tests about which no historical data is
available [32].

Recently there has been an increase of interest in utilizing Machine Learning techniques for
prioritization [30, 40]. Methods utilizing supervised learning aim to train systems that perform
point-wise or pair-wise rankings based on historical data [41], and general information avail-
able about tests such as natural language descriptions [37], among others. These approaches
have been shown to obtain good results, but require frequent retraining in order to avoid drift
and are less flexible in adapting to an environment which is changing rapidly. Because of this,
approaches based on reinforcement learning have been explored [40]. It should be noted that it
has been found that methods employing supervised learning can perform just as well as rein-
forcement learning [42], and whilst reinforcement learning techniques perform well on average,
the performance as considered per testing cycle can be quite noisy [39]. This makes it difficult
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to estimate how long test execution will take before submitting code to a testing architecture.
Despite this, such systems have seen succesful real-world implementations [43]. Unsupervised
methods aim to identify groups of similar tests via clustering. For example, Arafeen and Do
[36] cluster tests on the basis of similarities in their requirements, and Carlson et al. [44] cluster
using code coverage, code complexity and historical data. After clustering, tests can be ordered
such that tests that are executed one after another come from different clusters.
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2.3 Machine Learning approaches
In this section, we will provide a brief overview of the machine learning techniques which have
been utilized for this thesis. Readers who are familiar with these techniquescan safely skip this
section.

2.3.1 Logistic Regression

A logistic regression is a statistical model which is used in classification problems [45]. In the
case of binary classification fitted on a dataset with n features x1 to xn (independent variables),
an equation of the form:

p(x1, ...,xn) =
1

1+ e−(β0+β1x1+...+βnxn)
(8)

is fitted by finding values of the parameters β0 through βn through maximum likelihood esti-
mation. This function calculates the estimated probability of a datapoint belonging to one of
the two categories. Values above 0.5 probability are interpreted as a datapoint belonging to one
class, whereas values below 0.5 belong to the other. After a logistic regression has been fitted,
it can then be used for predicting the class of new datapoints by calculating the value of this
function on each point.

2.3.2 Decision trees

A decision tree [46] is a machine learning method which can be used for both classification
and regression. It is structured as a directed, acyclic graph, consisting of three types of vertices
(also known as nodes): a root vertex, leaf vertices and intermediate vertices. These vertices are
connected such that each non-leaf node has at least two edges leading to other vertices. Each
tree contains one root node, from which each other node is reachable. The edges leading out of
one vertex are all associated with one feature of the dataset. The feature is split into as many
intervals, or sets, as there are edges leading out of the related vertex. Each leaf node is associ-
ated with an outcome, which is a class label in the case of a classifier, and a numerical value in
the case of a regression. A datapoint can be assigned such an outcome by starting at the root
node, and for each non-leaf vertex, following the edge to the next vertex such that the value of
the relevant feature of the datapoint is within the set or range of values associated with that par-
ticular edge. In Figure 2, we see an example of a simple decision tree for test selection. Starting
from the root, the tree predicts a test might fail (and thus needs to be included) if the number of
executions of that test is below five. If it is equal to or greater than five, then the average pass
rate of the last fifty-six days is examined in order to decide whether or not it should be tested.

Decision trees can be created manually, or inferred from data by recursively separating the data
at a node such that some measurement of impurity is minimized. Common measurements of
impurity for fitting decision trees on classification problems are entropy (Equation 9) and the
gini index (Equation 10). In both equations, C represents the number of outcome classes at a
vertex v, and pi gives the probability of a datapoint at a vertex belonging to class i.

E(v) = Σ
i=1
C − pilog2 pi (9)

G(v) = 1−Σ
i=1
C (pi)

2 (10)

These are then calculated for each child vertex vc ∈ S that is the result of splitting the data at the
parent vertex vp, and averaged over while taking the probability of ending up at each child node
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Figure 2: An example of a simple decision tree for test selection.

into account. Finally, we substract this from the entropy present at the parent node to obtain the
information gain (IG) of a split, where a higher information gain means a better split:

IG = E(vp)−Σvc∈SP(vc)E(vc) (11)

Impurity is calculated differently in the case of regression. For instance, one can use the vari-
ance of the dependent variable in each node. Of particular interest is the Friedman mean squared
error [47], which is defined as in Equation 12. The function i2 is the least-squares improvement
criterion of a set of datapoints at a node R, considering a binary split such that the resulting
subsets are Rl and Rr, with ȳl and ȳr being the means of the dependent variable in the corre-
sponding subsets. Finally, wl and wr represent the sum of weights associated with the samples
in each subset. If the samples are unweighted, all weights are set to 1. The best split out of all
possible splits at a node is one where the improvement criterion is found to be the largest.

i2(Rl,Rr) =
wlwr

wl +wr
(ȳl − ȳr)

2 (12)

When a certain condition is reached at a child node, such as a maximum depth being reached,
or the number of datapoints remaining at the child node being below a threshold, the node
gets turned into a leaf node. In the case of classification, the leaf is assigned the class of the
most prevalent class in the data that gets classified at that leaf during training. In the case of
regression, the average value of the dependent variable of the datapoints that end up in the leaf
during training gets computed. How many children a parent vertex can have, as well as the
maximum depth a tree can have, are often limited in order to attempt to combat overfitting.

