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Abstract 
Introduced feral domestic cats (Felis catus) can have large negative impacts on local wildlife, both 

directly and indirectly, especially on island populations. Successful eradication of feral cats (from 

islands) requires them to encounter traps, hunters or poison, and thus information on their spatial 

distribution and population sizes are essential. In a camera trapping study, I studied feral cat spatial 

distribution and population sizes on the Dutch barrier island of Schiermonnikoog using spatially explicit 

capture recapture (SECR) methods. I constructed various models to predict feral cat spatial densities, 

using four data sets (for both a conservative and more liberal identification method, and both a habitat 

classification including and excluding farmland) and five different ecological predictors: distance to 

road, distance to village, terrain type, average vegetation height, and average vegetation standard 

deviation. Due to a lack of adequate data, I had to drop the distance to road and terrain type variable. 

The population of feral cats consisted of 47-51 individuals for to conservative identification method, 

and up to 62-79 for the liberal method. Distance to village was a significant predictor for all four 

datasets, with the highest predicted cat density around 3000m from the village. Both vegetation 

variables were also significant, but only for the liberal identification method including farmland as a 

habitat. The ecological explanations for these results, failed results, as well as suggestions for future 

research are discussed. In conclusion, the feral cat population on Schiermonnikoog appeared to be 

relatively stable, with distance to village being the best spatial density predictor, but many interesting 

avenues for future research still remain. 
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Introduction  
Domestic cats (Felis catus) have been introduced as pets and pest control by humans around the world, 

ranging from subarctic and tropical regions, to deserts and forests (Long 2003, Doherty et al. 2014). As 

generalist predators, cats can have severe negative impacts on local wildlife. In fact, cats are listed as 

one of the 100 worst invasive species (Lowe et al. 2000), and have contributed to at least 63 (26%) of 

recent worldwide bird, mammal and reptile extinctions, and threaten an additional 367 species at risk 

of extinction (Doherty et al. 2016). Feral cats, which are cats descended from domestic ancestors, but 

are now free-living and no longer dependent on anthropogenic resources, have substantially higher 

impacts on native fauna, with quadruple the kill rate of domestic cats (Loss et al. 2013, Legge et al. 

2020). While the number of feral cats is relatively small compared to their domestic counterparts, their 

presence is natural environments may still have severe consequences. For example, in the United States 

alone, feral cats are responsible for majority of cat-killed wildlife, killing an estimated 2.4 billion birds 

and 11.3 billion mammals annually (Loss et al. 2013). Moreover, feral cats also have non-lethal effects 

through, for example, hybridisation, disease transmission, and anti-predator behaviour (Doherty et al. 

2014, Legge et al. 2020). One of the most well-known examples of anti-predator behaviour is the 

ecology of fear, where risk avoidance from prey leads to altered ranging, feeding, and breeding 

behaviours (Laundre et al. 2010, Legge et al. 2020). Such indirect effects can lead to population 

declines, even under low levels of predation (Bonnington et al. 2013, Legge et al. 2020). 

The destructive effects of feral cats on the environment call for conservation measures. One approach 

in feral cat population management is trap-neuter-return (TNR), in which cats are captured, sterilized, 

checked and/or vaccinated for disease, and then released back into the wild (Zaunbrecher and Smith 

1993). However, TNR is a controversial method, as it is resource and time intensive, and places the cats 

back into the wild, while scientific evidence for its success remains quite limited (Longcore et al. 2009). 

Alternatively, cats can be eradicated entirely through, for example, hunting or trapping, after which 

wildlife can recover (Prior et al. 2018). For example, the removal of cats from Natidivad Island, Mexico, 

using trapping and hunting led to a 90% decrease in seabird mortality, providing massive improvements 

to long-term viability of the island’s seabird population (Tershy 2002, Keitt and Tershy 2003). 

Substantial effort has already been put in the eradication of feral cats (Nogales et al. 2004), which is 

especially relevant for islands where local wildlife often lack defences from mammalian predators 

(Medina et al. 2011). Cats have been eradicated from over 100 small and intermediate islands across 

the world (“Database of Island Invasive Species Eradications” 2022), However, these islands are only 

a fraction of the estimated 5% of 179 000 of small and intermediate sized islands where cats have been 

introduced (Medina et al. 2011). To successfully eradicate cats, information on cat spatial distribution 

is crucial, especially for trapping, which may be the preferred method of cat eradication considering the 

presumably low societal support for cat killing.  

Four main mechanisms are suggested to determine habitat use of feral cats (in order of importance): 

predation and/or competition from other predators, prey availability, human resource subsidies, and 

shelter (Doherty et al. 2014). As a result, cats generally prefer structurally complex habitats, such as 

shrubland or woodland, providing cats with a mixture of cover and open areas, which can be used for 

travel, hunting and shelter (Doherty et al. 2014). Moreover, more complex habitats tend to support a 

greater number and diversity of prey (Tews et al. 2004). As a result, cats favour certain, more complex 

habitat components (infrastructure, riparian, shrub/heathland, forest, woodland), while avoiding more 

simple ones (grassland, agricultural land) (Graham et al. 2012, Doherty et al. 2014). However, the 

evidence of these ecological predictors for cat densities still remain somewhat weak (Doherty et al. 

2014). Moreover, research on feral cats is mostly focussed around relatively sparsely human populated 

regions in specific geographic regions (Doherty et al. 2014, Bengsen et al. 2016). And yet, feral cats 
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pose a very real threat in much more densely populated regions as well. For example, in the Netherlands, 

feral cats kill an estimated 141 million animals annually, including 38% of the bird summer population 

which contain many vulnerable species (Knol 2015). Therefore, there is a need to expand our knowledge 

on abundance and distribution of feral cats in other areas of interest, such as the Netherlands.  

In this study, I used camera trap data to estimate population size on the Dutch island of 

Schiermonnikoog, and I predicted spatial cat density based on a variety of ecological predictors. 

