
Training a Physics-Based Osseointegrated
Transfemoral Amputee Model with a

Reduced State Observation using Deep
Reinforcement Learning

Brown N. Ogum
s4056728

A thesis presented for the degree of
Master of Science in Artificial Intelligence

Training a Physics-Based Osseointegrated
Transfemoral Amputee Model with a

Reduced State Observation using Deep
Reinforcement Learning

Brown N. Ogum
s4056728

Internal Supervisor(s): Prof. Dr. Raffaella Carloni
Prof. Dr. Lambert Schomaker

(Bernoulli Institute for Mathematics, Computer Science, and Artificial
Intelligence, Faculty of Science and Engineering, University of Groningen)

August 31, 2022

Artificial Intelligence / Human-Machine
Communication

University of Groningen, The Netherlands

Contents

Abstract. iii
Acknowledgements . iv
List of Figures . v
List of Tables. vii
1 Introduction . 1

1.1 Research Questions 2
1.2 Significance of Study 2
1.3 Thesis Outline 3

2 Theoretical Background . 4
2.1 Machine Learning 4

2.1.1 Unsupervised Learning 5
2.1.2 Supervised Learning 6
2.1.3 Semi-supervised Learning 6
2.1.4 Reinforcement Learning 6

2.2 Deep Reinforcement Learning Policy Optimization . . 8
2.2.1 Policy Gradient Methods 9
2.2.2 Trust Region Methods 9
2.2.3 Proximal Policy Optimization 10

2.3 Artificial Neural Networks. 11
2.3.1 McCulloch-Pitts Neuron 12
2.3.2 Perceptron 13
2.3.3 Multi-Layer Perceptron 14
2.3.4 Optimization 14

2.4 Related Work 14
3 Research Methods . 17

3.1 Materials 17
3.1.1 Opensim 17
3.1.2 The Agent 18
3.1.3 The Imitation Dataset 20

3.2 Proximal Policy Optimization 22
3.3 Reward Injection 25

3.3.1 Goal Reward 27

i

3.3.2 Imitation Reward 27
3.3.3 Penalty 28

3.4 Deep Reinforcement Learning with a Reduced State Observation 28
3.5 Experimental Setup 29

3.5.1 Predicting the Muscle Information 29
3.5.2 Training the Learning Agent 31

3.6 Performance Criteria 32
3.6.1 Muscle Information Prediction 32
3.6.2 Agent’s Locomotion 33

4 Results . 36
4.1 Hyperparameter search 36

4.1.1 Experiment for number of iterations 36
4.1.2 Experiment for number of hidden units 37
4.1.3 Experiment for number of prediction categories 38

4.2 Muscle Information Prediction 39
4.3 Comparison of Results for Models Trained with Different Obser-

vation Types 40
4.4 Realized Gait 42

4.4.1 Complete observation 42
4.4.2 Reduced observation 44
4.4.3 Augmented observation 44

4.5 Symmetry of Models 47
4.5.1 Left - right leg symmetry 47
4.5.2 Model - imitation data symmetry 47

4.6 Kinetic Analysis 48
5 Discussion and Conclusion . 55

5.1 Discussion 55
5.1.1 Hyperparameter selection 55
5.1.2 Analysis of model results 56
5.1.3 Real-world Performance 57

5.2 Summary of Thesis 59
5.3 Answers to Research Questions 60
5.4 Recommendations for Future Research 61
5.5 Conclusion 61

References . 63
Appendix . 71
A . 71

A.1 Observation Space 71
A.2 Muslce information prediction 74
A.3 Maximum isotropic force and optimal length of muscles . . 74
A.4 Symmetry of left and right joints 75
A.5 Visualization of Simulation 76

ii

Abstract
This project leverages a physics-based simulated environment (OpenSim) for the
implementation of an intelligent control framework of an osseointegrated trans-
femoral amputee model, for the task of normal walking. A Deep Reinforcement
Learning (DRL) algorithm - Proximal Policy Optimization (PPO) (with imitation
learning) is used to optimize a policy for the walking task. Training the model in a
simulation gives us access to additional muscle information which are not readily
observable in the real world. The main aim of this research is to observe if a trans-
femoral amputee model can be trained to walk using Deep Reinforcement Learning
while using a reduced number of state observers. To this end, a transfemoral am-
putee agent is trained to walk using the complete observation state - which contains
kinematic data of the agent, including the force, length, and velocity of the agent’s
muscles. The agent is also trained by observing a reduced state. This reduced state
only contains data that can readily be obtained in the real world with devices such
as Inertia Measurement Units (IMUs) and rotary encoders. Hence, the muscle in-
formation is not included in this state representation. The effects that the lack of
muscle forces and fiber length and velocity information have on the generation of
gait are observed using three symmetry measures - RMSE, symmetry angle, and
trend symmetry. Several Deep Neural Network architectures were trained in a su-
pervised manner to predict the missing muscle information of the reduced state of
the prosthesis model and their results were appraised using 5-fold cross-validation.
It was observed that a fully-connected feed-forward neural network with 3 hidden
layers had the best performance on the prediction task. Lastly, empirical results
using an observation state that was augmented with the predicted muscle informa-
tion showed that the transfemoral amputee model can be trained to walk using this
framework with comparable rewards and symmetry to using the complete observa-
tion.

Keywords – Deep Reinforcement learning, Transfemoral Amputee Model, Gait
Symmetry, Feature Approximation

iii

Acknowledgements

This thesis has been supported by a number of people.

First, I want to extend tremendous gratitude to my supervisors. I would like to thank
my first supervisor, Prof. Raffaella Carloni for her constant support and academic
guidance in the course of this research. I also want to thank her for the computa-
tional support granted, to train the AI models. I’m extremely grateful to my second
supervisor, Prof. Lambert Schomaker for providing useful feedback and sugges-
tions on technical aspects of this thesis.

I am also thankful to members of the Robotics Research Lab - Bernoulli Institute
for Mathematics, Computer Science and Artificial Intelligence, especially Vishal,
Chandan, and Robin, for their contribution in discussions about this project.

I could not have performed this research without the ceaseless support of my par-
ents, Prof. Daniel Ogum and Dr. Lovenda Ogum, and my caring siblings; Albert,
Favour, and Victor.

Thank you Sarima, for all the love and support.

iv

List of Figures

2.1 Web of Science topic search for “Deep Reinforcement Learning” . . 7
2.2 Plots showing one timestep of the surrogate function LCLIP as a

function of the probability ration r, for positive advantages (left)
and negative advantages (right). The red circle on each plot shows
the starting point for the optimization, i.e., r = 1. (retrieved from
Schulman et al. (2017)) . 11

2.3 McCulloch-Pitts neuron with n inputs 12
2.4 A Perceptron with a bias term . 13

3.1 Osseointegrated transfemoral amputee model developed by Raveen-
dranathan (Raveendranathan & Carloni, 2020). The red lines are the
muscles. The pink balls are markers and the blue spheres on the feet
are the contact meshes. The model has 11 muscles on the right leg.
On the left, there are 4 muscles, and an actuator at the knee and at
the ankle joint. 18

3.2 Hill-type muscle model that describes the musculo-tendon contrac-
tion mechanics in the transfemoral amputee model. It includes a
contractile element (CE), and two elastic elements (one parallel and
one series). The elements generate a force on the tendon. Figure
from (De Vree & Carloni, 2021; Thelen, 2003) 19

3.3 Osseointegrated tranfemoral amputee model with labeled muscles
and actuators. It shows the 15 muscles and 2 actuators possessed by
the agent. The uniarticular muscles are labeled in green, biarticular
muscles in red, hip adduction and abduction in blue, and actuators
in blue. 20

3.4 Overview of the DRL Framework for learning a with a reduced state
observation. 30

3.5 Data split for training muscle information. The top row represents
the entirety of the collected data (2 million time steps). The bottom
row represents the percentage used for model selection with cross-
validation. Green blocks represent training data and blue represents
data used for testing. 31

v

4.1 rewards and timesteps per episode and iteration. The top row shows
the rewards and duration per episode. The bottom row is the average
episodic reward and average episode duration during each training
iteration. 38

4.2 Architecture of the best performing muscle information prediction
network. Green blocks represent fully-connected layers with the
respective number of units displayed. Yellow blocks represent batch
normalization, and blue blocks represent drop-out regularization. . . 40

4.3 Training for the best-performing model for the muscle information
prediction task. The model is a fully-connected feed-forward net-
work with 3 hidden layers, 256 hidden units, batch normalization,
and drop-out. 40

4.4 Left and right hip, knee, and ankle angles during the gait cycle using
the complete state observation. The policy network has 228 hidden
units, and 5 prediction categories and was trained for 700 iterations
of PPO. 43

4.5 left and right hip, knee, and ankle angles during the gait cycle using
the reduced state observation (no muscle information). The policy
network has 228 hidden units, and 5 prediction categories and was
trained for 700 iterations of PPO. 45

4.6 left and right hip, knee, and ankle angles during the gait cycle using
the augmented state observation (muscle information predicted by
feed-forward neural network). The policy network has 228 hidden
units, and 5 prediction categories and was trained for 700 iterations
of PPO. 46

4.7 average left and right hip, knee, and ankle angles during the gait cy-
cle using the complete, reduced and augmented observation models,
as well as the imitation data. 51

4.8 Knee and ankle actuator stiffness during gait cycle 52
4.9 Knee and ankle actuator torque during gait cycle 52
4.10 Muscle force during phases of gait cycle (Continued on next page) . 53
4.10 Muscle force during phases of gait cycle (continued) 54

A.1 Mean and standard deviation of hip flexion during gait using differ-
ent observation state representations. 75

A.2 Mean and standard deviation of knee flexion during gait using dif-
ferent observation state representations. 75

A.3 Mean and standard deviation of ankle flexion during gait using dif-
ferent observation state representations. 76

A.4 Snapshots of transfemoral amputee model during training process.
Model trained using complete observation state, 5 prediction cate-
gories, and 228 hidden layer size. 76

vi

List of Tables

2.1 State-of-the-art DRL algorithms and some relevant applications . . . 16

3.1 Primary functions of the 15 muscles and 2 actuators, present in the
transfemoral amputee model . 21

3.2 The range of motion for the degrees of freedom of the transfemoral
amputee model. 22

3.3 Summary of the selected hyperparameters used for training models
with PPO for the locomotion task. 24

3.4 Overview of feed-forward network parameters used for muscle in-
formation prediction. 29

3.5 Summary of hyperparameters tested for the locomotion task. The
hidden layer size is the same for both the policy and value networks.
The discrete categories are the number of prediction categories. . . . 32

4.1 Average episode reward and training duration for the different num-
ber of hidden units in the policy and value networks for training with
PPO. The episode rewards are averaged over 50 episodes. 37

4.2 Average episode reward and training duration for the different num-
ber of prediction categories for training with PPO. The episode re-
wards are averaged over 50 episodes after 700 iterations of PPO. . . 39

4.3 Hyperparameter values and cross-validation mean absolute error for
five best performing models on the muscle information prediction
task. 39