2.3.3 Gradient boosting

Gradient boosting [47] is a type of ensemble method, a method which utilizes a combination of
weak machine learning models in unison. By combining many weak learners, the performance
of the ensemble as a whole exceeds the performance of any individual learner, if the types
of errors each learner makes is independent with regards to the other learners. Each weak
learner is a simple machine learning model, typically a decision tree, in which case the ensemble
is also referred to as a decision forest. These weak learners are constructed in a sequential
fashion, such that each model that is added corrects for the errors made by the ensemble prior to
adding the new model. In each iteration of boosting, the performance of the current ensemble is
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evaluated over the training dataset. For each training datapoint, a loss function is used in order
to evaluate the difference between the prediction for each datapoint, and the actual answer. The
derivative of this loss function with respect to the answer as previously predicted by the model
is calculated, which is known as the pseudo-residual, and a new model is constructed that tries
to predict this pseudo-residual. Finally, this new model is added to the ensemble, and the new
output of model is equal to the output of the ensemble before the new model, plus the output
of the new model scaled by a learning rate. For regression, the squared difference between the
predicted answers F and actual answers y is typically used:

L(y,F) =
1
2
(y−F)2 (13)

The output of each leaf node is equal to the value γ which minimizes the loss between the
correct output of the dependent variable y, and the sum of γ and the prediction given by the
model which has been fitted thusfar on the samples R that have been assigned to the leaf:

argmin
γ

∑
xi∈R

L(yi,Fm−1(xi)+ γ) (14)
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3 Methods
In this chapter, we will describe the experimental setup of each experiment conducted. The
outcomes of these experiments are presented in the next chapter. In Experiment I, we recreate
and improve parts of the methodology of Philip et al. [1]. In Experiment Ia and Ib, we explore
runtime based thresholding and correlation based minimization respectively. We then investi-
gate the methodology of Machalica et al. [2], by first performing selection in Experiment IIa. In
Experiment IIb, IIc and IId, we explore filtering out tests from the data based on historical exe-
cution time, using an asymmetrical loss and a combination of these two techniques. Finally, in
Experiment IIe we evaluate the best performing model of the second experiment on the testing
data.

3.1 Experiment I
In the work of Philip et al. [1], three systems are introduced. In this section, we will first
introduce the data which was used for our experimentation, and then both recreate and improve
upon two of these systems, runtime based thresholding and minimization by examining the
similarity in outcomes.

3.1.1 Object of analysis

At ASML, for every test that is executed a record containing information about that run such as
test duration and outcome is stored in the Test Results Database (TRD). Whenever an engineer
submits their program for testing, they do so by also specifying a test plan, which is composed
of a set of suites, each of which incorporates a set of tests. Furthermore, each suite is associ-
ated with a building block, a unit of organisation used in ASML to group similar functionality
together. Due to the large software testing volume, this study limits itself to the analysis of the
testing as performed by the metrology department. Unfortunately, there are no unique identi-
fiers stored in the database for suites or cases. Instead, an identifier is constructed by computing
a hash over other information that is stored. For suites, this hash is computed by combining a
building-block identifier, the type of machine the test is for, and the names of the files specifying
configuration data for the test. For cases, this is constructed by computing a hash over the suite
hash, the test name, and the test description. Each suite has a total of four possible outcomes:
’PASS’, ’FAIL’, ’UNRESOLVED’ and ’UNTESTED’. A suite is assigned a passing status if all
of the tests in that suite execution have passed and a failing status if one or more tests failed.
The unresolved status is assigned to a suite if there was an issue during the setup of the testing
environment, or if any test case within the suite has not completed before a specified timeout.
If any test case has timed out, the remaining test cases within a suite are still executed, as the
timeout is considered on a per-case basis. This timeout can be adjusted by the developers, and
has a default value of 30 minutes. Finally, the ’UNTESTED’ status is given to suites that were
skipped for execution, which is done manually by developers before submitting a test plan. Test
cases have an additional possible outcome status, ’UNSUPPORTED’, given when an execution
is attempted of a test on incompatible software.

3.1.2 Experiment Ia: Thresholding

For the first experiment we analyzed the suitability of part of the methodology as introduced
by Philip et al. [1], which introduced the idea of identifying for which tests a threshold can
be defined such that if a test executes for a longer time than the threshold, one can predict the
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outcome with a high degree of certainty. We extracted each record in the database from 2021 be-
longing to the metrology department at the level of both suites and test cases. From this record
we obtain the hash identifying the test, the date, outcome and duration of that run. This resulted
in data for 37,684 unique cases, and 17,948 suites, associated with 17,525,006 and 8,885,769
executions respectively. Records that had an outcome of ’UNTESTED’ or ’UNSUPPORTED’
were discarded from the data, resulting in 79,472 discarded case records and 53,177 discarded
suite records. In addition, a dataset was constructed for selection on the level of building blocks,
using the suite dataset. For each plan, and for each building block within that plan, all suites
were selected. The start of the execution of the building block for that plan was set to the earli-
est start of all corresponding suites, and the ending time was set to the latest of these times. A
building block was considered passing if all the suites that related to that building block for a
single plan succeeded, and failing otherwise.

Figure 3: The pipeline for the creation of the datasets for Experiment Ia.

For all three datasets, we perform the following operations individually: The dataset is split
into a training, validation and testing dataset such that all records from January until October
are included in the training set, October in the validation set, and the remaining records are
included in the testing set. We then find all tests that have either less than 10 passing executions
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or less than 10 failing or 10 unresolved executions. These are then removed from the training
data, as the number of executions associated with these tests is considered too low in order to
use for prediction [1]. For the validation and training data we perform the same selection, but
instead checking if at least one passing and one failing or one unresolved execution is present in
the data. Finally, we only keep the tests for which there is at least one record in each individual
dataset (training, validation and testing) and discard the rest. This pipeline is illustrated in
Figure 3. It should be noted that the inclusion of a validation set deviates from the original
implementation as suggested in [1]. More precisely, for each test in the training set, we attempt
to fit two logistic regression models: One which attempts to separate the times associated with
passing executions and failing executions, and the second which attempts to separate the times
associated with passing executions and unresolved executions. We discard a model if it is the
case that each point after the decision boundary (that is to say, after the threshold time) is
predicted as passing. If a test has no datapoints for one of these categories (either no failing,
or unresolved datapoints), then we fit only one model. If two models have been fitted, for each
such test we choose one model by examining the decision boundary for both and selecting the
model for which this boundary is later. We evaluate each model on the datapoints found in
the validation set, and discard any model on the basis of two criteria. The first criterion is the
fraction of incorrect terminations with respect to correct terminations, in which we consider a
test execution terminated if the execution time of the run exceeds the decision boundary. A
termination is correct if the terminated test would have been non-passing without termination.
The second criterion is the fraction of correct terminations, but with a wrong label, over all
terminations. A termination is considered correctly labelled if a terminated test execution is
assigned the correct label (failing or unresolved), and incorrect if this is not the case (assigning
failing to an unresolved test or vice versa). In our experiments, we considered two settings:
Selecting models that had the correct outcome on termination, as well as selecting models that
terminated correctly, without regard for the label. This pipeline is visualized in Figure 4. The
models which meet the criteria are then finally evaluated on the testing dataset. For the sake of
comparison, we also evaluated this exact same process, but after substitution of the validation
set with the training set. With this setup, the performance of the fitted model is evaluated on the
data it is fitted on, which is the approach originally used by Philip et al. [1].