Schiermonnikoog contains a variety of habitats (also see Figure 1), and cats are the only relatively large 

predators on the island. Since cats prefer structurally complex habitats (Doherty et al. 2014), I 

hypothesize that feral cats will be concentrated near road verges and other areas with high vegetation 

diversity. In the absence of natural enemies and interspecific competitors, I expect shelter and human 

resource subsidies to play an important role in feral cat distribution, so cats may be found close to roads, 

buildings, and high (sheltering) vegetation. I estimated population sizes and spatial densities using 

spatially explicit capture recaptures (SECR) methods, as this is a robust alternative to more traditional 

capture-recapture methods which allows for more advanced spatial analysis (Borchers and Efford 

2008). Predicting the number and spatial distribution of feral cats might provide valuable information 

for scientists and conservation managers, and can be used for designing and executing (camera) trapping 

projects and monitoring programmes to minimize damage of feral cats on the local ecosystem of 

Schiermonnikoog and similar locations.   
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Methods  

Study area  

Schiermonnikoog (53°30′ N, 6°10′ E) is the easternmost of the five inhabited Dutch Waddensea barrier 

islands, positioned approximately seven kilometres off the Dutch mainland (Figure 1). The island has a 

land surface area of about 4000ha. A village with 954 inhabitants can be found on the western side of 

the island, and is surrounded by a polder with several farms. The other habitats on the island are quite 

heterogeneous, and include dune valleys, a planted forest, mudflats and salt marshes. The entire island 

and the adjacent parts of the North Sea and Wadden Sea, with the exception of the village, is part of 

Schiermonnikoog National Park (5400ha). The Natura-2000 site “Duinen Schiermonnikoog” (1042ha) 

is located within the National Park, surrounding the village. The adjacent Wadden Sea is a UNESCO 

World Heritage site.  

 

Figure 1: Satellite map of Schiermonnikoog. The southwestern part of the island is a polder with farmland and a salt marsh. 
North of the polder is the village, which is surrounded by dunes and forest. The middle and western part of the island consists 
of salt marsh, grassland and dune valleys. 

Schiermonnikoog is home to a variety of wildlife, including many species of mammals and birds. As 

of 2018, over 100 breeding species of birds were observed on the island, of which 20 are on the Dutch 

list of threatened species (“Rode Lijst”) (Kleefstra and Klemann 2018). Moreover, the Dutch barrier 

islands are a key site for millions of migratory birds along the East Atlantic Flyway (Roomen et al. 

2005). Schiermonnikoog harbours a population of hares, with a density of approximately 70 individuals 

per km2 (Van Wieren et al. 2006). Rabbits, hedgehogs, brown rats, and a variety of mice, shrew and 

voles inhabit the island as well, for which no scientific population estimates exist. Except for introduced 

cats, there are no other large mammalian predators (foxes, martens, etc.). As mentioned previously, 

island species, such as ground breeders, are especially vulnerable to predation, and cat predation may 

thus threaten local wildlife (Medina et al. 2011, van der Ende 2015a).   

Study species 

A population of feral cats (hereafter, cats) inhabited the island, descended from abandoned or escaped 

village or tourist cats. The cat population, outside of the village and surrounding rural lands, was 

estimated to consist of 34 individuals in 1984 (Langeveld 1987), and 50 individuals in the most recent 

estimate in 2011 (Op de Hoek et al. 2013). Cats were hunted in the past, but since 1994 there is a no-

hunting policy in the natural parts of the island. The population is known to reproduce in the wild 
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(Langeveld 1987), and it is unknown whether the population has grown since 2011. Cat diet consists 

mostly of voles, but other mammals and birds are consumed as well (Op de Hoek et al. 2013).  

Camera trap deployment 

In order to estimate feral cat density, a large part of Schiermonnikoog (Figure 2) was surveyed for cat 

presence from July 14th to November 23rd 2021 using 17 Reconyx Hyperfire HC600 cameras. This 

camera type takes multiple pictures when its motion sensor is activated, and thanks to its infrared LEDs, 

it allows for night pictures to be taken as well. Cameras were placed on poles, 50cm above the ground 

at 68 different sites, mostly along various (game) trails containing cat droppings to maximize camera 

capture rate. Traps were deployed away from the village and agricultural lands , as the focus of this 

study was on feral population living in the natural parts of the island, and to reduce to risk of capturing 

domestic cats from the village on camera (Figure 1, 2). Moreover, the forest was not monitored as well, 

since the field crew did not expect cats to be present there (Figure 1, 2). Cameras were moved across 

the island over time. From July 14th to September 8th, the Eastern part of the island was sampled in three 

sessions at 36 locations. From September 23rd to November 2nd, the Western part of the island was 

sampled in two sessions at 18 locations, and from November 1st to November 23rd, the middle part of 

the island was sampled in a single session at 14 locations. Some of the sessions overlap as some cameras 

were moved over the course of several days. Camera trap locations were recorded using GPS. GPS 

coordinates from six camera trap locations were in unrealistic locations (like the middle of a road) due 

to small measurement inaccuracies. I have manually modified these coordinates (up to ~2m) to prevent 

complications in further analysis. 

 

Figure 2: Overview of camera trap placement on Schiermonnikoog. Camera traps were placed around trails as to maximize 
capture probability (also see Figure 4). Different colours represent the different parts of the island where traps were placed. 
Circles represent functioning traps, with size indicating the number of individuals captured (conservative estimate, see “Cat 
identification”), ranging from zero to six individuals. Crosses represent failed camera trapping sites.    
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Table 1: Overview of camera deployments on Schiermonnikoog. Camera traps were deployed on three parts of the island 

(East, West and middle) at various sites during multiple sessions. Some failed sites were dropped from the analysis, for 

example because of stolen SD-cards, or broken cameras. (*) An additional two cameras were placed in front of moving 

vegetation, continuously triggering the camera. These two sites were still included in the analysis, but were active for less 

than 24 hours because of full memory. (**) Four additional cameras had failed, but were successfully redeployed in a later 

session. 

Location Period (2021) Sites Failed Sites with cat 

East July 4 – 

September 8 

36 6*  19 

West September 23 – 

November 2 

18 1** 13 

Middle November 1 – 

November 23 

14 1 9 

 

Camera trap effort  

Not all individual camera traps were used equally for the different locations, for example due to 

malfunctions, or asymmetrical sampling effort (Table 1). To incorporate this variability in usage (and 

the resulting variability in cat detection opportunities) in the analysis, I included an effort variable in 

future analysis, describing how long all camera traps were used for all camera trap locations, for the 

entire duration of the study. Camera traps that were active at a location for an entire day (24 hours) were 

given a value of 1 for that day and location. Camera traps that were only partially active during a day, 

were given a corresponding lower value. For example, a camera trap that was placed at 7:00 AM, will 

only be active roughly 70.8% of the day (the remaining 17 out of 24 hours), and would thus be given 

an effort value of 0.708 for that day and location. When a camera trap was not active at a location, either 

due to malfunction or having been moved to another location, the camera trap was given a value of 0 

for those days and sites (Table 1). These camera trapping effort values can then be used in future 

analysis in SECR methods to yield more precise density estimates as described by (Efford 2022c). 