4.4 Breakdown of muscle information prediction for each muscle. . . . 41
4.5 Average episodic reward for the different number of prediction cat-

egories and observation space types. The rewards are averaged over
50 episodes of the agent’s locomotion and using a model trained for
700 iterations. 42

4.6 Symmetry of the joints in the left and right leg during gait. 48
4.7 Symmetry measures for models (trained with different observation

spaces) and the imitation data. The average left and right, hip, knee,
and ankle flexion of models are compared to the imitation data. . . . 49

vii

A.1 Complete observation space for the transfemoral amputee agent. [1-
46] is the reduced observation space. [47-91] are the muscle infor-
mation that are predicted using a feed-forward network. 71

A.2 Results of muscle information prediction network on the validation
data. 74

A.3 Maximum isotropic force and optimal fiber length of 11 muscles of
the transfemoral amputee agent. 74

viii

Chapter 1

Introduction

Human gait refers to a person’s manner of movement. It has to do with the pattern
of movement of limbs during locomotion. The study of human gait has been of
great importance for a multitude of reasons. Not only has it helped advice on ways
to reduce the risk of injury during movement, but it has also helped in diagnosing
issues and injuries based on an individual’s manner of movement. Gait analysis has
also provided a very detailed description of the complexities associated with bipedal
locomotion. Humans have become so efficient at bipedal locomotion that it is easy
while walking on an aisle, shopping for groceries, to forget just how complex the
task of walking actually is. The brain coordinates full-body movements by send-
ing excitation signals to the nervous system which activates or deactivates muscle
groups; leading to excitation or relaxation of the muscle groups. Research has pro-
vided information on what muscle groups get activated during the different phases
of the human gait cycle for prostheses and non-prostheses users (Huang & Ferris,
2011; Feger et al., 2015). Even with this knowledge, it will be an arduous task to
decide on what muscles have to be contracted and which ones have to be relaxed
in order to generate a normal gait pattern. This means that it would be a program-
mer’s nightmare to hard-code a set of rules for gait generation, given the state of
the individual. Luckily, we do not have to. Advancements in the field of Artificial
Intelligence and Machine Learning, and in particular, Deep Reinforcement Learn-
ing, have made it possible to use the computational power of computers, as well
as intelligent algorithms, to solve daunting problems such as the above-mentioned
policy for gait generation. These algorithms train a policy to produce actions given
the state of the model (the human in this case) in a way that maximizes a predefined
reward system. They have a wide variety of applications from robotic automation
and self-driving cars to personalized healthcare, and many more.

This research trains a simulated amputee model (Raveendranathan & Carloni, 2020)
in Opensim (Delp et al., 2007) to have a regular human gait using a deep rein-

1

Chapter 1 – Introduction

forcement learning algorithm - proximal policy optimization (PPO) Schulman et al.
(2017). The trained agent is a transfemoral amputee model with a prosthetic limb
osseointegrated into the left leg. De Vree & Carloni (2021) successfully trained
a healthy human model to walk using PPO and imitation learning (Hussein et al.,
2017). There has, however, not been much research done on training an osseoin-
tegrated transfemoral amputee agent for gait generation. Furthermore, there has
been no research that the author could find which investigates the effects of train-
ing such an agent with a reduced observation space. This underlies the novelty and
importance of this study.

In this research, comparisons of the quality of gait will be made for training the
described amputee model with, and without access to its muscle information. An
approach for handling the reduced observation is presented which approximates the
muscle excitation of the amputee model.

1.1 Research Questions
This thesis is motivated by the following research questions:

• Can a transfemoral amputee model be trained to have a regular gait using
Deep Reinforcement Learning without muscle information?

• Does muscle information approximation yield features that are useful for
learning locomotion?

• What are the benefits (if any) of utilizing the augmentation of muscle infor-
mation in producing a gait?

1.2 Significance of Study
This research is part of an ongoing project - MyLeg (Smart and intuitive osseoin-
tegrated transfemoral prosthesis embodying advanced dynamic behaviors) at the
Bernoulli Institute’s Robotics Research Lab. The contribution of this research is to
train an osseointegrated transfemoral amputee model to mimic a natural human gait
in a simulation whilst only having access to data that can be obtained using IMUs
and encoders. This is particularly important for building the control architecture
of a physical transfemoral prosthesis by helping the user achieve intuitive control
of the prosthesis and providing a benchmark or an expectation of the robotic pros-
thetic limb’s performance with the available data. To this effect, this study provides
a way to achieve human-like movement by building an intelligent control system
for a physics-based amputee model based on muscle contraction and relaxation, as
well as the control of actuators on a prosthetic leg while not having access to muscle
information (a reduced state observation).

2/76

Chapter 1 – Introduction

1.3 Thesis Outline
The remainder of this thesis report is divided into the following chapters:

• Theoretical Background
This chapter introduces the theory behind the methods used and other similar
methods.

• Research Methods
In this chapter, the experimental setup for the research carried out is described
in detail. It explains the utilized tools which include the simulation environ-
ment and agent. The chapter also describes the experiments conducted, uti-
lized architectures, and hyperparameters used. In addition, the algorithmic
framework and implementation, as well as the measures of performance used
in conducting this research are elucidated in this chapter.

• Results
This chapter provides the results of the conducted experiments. The presented
results include the obtained reward of the models as well as the symmetry
measures for the amputee agent.

• Discussion and Conclusion
This chapter will conclude the research paper by summarizing the research
done in this thesis. It also discusses the implications of the obtained results
and provides answers to the stated research questions and puts forward rec-
ommendations for future research within this line of research.

3/76

Chapter 2

Theoretical Background

2.1 Machine Learning
Machine learning is a rapidly growing field that has garnered a lot of interest due to
its wide application domain and its high usage in our daily lives. It allows us to solve
problems that would be incredibly complex to solve using rule-based programming.
But what is machine learning? When can learning be said to have occurred in a
machine? Mitchell (1997) provides a succinct definition of the term. According to
him, a computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P, if its performance at tasks in T , as
measured by P, improves with experience E.

Many kinds of tasks have been tackled using machine learning approaches. Some
of the common groups of tasks in machine learning are listed below.

• Classification: this group of learning tasks requires the assignment of ob-
servations into one of several categories or classes. To solve a classification
problem, the learning algorithm learns a function that maps a vector input
to a categorical output. The classification task is quite common in machine
learning. It can include various tasks from identifying objects and animals in
images to identifying spam mails if the true values of the objects, animals, or
mails are used in the learning process by the algorithm.

• Regression: these tasks usually deal with the prediction of a continuous nu-
merical value, given some input vector. To solve this type of task, the learning
algorithm learns a function f : Rn→ R. Some examples of regression tasks
include estimation of housing price, stock price, a person’s age, etc., given
some relevant features.

• Transcription: these tasks require the machine learning algorithm to observe

4

Chapter 2 – Theoretical Background

an unstructured representation of data (e.g. audio or video recording, or im-
age with text) and transcribe the data into a discrete textual form. Machine
learning models have been trained to perform transcription tasks with a high
degree of accuracy (Dahl et al., 2012; Hinton et al., 2012).

• Machine Translation: this learning task aims to train a machine learning sys-
tem to be proficient at translating text from one language to another. Strides
in Deep learning algorithms and systems capable of training such models
have been especially beneficial in this group of learning tasks as it has helped
machine learning experts achieve near human-like accuracy in this type of
machine learning task

• Anomaly Detection: in this type of task, the learning algorithm is tasked with
finding a solution that sifts through data and identifies unusual patterns that
do not conform to expected behavior.

• Synthesis and sampling: in this type of learning problem, the learning algo-
rithm is tasked with generating new examples that are similar to those in the
training data.

The performance measure P of a machine learning program gives insight as to how
well the algorithm is learning. This measure has to be carefully chosen so that the
algorithm learns to do what is actually intended by the developer. The performance
metric utilized strongly depends on the machine learning task. For example, in
a classification task, the accuracy of the classifier can be a suitable performance
metric. In a regression task, the mean squared error can be a suitable error metric.
However, in an unsupervised clustering task in which the ground truth is not known,
such metrics might not be suitable.

Lastly, the experience E denotes the information the learning algorithm is allowed
to have in the training process. Does the learning algorithm make use of the tar-
get values (ground truth), or does it only go through a dataset and try to draw some
inferences only using the available data? The learning algorithm could also gain ex-
perience by interacting with an environment. The gaining of experience is the basis
of grouping learning algorithms into categories such as supervised, unsupervised,
semi-supervised, and reinforcement learning. These categories of machine learning
algorithms will be further discussed in the coming sections.

2.1.1 Unsupervised Learning
Unsupervised learning refers to machine learning methods that learn useful proper-
ties from unlabelled data sets. The lack of context in the training examples implies
that a comparison of the learning algorithm’s performance with the ground-truth is
not possible. This is because there is no teacher to facilitate the evaluation of the

5/76

Chapter 2 – Theoretical Background

system’s performance. Rather than having a teacher capable of denoting the ground
truth given an example, unsupervised learning makes use of a task-independent
measure of the quality of the representation to be learned (Becker, 1991). Unlike
supervised learning, unsupervised learning methods cannot be directly applied to
a regression or classification problem as one has no idea of what the values of the
output may be. Hence, the main goal in unsupervised learning is to discover hidden
and interesting patterns in unlabelled data (El Bouchefry & de Souza, 2020). The
goal of unsupervised learning tasks could be to discover groups of similar examples
within a data set (clustering), or to determine the distribution of data within the input
space; known as density estimation, or to project the data from a high-dimensional
space down to two or three dimensions for the purpose of visualization (Bishop,
2006).

2.1.2 Supervised Learning
Supervised learning algorithms experience data sets that have input vectors along
with their corresponding target values. These machine learning methods analyze a
data set of examples and their target values in order to make predictions on novel
examples. Supervised learning is also referred to as learning with a teacher. Con-
ceptually, the teacher can be thought of as having knowledge of the environment.
This environment is, however, unknown to the learning model. By the virtue of this
knowledge, the teacher is able to give an evaluation of the model’s performance on
training examples (Haykin, 2009).

2.1.3 Semi-supervised Learning
In a number of cases, only a portion of the available training data is labeled. These
types of cases can make use of semi-supervised learning methods. In addition to
unlabelled data, algorithms of this type are provided with some supervision infor-
mation. This information often is targets associated with some of the examples
(Chapelle et al., 2010).

2.1.4 Reinforcement Learning
When we ponder the nature of learning, one of the first thoughts to cross one’s mind
is perhaps, the idea that we learn by interacting with our environment. Throughout
our lives, a major source of knowledge about our environment and ourselves comes
from the wealth of information about cause and effect, about the consequences of
our actions. This knowledge obtained from experiencing our environment helps us
make decisions on what to do in order to achieve goals (Sutton & Barto, 2018). In
the Reinforcement learning framework, the learning agent does not have access to
a teacher that gives examples of good or bad behavior. Rather, the learning agent

6/76

Chapter 2 – Theoretical Background

experiences its environment by trial and error in order to discover a policy or pattern
of behavior, which maximizes its reward.