3.1.3 Experiment Ib: Similarity of outcomes

We continued the assessment of the methodology as proposed by Philip et al. [1] by examining
the similarity of outcomes between suites and building blocks that were executed together. Due
to the involved computational complexity and quantity of data available, correlation at the case
level was not considered. We examined the same records as in Experiment Ia, using the same
time periods for the testing, training and validation set. In addition, we also retrieve the plan
associated with each test execution. For each possible pair of tests in the training data, we
examine how often they are executed in the same plan, how often such an execution results in
the same outcome, and how often it results in a different outcome. From these pairs we discard
all that have not been executed a minimum of 50 times together, those that have not passed
together a minimum of 20 times, and those that have not failed together a minimum of 20 times
or have not resulted in unresolved together a minimum of 20 times. For each remaining pair, we
calculate the fraction of identical outcomes over the total number of times the tests have been
executed together. We select all pairs for which this value is at least 0.99. We then find which of
these pairs have also been executed at least once in the validation data, and filter out any pair for
which this value drops below 0.99 on the validation set. For the remaining pairs, we calculate
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Figure 4: The experiment pipeline for Experiment Ia.

the mean execution time of both tests in the training data. Finally, from each pair we learn a
rule such that if both are being executed together, the test with the shortest mean execution time
in the training data is used to predict the test with the longest. These rules are then evaluated
over the testing data. Finally, as with the previous experiment, we also conduct an experiment
without validation set, which is identical in setup to the experiment as performed by Philip et
al. [1], in order to compare approaches. In their original experiment and our recreation, the
validation data is included as part of the training data, and no filtering is performed on the rules
which have been learned from the training set.
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3.2 Experiment II
In our subsequent experiments we explored the approach utilized by Machalica et al. [2] by
exploring a variety of potential improvements. We train a model that, given a set of tests,
returns a susbet of these tests that are the most likely to fail. In line with their work, we use a
gradient boosting regressor for this task that, given information about a test and the code it was
performed upon, assigns it a risk score which can be interpreted as the risk of that specific test
failing if it were to be executed. When we perform a test selection on a set of tests, this score
is calculated for each test, and then selected over. The tests are sorted using their risk scores,
and the tests associated with the highest risks get included using a percentage-based threshold.
In addition, we also include any test whose associated risk is over a differen threshold. Both of
these values are configurable and can be used to alter the behaviour of the test selection method.
For example, one can choose to always include each test that has a risk associated with it in the
highest 20% of risks for a set of tests, as well as any test with an associated risk of 0.2 or higher.
If one wishes to make a conservative selection, one can increase the percentage, lower the risk
threshold, or both. For every experiment a sweep was performed over the minimum risk and
percentage of highest risk included (0 - 1 in steps of 0.05, as well as 0.01, and 0 - 100% in steps
of 5%, respectively).

3.2.1 Experiment II: Object of analysis

For this experiment a combination of information on tests and their outcomes, as well as in-
formation about code changes, had to be retrieved from separate sources and combined into
a single dataset. The data about tests, their duration and execution times was retrieved from
the Test Results Database, as in Experiment I, and information about the code changes was
obtained from a code repository. First, we retrieve the date, ID and related source for every
test plan which was executed within metrology in 2021 (Figure 5). The plan ID allows for the
retrieval of all suites and cases that were executed. The source is a string identifier, which can
be used to retrieve information about the code at the time of test executions. Some sources refer
to parts of the codebase that are no longer stored, due to referring to experimental versions that
have been deleted. Because of this, we then attempt to find each source existing in the Test Re-
sults Database in the repository. This resulted in 2,338 sources, each associated with a list of the
files (including an absolute filepath in the repository system) which were changed prior to test
execution. In total, 18,358,761 of changed files were found. In addition, we also find for each
source all test plan IDs that are associated with them, as multiple plans may be executed on the
same source. We use the plan IDs to retrieve all relevant information about associated suites and
cases (Figure 6), including the constructed identifier for suites (as explained in section 3.1.1),
the associated dates and times (the start, end and duration of each test), and the test outcomes.
At this point, all the raw data that is used for the construction of the dataset is retrieved, and
some small additional steps are taken prior to feature creation. As we would like to predict
which tests will fail, all tests with the outcomes of ’UNSUPPORTED’ and ’UNTESTED’ (see
section 3.1.1) were discarded from the dataset. We alter the dataset slightly by adding a short-
hand building block ID, that is, only a numerical identifier that is associated to each building
block, and use this instead of the full name associated with each building block. We create a
mapping from each source to the last time of submission for any plan as tested on that source.
Finally, some sources were found that were not associated with any file changes in the code
repository. These nine sources were discarded from the dataset.
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Figure 5: The first steps in creating the dataset involve finding which sets of file changes can still
be accessed, and which tests were executed on them. Each file icon represents an intermediate
artifact in the process of creating the final dataset.