Image analysis  

All camera trap images were scanned by hand by one observer for cat presence. Photographs from failed 

sessions (e.g., stolen SD-cards, malfunctions, incorrectly placed cameras) were not examined (Table 1). 

Photographs from failed sessions (e.g., a lot of moving vegetation, unreliable triggering) were 

unexamined or only briefly scanned unexamined. Since the camera traps can take multiple photos of 

the same cat in a short timespan, a cat photo was classified as new sighting when at least five minutes 

had passed between that and the last photo of that individual.  
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Figure 3: Example of high-quality camera trap photographs of two individuals at the same camera trap site. At first glance, 

these cats appear to be the same individual, but it is possible to distinguish the two through some of their characteristic 

markings and colourations: a differently coloured thigh (blue arrow) and differently coloured check (yellow arrow). 

Cat identification 

All cats from sightings were subsequently identified using characteristic markings and colourations 

(Figure 3) by two different independent observers. All cat photographs were checked against all 

previously identified individuals, and were given a new ID when cat appearance did not match any of 

the previously identified cats. Afterwards, cat identifications from the two independent observers were 

compared, and inter-observer discrepancies were adjusted following discussion. Since some pictures 

were of poor quality (Figure 4), it was sometimes difficult to identify individuals with confidence, even 

after discussion. Therefore, I decided to create two identification lists. The first is a conservative 

estimate, where individuals that were difficult to identify were classified as the most plausible already 

existing individual, based on colour, markings, location, and time of sighting. For example, a poor-

quality picture of a cat may be classified as a similar-looking cat that has been sighted at the same 

location several hours prior. The second list is a liberal estimate, where every cat that could not be 

identified with confidence was identified as a “new” individual (i.e., an individual that has not been 

sighted before). These conservative and liberal identifications were analysed separately. For both lists, 

completely unidentifiable images and kittens were excluded from the analysis, as they could not 

confidently identified.  
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Figure 4: Example of some poor-quality pictures, taken at two different locations. The picture on the left (A), though blurry, 

could still be assigned to an individual. When cats could not be confidently identified, cats were given a conservative (existing 

individual) and a liberal (new individual) identification, analysed separately in models. Because of its common and non-

distinctive brown colouration, I have identified this individual as a similar-looking individual when using conservative 

identification, but as a new individual when using when the liberal identification. The picture on the right (B) is an example 

of an unidentifiable individual, and was excluded from further analysis.  

Density estimates using SECR 

To obtain a density estimate of the total population of feral cats on Schiermonnikoog, based on camera 

trap images, I used a spatially explicit capture-recapture (SECR) model using the “secr” package version 

4.5.4 (Efford 2022b) in R version 4.2.0. SECR is a set of methods that can be used to estimate densities 

that has several advantages over more traditional capture-mark-recapture methods, generally 

performing better than simple capture-recapture methods (Sollmann 2018, Davis et al. 2020), and have 

been successfully used in previous ecological studies (e.g., Boulanger et al. 2018). SECR models work 

with the assumption that base detection probability (g0) decreases with increasing distance by spatial 

parameter σ from an individual’s activity centre (representing the centroid of an individual’s home 

range): the so-called detection functions (Efford 2004; Figure 5). Without radiotelemetry, information 

on the precise locations of these activity centres is usually unknown, but with data on where individuals 

have been (re-)sighted and their probability of detection, it is possible to obtain some (imperfect) 

estimates. The distribution of activity centres usually follows a homogenous Poisson point process 

(Borchers and Efford 2008), meaning that all activity centres of individuals that could have been 

exposed to sampling are included in the so-called state space – the area in which activity centres can be 

located. Consequently, when the state space is large enough (i.e., containing enough activity centres), 

further increases in state space do not affect density estimates. Activity centres of feral cats may not 

actually be distributed according to homogenous Poisson process, especially since feral cat home range 

size overlap and can differ between sexes and seasons (Recio and Seddon 2013). However, as long as 

camera trap deployment is not biased towards or away from activity centres, non-uniformities are 

expected to average out (Borchers and Efford 2008, Mcgregor et al. 2015). By dividing the number of 

activity centres in the state space over the sampling area, it is possible to obtain a density estimate. 

  

B 
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Mask 

SECR methods work with a mask, which is a grid of square cells that cover the trapping grid and all the 

surrounding area which might contain home ranges of the sampled population. The outer limit of this 

mask is determined by the buffer, which extends the mask by “buffer” meters around all detectors. The 

buffer should be sufficiently large as to not influence density estimates, and was set to 4000m after 

analysis of a mask buffer diagnostic plot created with the esa.plot function from the secr package, using 

the data from Figure 2. The mask can then be clipped by natural boundaries, and areas of non-habitat 

can be removed. For this, I used ESRI-shapefiles from the Basisregistratie Topografie (BRT; Base 

registration topography). More specifically, I used the TOP10NL topographic map of Schiermonnikoog 

(Rijkswaterstaat, Ministerie van Infrastructuur en Waterstaat 2022a). For viewing and manipulation of 

this and all subsequent spatial data (see Density models), I used QGIS v.3.10.11. I manually removed 

sandbanks around the island, as these get inundated regularly, making them unsuitable habitat for cats. 

Since it is unclear whether cats use the island’s agricultural areas as habitat (Figure 1), I created two 

masks, one in which I classified both the village and the surrounding farmlands as non-habitat, and one 

where I only classified the village as non-habitat (both in addition to other areas of non-habitat, such as 

bodies of water). Grid cell size of the mask should fall around or below the spatial parameter σ to 

provide a safety margin against biased density estimates, and (Efford 2022a), and was set to 200m after 

preliminary analysis (also see Table 3).  

Detection function 

Next, I fitted models with various detection functions, describing how the chance of detecting an 

individual changes with increasing distance from its activity centre, influencing density estimates 

(Figure 5). SECR has a total of twenty detection functions, most of which are rather unconventional or 

used for specific data types (such as audio signals). After excluding these options, three function forms 

remained: half-normal (HN), negative exponential (EX), and hazard rate (HR) (Figure 5). I constructed 

models with these detection functions, and compared their AIC-values, and chose HR to use in further 

modelling, as this function had the lowest AIC-value. HR follows the formula g(x) = g0 (1 - exp(- (x / σ) 
^(-z) )), where g(x) is the chance of detection of an individual x meters from its home range centre, g0 

is the base detection rate, σ  is the spatial parameter in meters, and z is a variable describing the length 

of the detection probability ‘plateau’ at short distances from the activity centre (Figure 5). The values 

of g0, σ and z are given for significant models in Table 3. Note that the use of HR is usually discouraged, 

because of its sensitivity out to very large distances, requiring very large buffers which would slow 

down the models. However, since I’m working with an island with natural boundaries, this should not 

pose much of a problem.   