Computational usage of reinforcement learning frameworks has greatly increased
in recent years. Reinforcement learning algorithms have been utilized for many
decades, however, the introduction of deep reinforcement learning algorithms -
classic reinforcement learning frameworks combined with deep neural networks,
has gained popularity in recent years (Figure 2.1). This additional attention to the
class of learning algorithms was in large, due to breakthrough articles by Deepmind
(Mnih et al., 2013, 2015).

Figure 2.1: Web of Science topic search for “Deep Rein-
forcement Learning”

Reinforcement learning and in particular, deep reinforcement learning algorithms
have been utilized in a multitude of cases. One of the common uses of these learning
algorithms in robotics is for learning manipulation skills. Skills such as shooting
hockey pucks (Chebotar, Hausman, Zhang, et al., 2017), opening doors (Chebo-
tar, Kalakrishnan, et al., 2017), putting caps on bottles (Levine et al., 2016), and
lego block stacking (Levine et al., 2015; Haarnoja et al., 2018) have been learnt
using reinforcement learning algorithms. Reinforcement learning in robotics has
also been hugely utilized for grasping tasks (Chebotar, Hausman, Kroemer, et al.,
2017; Levine et al., 2018; Kalashnikov et al., 2018). Another aspect of robotics that
deep reinforcement learning has significantly contributed to is legged locomotion.
This paper falls within this scope and further details of reinforcement learning as it
relates to locomotion will further be discussed in section 2.4.

7/76

Chapter 2 – Theoretical Background

2.2 Deep Reinforcement Learning Policy Optimiza-
tion

Deep reinforcement learning algorithms are generally grouped into two categories;
value-based methods and policy-based methods. The DRL algorithm utilized in this
project is a policy-based DRL algorithm. In order to fully understand and appreciate
the benefits of utilizing a policy-based method, it is perhaps important to first briefly
analyze an alternative DRL schema; value-based learning.

The value-based DRL methods such as deep Q-learning, learn an approximation of
the Q-value of state-action pairs using deep neural networks. The Q-value of a state-
action pair (s,a) is the expected discounted return (i.e. sum of all rewards received
from time step t onwards) received if the agent takes an action a from a state s and
follows the policy distribution π thereafter (Equation 2.1). This is very similar to the
value of a state (V-value). The V-value of a state is the expected discounted return if
the agent is in state s at time t and thereafter, follows its policy π (Equation 2.2). A
value-based DRL algorithm selects actions using an epsilon-greedy policy or a soft-
max policy. This allows the learning algorithm to select the most suitable action
(state transition). To allow for more exploration of the environment, an epsilon-
greedy approach is usually used. This selects actions based on the greedy policy
and a predefined probability for selecting the greedy policy’s action or a random
action. During the training of a value-based DRL method, a neural network with
weights and bias parameters θ is trained to minimize the loss L(θ) for all states (s)
or states and action pairs (s,a) so that the estimated V-values or Q-values converge.

Qπ(s,a) = Eπ[Rt |st = s,at = a] (2.1)

V π(s) = Eπ[Rt |st = s] (2.2)

Policy-based DRL methods approach the reinforcement learning task very differ-
ently. Instead of using the learnt value of a state or state-action pair to determine
suitable actions, this type of algorithms directly learn a policy πθ(a|s) that maxi-
mizes the expected return Rt for trajectories τ = (s0,a0,s1,a1, ...,sT ,aT) generated
by the actions selected by the policy. The objective function that is maximized in
these methods is defined by:

J(θ) = Eτ∼ρθ[R(τ)] = Eτ∼ρθ[
T

∑
t=0

γ
tr(st ,at ,)] (2.3)

ρθ(τ) denotes the likelihood that a trajectory τ was generated by the policy function
π with parameters θ.

8/76

Chapter 2 – Theoretical Background

ρθ(τ) = pθ(s0,a0, ...,sT ,aT) = p0(s0)
T

∏
t=0

πθ(st ,at)p(st+1|st ,at) (2.4)

Policy-gradient methods are the most commonly used technique for the optimiza-
tion of a policy πθ(a|s). This optimization technique and the specific optimization
strategy (proximal policy optimization) utilized for this research are discussed in
the succeeding subsections.

2.2.1 Policy Gradient Methods
Policy gradient methods work by computing an estimator of the policy gradient and
plugging it into a gradient ascent algorithm (Schulman et al., 2017). A popular
early policy gradient method is the REINFORCE algorithm (Williams, 1992). The
gradient estimation is characterized by:

∇θJ(θ) = ∇θ log π(at |st ;θ)Rt (2.5)

This allows the weights of the policy to be updated using gradient ascent; θ← θ +
η∇θJ(θ). This approach to reinforcement learning is beneficial because it is model-
free. Model-free RL algorithms do not need the transition probability distribution
and the reward function associated with the Markov Decision Process (MDP). This
means that the reinforcement learning model can learn by trial-and-error through
exploring its environment and generating trajectories/episodes. The REINFORCE
algorithm does, however, have its drawbacks. Firstly, the returns Rt can have a
very high variance which is problematic for neural networks. Another issue with
this learning algorithm, along with other online learning algorithms is that they are
sample inefficient because new trajectories have to be sampled frequently to update
the policy. The sample inefficiency of online learning algorithms can, unfortunately,
not be changed because it is an essential part of the learning update. A technique
used for improving sample efficiency is described in chapter 3. Many ways of
improving the performance of the classical policy gradient method have been intro-
duced. These methods try to handle the instability resulting from the high variance
mentioned earlier.

2.2.2 Trust Region Methods
Trust region methods maximize an objective function with respect to a constraint on
the size of the policy update. Kakade & Langford (2002) introduced the possibility
to relate the expected return η(π) of two policies πθ and πθold using the advantage
A. The advantage represents a comparison of the expected return when using a new

9/76

Chapter 2 – Theoretical Background

policy πθ to the expected return from a previous policy πθold . TRPO (Schulman et
al., 2015), a common trust region method performs its policy update by:

maximize
θ

Êt

[
πθ(at |st)

πθold(at |st)
Ât

]
(2.6)

subject to Êt [KL[πθold,πθ]]≤ δ (2.7)

Alternatively, regularizing the objective function with the KL divergence can be
done (Equation 2.8) instead of utilizing the hard constrained. It is however chal-
lenging to select a single value of β that performs well for different tasks.

maximize
θ

Êt

[
πθ(at |st)

πθold(at |st)
Ât−βKL[πθold,πθ]

]
(2.8)

The authors (Schulman et al., 2015) introduced a trust region constraint which is
defined by the KL divergence between the new policy and the old policy. The
TRPO method performed well on simulated robotic tasks of swimming, hopping,
and walking, as well as playing Atari games given raw images. Trust-region meth-
ods are still being developed and optimized. Wu et al. (2017) proposed a scalable
trust-region method for deep reinforcement learning using Kronecker-factored ap-
proximation. Duan et al. (2016) compared different DRL algorithms and found that
TRPO, DDPG, and TNPG Schulman et al. (2015) are effective in training deep neu-
ral network policies. The robustness of TRPO has, however, been called to question.

2.2.3 Proximal Policy Optimization
Proximal policy optimization (PPO) is a variant of the TRPO algorithm. Unlike
TRPO, PPO formulates the constraint as a penalty/clipping objective, instead of
using the Kullback–Leibler constraint. PPO is preferred to TRPO because of its
simplicity of implementation, and its widely similar/superior performance on re-
inforcement learning tasks. The ease of implementation is due to the algorithm’s
ability to maximize its clipped objective using first-order methods like stochastic
gradient ascent or Adam. There is a variant of PPO which uses an adaptive KL
penalty to control the change of the policy. However, this hardly improves the per-
formance of the algorithm hence; the widely used variant of the algorithm uses the
objective function:

LCLIP(θ) = Êt [min(rt(θ)Ât ,clip(rt(θ),1− ε,1+ ε)Ât)] (2.9)

where;

10/76

Chapter 2 – Theoretical Background

• θ is the policy parameter

• Êt is the empirical expectation over timesteps

• rt is the ratio of the probability under the new and old policies, respectively

• Ât is the estimated avantage at time t

• ε is a hyperparameter, usually 0.1 or 0.2

The left part of the min operator in Equation 2.9 is the same as the surrogate ob-
jective of TRPO. The right-hand part restricts the algorithm from making drastic
updates to the policy. This reduces the instability associated with policy-based re-
inforcement learning methods resulting from the huge variance in the state-action
space. The effect of using this clipped sampling weight in PPO is illustrated in
Figure 2.2

Figure 2.2: Plots showing one timestep of the surrogate
function LCLIP as a function of the probability ration r, for
positive advantages (left) and negative advantages (right).
The red circle on each plot shows the starting point for the
optimization, i.e., r = 1. (retrieved from Schulman et al.
(2017))

2.3 Artificial Neural Networks
The human brain is capable of organizing its structural constituents (neurons) in
order to perform certain computations (e.g., motor control and visual perception)
(Haykin, 2009). This seamless ability of the human brain to perform tasks that
are incredibly complex even for very powerful computational systems has been a
great inspiration to researchers for many decades. Like other computational tech-
niques that take inspiration from the real world (Holland, 1992; De Jong, 1975;
Yang, 2010), artificial neural networks have been used to solve complex problems

11/76

Chapter 2 – Theoretical Background

by modelling low-level activities that are performed in the brain. Haykin (2009)
defines an artificial neural network viewed as an adaptive machine:

A(n) (artificial) neural network is a massively parallel distributed pro-
cessor made up of simple processing units that has a natural propensity
for storing experiential knowledge and making it available for use. It
resembles the brain in two respects:

1. Knowledge is acquired by the network from its environment through
a learning process.

2. Interneuron connection strengths, known as synaptic weights, are
used to store the acquired knowledge.

This section goes over some of the relevant low-level inspirations utilized by artifi-
cial neural networks as well some of the computational techniques utilized for the
execution of these networks.

2.3.1 McCulloch-Pitts Neuron

Figure 2.3: McCulloch-Pitts neuron with n inputs

In 1943, a neuroscientist; Warren McCulloch, and a logician; Walter Pitts, pro-
posed the first computational model of a neuron (McCulloch & Pitts, 1943). The
McCulloch-Pitts neuron, as it is commonly known, led to the first wave of interest
in artificial neural networks. This mathematical neuron model consists of multiple
binary inputs which are inspired by biological dendrites that propagate electrochem-
ical stimulation received from other neural cells. The McCulloh-Pitts neuron model
aggregates the received binary inputs (see Equation 2.10) and then, utilizes an ac-
tivation function f to generate a binary output y based on a predefined threshold θ

(Equation 2.11). This process can be seen in Figure 2.3.

a =
n

∑
i=0

xi (2.10)

12/76

Chapter 2 – Theoretical Background

y = f (a) =

{
0 x < θ

1 x≥ θ
(2.11)

2.3.2 Perceptron
The Perceptron is a single McCulloch-Pitts neuron-like unit. Frank Rosenblatt pio-
neered the Perceptron (Rosenblatt, 1958, 1962), which is one of the earliest, highly
successful, machine learning device and concept. The perceptron is simply an artifi-
cial neural network having several input nodes x (where x ∈ RN). Figure 2.4 shows
a visualization of a perceptron. It shows an output node connected to n weighted
input nodes and a bias node. The perceptron generates an output y based on an input
vector x (see Equations 2.12 & 2.13).