Figure 6: The subsequent steps in the preparation of the data consists out of compiling informa-
tion with regards to when all tests for a source were executed, minor preprocessing to the test
outcomes, and the removal of some sources that resulted in empty changefile lists.
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3.2.2 Experiment II: Feature set creation

In the first step, we examine the file extension of every file that has been changed in every source
(Figure 8). We chose to ignore file extensions which appeared fewer than 1,000 times in all file
changes. This was done as there are many extensions that were only utilized a few times, which
provide little predictive value for test risk. This resulted in a reduction of file extensions from
954 to 166. The value of 1,000 was initially tried, and the level of filtering achieved by this was
deemed sufficient in removing irrelevant file types. Then for each source, we created a binary
encoding of all filetypes that were present in that source. Next, we use the information with
regards to changed files, submission times, and test outcomes associated with the sources, to
compute several features for each source. We consider each file associated with a source, and
keep track of how often that file has been changed, as well as how often a change in that file
is associated with test failures. This is done by considering, for each time the file is changed,
which fraction of the tests performed after that change resulted in a failure. In addition, these
statistics are extended to the level of folders, that keep track of how often the files and folders
contained within them fail and are associated with failing tests. For each source, these statistics
are calculated and then aggregated over for different periods of time. We compute the mean,
median, max and standard deviation of the number of changes and failures over a period of
7, 14, 28, and 56 days. This is done for the files in each source as well as for the parent and
grandparents folders these files are situated in. We obtain these features by recreating the file
system structure. For each set of file changes, we go over each changed file and keep track of
the date at which it was changed, as well as what the fraction of failure of tests that ran on that
change was. This information is also updated for the parent folder and grandparent folder of
that file. For example, in Figure 7, if file k was changed, then we update these statistics for file
k, folder 2 and folder m. Then to create the features for the source, we retrieve each change
and failure rate associated with these files and folders over the aforementioned timespans. For
the next step in the dataset creation process, we compute statistics with regards to test failures
on the building block level. This is done by using the outcomes per suite, and then calculating
the building block statistics on top. Each suite is associated with a building block, and thus
we iterate over the results for each source, and then compute the fraction of passing suites per
building block. We do this same aggregation for the duration of test executions. Next, we
calculate for each building block the fraction of passing to all tests, the number of executions,
as well as the mean, median and max duration of tests over 7, 14, 28 and 56 days. Finally, this
same process is performed but on the suite and case level. The last step involves merging these
different features into a single dataset, such that each row contains information about a single
test (either on the case, suite or building block level), information about the files involved in the
software change, and the aforementioned features about the test (Figure 9).
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Figure 7: An example subsection of a file system.

Figure 8: In the third step, we extract features from the data.
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Figure 9: In the last step we combine all features into the final datasets.
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3.2.3 Experiment IIa: Dataset split and feature selection

As test information is used which depend on the historical availability of data, all datapoints
prior to the 9th of March 2021 are discarded. This resulted in 1,973 remaining sources. The
dataset was then split in a test, validation and testing set in proportions of 60/20/20, as computed
over the total number of sources present. For hyperparameter tuning and the exploration of
various techniques in order to improve performance, our models were trained exclusively on
the training set, and evaluated using the validation set. For the final results, the models were
trained on both the training and validation set and evaluated on the testing set.
The training set of all three datasets, on the case, suite and building block level, were analyzed
using the relief feature importance algorithm [48]. Next, models were trained using the top
10-100% of the features with the highest importance, as well as 25% and 75%. For each such
featureset, gradient boosting regressors (using squared error training loss, and Friedman mean
square error as a splitting criterion) were fitted using 50, 100, 250, 500, 750, and 1,000 esti-
mators. Finally, a sweep was performed over the minimum risk and percentage of highest risk
included hyperparameters (0 - 1 in steps of 0.05, as well as 0.01, and 0 - 100% in steps of 5%,
respectively). For each model, we used the tradeoff between recall and time saved, and used
this to select which features to include for further experimentation.

3.2.4 Experiment IIb: Pre-selection of tests

Based on Experiment IIa, it was found that the best overall performing level of granularity was
selecting tests on the case or suite level, using all features (see section 4.3). In the previous
experiment, we trained models to select over all test cases. Next, we attempted to fit the models
after first performing a pre-selection on the tests we would predict over. This was done by
examining the median runtime in a time-span of 56 days of each test. If this time was under
a threshold, that test was excluded from the data for fitting the model. After the fitting had
occurred, we evaluated the model on the validation data, by only applying it to tests for which
the historical median runtime of the last 56 days was above the threshold. Any test below
the threshold was assumed to be executed by default, and their execution times were counted
towards the total execution time in the validation data. This was used for calculating the relative
runtime reduction that was achieved using this technique. However, we did not include these
tests in the recall metric. The intuition behind such a pre-selection was that the risk of missing
a test that should have been executed, would not be worth it for the comparable small time
save obtained by being correct. We fitted a series of models, varying the hyperparameters in
the same manner as in section 3.2.3, and in addition, varying the pre-selection threshold (30s,
60s, 90s, 120s, 150s, 300s, 450s, 600s, 750s, 900s, 1,200s, 1,800s and 3,600s). The data that
was excluded did not contribute towards the recall in our calculations, but their execution times
were considered during the calculation of the time saved by any model.