Population size estimates 

SECR has built-in functions for estimating population sizes in the sampled region, using spatially fitted 

capture-recapture models, by discrete summation of every point in the fitted density surfaces. As an 

alternative to this more classical expected population size, the realised population size often yields 

similar results, but is considered to be more robust and has more adequate confidence intervals (Efford 

and Fewster 2013). The realised population size is calculated using slightly different methods, by 

excluding spatial process variance  (see Johnson et al. 2010, Efford and Fewster 2013). I will base my 

results and conclusions based off realised population estimates, as theses do not estimate the population 

sizes below the actual number of observed individuals, and are more robust in general. I still included 

expected population sizes for comprehensiveness.  
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Figure 5: The most used detection functions in SECR. Detection functions describe how detection probability g(x) declines with 
increase distance σ from activity centres (home ranges or territories). For this study, I used the hazard rate function, as this 
function fitted my data the best. Note that the base detection g0 here is 1.0, but this is usually not the case in practice.  

  

Covariates 

To explain possible variation in cat density throughout the island by ecological predictors, I used five 

different covariates in my models: distance to road (DTR), distance to village (DTV), terrain, vegetation 

mean height (VMH), and standard deviation of vegetation height (VSD), which I calculated using 

topographic and remote sensing data, explained in more detail below. These ecological predictors were 

then added to the mask for further analysis.  

Distance to roads and village 

Although feral cats are not necessarily dependent on humans for their survival, they may still make use 

of anthropogenic resources. The village and paths on the island may be sources of anthropogenic 

resources, for example in the form of leftover food from hiking tourists, or restaurants with garbage 

bins. Moreover, as mentioned previously, cats may prefer using roads and road verges for easy travel, 

and hunting or shelter opportunities (Doherty et al. 2014). However, cats may also perceive humans as 

dangerous, and might therefore avoid the village and some of the busier paths. To measure whether cats 

made use of roads and paths and possible anthropogenic resources around them, I used the “Wegdeel” 

(road sections) layer from the TOP10NL topographical maps, containing main roads, as well as smaller 

roads and (bicycle/hiking) paths. The distinction between major and minor roads was somewhat 

arbitrary, with some dirt paths being classified as main roads and some paved roads classified as minor 

paths. Therefore, I chose to combine both of these into one dataset. In the secr-package it is possible to 

calculate the distance of various points to the nearest camera trap by using the “distancetotraps” 

function. So, by converting the spatial road data into points, I could easily calculate the distances from 

Distance from activity centre σ (m) 
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traps from roads (DTR; Figure 6). I calculated the distance from traps to the village (DTV) in a similar 

fashion, by selecting the polygons that made up the buildings from the “Terrein” (terrain) layer of the 

TOP10NL topographical maps and converting them into points, and then using the “distancetotraps” 

function (Figure 6). During preliminary analysis, models containing the DTR-variable were highly 

significant (Appendix A), but also unrealistically extrapolated population estimates over the island (for 

example Appendix B3), and were thus excluded from the final analysis.  

 

 

Figure 6: The distance to village (DTV; top) and distance to road covariates (DTR; bottom) used in SECR density models, plotted 
in the farmland mask. Buildings and roads are included in blue in their corresponding plot. Both these variables were 
calculated using a built-in function in SECR, and could thus only be plotted within an SECR-mask. Red crosses are trap 
locations. 
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Terrain 

As mentioned previously, structurally complex habitats are preferred by cats due to their hunting and 

shelter opportunities (Doherty et al. 2014). Schiermonnikoog contains various terrain types with varying 

degrees of complexity, ranging from dunes to forests (Figure 1). To investigate whether habitats can 

explain possible differences in cat density on the island, I included a terrain variable in the analysis. 

Again, I used the terrain layer from the TOP10NL topographical maps. This data could be added straight 

to the mask, as “unsuitable” terrain (such as buildings or water) is already cropped out from habitat 

masks. The terrains from this map consisted of various broad categories, including sand (beaches), dune, 

grassland, forest (deciduous, coniferous, mixed) and cropland. However, during preliminary analysis, 

models using this this terrain covariate had trouble fitting, and were thus excluded from further analysis 

(represented, for example, by NA’s when estimating population densities, also see appendix B3 and 

B4). 

Vegetation height and standard deviation 

Vegetation height and standard deviation may also be good ecological predictors for cat presence. High 

vegetation may provide good shelter opportunities for cats. Vegetation standard deviation can be used 

as a proxy for structural complexity. Since available detailed vegetation maps were likely outdated, as 

the island is constantly changing (Bakker et al. 2003), I decided to estimate the vegetation height and 

standard deviation myself with more recent data using remote sensing. By subtracting a digital terrain 

model (DTM; the elevation of Earth’s surface, without buildings or vegetation) from a digital surface 

model (DSM; the elevation of tallest surface, including buildings and vegetation) it is possible to obtain 

an estimate of vegetation height. DTM and DSM for Schiermonnikoog are available in Het Actueel 

Hoogtebestand Nederland (AHN3; Current Dutch Elevation), where through laser altimetry a raster of 

DTM and DSM at a 5m resolution is obtained (Rijkswaterstaat, Ministerie van Infrastructuur en 

Waterstaat 2022b). As DSM does not distinguish between buildings and vegetation, structures are still 

included, but since I excluded the village from the mask, this should only minimally influence the 

results. Because these are estimates, some degree of error remains. For example, there were a small 

number of negative values for vegetation height, which I have manually set to 0 in QGIS. As I am 

interested in the vegetation height in an area around the traps, and not necessarily the vegetation height 

at the trap itself, I calculated the vegetation mean height (VMH) around a 150m radius for all cells in 

the raster using a moving window (Figure 7). This value was based off the HR detection function I 

selected earlier, suggesting that cats were most likely to be seen in a ~150m radius around the activity 

centre, thus making it an area of particular interest. In a similar fashion, vegetation standard deviation 

(VSD; representing heterogeneity/complexity) around all raster cells can be calculated with a moving 

window (Figure 7). After performing these calculations, the data was added to the mask for future 

analysis. 
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Figure 7: The average vegetation height (top) and vegetation standard deviation (bottom) of a 150m radius moving window, 
used as covariates in SECR density modelling. Vegetation height was calculated using remote sensing techniques that could 
not distinguish between vegetation and buildings, but since the village is excluded from the SECR mask, this should not pose 
a problem.  