Figure 2.4: A Perceptron with a bias term

a =
n

∑
i=0

xiwi +b (2.12)

y = f (a) (2.13)

This allows the perceptron to find a solution for linearly separable datasets. The
bias term lets the perceptron find a solution for not only homogeneous linearly sep-
arable datasets, but also inhomogeneously linearly separable datasets. Using this
perceptron model and a learning algorithm such as Hebbian learning (Hebb, 1949)
or gradient descent, the perceptron is able to learn linearly separable dichotomies
such as the AND, and OR functions by iteratively changing its weights using an
intelligent algorithm. The perceptron eventually converges at a solution which is
essentially a hyperplane that dichotomizes the dataset. This implies that the percep-
tron is, therefore, unable to find solutions for non-linearly separable problems such
as the XOR problem. For this, a more complex artificial neural network structure is
required.

13/76

Chapter 2 – Theoretical Background

2.3.3 Multi-Layer Perceptron
The multi-layer perceptron (commonly referred to as a fully-connected feed-forward
neural network) surpasses the capabilities of the classic perceptron. This network
architecture consists of an input layer and output layer as well as hidden layer(s)
that contain hidden nodes as well as differentiable non-linear activation functions.
In this type of artificial neural network architecture, the outputs of multiple per-
ceptrons in a previous layer are connected as inputs for a node in the next layer.
Some feed-forward neural network architectures can have skip-connections which
are inputs from nodes that are more than one layer behind in the network.

Multi-layer perceptrons have been widely used in artificial intelligence and machine
learning. One of the reasons for the popularity of these networks is their ability to
be utilized as universal function approximators. Numerous research has been done
in analyzing the use of feed-forward networks as universal function approxima-
tors (Hornik et al., 1989; Friedman, 1994; Leshno et al., 1993; Sonoda & Murata,
2017; Mhaskar & Micchelli, 1992; Castro et al., 2000). While MLPs are in prin-
ciple, universal approximators, training them to achieve an adequate performance
on machine learning tasks can be challenging. Several factors have to be taken into
account such as; the network’s architectural complexity, activations, as well as the
learning algorithm. Such factors make training an MLP to approximate an arbitrary
function, an arduous task. Thankfully, there is a wealth of knowledge about the
optimization and regularization of these artificial neural networks, obtained from a
plethora of research done in the field of machine learning.

2.3.4 Optimization
In machine learning, the term optimization is often used to refer to methods used
to improve a learning model’s empirical performance. In a supervised learning
scenario, this would be the performance on a training dataset. The error associated
with the model’s empirical performance is called the empirical error/loss. While
training a learning model, it is desirable to reduce this empirical loss however, this is
not the ultimate goal in machine learning. The goal is to minimize the true loss. The
distribution of the true loss of the trained observation is however not usually known
therefore, a validation dataset is often used as an approximation of the learning
model’s true risk.

2.4 Related Work
Simulations have long been used as an efficient tool for modeling human gait (Chow
& Jacobson, 1971; Davy & Audu, 1987; Marshall et al., 1989; Koopman et al.,
1995). Advancements in the field of Reinforcement Learning have birthed the in-
troduction of algorithms such as the Actor-Critic methods; Advantage Actor-Critic

14/76

Chapter 2 – Theoretical Background

(A2C), and Asynchronous Advantage Actor-Critic (A3C) (Mnih et al., 2016). These
algorithms have further been optimized to reduce the instability that plagues them.
More recent improvements to these algorithms which fall under the broader cate-
gory of policy-gradient methods include Proximal Policy Optimization (Schulman
et al., 2017) and Trust Region Policy Optimization (Schulman et al., 2015), with
the former producing comparable or better performances while being much easier
to implement.

Table 2.1 shows some relevant applications of DRL for various locomotive tasks.
It has been observed that PPO produces better performance than DDPG - another
policy-gradient method, for the task of generating a healthy gait in a simulated
environment (Salwan & Kant, 2020; Ananthakrishnan et al., 2018). (Melo & Max-
imo, 2019) and (Anand et al., 2019; De Vree & Carloni, 2021) observed that us-
ing PPO and PPO with Imitation Learning (respectively) performs impressively for
robotic locomotion tasks. Another interesting approach for a locomotion task was
implemented by (Peng et al., 2020). The authors utilized an online-learning-based
Actor-Critic Network for walking assistance control of a lower limb exoskeleton
with hemiplegic patients. The patients were modeled as a Leader-Follower Multi-
Agent System (LFMAS) framework which allowed the authors to have the affected
leg track the trajectory of the unaffected leg after every half gait cycle. Real and
simulated experiments showed that the approach was effective on a 2DoF system.

15/76

Chapter 2 – Theoretical Background

Table 2.1: State-of-the-art DRL algorithms and some rele-
vant applications

DRL Algorithm Algorithm Type Article Application Domain
DDPG off-policy (Salwan & Kant, 2020;

Ananthakrishnan et al.,
2018)

Healthy human gait generation

Q-Learning off-policy (Liu & Hodgins, 2017) Humanoid locomotion for highly
dynamic behaviors

A3C off-policy Sartoretti et al. (2019) Learning hexapod locomotion
stochastically

Least Square Policy Iter-
ation

off-policy Tu et al. (2020) Adaptive personalized torque as-
sistance for walking

Neural fitted Q with
Continuous Action

off-policy Wen et al. (2017) Adaptive human-prosthesis con-
trol

PPO on-policy
(Melo & Maximo, 2019) Robotic locomotion
(Salwan & Kant, 2020;
Ananthakrishnan et al.,
2018)

Healthy human gait generation

(Park et al., 2020) Robustness of DRL policy for
biped locomotion

PPO+Imitation Learning on-policy (Anand et al., 2019; De Vree
& Carloni, 2021)

Physics-based model locomotion

TRPO on-policy (Schulman et al., 2015) Learning robotic swimming,
hopping, and walking gaits

Actor-Critic + LFMAS on-policy Peng et al. (2020) Walking Assistance Control of a
Lower Limb Exoskeleton

Direct Heuristic Dy-
namic Programming
(dHDP)

on-policy
(Wen, Si, et al., 2020) Online adaptive control of knee

prosthesis

(Wen, Li, et al., 2020) Impact of robotic knee prosthesis
mechanics on human gait sym-
metry

Policy Iteration with
Constraint Embedded

on-policy Li et al. (2021) Robotic knee prosthesis
impedance control

16/76

Chapter 3

Research Methods

This chapter describes the methodology utilized to conduct simulations, and train
a transfemoral amputee model to walk using deep reinforcement learning. It also
describes the methods used to answer the stated research questions (section 1.1). It
includes a description of the learning agent and the simulation environment. This
chapter also describes and justifies the selected hyperparameters in the learning
algorithm (Proximal Policy Optimization). Furthermore, the method of reward in-
jection in the Deep Reinforcement Learning framework is explained. A proposed
solution for learning with a reduced state observation is then introduced and fi-
nally, the conditions that constitute a good performance by the learning agent are
explained.

3.1 Materials

3.1.1 Opensim
To efficiently simulate an osseointegrated transfemoral amputee model, and its com-
plex interaction with its environment, Opensim (Delp et al., 2007) was utilized. This
is an open-source software system that allows the modeling, simulation, and analy-
sis of biomechanical agents. Opensim is suitable for the purpose of this research
because it provides a dynamic simulation of movements for the designed agent
(subsection 3.1.2). It is also adequate because it incorporates models describing
the anatomy and physiology of the elements of the musculoskeletal system and the
mechanics of multi-joint movement thus, providing an adequate framework for the
visualization and analysis of the transfemoral amputee model. Leveraging this sim-
ulated environment gives us access to a wealth of information about the dynamics
of the agent such as muscular, spatial, and temporal information. This insight into
the system’s dynamics can then be used to train an intelligent control system for the
walking task of the transfemoral amputee agent, as well as perform analyses on the

17

Chapter 3 – Research Methods

resulting gait pattern.

To conduct this research, osim-rl (Kidziński et al., 2018) is used. This is a pack-
age that allows the synthesis of physiologically accurate movement by combining
biomechanical expertise embedded in OpenSim simulation software with state-of-
the-art control strategies using Deep Reinforcement Learning. This package was
used for controlling the actions and observing the state of the model.

3.1.2 The Agent
The transfemoral amputee agent utilized in the forthcoming simulated experiments
was developed by Raveendranathan (Raveendranathan, ongoing). This prosthesis
model is osseointegrated into the femur of the left leg (Raveendranathan & Carloni,
2020) and can be seen in Figure 3.1. This agent weighs 67.4 kilograms and is com-
posed of a skeletal and prosthetic base. The structure of the agent is controlled by
muscles and actuators which grant control to the joints of the agent; thus, allowing
a range of motion (flexion, adduction, etc.) which when utilized with an intelligent
policy, grants the agent the ability to achieve locomotion.

Figure 3.1: Osseointegrated transfemoral amputee model
developed by Raveendranathan (Raveendranathan & Car-
loni, 2020). The red lines are the muscles. The pink balls
are markers and the blue spheres on the feet are the contact
meshes. The model has 11 muscles on the right leg. On
the left, there are 4 muscles, and an actuator at the knee
and at the ankle joint.

The transfemoral amputee agent consists of simulated biological muscles. These
muscles are based on a non-linear first-order dynamic Hill-type muscle model be-

18/76

Chapter 3 – Research Methods

tween excitation and activation (Thelen, 2003). The Hill-type muscle model in-
cludes a contractile element (CE), a parallel elastic element (PE), and a series elas-
tic element (SE), as can be seen in Figure 3.2. The generated muscle force is a
function of three factors: the fiber-length, the fiber-length-velocity, and the muscle
activation level, which can range between 0% and 100%. The muscle activations
generate a movement as a function of muscle properties, such as the maximum iso-
metric force, the muscle fiber length LM, the tendon slack length LT , the maximum
contraction velocity, and the pennation angle αM. Although the Hill-type muscle
model does not realistically represent the human muscle architecture, its perfor-
mance in simulating the gross biomechanical behaviour of a muscle-tendon unit in
a computationally inexpensive manner is quite precise (Arslan et al., 2019).

Figure 3.2: Hill-type muscle model that describes the
musculo-tendon contraction mechanics in the transfemoral
amputee model. It includes a contractile element (CE), and
two elastic elements (one parallel and one series). The
elements generate a force on the tendon. Figure from
(De Vree & Carloni, 2021; Thelen, 2003)

Activation Coordinate Actuators are used to actuate the knee and ankle joints of
the prosthesis. This type of actuator produces a generalized force using first-order
linear activation dynamics. The activation of the actuator is represented by one
state variable ȧ, represented by ȧ = x−a

τ
. Here x is the actuator excitation, a is the

activation constant set to 0.01, and τ is the activation time constant; set to 0.02.

The transfemoral amputee model comprises 15 muscles and 2 actuators (Figure 3.3)
which are controlled by 17 control signals. There are 11 muscles on the right leg.
On the left leg of the model, there 4 muscles and 2 actuators. A summary of the
primary function of these muscles can be seen in Table 3.1. These control signals
for the model’s muscles and actuators, give the model 14 degrees of freedom; the
pelvic tilt, list and rotation, lumbar extension, (left and right) knee flexion, ankle
flexion, hip flexion, adduction, and rotation. The range of motion for each of these
degrees of freedom can be seen in table Table 3.2.