3.2.5 Experiment IIc: Asymmetric loss

In predicting which tests may fail, there is an asymmetry in the severity of errors that can be
made by the model. A test that should have been executed, but was not included due to a
prediction, could cause potential issues with the reliability of the software, whereas executing a
test that does not fail only has a cost insofar as the time and resources it needs to run. The loss
metric used in prior experiments, the squared error, punishes both an over- and underestimation
of risk with the same gravity. Therefore, we conducted an experiment in which we used a
loss function such that an underestimation of the risk contributed more to the loss than an
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overestimation. For this we used an adjusted version of the squared error, also known as the
2-side quadractic loss [49], as depicted in Equation 15. The hyperparemeter a is used to scale
the loss, which can be used to punish underestimation more severely, and b is used in the cases
of an overestimation. The hyperparameters were varied as in section 3.2.3, and in addition, we
varied the ratios of loss between under- and overestimation using values of 1:1, 2:1, 3:1, 5:1,
10:1, and 100:1.

L(y,F) =

{
1
2a(y−F)2 if y = 1
1
2b(y−F)2 otherwise

(15)

3.2.6 Experiment IId: Asymmetric loss and pre-selection of tests

In our final experiment with regards to increasing the performance of predictive test selection,
we combined the use of an asymmetric loss together with using a pre-selection based on his-
torical run time. The hyperparameters were varied over in the same manner as in section 3.2.3,
and on the basis of our earlier experiments, we considered different splitting times (30s, 60s,
90s, 120s, 150s, 300s, 450s, 600s), as well as asymmetric loss ratios (1:10, 1:100, 1:125, 1:250,
1:375).

3.2.7 Experiment IIe: Final model

Finally, we select the best model settings that have previously been found for the level of cases
and suites, and re-train models using these settings on the train and validation data. We then
use these models to evaluate the testing dataset. We determined the hyperparameters based on
Experiment IId, and the best performance found for both the level of cases and suites was using
an asymmetric loss function with ratio 1:100, performing a pre-selection on a duration of 60
seconds, using 250 estimators. These were obtained by, for each combination of asymmetric
loss, pre-selection time and estimators (the non-risk hyperparameters), varying the hyperpa-
rameters for risk-based test selection (namely the minimum risk and the percentage of riskiest
tests to included). For each combination of these non-risk hyperparameters, we varied the risk
parameters as in section 3.2.3. We then observe the top 50 highest test times saved which have
been obtained while maintaining a minimum recall of 0.9 up to 1.0 in steps of 0.01 (see sec-
tion 3.2.3). For each combination of non-risk hyperparameters, and for each level of recall, we
compute the median of these 50 best performers, and then we sum each median value of all
recalls for each non-risk hyperparameter combination. We chose the non-risk hyperparameters
which obtained the highest sum of medians using this method.
Afterwards, we selected the risk-based hyperparameters by considering which of these hyperpa-
rameters achieved the highest amount of time saved for each level of recall, resulting in one pair
of risk-based hyperparameters for each level of granularity and for each recall. A second set of
risk-based hyperparameters was also selected for each level of granularity, by considering the
hyperparameters that were associated with the highest time saved that was equal to or below the
median time saved for each level of recall. Once all of the hyperparameters were obtained, these
models were then evaluated on the testing data. The final models were also evaluated on their
ability to order tests using the APFD and APFDc metric, on the testing data. Before these latter
statistics were calculated, each plan which only contained passing tests was not considered.
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4 Experimental Results
In this chapter, the results of our experiments are presented, and discussed in the subsequent
chapter. As was the case for the methods, this chapter has been divided in two main experi-
ments, I and II, in which the experiments based on the work of Philip et al. [1] can be found
in Experiment I, and the experiments based on the work of Machalica et al. [2] in Experiment
II. Experiment Ia discussed runtime thresholding and Ib correlation-based minimization. Ex-
periment IIa discusses the results of feature selection, Experiments IIb-IId discuss using a pre-
selection based on execution time, asymmetric loss and a combination of these two techniques.
Finally, Experiment IIe discusses the results of using the best model found in Experiment IId
and applying it to the testing data. It should be noted that in each experiment, the total time for
suites is greater than that for cases. This is because only the duration for suites contains the time
needed for setup. Therefore, when results with regards to time saves are shown, they are shown
relative to the total suite time, as this time is the total time resources are actually occuppied
during testing.

4.1 Experiment Ia
For each level of granularity, we fit a model that (dis)allows for mislabelling (early termination
of any UNRESOLVED or FAILED test is considered correct, regardless of whether the correct
label has been predicted), and that either uses the training set as the validation set (as per Philip
et al. [1], labelled as ’No validation’), or uses a separate validation set. The results for these
experiments can be seen in Figure 10. From these graphs, the results from using a selection on
the level of building blocks have been ommitted, as the models fitted on this level performed
poorly. In total, there were 106 building blocks. Using a separate validation set, this resulted in
three fitted models that saved 0.0005% percent of all testing time in the testing data for building
blocks (for both the models allowing and disallowing mislabelling). Using the training data as
validation set, six models were fitted, but these models did not lead to any time savings. For
suites, the precision obtained by the fitted models increased after the use of validation (Fig-
ure 10a), from 0.960 to 0.997 in the case of allowing for mislabelling, and from 0.970 to 0.997
when disallowing mislabelling. Selecting models on the basis of mislabelling terminations does
increase the percentage of tests terminated with the correct label (Figure 10b). For suites this
increased from 72.5% to 97.9% when no validation set was used, and from 65.2% to 98.13%
otherwise. For cases, the increase was from 99.3% to 99.9% for both the experiments with and
without a separate validation set. Models that were fitted on the suite level lead to the largest test
runtime reduction, as calculated by taking the difference between the running time without the
threshold, and the threshold, for those tests that run longer than it and that should be terminated
(Figure 10c). Both models wasted a comparable amount of time, with waste being defined as
the time up to the threshold for a test that was terminated incorrectly.

4.2 Experiment Ib
The outcomes of applying the rules as extracted from correlation can be seen in Table 1. Unfor-
tunately, the rules obtained from finding correlations at the building block level with validation
resulted in 0 actual predictions.
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(a) precision (b) mislabelling

(c) time saved by early termination (d) time wasted by early termination

Figure 10: The performance of early termination at the level of cases vs. suites on varying
metrics.