 

Final density models 

With the above covariates, I created various maximum likelihood models using SECR to explain 

possible variance in density over the island for both habitat masks (with and without agricultural land) 

and identification lists (conservative and liberal). I used both conventional models, as well as regression 

splines for continuous variables (all variables but terrain, as terrain is not a continuous variable), which 

are a flexible alternative to polynomials in spatial trend analysis (Efford 2022d). Smoothness of the 

curve is determined by the number of knots, which I have set to three, as indicated in covariate names 

(e.g., DTV3 is the distance to village covariate, but using regression splines instead of conventional 

methods). When models had trouble fitting, I changed the method and link arguments until I found the 

most reliable fit, as suggested by (Efford 2022d). By comparing AICc-values, I could select the models 

(and thus covariates) that explained possible variation in cat density throughout the island significantly 

better than the null model (homogenous density throughout the island), which I used in further analysis 

and visualization. A model was considered significantly better than the null model when its AICc-value 

was at least 2 points lower than the null model. 
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Density surfaces 

I used density surfaces to visualize the expected heterogeneity in density. The models selected above 

can be used to predict densities for every raster point of the mask (Borchers and Kidney 2014). I plotted 

these expected densities over the mask for all models that were significantly better than the null model 

(with a “flat” density surface) for all different datasets, both in the mask, and in graph form showing 

how densities are expected to change with an increasing value of covariate, as described by (Efford 

2022d).  
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Results 

Camera trapping results 
Cameras were operational for trapping 1413 days, during which a total of 482.690 photographs were 

taken. Of these photographs, 1981 contained at least one cat at 41 sites (62% of all sites) over 343 

different sightings, 335 of which were usable by the investigators (Figure 1). As mentioned above, 

identifications were split up into a conservative (43 identified individuals) and liberal estimate dataset 

(58 identified individuals). Individuals were resighted on average 8.10 ± 2.33 and 6.33 ± 2.03 (mean ± 

SE) times for the conservative and liberal dataset respectively with 21% and 33% of individuals having 

been sighted only once, and one individual having been resighted 93 times (conservative dataset). The 

number of cats resighted between the western and eastern part of the island were very limited (see 

Appendix C). 

Population size estimates 

Realised population size was estimated at 45-51 individuals for both significant conservative models, 

and 62-79 individuals for significant liberal models, where the lower and upper limits differed slightly 

between the different covariates for the latter. As mentioned previously, the DTR and terrain covariables 

was excluded from the analysis due to unrealistic extrapolation and unreliable model fits. After 

exclusion of DTR and terrain, DTV(3), VMH(3) and VSD(3) remained as covariates. For both the 

conservative and liberal data, estimated realised population sizes were practically identical between 

masks, independent of the significant covariate. A full overview of estimated population sizes, both 

realised and expected, can be found in Table 2. 

 

Table 2: Overview of realised and expected estimated feral cat population size for all significant models of all datasets.  
Covariates include distance to village (DTV), vegetation mean height (VMH) and vegetation height standard deviation (VSD). 
The use of regression splines is indicated by a “3” after the variable name, after the number of knots.  

 

Dataset Covariate  Population SE Estimate LCL UCL 

Realised  

Conservative – Farms DTV3 47.60344 1.529540 45.44136 51.68024 

Conservative – No 

Farms 

DTV3 47.76898 1.506146 45.60592 51.72749 

Liberal – Farms VMH 66.58303 4.295742 61.39778 79.68137 

DTV3 66.51544 2.399040 62.95409 72.63695 

VMH3 66.58316 4.298136 61.39630 79.69146 

VSD 66.56160 4.304621 61.37645 79.7095 

Liberal – No Farms DTV3 66.44788 2.334735 62.96383 72.37734 

Expected  

Conservative – Farms DTV3 45.09152 6.887018 33.48390 60.72307 

Conservative – No 

Farms 

DTV3 45.03499 6.877751 33.44282 60.64530 

Liberal – Farms VMH 70.70194 9.442210 54.48235 91.75016 

DTV3 62.78788 8.279087 48.54242 81.21389 

VMH3 70.70245 9.443327 54.48117 91.75345 

VSD 70.78036 9.450403 54.54617 91.8462 

Liberal – No Farms DTV3 62.55809 8.246761 48.36779 80.91158 
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Density surface models 

Heterogeneous density surface models were more supported than models assuming homogenous 

density (null models) for all datasets, with an average density range of 0.0181-0.0278 cats/ha (Table 3), 

depending on identification methods, mask, and model. A summary of the most suitable models after 

model selection can be found in Table 3.  

The DTV3 covariate model explained differences in cat density over the island significantly better than 

the homogenous null model for all datasets (conservative and liberal estimates, with and without 

farmland). Interestingly, these models were only more supported when using regression splines, 

indicating that the relationship between distance to the village and feral cat densities may be relatively 

complex, as it apparently cannot be well-described by a conventional polynomial. Density surface 

predictions suggested that cat density on the island resembles a partial bell-shaped curve, with a 

relatively high cat density around the village, gradually increasing with increasing distance from the 

village, up to around 3000m, from which cat density declines again (Figure 8).  

Table 3: Summary of model selection results of feral cat monitoring on Schiermonnikoog (July – November 2021) for all 

datasets (conservative and liberal estimates; with and without farms as a potential habitat). D is feral density (cats/ha) on the 

island, and g0, σ and z are detection function parameters. Models were considered significantly better when they were at least 

2 AICc-units less than the null model. Various covariates were used in analysis, including distance to village buildings (DTV), 

mean vegetation height around camera traps (VMH), and standard deviation of vegetation height around camera traps (VSD). 

More flexible regression splines were also used as an alternative to the standard polynomials (indicated by a 3 following the 

covariate name, representing the number of knots). An overview of all models can be found in Appendix A.  