19/76

Chapter 3 – Research Methods

Figure 3.3: Osseointegrated tranfemoral amputee model
with labeled muscles and actuators. It shows the 15 mus-
cles and 2 actuators possessed by the agent. The uniarticu-
lar muscles are labeled in green, biarticular muscles in red,
hip adduction and abduction in blue, and actuators in blue.

At each time-step in the course of the simulation, the agent receives 17 control
signals corresponding to the described muscles and actuators. The agent then acts
appropriately with respect to the signals, resulting in a change in the observed state
of the agent. The action performed by the agent is bounded by laws of physics in
Opensim which mimics realistic movement. The complete observed state of the
agent is represented by a vector of size 91. This observation state can be seen in Ta-
ble A.1. The agent has a second observation state which is a subset of the complete
observation space. This second observation state will be subsequently referred to
as the reduced state observation and it is more akin to real-world observable data.
The force, velocity, and length of the muscle fibers in Table 3.1 are not a part of this
reduced observation state.

3.1.3 The Imitation Dataset
The imitation data used in training the DRL algorithm to have a human-like gait
was gathered from (Camargo et al., 2021). The dataset contains data from 22 able-
bodied adults, age 21 ± 3.4 yr, height 1.70 ± 0.07 m, and mass 68.3 ± 10.83 kg.
The subjects were instrumented unilaterally on their right side with 11 EMG (Bio-
metrics. Ltd. Newport, UK), 3 goniometers (Biometrics. Ltd. Newport, UK), 4

20/76

Chapter 3 – Research Methods

Table 3.1: Primary functions of the 15 muscles and 2 ac-
tuators, present in the transfemoral amputee model

Muscle or Actuator Primary Function Leg
Biarticular Hamstrings Hip extension, knee flexion Right
Rectus Femoris Hip flexion, knee extension Right
Vasti Knee extension Right
Biceps Femoris Knee flexion Right
Gastrocnemius Knee flexion, ankle extension Right
Soleus Ankle extension Right
Tibialis Anterior Ankle extension and flexion Right
Hip Abductor Away from body’s vertical midline Both
Hip Adductor Towards body’s vertical midline Both
Iliopsoas Hip flexion Both
Gluteus Maximus Hip extension Both
Knee Actuator Knee flexion and extension Left
Ankle Actuator Ankle flexion and extension Left

six-axis inertial measurement units (Yost, Ohio, USA), and bilaterally with 32 mo-
tion capture markers following the Helen Hayes Hospital marker set (Vicon. Ltd.,
Oxford, UK). The ground reaction forces were recorded using force plates (Bertec,
Ohio, USA).

This research makes use of the processed data from de Boer (2021) which selected
one subject (AB06) from the above-described dataset. The subject has a height of
1.80m and weighs 74.8kg. In de Boer’s research, the amputee model was scaled to
fit the data using the motion caption markers that are present in the dataset. The
dimensions of each segment in the model were scaled so that the distances between
the virtual marker (on the amputee model) match the distances between the markers
(from AB06). Opensim’s (Delp et al., 2007) Scale tool was used to perform the
scaling of the data. Figure 3.1 shows motion capture markers (represented by pink
balls), fixed to the joints that they belong to, by specifying the location and the body
to which the marker is attached. The model was scaled to fit the data by utilizing
two consecutive timestamps from the data while the subject stood idly.

A transformation of the data was then performed in order to fit the orientation of the
model, using the marker data in the dataset and the experimental data preview tool
of Opensim. The data was rotated 270 degrees around the Y-axis. This matched the
model’s orientation and the orientation of the subject in the dataset. The angles of
the joints were retrieved after this rotation process using Opensim’s inverse kine-
matic tool. This tool produces a motion file with the joint angles. The maximum
marker error was below 2-4 cm and the RMSE was under 2cm. These are acceptable
error margins according to the OpenSim user’s guide (OpenSim, 2012)

21/76

Chapter 3 – Research Methods

Table 3.2: The range of motion for the degrees of freedom
of the transfemoral amputee model.

Joint Range of motion
(in degrees)

Pelvis tilt -90 to 90
Pelvis list -90 to 90
Pelvis rotation -90 to 90
Lumbar extension Locked to -5
Hip flexion (left & right) -120 to 120
Hip adduction (left & right) -45 to 45
Hip rotation (left & right) Locked to 0
Knee flexion (left & right) -120 to 10
Ankle flexion (left & right) -60 to 30

3.2 Proximal Policy Optimization
To train the described agent to have a human-like gait, an intelligent policy is needed
which receives the state of the agent as input and produces as output; an action that
controls the agent at each time-step of the simulation. This action is a vector that
corresponds to the control signals of the agent and its values are activations for the
15 muscles and 2 actuators of the agent. The policy utilized in this study is a feed-
forward artificial neural network with four layers; one input layer (observed state of
the agent), two hidden layers, and an output layer. To train this policy network for
the described locomotion task, the deep reinforcement learning algorithm; proximal
policy optimization is used. PPO has already been introduced in subsection 2.2.3 in
terms of its optimization goal. This section describes the algorithmic implementa-
tion of the optimization algorithm as it was used in this project as well as the reason
behind the selected hyperparameters.

Firstly, let us go over the objective function of the PPO algorithm. There are two
variants of PPO as introduced by (Schulman et al., 2017). One of these variants is
closer to TRPO because it performs a KL-constrained update. This version of PPO
maximizes a surrogate objective function LKLPEN (Equation 3.1). This variant dif-
fers from TRPO because there is no hard constraint on the KL-divergence. Rather,
the KL-divergence is penalized in the objective function and the penalty coefficient
β is adjusted over the course of training. This implementation of PPO is more
computationally costly than the clipped surrogate objective function (Equation 2.9)
and scaling the penalty coefficient appropriately during training can be challenging.
This optimization method does not have a KL-divergence term in the surrogate ob-
jective function and does not have a constraint parameter to be appropriately scaled.
Rather, it works by using a different objective function LCLIP (Equation 2.9) which
specifically performs clipping to remove the incentive for the new policy to deviate

22/76

Chapter 3 – Research Methods

far from the old policy in the training step.

LKLPEN(θ) = Êt

[
πθ(at |st)

πθold(at |st)
Ât−βKL[πθold(·|st),πθ(·|st)

]
(3.1)

The algorithm for PPO can be seen in Algorithm 1. This algorithm makes use of
N parallel actors (or workers) in a bid to take advantage of the parallel process-
ing of processors. The PPO algorithm requires a data collection facility from the
simulation which; collects data by generating stochastic actions, and calculates the
advantage estimate using Generalized Advantage Estimate (GAE). This part of the
algorithm is parallelized using N workers and is represented in lines 3− 9 of Al-
gorithm 1. Line 10 is a separate major thread of the algorithm. Here, the collected
trajectories (state, action pairs) are sampled into minibatches of size M. These col-
lected minibatches are then used to optimize the surrogate objective function LCLIP.
The optimization update is performed for K epochs on the same minibatch of tra-
jectory samples. This allows a more sample-efficient manner of optimization and is
possible because PPO nullifies the risk of taking large update steps on the trajectory
samples.

Algorithm 1 PPO algorithm
1: θ0← inital policy parameters
2: φ0← inital value function parameters
3: for k = 0,1,2, ... do ▷ number of iterations
4: Dk←{}
5: for worker = 0,1,2, ...N do
6: Collect trajectories {τworker} ⊂Dk by running policy πθk in the environment for T timesteps
7: Compute rewards R̂t
8: Compute advantage estimates, Â1, ..., ÂT using value function Vφ,k
9: end for

10: Update policy parameters θk+1 by maximizing PPO surrogate objective L, with K
epochs and minibatch size M < NT

11: end for

Table 3.3 summarizes the hyperparameter and specifications used in the deep rein-
forcement learning algorithm. In the course of training the transfemoral amputee
to walk, 10 workers were used for parallelization, in order to gather trajectory data
(state, action pairs). The stopping criteria for the training process of PPO was a
defined number of iterations. A suitable value for this was determined in chap-
ter 4. Each worker collects trajectories τworker of size 1,536 timesteps. A timestep
is 10 milliseconds of the simulated gait. This is consistent with the hyperparam-
eter selection for De Vree & Carloni (2021) on a healthy subject model. Some
important hyperparameters for the PPO algorithm also include the clip parameter ε

23/76

Chapter 3 – Research Methods

Table 3.3: Summary of the selected hyperparameters used
for training models with PPO for the locomotion task.

Parameter Value Parameter Value
workers (N) 10 PPO clip parameter (ε) 0.2
iterations ≥ 700 optimization mini-batch size 512
episodes N/A number of policy updates per mini-batch (K) 4
total steps N/A discount factor (γ) 0.99
steps per worker (T) 1,536 GAE (λ) 0.95
steps per action 1 hidden layers in neural network 2
entropy coefficient 0.01 hidden layer size [100, 228, 312]
stochastic policy true activation function tanh
prediction categories ≥ 2 optimization stepsize 0.001

which was set to 0.2. This clip parameter value produced the best benchmark score
in Schulman et al. (2017) and has been utilized in previous research for healthy
and amputee models for locomotion tasks. The activation function for the policy
network, as well as the value network, was set to be the hyperbolic tangent func-
tion (tanh). Four policy updates were performed on each sampled mini-batch from
the collected trajectories and mini-batches were sampled with a size of 512. The
discount factor γ determines the extent the agent considers future rewards. If the
discount factor γ is set to 0, the agent only considers the current reward. A γ value
close to 1 implies that in determining the value of a state, the learning algorithm also
takes into account rewards in the distant future. Another important hyperparameter
that had to be carefully selected is the entropy coefficient. The entropy coefficient
is a regularizer. It is multiplied by the maximum possible entropy and added to the
surrogate objective LCLIP and the loss of the value function. This constitutes the
actual object function that is minimized. This entropy term can also be utilized as
a regularizer using early stopping in the training update step. In that approach, the
policy update is performed if the KL divergence is less than or equal to a target
KL value (usually between 0.003 and 0.03). However, regularizing using the KL
divergence was implemented by adding to the surrogate objective function because
this implementation has been utilized in previous research with impressive results.

The generalized advantage estimate (GAE) was used to obtain a value correspond-
ing to the benefit of performing an action a, given the current state s. It does this by
calculating the difference between the expected discounted λ-return, and the current
state value. This is given described in Equation 3.2. Utilizing the λ-return of the
GAE has been shown to yield better performance than using the simple n-step return
(Schulman et al., 2015; Sutton et al., 1998). The λ-return calculates an exponen-
tially weighted average of n-step returns with decay parameter λ (see Equation 3.3).
A λ value of 0 reduces the return to a single time-step, while a λ value of 1 implies
there is no discount in rewards, hence, all future rewards are considered.