Granularity Validation? Precision Time saved (%) predicted tests (%)
Building block Yes - - 0 %
Building block No 0.991 0.12% 0.03 %
Suite Yes 0.986 7.89% 15.1 %
Suite No 0.979 10.14% 17.2 %

Table 1: The resulting precision and time saved after applying correlation-based prediction on
tests on the suite and building block level, with and without validation.
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4.3 Experiment IIa

For each level of granularity, and each n% of relief features included, we display for each
minimal recall the top 50 performers. We see, for each minimally required recall, what the
time saved as a percentage of all tests is by these 50 best hyperparameter settings. The 50
best performers have been selected to allow for a better estimation of the performances that are
possible, as this will allow us to see whether the amount of time saved might have been due to
one very specific setting, or if there are multiple settings which can achieve a similar effect. We
display only the top 50, given that many hyperparameters that have been explored result in very
low time saves. The results of the best performers for each experiment on the case and suite
level can be seen in Figure 12. For cases and suites the best performance was obtained by using
all features, and for building blocks, this was obtained by using the top 10% of relief features.
For all results, see Figure 18, Figure 19 and Figure 20 in the appendix.

4.4 Experiment IIb: Pre-selection on time

Based on the previous experiment, it was found that the most time could be saved whilst using
either case or suite level granularity, using all features. The best performing splitting time was
found to be 150 seconds for both cases and suites. The results for this split can be seen in
Figure 12. For the detailed results see Figure 22 and Figure 23 in the appendix. Whilst there
seems to be a small difference in performance, it should be noted that the models which have
been trained on the data using a pre-selection resulted in good performance by models with a
low amount of estimators used (Figure 11), due to a reduction in the size of the dataset.

(a) no pre-selection (b) pre-selection at 90s

Figure 11: The performance of using a varying number of estimators on the recall vs. time saved
tradeoff on the level of suites. We see that by using a pre-selection, the performance of models
with a small amount of estimators increases as compared to the case in which this is not used,
at higher levels of recall (0.97 and above).

4.5 Experiment IIc: Asymmetric loss

As with the previous experiment, we considered granularity on the level of cases and suites,
using all features. The best performance on the level of cases and suites was found at using a
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(a) case level (b) suite level

Figure 12: The recall vs. time saved tradeoff obtained by the best-performing hyperparameters
found for Experiments IIa-IId.

ratio of 1:125, which can be seen in Figure 12. For the full results, see Figure 24 and Figure 25
in the appendix.

4.6 Experiment IId: Asymmetric loss and preselection of tests
As with the previous experiment, we considered granularity on the level of cases and suites,
using all features. The best performance on the level of cases and suites was found at using a
ratio of 1:100, and a pre-selection splitting time of 60 seconds, which can be seen in Figure 12.
For the full results, see Figure 26, Figure 27, Figure 28 and Figure 29 in the appendix.

4.7 Experiment IIe: the final model
The recall vs. time saved tradeoff for all considered hyperparameter settings of the minimum
risk, as well as the top n% of risk to include, can be seen in Figure 13. Whilst this shows
the best performing settings for each minimal desired recall, in a real deployment situation we
have to base these hyperparameters on the performance of the model on previously seen data.
In Figure 14 and Figure 15 we see the results of two such selections. Finally, we evaluated
the suitability of using the final model for prioritization, and calculated the APFD and APFDc
on the level of cases (Figure 16) and the level of suites (Figure 17), under the assumption
that each test failure corresponds to a unique fault. For the APFDc metric, we assumed that
each fault had identical severity, and used the actual test execution time in seconds as the cost.
For comparison, we also show the resulting APFD and APFDc values for heuristic orderings,
including a random ordering, ordering by execution time (in ascending and descending order,
using the median execution time over the last 56 days), and ordering by passing rate in ascending
order for various time windows (7, 14, 28 and 56 days).
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Figure 13: The recall vs. time saved tradeoff for models that were fitted on the test dataset.

(a) best hyperparameters (b) median hyperparameters

Figure 14: In each graph, we see the difference between the desired recall for which the hy-
perparameters (min risk, top n% of risk to include) were selected using the validation dataset,
and the actual recall of the model once applied to the testing dataset. In Figure 14a, we see the
performance of the settings for the settings chosen by taking the settings which resulted in the
highest amount of time saved for each level of recall, and in Figure 14b, we see the performance
for the settings chosen by taking the settings which resulted in at most the median amount of
time saved of the 50 best estimators for each recall level.
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(a) best hyperparameters (b) median hyperparameters

Figure 15: In each graph, we see the actual obtained recall, and the time saved at that level of
recall, using the hyperparameter selection as explained in Figure 14.

(a) APFD (b) APFD

(c) APFDc (d) APFDc

Figure 16: The distribution of the APFD and APFDc values for each test plan in the testing
data, on the level of cases. We compare the ordering induced by using the risk scores from the
gradient boosting regressor, and compare it against various heuristic orderings.
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(a) APFD (b) APFD

(c) APFDc (d) APFDc

Figure 17: The distribution of the APFD and APFDc values for each test plan in the testing
data, on the level of suites. We compare the ordering induced by using the risk scores from the
gradient boosting regressor, and compare it against various heuristic orderings.
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5 Discussion