 

Dataset Covariate D (± SE) g0 σ z AICc-

Weight 

Conservative 

Farms 

DTV3 0.0181 

(±0.0041) 

0.4853 278.1 2.630 0.5575 

Conservative 

No Farms 

DTV3 0.0196 

(±0.0042) 

0.5133 263.1 2.594 0.6950 

Liberal 

Farms 

VMH 0.0266 

(±0.0045) 

0.9998 188.6 2.603 0.5040 

DTV3 0.0240 

(±0.0051) 

0.4971 258.4 2.754 0.1768 

VMH3 0.0266 

(±0.0045) 

0.7564 216.5 2.644 0.1564 

VSD 0.0227 

(±0.0030) 

0.8242 206.7 2.623 0.0340 

Liberal 

No Farms 

DTV3 0.0278 

(±0.0056) 

0.5297 243.3 2.701 0.7795 
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Figure 8: Mean expected density surface plots (left) and predicted densities with increasing distance to the village (right; 
mean and 95% confidence limits) from the DTV3 (distance to village; regression splines) models, both without farmland (top 
plots) and with farmland (bottom plots) for both the conservative and liberal identification methods, as indicated by the text.   

Interestingly, the liberal farmland dataset was the only dataset that had other covariates as significantly 

better predictors for spatial differences in cat density. In addition to the DTV3 model, the predicted 

densities from the VMH, VMH3 and VSD models were also significantly better than the null model for 

the liberal estimate with farmland (Table 3). The VMH covariate was an even better predictor for 

density than DTV3, even though the predicted densities looked more similar to less significant VMH3 

and VSD models (Figure 9). These vegetation models suggest that cats are mostly found around areas 

with low  (< 1m) and homogenous vegetation, as predicted densities quickly decline to zero with 

increasing mean vegetation height and standard deviation (Figure 9).  

Density (cats /ha) 

Conservative 

Conservative 

Liberal

 

Liberal
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Figure 9: Mean expected density surface plots (left) and predicted densities with increasing vegetation mean height or 
standard deviation (right; mean and 95% confidence limits) from VMH (vegetation mean height), VMH3 (vegetation mean 
height; regression spline) and VSD (vegetation height standard deviation) models (as indicated by text) for the liberal, 
farmland mask dataset.  
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Discussion  
Using images from a camera trapping study on Schiermonnikoog, I found that a population of 45-51 

(62-79 using the liberal estimate) cats inhabits the island, which is in line with previous estimates of 34 

and 50 cats in 1984 and 2011 respectively (Langeveld 1987, Op de Hoek et al. 2013). As expected, cats 

were heterogeneously distributed across the island. The distance to village ecological predictor 

suggested that cat density was highest around 3000m from the village. Vegetation height and standard 

deviation were also significant ecological predictors for the liberal farmland dataset, and predicted that 

cats made use of mostly homogenous low vegetation. This is surprising, as previous research has 

suggested cats prefer the use more structurally complex habitats (Doherty et al. 2014). Studies that 

investigate spatial distributions of animals using SECR are still relatively scarce, and to the best of my 

knowledge, this is the first study to model differences in densities using density surfaces for feral cats 

in The Netherlands. Since spatial density studies can prove useful for capture or monitoring 

programmes of damaging invasive species (Green et al. 2020), larger and more extensive studies on 

spatial densities of such species should be a high priority.  

Depending on the identification method, Schiermonnikoog is home to between 45-79 feral cats. Since 

camera trapping studies are notorious for overestimating population sizes due to identification errors 

(Johansson et al. 2020), the conservative estimate of 45-51 individuals is likely to be the most reliable. 

The cat population on Schiermonnikoog is thus probably relatively stable, compared to the latest 

estimate from 2011 of 50 individuals (Op de Hoek et al. 2013). The population of feral cats may actually 

consist of two separate populations, as indicated by the low number of resightings between the east and 

west of the island, with the village acting as a barrier. With a density of roughly 0.02 cats/ha, 

Schiermonnikoog has a relatively low density compared to more tropical islands, where densities of 0.5 

cats/ha are not unheard of (Nogales et al. 2004). Despite these seemingly low densities, predation by 

feral cats can still threaten vulnerable bird and mammal populations on the island (Op de Hoek et al. 

2013, Schrama et al. 2015, Kleefstra and Klemann 2018, Dekker and van Norren 2021), especially in 

places where feral cat abundance is highest. Identification of cats turned out to be quite difficult at 

times. The use of DNA-identification, such as hair traps (Boulanger et al. 2018), may be a better, though 

possibly more time-consuming alternative to camera trapping and likely yields the most accurate 

(spatial) densities. As mentioned previously, the liberal identification method most likely leads to 

overestimations of population size (Johansson et al. 2020). While for the sake of completeness it might 

be desirable to include both a liberal and conservative estimate, simply using the conservative 

identification list may be sufficient as well, if the proper methods are used (Choo et al. 2020). 

Distance to village was the best ecological predictor for cat presence, as this covariate was significant 

for the widest range of models. The relatively high estimated cat density around the village (0.01-0.02 

cats/ha, Figure 8) suggest that some cats may make use of anthropogenic resources of the village. 

Previous research has demonstrated that feral cats may indeed make use of anthropogenic resources 

(Doherty et al. 2014, Hand 2019), and it has been shown that animal densities can be affected by these 

resources (Liberg et al. 2000, Hubert et al. 2011). However, cat density was highest around 3000m from 

the village. Since home ranges of feral cats on Schiermonnikoog only span a few hundred ha at most 

(van der Ende 2015b), most cats would have to go out of their way to visit the village. Moreover, a prior 

diet analysis of cats on the island has revealed that scat does not contain anthropogenic food sources, 

but mostly voles (van der Ende 2015b), the densities of which tend to be lower in urban environments 

(Gortat et al. 2014). This suggests that cats would not make use of anthropogenic resources. Since no 

actual camera traps were placed in close proximity of the village, the relatively high predicted cat 

densities around the village may simply be the result of an extrapolation error. The high cat density 

around 3000m from the village may be the result of the prevalence of shorter vegetation (Figure 7), 
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which provide a suitable habitat for voles (Jacob et al. 2014), but this does not explain the low cat 

densities in the eastern part of the island. Without additional data on prey availability and vegetation, 

the precise ecological mechanisms behind this high density remain speculative. 

Vegetation height and heterogeneity were also a significant ecological predictor for cat distribution, but 

only for the liberal farmland dataset. These models suggested that cats made use of mostly homogenous 

low vegetation habitats, which is surprising, considering previous research predicted the use of more 

structurally complex habitats (Doherty et al. 2014). Again, the likely high prevalence of voles in lower, 

more homogenous habitats may explain the higher densities of cats in these areas (Jacob et al. 2014). 