24/76

Chapter 3 – Research Methods

Â = Rt(λ)−V (st) (3.2)

Rt(λ) = (1−λ)
T−t−1

∑
n=1

λ
n−1Rn

t +λ
T−t−1RT−t

t (3.3)

The value network, as well as the policy network, has four layers; one input layer
with dimensions equal to the observation space, two hidden layers whose size will
be discussed in the experimental setup (section 3.5), and an output layer. The out-
put layer of the policy network is composed of 17 units, corresponding to the action
space of the transfemoral amputee agent while the output layer of the value net-
work is made up of just one unit; corresponding to the value of the observed state.
Both networks use a hyperbolic tangent as the activation function for the hidden
units. The value function is optimized using stochastic gradient descent. The policy
network is optimized using Adam optimization with a stepsize of 0.001.

The policy network outputs actions for the agent given the observed state. These
generated actions were implemented to be a discrete set of values. An additional
hyperparameter - the number of prediction categories was utilized. PPO can be
trained with a continuous action space by creating a policy network that predicts a
mean and standard deviation value. These values are then used to sample an action
from a normal distribution. This project utilizes a simpler discrete implementation.
The given number of prediction categories determines the discrete values that the
action space consists of. The values are chosen to have equal spacing and cover
up the complete action space. For example, an action space ranging from 0 to 1
with three discrete prediction categories will result in the discrete action space; [0,
0.5, 1.0]. The same action space with five prediction categories with result in the
discrete action space; [0, 0.25, 0.5, 0.75, 1.0].

3.3 Reward Injection
The manner of reward injection is perhaps, the most significant aspect of training a
deep reinforcement learning model. There is a multitude of ways to design a reward
function for the learning task. These different manners of reward injection have
their benefits as well as their drawbacks. The reward function can be deterministic
or stochastic. It can also be sparse or dense. Deterministic rewards can be obtained
using the current state, action and consequent state of the agent while stochastic re-
wards have some degree of randomness embedded. This randomness can be a useful
regularization method for the training of the learning agent. In a sparse reward sys-
tem, the learning algorithm does not have access to the instantaneous reward of the
agent’s actions, rather, there is a reward value provided after a number of actions are

25/76

Chapter 3 – Research Methods

performed. If the sparseness of the reward function is high - meaning almost all of
the instantaneous rewards are 0, this can lead to a common DRL challenge known
as the credit-assignment problem. In this problem, due to the rare nature of nonzero
instantaneous rewards, the sequence of actions that generated that reward will be
very long. It would not be clear to the learning agent, what actions were beneficial
in attaining that reward. This can also cause an extremely long training time for the
learning agent due to possible mini-batches of trajectories with uninformative zero
rewards.

The most important aspect to consider in designing a good reward function is that it
should be informative for the goal of the learning task. A simplistic reward for this
project can be designed that only takes into account, the position of the pelvis and
issues a constant deterministic reward if the pelvis position moves forward in the
next timestep after an action is performed. While simple to implement, this manner
of reward injection will in all likelihood, result in a policy that learns a unique
manner of maximizing the reward. There is no incentive for the agent to swing its
legs. The manner of swinging locomotion that humans utilize is very efficient and
much more difficult to learn with a control policy hence, the policy would likely
converge to a parameter value that achieves forward motion using a much simpler
control system.

For the stated reasons, the dense, deterministic reward function in Equation 3.4
was utilized in this project. This reward function is composed of a goal reward
rgoal , an imitation reward rimitation and a penalty term p. At every timestep t, the
instantaneous reward rt is calculated for given the state st , action at , and consequent
state st+1. The following subsections describe each aspect of the reward function
(Equation 3.4).

rt = 0.1 · rgoal,t +0.9 · rimitation,t− pt (3.4)

De Vree & Carloni (2021) used a similar structure for the computation of the agent’s
reward - with a goal and an imitation reward, as well as a penalty term. However,
the definition of these partial rewards functions in this study is different from that
of De Vree’s research. A notable difference occurs in the weights used for the
partial rewards. De Vree’s research made use of 0.4 and 0.6 goal and imitation
reward weights respectively. Using that reward scheme results in slower learning of
a natural gait pattern for the agent. The agent quickly learns to improve its reward rt
by maximizing the goal reward. The imitation reward requires much more complex
muscle activation coordination to achieve a higher reward. Increasing the weight on
the imitation reward increases the incentive for the reinforcement learning policy
to learn a function that achieves a human-like gait. This, in turn, leads to faster
learning of the reinforcement learning task.

26/76

Chapter 3 – Research Methods

3.3.1 Goal Reward
A goal reward rgoal at timestep t is issued to create an incentive for the agent to
move in a continuous straight direction. This partial reward has three components
corresponding to the x, y, and z coordinate axes of the agent and it is obtained by
computing the proximity p between the value of these coordinates and the desired
value for the agent. Interpolating these values correctly sets the desired velocity
for the agent which is about 1.4m/s. The defined partial reward can be seen in
Equation 3.5.

rgoal,t = e−(px+py+pz) (3.5)

3.3.2 Imitation Reward
As eluded to earlier in this section, the deep reinforcement learning algorithm needs
guidance in order to generate an acceptable solution for the locomotion task. In this
project, this was implemented by a technique called imitation learning. Imitation
learning injects additional rewards to the learning agent to guide its learning pro-
cess. This additional data is beyond what is available in the course exploration. In
imitation learning, data is provided to the learning agent which contains what is
considered good state trajectories. This data is referred to as imitation data. The
learning agent should then create a policy that mimics the solution provided by the
imitation data. The imitation reward is obtained by the function in Equation 3.6.

rimitation(t) = 0.9 · rposition(t)+0.1 · rvelocity(t) (3.6)

The choice of weights for the position and velocity rewards of the imitation reward
rimitation in Equation 3.6, similar to rt nudges the function to learn a human-like
gait quicker. If both weights are equal, the function could first learn to maximize
the velocities of different joints of the agent at each timestep. This would appear
to be a very impressive learning curve, however, the position of those joints could
be highly unlike a human-like gait. Hence, the optimization choice of assigning a
higher weight to the position reward is made in a bid to achieve faster learning of
the human-like gait.

The imitation reward rimitation at timestep t is characterized by the imitation posi-
tional reward rposition and the imitation velocity reward rvelocity. These are obtained
by comparing the position or velocity of different parts of the agent. The partial re-
ward is obtained by the summation of the squared difference of the agent’s observed
hip, knee and ankle position/velocity at timestep t and the corresponding imitation
data feature. Equation 3.7 and Equation 3.8 describe the function for the partial im-
itation reward rX where X is either the position or velocity attribute, Y is the agent’s

27/76

Chapter 3 – Research Methods

joint being observed and t is the timestep of the simulation. The observed state of
the agent is denoted by s and the imitation dataset is represented by im data.

loss(X ,Y, t) = (s(X ,Y, t)− im data(X ,Y, t))2 (3.7)

rX(t) = e−(loss(X ,ankle,t)+loss(X ,knee,t)+loss(X ,hip,t)) (3.8)

Note that the partial reward for the imitation dataset calculates both the hip flexion
and adduction. Also, the loss for the above-listed features is computed for both the
healthy leg and for the leg with the prosthesis.

3.3.3 Penalty
The penalty constraint pt on the instantaneous reward rt (Equation 3.4) encourages
the learning agent to find a more energy-efficient manner of solving the optimiza-
tion task. This is done by penalizing the agent’s actions which correspond to the
activation of the agent’s muscles and actuators at each timestep. Thereby, limiting
the reward obtained for actions with high activation values.

3.4 Deep Reinforcement Learning with a Reduced State
Observation

The goal of this project is to train the described transfemoral amputee model to have
a healthy gait pattern, using the reduced state representation. This project utilizes
the described framework in Figure 3.4 to achieve this. The figure shows three dif-
ferent manners of training the amputee agent. These training types are defined by
the observation that the DRL algorithm is allowed to receive as input to the policy
network. The observation can either be the complete state of the agent, a reduced
representation of the state, or an augmented state representation. The technique
that was utilized for the training of the DRL model using these observation types is
discussed in this section.

When the agent acts in the simulation environment, it changes its state. This new
observed state is the complete state of the agent. The reward is then computed based
on the agent’s state and the action vector utilized. To train using the reduced state
observation, the observed state of the agent is decreased by removing the muscle
forces, length, and velocity. In order to leverage the muscle information absent
from the reduced state representation, an additional step is required. In this case,
the reduced state representation is then fed to a pre-trained artificial neural network

28/76

Chapter 3 – Research Methods

Table 3.4: Overview of feed-forward network parameters
used for muscle information prediction.

Parameter Value(s)
Optimization algorithm Adam
Loss function Mean absolute error
Number of hidden layers 1,2,3
Number of hidden layer units 64, 256, 512
Activation function relu, tanh
Batch normalization with, without
Drop out with, without
Early Stopping yes

that predicts the missing muscle forces, velocities, and lengths. The predicted mus-
cle information is used to augment the reduced state observation hence, obtaining
an approximation of the complete state of the agent. The state of the agent obtained
by applying this technique of completing the reduced state observation by predict-
ing the missing muscle information values, using a pre-trained neural network is
referred to as the augmented state in this paper.

During the training of the DRL policy, the augmented state representation is gener-
ated without access to the missing values of the reduced state space. Using collected
augmented state representation, action pairs, as well as computed rewards for those
actions, the policy network is optimized using the proximal policy optimization al-
gorithm.

3.5 Experimental Setup

3.5.1 Predicting the Muscle Information
In order to predict the missing muscle information using the reduced state obser-
vation as described in Figure 3.4, various artificial neural network architectures are
trained. These networks are multi-layer perceptrons and are chosen because of their
universal function approximation capability. The network architecture, method of
data collection, and training techniques are described in this section.

A feed-forward artificial neural network with fully-connected layers is trained for
the prediction task. In order to select a suitable network architecture and hyper-
parameter values, 5-fold cross-validation is used. Two million observation steps
are collected using random initialization and action sampling for the agent. These
collected observation steps are then split into a reduced state representation and
muscle information. The reduced state of the model serves as input to the artificial
neural network. The network is trained in a supervised manner to predict this muscle

29/76

Chapter 3 – Research Methods

Figure 3.4: Overview of the DRL Framework for learning
a with a reduced state observation.

information using the reduced state data. The force, length, and velocity values of
the data are normalized to avoid having highly differing values. The force value
of the muscle is divided by the maximum isometric force of that muscle while the
length is divided by the optimal length of the muscle (see Table A.3).

Model selection in itself is an optimization procedure that could lead to an increase
in variance. To counter this the collected 2 million time-steps of data were split into
90% training and 10% testing (Figure 3.5). Model (hyperparameter) selection was

30/76

Chapter 3 – Research Methods

done by selecting the neural network model with the best performance using 5-fold
cross-validation on the training data. Every combination of hyperparameter values
in Table 3.4 was used in configuring the model. Models with different numbers of
hidden layers, hidden layer size, activation function, batch normalization, and drop-
out settings were trained using Adam optimization and a mean absolute error loss
function. Early stopping was used for the regularization of the model. This was
done by monitoring the validation loss (MAE of the validation data) and stopping
training after 20 epochs of no improvement.