Concerning the granularity on which tests are selected, we found that in all experiments, con-
sidering a higher level grouping above the level of suites, at least in the form currently used
by ASML, does not outperform selection on the case or suite level. For runtime outcome pre-
diction using a logistic regression, we found that the amount of time that can be saved is the
highest on the level of suites, versus on the level of cases, with comparable recall (provided
that a validation step has been applied), as can be seen in Figure 10. A contributing factor to
this stark difference is that runtime prediction terminates an entire suite if the time the suite has
been executing exceeds its threshold. From this it follows that all remaining test cases in the
suite will not be executed. In the current system, such a stuck test case is allowed to execute
up to its maximum execution time, which either is set at a default time or a custom time by
developers, after which it will be marked as unresolved. This has no consequences for the next
test case of the suite, which is executed normally after the previous test timed out. Based on
these findings, we therefore suggest that runtime prediction should be applied on the level of
suites, if it is important that every case in the suite passes, and otherwise, a selection on the
level of cases is warranted. We do not expect that the difference in total running time of cases
and suites over the same period to be a large contributor, as this difference mainly stems from
start-up overhead which is included within the time of the suite, but not in the times of the
cases contained within. For the experiments using runtime outcome prediction, the time spent
on suites is 2.35 times that on cases in the testing period. While this contributes to the differ-
ence in time saved as in Figure 10, this difference is too large to be only explained by this effect.

We also see differences in the performance of predictive test selection on different levels of
granularity (Figure 15). A selection on the level of suites results in a larger difference between
recall on the validation and training data (Figure 14b) than a selection on the level of cases. In
addition, the amount of time saved by selecting on the level of cases is greater than for suites
(Figure 15), in the recall range from 0.9 to 1.0. This also holds if we examine the resulting best
time saves by considering each possible value for the risk-based hyperparameters (Figure 13).
Based on the recommendation of a test engineer at ASML, a recall of 0.9 is the minimally de-
sired performance for a system to be functional during deployment, and therefore we conclude
that test selection should be performed on the level of cases.

With regards to the various suggestions made to predictive test selection, the performance on
the validation data suggests that using an asymmetric loss function leads to a better tradeoff
between recall and time saved. However, we see a worse performance once these models have
been applied to the testing dataset. We offer a few possible reasons. First, it was found that
applying a pre-selection based on historical test runtime resulted in models with less estimators
having a higher best performance on the validation dataset than models with more estimators
(Figure 11). This effect is particularly visible for the higher recalls that have been considered
(0.97 and above). We consider this to be in part due to the reduction in data on which the
model is trained overall, and we suspect that tests with longer execution times behave differ-
ently than shorter ones. This is supported by examining the differences in APFD for ordering
cases and suites by execution time (Figure 16, Figure 17). This would also explain why the
best performing asymmetric loss ratio of 1:100 in Experiment IId (with pre-selection) was less
asymmetrical than the best performing asymmetric loss ratio of 1:125 in Experiment IIc (with-
out pre-selection). A higher asymmetric loss ratio implies more uncertainty present with regards
to which tests will fail. This is compensated by forcing the models to be more conservative in
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their risk assesment, and hence, a higher loss for risk underestimation. This difference in the
best performing asymmetric loss ratio implies that it is easier to identify failing tests given a
longer execution time.

Without using a pre-selection, it was found that the best performing model on the validation set
included all features. However, it may be the case that the reduced dataset that is being trained
on in the case of using a pre-selection on time has different feature relevances, and because of
this, the model may have overfitted due to having access to all features. Second, during the
process of hyperparameter selection, multiple models were trained, which further increased the
risk of finding models that happened to perform well on the validation set by chance or erro-
neous patterns. Finally, the testing data contained data points created using code changes which
were performed at the end of the year. Due to the planning process used within ASML, in the
month of December many changes are made before wrapping up for a new year, which may
result in less predictable behaviour during this period of higher volatility.

We do observe that using a gradient boosting model trained for predictive test selection for pri-
oritization outperforms several commonly used heuristics in the field (Figure 16 and Figure 17),
both in terms of APFD and APFDc, on this specific dataset. Whilst this is a method used in
the literature to evaluate the potential of a method, in order to further investigate the viability
of this prioritization technique comparisons need to be performed against other state-of-the-art
techniques. Until a commonly agreed benchmark exists in the field that can provide detailed
information about historical test information as well as file changes, we consider this to be the
next logical step.

As was mentioned within the method section, no identifiers are stored in order to track multiple
executions of the same test case or suite. Because of this, an identifier had to be constructed
on the basis of other information which was present in the database. However, this identifier
is not unique, as it relies on information from a test specification file. Although it is discour-
aged, developers can specify multiple different tests in a single test configuration. If these suites
all get executed with the same configuration file and on the same machine, then this results in
multiple records in the test results database which will be assigned the same identifier. These
collisions also occur at the level of case identifers. As we have seen in our experimentation on
the level of the granularity of selection, a coarser level of granularity can be beneficial up to a
point (selection on the level of suites resulted in a higher amount of time saved on validation
data, for lower recalls (0.90 - 0.95), but on the level of building blocks this effect dissapeared),
and thus we believe that these collisions in the identifiers harms the performance of all tech-
niques applied in this thesis. We therefore argue that the performance which has been achieved
could be additionally improved by increasing the quality of the data by ensuring that developers
submit separate test specification files for each separate suite.

Regrettably, we could not evaluate the performance of combining predictive test selection with
runtime thresholding or correlation-based prediction. This was because of the nature of the
dataset that had been obtained. Only approximately 50% of the test outcomes (by execution
time) could be linked to information about the code on which these tests were applied. This
information is necessary for predictive test selection, and therefore predictive test selection
could only be performed on a subset of all tests. Unfortunately this subset did not contain the
tests which were found to correlate during Experiment Ib, and neither did it contain the tests for
which a runtime thresholding model could be fitted in Experiment Ia.
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6 Conclusion

6.1 Summary of Main Contributions
In this work, we:

• replicated the techniques of Philip et al. and Machalica et al. [2] on a novel dataset.

• have suggested improvements to the work of Philip et al. [1] by recommending the inclu-
sion of a validation set.

• have shown that runtime prediction worked best on the level of suites as compared to
cases, when comparing the potential time that could be saved (at most 24.3% vs. 2.0%).