However, one would still expect cats to make use of higher vegetation for shelter. The use of vegetation 

height for shelter alone may not be sufficient for predicting cat densities, as shelter use is variable. For 

example, cats mostly take shelter in high and dense vegetation (such as forests) during periods of bad 

weather (Harper 2007). Moreover, cats activity varies throughout the day (Langeveld 1987, van der 

Ende 2015b), with cats sheltering in patches of higher vegetation during rest, and using prey-rich 

heterogeneous vegetation patches while active (Doherty et al. 2014). In future analysis, it would thus 

be interesting to include interactions between vegetation height and heterogeneity, and temporal or 

meteorological covariates.  

It should be noted that the validity of the vegetation models may be questionable. The confidence limits 

in Figure 9 rapidly grew with increasing vegetation height and standard deviation, suggesting that the 

model predictions are not very precise. Possibly, the remote sensing data may not be accurate enough, 

as demonstrated by the negative vegetation height values mentioned in the methods. Additionally, areas 

with higher vegetation (such as the forest north of the village, Figure 5), were not monitored, while it 

is known that cats make use of, and often prefer woodland habitats (Bengsen et al. 2016). This lack of 

monitoring in such areas can lead to unreliable extrapolation of the data. Moreover, the fact that most 

the vegetation covariates were only significant for one of the datasets, as opposed to the DTV covariate, 

may indicate that the significance of these models may be the result of some methodological artifact, 

which I will discuss in more detail below.    

Unreliable results due to data extrapolation and inadequate data led to frequent complications in the 

analysis. For example, the arbitrary definition of major and minor roads led me to combine both into 

one variable, while there are pronounced differences between the two. Also, since all camera traps were 

placed near roads (Figure 4) and paths to maximize capture probability, the extrapolation of data led to 

unreliable results. The lack of monitoring in certain habitats not only led to extrapolation of the data, 

but also led me to analyse the data with two different masks. The extra area in the farmland may allow 

for estimated activity centres to be located in other areas, leading to altered density estimates. This is 

nicely illustrated by the difference in significance of the vegetation models for the different masks. 

More systematic deployment of camera traps can solve the problem of having to use multiple masks 

and extrapolation errors, as the entire island would be sampled. Previous research has shown that density 

estimates from a reduced number of systematically placed camera traps are comparable to those from a 

greater number specially selected camera trap sites, given enough detections (Després-Einspenner et al. 

2017). Clustered sampling, where a smaller subset of areas is more intensively sampled, may also be 

an interesting alternative for large study areas, as these methods seem reliable while reducing required 

sampling effort (Efford and Fewster 2013, Clark 2019). For future research, I would thus recommend 

the use of more systematic sampling methods.  

In conclusion, I found that the population of feral cats on Schiermonnikoog consists of an estimated 47-

51 individuals, which are heterogeneously distributed throughout the island, with distance to village 

being the best predictor. However, the lack of adequate data prevented me from further investigating 
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the ecological processes behind the spatial differences in cat densities, leaving open many interesting 

avenues for future research. My results highlight the importance of carefully considering the methods 

to employ in these types of studies, both for camera trapping (e.g., systematic sampling) and analysis 

(e.g., identification methods). Nevertheless, SECR is a robust and versatile tool in any ecologist’s 

arsenal, and should yield promising results in future studies.   
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Appendix A: Complete model selection results 

Appendix A1: Conservative 
   

Appendix A: Full model selection results from both identification methods and both masks, where N is the number of 

parameters. I ran models with five covariates: distance to road (DTR), distance to village (DTV), terrain type (Terrain), mean 

vegetation height (VMH) and standard deviation (VSD) 150m around the camera trap. I used both conventional polynomial 

methods, as well as regression splines (denoted by covariate name followed by a “3”, after the number of knots used). Models 

were significantly better when AICc-values were at least 2 AICc-units lower than the null model. I ended up excluding the 

Terrain and DTR covariates as they had unrealistic density estimates and had unreliable model fits. For that reason, model 

weights here and in Table 2 do not match. 

Conservative N LogLik AICc ΔAICc Weight 

With farmland 

DTR3 6 -629.146 1272.626 0 0.4302 

DTR 5 -630.52 1272.661 0.035 0.4228 

DTV3 6 -630.805 1275.942 3.316 0.082 

Null 4 -634.495 1278.043 5.417 0.0287 

VMH 5 -633.741 1279.104 6.478 0.0169 

VSD 5 -634.273 1280.167 7.541 0.0099 

VSD3 6 -633.548 1281.429 8.803 0.0053 

VMH3 6 -633.741 1281.815 9.189 0.0043 

DTV 5 -724.086 1459.794 187.168 0 

Terrain 11 -726.849 1484.215 211.589 0 

Without farmland  

DTR 5 -635.101 1281.824 0 0.6362 

DTR3 6 -634.484 1283.301 1.477 0.304 

DTV3 6 -636.32 1286.974 5.15 0.0484 

Null 4 -640.407 1289.866 8.042 0.0114 

VMH 5 -640.288 1292.197 10.373 0 

VSD 5 -640.376 1292.374 10.55 0 

VSD3 6 -639.452 1293.237 11.413 0 

VMH3 6 -640.277 1294.887 13.063 0 

Terrain 10 -638.551 1303.977 22.153 0 

DTV 5 -731.911 1475.444 193.62 0 
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Appendix A2: Liberal 
 

  

Liberal N LogLik AICc ΔAICc Weight 

With farmland 

DTR 5 -615.487 1242.129 0 0.6289 

DTR3 6 -614.768 1243.184 1.055 0.3711 

Terrain 11 -616.034 1259.807 17.678 0 

VMH 5 -625.624 1262.402 20.273 0 

DTV3 6 -625.425 1264.497 22.368 0 

VMH3 6 -625.547 1264.742 22.613 0 

VSD 5 -627.262 1265.679 23.55 0 

Null 4 -629.521 1267.796 25.667 0 

VSD3 6 -627.168 1267.984 25.855 0 

DTV 5 -743.717 1498.587 256.458 0 

Without farmland  

DTR 5 -617.991 1247.135 0 0.7209 

DTR3 6 -617.693 1249.033 1.898 0.2791 

DTV3 6 -632.314 1278.275 31.14 0 

Terrain 10 -626.832 1278.346 31.211 0 

VSD3 6 -634.451 1282.549 35.414 0 

Null 4 -637.225 1283.205 36.07 0 

VSD 5 -636.715 1284.584 37.449 0 

VMH 5 -637.203 1285.561 38.426 0 

VMH3 6 -636.818 1287.283 40.148 0 

DTV 5 -753.763 1518.68 271.545 0 
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Appendix B: Population estimates for all models 
 

Appendix B: Full list of population estimates, both expected and realised around the island for all datasets and covariates. 