Figure 3.5: Data split for training muscle information.
The top row represents the entirety of the collected data
(2 million time steps). The bottom row represents the
percentage used for model selection with cross-validation.
Green blocks represent training data and blue represents
data used for testing.

3.5.2 Training the Learning Agent
To train the transfemoral amputee agent using proximal policy optimization, meth-
ods of optimization had to be decided. The computational complexity of this task
does not allow for a hyperparameter sweep like in the prediction of the muscle in-
formation (subsection 3.5.1). Values such as a suitable number of iterations for the
PPO algorithm, complexity of the policy and value network, and the number of
prediction categories for the policy had to be determined. This section describes
the method for selecting suitable hyperparameter values in order to train the trans-
femoral amputee model for the walking task.

A successful episode of the simulation has a duration of 10.5 seconds. This cor-
responds to 1050 timesteps due to the imitation data being sampled at 10ms. The
transfemoral amputee model is trained using this imitation data and a new episode
is started if the number of timesteps exceeds the imitation data size. A new episode
is also started if the model’s pelvis’ vertical position drops below 0.6 meters. This
signifies that the model has fallen. The stopping criterion for finishing the deep
reinforcement learning task is not the number of episodes or the total steps but the
total number of iterations. An adequate number of iterations is obtained by training

31/76

Chapter 3 – Research Methods

a model with 2 prediction categories and 228 hidden units for ample iterations to
solve the task. This is done using the complete observation state.

Also, different numbers of hidden units in the hidden layer of the policy and value
networks were tested. 100, 228, and 312 hidden units were empirically tested and
the hidden layer size of the best performing model was used for further experi-
ments. Using the obtained adequate number of iterations and the best performing
hidden layer size for the networks, a suitable number for the number of prediction
categories is then determined. Table 3.5 gives an overview of the hyperparameters
tested for training.

Table 3.5: Summary of hyperparameters tested for the lo-
comotion task. The hidden layer size is the same for both
the policy and value networks. The discrete categories are
the number of prediction categories.

Parameter Value(s)
iterations ≤ 2700
hidden layer size 100 228 312
discrete categories 2 3 5 7 9 15 21

After parameter selection, models are then trained using the augmented observation
(reduced state + predicted muscle information), and only the reduced observation
(observation without muscle information). This is done for different numbers of
prediction categories and the performance of the models is compared using different
metrics (see subsection 3.6.2).

3.6 Performance Criteria

3.6.1 Muscle Information Prediction
The performance of the muscle information prediction network is utilized in select-
ing a suitable network model. The performance of the models is judged by the mean
absolute error metric of the model during the supervised prediction task. The MAE
for the predicted forces, lengths, and velocities of the models is calculated and the
model with the lowest MAE on the cross-validation training task is selected. The
MAE for the force, length, and velocity of the 15 individual muscles of the agent are
also observed to evaluate the performance. However, these are not used in model
parameter selection.

32/76

Chapter 3 – Research Methods

3.6.2 Agent’s Locomotion
The performance of the agent is evaluated in two ways. The agent’s realized reward
serves as a performance metric. To further evaluate the performance of the agent,
the symmetry of the gait is analyzed using different measures.

To evaluate the agent’s performance using the obtained reward, 50 episodes of sim-
ulations are performed for each model and the average episodic reward is computed.
This serves as a good measure of how well the model is performing because it is the
defined problem that the model has to solve by optimizing the network parameters
in order to maximize this value.

The other method of judging the performance of the agent used in this project is
by observing the symmetry of the gait. To do this, 50 gait cycles are performed by
the agent, and the average gait cycle is computed. This is done by computing the
average hip, knee, and ankle flexion through the gait cycle. Symmetry scores are
then awarded for the similarity of the average left and right (hip, knee, and ankle)
joint flexion through the gait cycle. The symmetry of the average joint flexion and
the corresponding average imitation data is also computed as an indication of the
model’s similarity to the provided imitation data. Three measures of symmetry are
used in this study. They are discussed below.

Root Mean Square Error (RMSE)

The RMSE is a commonly used metric for error. It is defined by Equation 3.9. This
metric has the advantage of being in the unit as the observed variable. However, it
comes at a cost of not being normalized. This means variables that do not have a
high range such as the ankle flexion will potentially have lower RMSE than vari-
ables of the agent with a higher range of motion, such as the hip and knee flexion.

RMSE =

√
∑

T
t=1(xob,t− xim,t)2

T
(3.9)

Symmetry Angle

Symmetry angle is an approach introduced by Zifchock et al. (2008), which quanti-
fies gait symmetry/asymmetry. Equation 3.10 shows the function for the symmetry
angle given two values; Xa and Xu.

SA(Xa,Xu) =
(45−arctan(Xa/Xu)) ·100%

90
(3.10)

The symmetry angle function takes a pair of observations Xa,Xu at discrete indexes
of the gait cycle. and computes a symmetry value the mean of these collected

33/76

Chapter 3 – Research Methods

symmetry angles is used as the symmetry angle of both observations. An SA of 0%
indicates perfect symmetry, while 100% indicates that both observations are equal
and opposite in magnitude.

Trend Symmetry

Crenshaw & Richards (2006) proposed and utilized the trend symmetry (TS) as
a method to evaluate the joint angle symmetry using two time series of joint an-
gle data. The TS values range from 0 to 1 and a TS value of 0 indicates perfect
symmetry. This measure of symmetry is important to this study because the other
discrete methods (RMSE & SA) have a limitation in computing the symmetry of
waveforms. This limitation is a result of their neglect of the temporal information
in the gait waveforms.

Trend symmetry measure utilizes the eigenvectors to compare time-normalized gait
cycle data. In order to do this, each waveform is first translated by subtracting
its mean value from every value in the waveform for the pair of waveforms X ,Y
(Equation 3.11).

{
XTi

YTi

}
=

{
Xi
Yi

}
−
{

Xm
Ym

}
(3.11)

The translated points XT ,YT from the pair of waveforms are entered into a matrix
M, where each pair of points is a row. This matrix is then multiplied by its transpose
(MT ·M), and a square matrix S is obtained. The eigenvectors are derived from this
square matrix. Each row of M is then rotated by the angle θ formed between the
eigenvector and the X-axis so that the points in M now lie around the X-axis. XRi

and YRi represent the rotated elements of one data point from the pair of waveforms.

{
XRi

YRi

}
=

{
cosθ sinθ

−sinθ cosθ

}
−
{

XTi

YTi

}
(3.12)

The variability of the rotated points is then calculated along the X and Y axes. The
Y-axis variability is the variability about the eigenvector while the X-axis variability
is the variability along the eigenvector for the matrix M. The trend symmetry (TS)
is obtained by calculating the ratio of the variability about the eigenvector to the
variability along the eigenvector. The principal eigenvector that is extracted from
the matrix describes the orientation of the distribution of points in matrix M such
that the variability of M is maximized along the eigenvector.

This measure of trend symmetry which uses the principal eigenvector to analyze the
variance of the distribution of the points formed by the pair of waveforms to be com-
pared is beneficial because it provides a measure of symmetry that is not affected by

34/76

Chapter 3 – Research Methods

the difference in magnitude between the two waveforms. This is not possible with
the discrete symmetry measure formerly introduced. In addition to being uninflu-
enced by the range of the observation pair, the trend symmetry measure also has the
added benefit of utilizing the entirety of the waveform for its calculation. Unlike
the other methods which calculate symmetry by computing the average symme-
try of corresponding single values of the observation, the trend symmetry measure
computes the symmetry of two waveforms using the entirety of the waveforms.

35/76

Chapter 4

Results

In this chapter, the results of the experiments described in chapter 3 for training a
transfemoral amputee agent to have a human-like gait using proximal policy opti-
mization are presented. The first section presents the results of hyperparameter tun-
ing for the number of iterations, the complexity of the policy and value networks,
and the number of discrete prediction categories. In the second section, the results
of muscle information prediction are provided. The third section contains the re-
sults of the models trained using the complete, augmented, and reduced observation
states. The remaining sections offer further results relating to the gait realized from
the models.

4.1 Hyperparameter search

4.1.1 Experiment for number of iterations
The first important hyperparameter to select in the course of training a machine
learning model is a suitable amount of learning iterations to perform. Figure 4.1
shows the total reward and timesteps for each episode during training. It also shows
the average reward and number of timesteps for an episode for each iteration.

It can be observed that there is a steep increase in the average reward obtained in
the first 500 iterations of the DRL task (Figure 4.1c). This is also reflected in the
steady increase in the total rewards obtained in the first ∼ 39,000 episodes of the
simulation (Figure 4.1a). This steep increase is accompanied by a similar increase
in the number of timesteps performed by the model (Figure 4.1b,4.1c). After this
number of performed iterations and episodes, there is no improvement in the total
timesteps. This is expected as the maximum number of timesteps is bounded by the
size of the imitation data (1050).

36

Chapter 4 – Results

There is noticeable variance in the episodic total reward and timesteps (Figure 4.1a,4.1b)
after the steep learning phase. Reward values ranging from ∼ 20 to 400 can be ob-
served and total timesteps values ∼ 20 to 1050 can also be noticed. This is due to
exploration by the learning algorithm even after finding a solution that completes
the learning task. The stochastic exploratory actions try to find an even better solu-
tion but as can be observed in Figure 4.1c, a better solution cannot be reliably found
as there is no increasing trend in the learning curve for the realized reward per iter-
ation even after 2,500 iteration. On the contrary, there is a slightly decreasing trend
in both the average rewards and timesteps per iteration after the first 700 iterations.
This is likely due to the learning algorithm trying to further maximize its immediate
rewards at a detriment to the robustness of the model, hence showing early signs
of overfitting to the imitation data. For this reason, 700 is an adequate number of
iterations to perform in training the agent using PPO and this number of iterations
is used in further experiments.

4.1.2 Experiment for number of hidden units
To obtain an adequate complexity for the policy and value networks of the PPO
algorithm, several policies were trained on the DRL task using different numbers of
hidden units. Table 4.1 shows the results of the different hidden unit sizes. The pol-
icy network was trained for 700 iterations of PPO and the rewards for 50 episodes
were averaged. A policy and value network with 228 hidden units resulted in the
highest average reward, performing better than the more complex architecture of
312 hidden units. 312 hidden units have been used in previous research (De Vree
& Carloni, 2021) on healthy and transfemoral prosthesis agents with impressive re-
sults. That research, however, used a significantly larger observation space; hence
there is an incentive to train with a smaller policy and value neural network size.
This suspicion is indeed rewarded with better performance (163.5) on the less com-
plex, 228 hidden units network in comparison to the 312 hidden units network which
had an average reward of 158.3. The 100 hidden units network had the lowest per-
formance on the task with an average reward of 156.2 over 50 episodes.

Table 4.1: Average episode reward and training duration
for the different number of hidden units in the policy and
value networks for training with PPO. The episode rewards
are averaged over 50 episodes.

Number of Hidden Units Average episode reward Training duration
(hours)

100 156.2 51.9
228 163.5 52.2
312 158.3 53.3

37/76

Chapter 4 – Results

(a) episodic reward (b) timesteps per episode

(c) average episode reward per iteration (d) average episode timesteps per iteration

Figure 4.1: rewards and timesteps per episode and iter-
ation. The top row shows the rewards and duration per
episode. The bottom row is the average episodic reward
and average episode duration during each training itera-
tion.