• have shown that predictive test selection performed best on the level of cases, compared
to the level of suites, where for each minimally required recall from 0.90 to 1.0 in steps
of 0.01, both the best and median time saved of the top 50 performers was greatest on the
level of suites.

• have shown that selecting at a higher level of organisation, such as on the level of building
blocks within ASML, is not a viable strategy, resulting in a best time save of 5.3% with a
recall of 0.90.

• have suggested improvements to predictive test selection by using an asymmetric loss
function, as well as selecting over which tests should be predicted based on historical
runtime.

• obtained a maximum time save of 31.1% whilst still maintaining a recall of above 0.9
using predictive test selection on the level of cases. This is considered viable for real-
world use.

• have shown that predictive test selection is a viable technique for prioritization by compar-
ing it to heuristic orderings on the basis of a random ordering, historical execution times,
and historical failure rates. Predictive test selection obtained a higher median APFD and
APFDc than any heuristic.

6.2 Future Work
In the data which was examined for this thesis, there was no overlap between the data on which
predictive test selection, and runtime based prediction or correlation using minimization, could
be applied. As a result, it remains to be shown what the influence on time saved is when apply-
ing all of these techniques together. In order to do this, the next step within ASML is to try to
link more results from the Test Results Database to code changes. In this thesis, we have only
considered the data of 2021 as a whole, where 80% of the data was used for training and evalu-
ating models, and these models were then finally evaluated on the remaining 20%. Because of
this, the difference in date between the earliest training and testing record is a period of months.
It may be the case that patterns in the data drift over time such that this early data is not useful
for predicting over such a large span in time. To address this issue, we suggest experiments
that vary the amount of months that are included in the training and validation data. We envi-
sion that this approach will also address the gap that we have seen between the desired recall
on which we select hyperparameters on the validation data, versus the actually obtained recall
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using these on the test data. Currently this difference is large, the difference was found to be as
high as 0.28 on the level suites, and 0.15 on the level of cases. For predictive test selection to
be deployed effectively, its performance is required to be more predictable, to ensure that the
system maintains at least a minimally acceptable recall. Finally, we were not able to evaluate
test case correlation on the scale of a year due to the amount of data present, and the high time
complexity of calculating correlation. If we consider smaller periods in time, it will become
feasible to obtain this information as well.

The findings with regards to the improvements made to runtime based prediction, correlation-
based prediction and predictive test selection, have only been examined in the context of this
dataset. Given the lack of benchmarks in the field, and considering the amount of information
that needs to be present for all features to be constructed that are used in the models, we con-
sider it to be unlikely for such a dataset to become available in the near future. Therefore we
suggest the comparison of other state-of-the-art methodologies on ASML data, in order to pro-
vide more evidence for the efficacy of the proposed improvements in this paper. An important
open question is how these models would perform once utilized in deployment. As the quantity
of tests that will be executed will be lowered once these models are used, and the execution time
is reduced due to the application of thresholding, it is necessary to run a fraction of the tests
on which the models were applied in full. This is necessary in order to verify that the model
is working as intended, but this fraction needs to be small enough to still lead to a sufficient
reduction in execution time. However, a small fraction also leads to a reduction in the quality
of many temporal features and thus, possibly a degradation of performance. We propose a pi-
lot study within ASML, whereby a simulation is executed alongside the regular testing system
without selection in place. The simulation then calculates which tests would have been included
if selection were to be applied, and create features only using these tests. We can then compare
the outcome of the simulation, to applying predictive test selection on features using the full
information obtained from the regular testing system.
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Appendices

A Additional plots

Figure 18: Multiple models were fitted on the test case dataset using the top n% features as
found using the relief algorithm. For each minimally required recall, we see the time saved (as
percentage over all tests) by the top 50 best performing hyperparemeter settings.
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Figure 19: The results of fitting models using the top n% of features as found using the relief
algorithm, on the level of suites. For a zoomed in version of these graphs, see ??.
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Figure 20: The results of fitting models using the top n% of features as found using the relief
algorithm, on the level of building blocks. For a zoomed in version of these graphs, see Fig-
ure 21.
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Figure 21: Multiple models were fitted on the building block dataset using the top n% features
as found using the relief algorithm. For each minimally required recall, we see the time saved
(as percentage over all tests) by the top 50 best performing hyperparemeter settings.
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Figure 22: Multiple models were fitted on the test case dataset using all features. Prior to fitting
the models, all tests with a duration below the threshold were filtered out of both the training
and validation set.
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Figure 23: Multiple models were fitted on the test suite dataset using all features. Prior to fitting
the models, all tests with a duration below the threshold were filtered out of both the training
and validation set.
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Figure 24: Multiple models were fitted on the test case dataset using all features. The models
have been trained using various ratios between loss for overestimation and underestimation.
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Figure 25: Multiple models were fitted on the test suite dataset using all features. The models
have been trained using various ratios between loss for overestimation and underestimation.
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(a) 30s (b) 60s

(c) 90s (d) 120s

Figure 26: Multiple models were fitted on the test case dataset using all features. The models
have been trained using various ratios between loss for overestimation and underestimation, as
well as various pre-selection splitting times.
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(a) 150s (b) 300s

(c) 450s (d) 600s

Figure 27: Multiple models were fitted on the test case dataset using all features. The models
have been trained using various ratios between loss for overestimation and underestimation, as
well as various pre-selection splitting times.
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(a) 30s (b) 60s

(c) 90s (d) 120s

Figure 28: Multiple models were fitted on the test suite dataset using all features. The models
have been trained using various ratios between loss for overestimation and underestimation, as
well as various pre-selection splitting times.
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(a) 150s (b) 300s

(c) 450s (d) 600s

Figure 29: Multiple models were fitted on the test suite dataset using all features. The models
have been trained using various ratios between loss for overestimation and underestimation, as
well as various pre-selection splitting times.
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