Terrain models could not always estimate al parameters, which is an indication of bad model fits, and were thus excluded 

from the analysis. DTR and DTR3 models wildly extrapolated population estimates, and were also excluded. 

Appendix B1: Conservative Farmland 
 

Conservative,  

Farms 

Estimate SE Estimate LCL UCL 

Null     

Expected 47.81977 7.350898 35.44242 64.51961 

Realised 47.72166 2.493175 44.78636 55.48016 

Terrain     

Expected 43.80710 NA NA NA 

Realised 49.76806 NA NA NA 

DTR     

Expected 80.04480 18.19264 51.55873 124.2693 

Realised 50.13545 15.84069 43.52222 140.4961 

DTV     

Expected 38.12615 6.671575 27.12662 53.58588 

Realised 48.75092 2.526610 45.52432 56.10179 

VMH     

Expected 49.23269 7.585783 36.46438 66.47193 

Realised 47.63414 2.882953 44.51043 57.21800 

VSD     

Estimate 48.20934 7.396354 35.75175 65.00774 

Realised 47.70349 2.548866 44.73980 55.71572 

DTR3      

Expected 111.57989 39.59416 56.81290 219.1416 

Realised 53.16243 38.15911 43.40229 299.7175 

DTV3     

Expected 45.09152 6.887018 33.48390 60.72307 

Realised 47.60344 1.529540 45.44136 51.68024 

VSD3     

Expected 48.68186 7.476250 36.09160 65.66413 

Realised 47.72956 2.685603 44.67814 56.32943 

VMH3     

Expected 49.23201 7.58634 36.46280 66.47298 

Realised 47.63419 2.88783 44.50955 57.22663 
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Appendix B2: Conservative No Farmland 

 

  

Conservative, 

Without farms 

Estimate SE Estimate LCL UCL 

Null     

Expected 48.01772 7.380253 35.59066 64.78390 

Realised 47.92575 2.539767 44.90188 55.75742 

Terrain     

Expected 47.76708 7.709163 34.88468 65.40675 

Realised 47.75137 3.415277 44.34112  59.83329 

DTR     

Expected 85.74969 19.71308 54.96207 133.7834 

Realised 50.92060 17.40275 43.58706 149.8643 

DTV     

Expected 37.66878 6.564338 26.83832 52.86983 

Realised 48.56742 2.328465 45.53455 55.22943 

VMH     

Expected 47.86994 7.320170 35.53452 64.48748 

Realised 47.94492 2.390596 45.01400 55.14114 

VSD     

Estimate 47.90680 7.333683 35.55062 64.55757 

Realised 47.93597 2.424067 44.98477 55.27534 

DTR3      

Expected 108.70079 38.58951 55.33143 213.5470 

Realised 53.29503 37.15440 43.42597 291.8169 

DTV3     

Expected 45.03499 6.877751 33.44282 60.64530 

Realised 47.76898 1.506146 45.60592 51.72749 

VSD3     

Expected 48.50889 7.441759 35.97468 65.41023 

Realised 47.93219 2.621237 44.85562 56.10963 

VMH3     

Expected 47.91353 7.332966 35.55810 64.56210 

Realised 47.94316 2.420508 44.99243 55.26383 
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Appendix B3: Liberal No Farmland 
 

Liberal,  

Without farms 

Estimate SE Estimate LCL UCL 

Null     

Expected 67.01728 8.881253 51.74574 86.79585 

Realised 66.86246 3.443744 62.24967 76.48220 

Terrain     

Expected 74.71543 NA NA NA 

Realised 67.72416 NA NA NA 

DTR     

Expected 219.26351 48.71321 142.60352 337.1339 

Realised 80.95581 46.40812 59.88476 337.5942 

DTV     

Expected 53.24216 8.091411 39.59434 71.59427 

Realised 68.61499 3.496966 63.65840 77.91339 

VMH     

Expected 67.11598 8.869676 51.85880 86.86193 

Realised 66.81561 3.399290 62.24949 76.28809 

VSD     

Estimate 68.04286 9.148898 52.34125 88.45472 

Realised 66.44295 3.957206 61.52510 78.22166 

DTR3      

Expected 258.10894 86.10045 136.55690 487.8569 

Realised 85.35206 84.58829 59.34913 612.5300 

DTV3     

Expected 62.55809 8.246761 48.36779 80.91158 

Realised 66.44788 2.334735 62.96383 72.37734 

VSD3     

Expected 69.37508 9.239279 53.49825 89.96374 

Realised 66.47106 3.998650 61.51697 78.40363 

VMH3     

Expected 67.55744 8.980426 52.12162 87.56458 

Realised 66.52170 3.618094 61.83702 76.92595 
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Appendix B4: Liberal Farmland 

 

 

Liberal,  

Farms 

Estimate SE Estimate LCL UCL 

Null     

Expected 67.04107 8.888894 51.75740 86.83791 

Realised 66.86830 3.459968 62.24068 76.54578 

Terrain     

Expected 74.04104 NA NA NA 

Realised 67.31918 NA NA NA 

DTR     

Expected 209.40670 46.44866 136.28476 321.7613 

Realised 79.58347 44.13696 59.74719 324.6255 

DTV     

Expected 54.50158 8.307861 40.49505 73.35272 

Realised 69.33398 3.810378 63.96818 79.52399 

VMH     

Expected 70.70194 9.442210 54.48235 91.75016 

Realised 66.58303 4.295742 61.39778 79.68137 

VSD     

Estimate 70.78036 9.450403 54.54617 91.8462 

Realised 66.56160 4.304621 61.37645 79.7095 

DTR3      

Expected 264.99344 89.19494 139.4372 503.6068 

Realised 85.78561 87.69689 59.3387 634.7074 

DTV3     

Expected 62.78788 8.279087 48.54242 81.21389 

Realised 66.51544 2.399040 62.95409 72.63695 

VSD3     

Expected 70.50781 9.48610 54.22881 91.67363 

Realised 66.57963 4.41342 61.31924 80.17683 

VMH3     

Expected 70.70245 9.443327 54.48117 91.75345 

Realised 66.58316 4.298136 61.39630 79.69146 
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Appendix C: Spatial recaptures 
 

Appendix C: An overview of spatial recaptures for both the conservative (top) and liberal (bottom) identification methods. 

Coloured dots represent traps where cats have been sighted, and red crosses are trapping locations without any cat sightings. 

Lines represent spatial recaptures, meaning that one individual has been sighted at multiple locations. Colours have been 

reused, and a single colour may thus represent multiple individuals. 
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