4.1.3 Experiment for number of prediction categories
Table 4.2 shows the average reward per episode for different numbers of prediction
categories. This was done by training for 700 iterations of PPO and averaging the
episode rewards for 50 episodes. It can be observed that a policy network with 5
prediction categories had the best performance on the task. It resulted in an average
reward of 198.7. The next highest average rewards are for the 3 and 7 prediction
categories models, with average episode rewards of 194.3 and 187.0, respectively.
Other models have a significantly lower reward yield with less than 170 average
episode reward. A model with 5 prediction categories was used for subsequent
experiments since it produced the best performance on the hyperparameter selection

38/76

Chapter 4 – Results

task.

Table 4.2: Average episode reward and training duration
for the different number of prediction categories for train-
ing with PPO. The episode rewards are averaged over 50
episodes after 700 iterations of PPO.

Number of
prediction categories Average episode reward Training duration

(hours)
2 163.5 52.2
3 194.3 52.4
5 198.7 54.9
7 187.0 55.3
9 169.9 56.8
15 153.1 58.9
21 162.8 63.9

4.2 Muscle Information Prediction
As described in subsection 3.5.2, 5-fold cross-validation was used for hyperparam-
eter selection with respect to the hyperparameter values described in Table 3.4. The
five best-performing models out of the 75 models trained on the supervised learning
task are listed in Table 4.3. The performance of the models are judged by observ-
ing the cross-validation loss - mean absolute error. It was observed that a fully-
connected model with 3 hidden layers, 256 hidden units, batch normalization, and
drop-out had the best performance on the task. The model had a mean absolute error
of 0.11 and a visualization of this model’s architecture can be seen in Figure 4.2.

Table 4.3: Hyperparameter values and cross-validation
mean absolute error for five best performing models on
the muscle information prediction task.

Hyperparameter values cross-validation loss
hidden
layers

hidden
units

batch
norm.

drop
out activation

3 256 ✓ ✓ ReLU 0.110
3 512 ✓ ✕ ReLU 0.112
2 512 ✓ ✓ ReLU 0.112
3 512 ✕ ✕ ReLU 0.114
2 256 ✓ ✓ ReLU 0.114

The described best-performing muscle information prediction model is then trained
using the entirety of the training (cross-validation) data as shown in Figure 3.5,

39/76

Chapter 4 – Results

Figure 4.2: Architecture of the best performing muscle
information prediction network. Green blocks represent
fully-connected layers with the respective number of units
displayed. Yellow blocks represent batch normalization,
and blue blocks represent drop-out regularization.

using 90% of the entire data for training and 10% for testing. This resulted in a
model trained with a validation mean absolute error of 0.109. A plot of the mean
absolute error on training and validation data, during the course of training, can be
seen in Figure 4.3. This model had an average MAE of 0.082 on the prediction
of the normalized muscle forces for the 15 muscles. It also had a 0.018 MAE for
the prediction of the normalized length of the muscles and a 0.228m/s MAE for the
prediction of the muscles’ velocities. A breakdown of the MAE for the individual
muscles can be seen in Table 4.4.

Figure 4.3: Training for the best-performing model for the
muscle information prediction task. The model is a fully-
connected feed-forward network with 3 hidden layers, 256
hidden units, batch normalization, and drop-out.

4.3 Comparison of Results for Models Trained with
Different Observation Types

This section compares the emerging rewards for training models using the complete,
augmented, and reduced observation spaces. Models are trained for 700 iterations

40/76

Chapter 4 – Results

Table 4.4: Breakdown of muscle information prediction
for each muscle.

Muscle Prediction Loss (MAE)
Force (normalized) Length (normalized) Velocity (m/s)

Hip Abductor 0.111 0.019 0.166
Hip Adductor 0.099 0.032 0.445
Iliopsoas L 0.127 0.012 0.390
Glut max R 0.081 0.037 0.488
Hamstring R 0.006 0.006 0.009
Rectus Femoris R 0.161 0.022 0.296
Vasti R 0.074 0.007 0.142
Bifmesh R 0.082 0.014 0.369
Gastrocnemius R 0.007 0.007 0.012
Soleus R 0.006 0.007 0.011
Tib ant R 0.074 0.014 0.346
Hip abductor L 0.120 0.018 0.523
Hip adductor L 0.143 0.013 0.199
Glut max L 0.006 0.008 0.009
Iliopsoas L 0.005 0.006 0.010
Average 0.082 0.018 0.228

of PPO, using different numbers of prediction categories, and the average reward
over 50 episodes is recorded. Table 4.5 contains the described average episodic
reward.

It can be observed that models trained for all observation types have the lowest
performance whilst utilizing 2 discrete prediction categories. Training the complete
observation produces the most episodic reward on average when using a model
with 5 prediction categories. This emerges with an average reward of 198.7 per
episode. Using an observation state that is augmented with muscle information
prediction of the feed-forward neural network also has its highest average episodic
reward while using a model with 5 prediction categories. This generates an average
episodic reward of 190.9. Models trained using the reduced observation space,
unlike the other models discussed, generated the most average reward per episode
when trained with 3 prediction categories.

41/76

Chapter 4 – Results

Table 4.5: Average episodic reward for the different num-
ber of prediction categories and observation space types.
The rewards are averaged over 50 episodes of the agent’s
locomotion and using a model trained for 700 iterations.

Number of
prediction
categories

Average episode reward

complete observation augmented observation
reduced observation
(without muscle information)

2 163.5 166.7 142.1
3 194.3 185.2 161.2
5 198.7 190.9 160.5

4.4 Realized Gait
To investigate the symmetry of the emerging gait pattern using the best-performing
DRL model for each observation type (as described in section 4.3), the flexion of
different joints during the gait cycle are analyzed. This section reviews the hip,
knee, and ankle flexion for instantaneous gait cycles, as well as the average pro-
gression of the flexion values during the gait cycle for the reduced and augmented
states.

4.4.1 Complete observation
The realized gait for training the best performing model which consists of 228 hid-
den units, and 5 prediction categories and was trained for 700 iterations, as de-
scribed in the hyperparameter search can be seen in Figure A.4. After 40 iterations
of training, the policy is unable to coordinate the actions of the model in a way that
generates a gait pattern. It is still unable to generate a gait after 100 iterations but it
learns to move a leg forward but falls afterward. The agent is still unable to move
forward after 200 iterations. After 400 iterations of training, the model learns a pol-
icy that generates a human-like gait. However, at this stage of training, the model
is still quite unstable and falls often, without completing its task. At 700 iterations,
the model learns a more robust manner of human-like gait and completes the task.

Figure 4.4 shows the instantaneous and average hip, knee, and ankle flexion for
the left and right legs of the agent during the gait cycle. In Figure 4.4a and Fig-
ure 4.4b, we observed high symmetry between the left and right hip during loco-
motion. There is little variance in the emerging pattern for the instantaneous gait
cycles. This means that the agent exhibits a natural walking pattern without much
deviation during the task. The same can also be observed in Figure 4.4c and Fig-
ure 4.4d for the left and right knee flexion, respectively. Only a few deviations are
observed with a peak at about 20% to 40% of the gait cycle. There is very high

42/76

Chapter 4 – Results

(a) left hip flexion (b) right hip flexion

(c) left (prosthesis) knee flexion (d) right (healthy) knee flexion

(e) left (prosthesis) ankle plantar flexion (f) right (healthy) ankle plantar flexion

Figure 4.4: Left and right hip, knee, and ankle angles dur-
ing the gait cycle using the complete state observation. The
policy network has 228 hidden units, and 5 prediction cat-
egories and was trained for 700 iterations of PPO.

symmetry between the healthy and the prosthesis knee during the gait cycle, result-
ing in a natural walking pattern. There is, however, much less symmetry between

43/76

Chapter 4 – Results

the ankle flexion of the healthy and the prosthetic leg. The healthy leg generates a
normal ankle flexion angle during the gait cycle. The ankle flexion shows a slightly
similar average flexion during the gait cycle; with an initial rise and peak at ∼ 30%
of the gait cycle, followed by a dip at∼ 65% of the gait cycle. The symmetry of the
ankle angles is much lower than the other joints. There is also very great variation
in the ankle flexion during different gait cycles for the prosthesis leg. The symmetry
is further analyzed in section 4.5.

4.4.2 Reduced observation
The hip, knee, and ankle flexion for both legs of the agent during 50 gait cycles is
shown in Figure 4.5. For the left (prosthetic) leg, the hip and knee flexion during a
gait cycle has a noticeable pattern (Figure 4.5a, Figure 4.5c). There is much higher
variance in the gait of the agent when compared to the hip flexion for the model
trained with the complete observation state. However, there is a trend nonetheless.

The left (prosthesis) ankle flexion of the agent during gait cycle (Figure 4.5e) shows
no clear trend. This is however, similar to the results obtained for the model trained
with the complete observation state (Figure 4.4e). The PPO model does not learn a
policy that streamlines the actions performed by the agent’s ankle to fit a particular
gait pattern. Rather, it learns a policy robust enough to perform locomotion but this
comes at a cost of human-like movement for that joint and decreased similarity to
the imitation data. Similarly, the right (healthy) ankle of the agent has high variation
in its flexion during the gait cycle (Figure 4.5f). This is, however, very different
from the clear pattern observed when using the model trained with the complete
observation state (Figure 4.4f).

In general, there is much more consistency in the gait pattern for the prosthetic
leg than for the healthy leg while training with the reduced observation state. This
suggests a dependence on the missing muscle information in order to generate a
better gait pattern.

4.4.3 Augmented observation
Figure 4.6 shows the progression of the flexion of the hip, knee, and ankle joints
of the agent for 50 gait cycles. The results show a clear trend in the left and right
hip and knee flexion during the gait. The results also show little variation in the
values of the hip and knee angle during the gait cycles in comparison to the gait ob-
tained from the reduced observation state model. However, there is more variation
compared to the gait for the model trained with the complete muscle information.

The right (healthy) ankle plantar flexion (Figure 4.6f) reveals a pattern for the gait
cycles with a few observable deviations from the mean. The left (prosthetic) an-
kle, however, does not form as straightforward, a gait pattern. Similar to the results

44/76

Chapter 4 – Results

(a) left hip flexion (b) right hip flexion

(c) left (prosthesis) knee flexion (d) right (healthy) knee flexion

(e) left (prosthesis) ankle plantar flexion (f) right (healthy) ankle plantar flexion

Figure 4.5: left and right hip, knee, and ankle angles dur-
ing the gait cycle using the reduced state observation (no
muscle information). The policy network has 228 hidden
units, and 5 prediction categories and was trained for 700
iterations of PPO.

obtained for the left ankle flexion of the model trained with the complete state (Fig-

45/76

Chapter 4 – Results

(a) left hip flexion (b) right hip flexion

(c) left (prosthesis) knee flexion (d) right (healthy) knee flexion

(e) left (prosthesis) ankle plantar flexion (f) right (healthy) ankle plantar flexion

Figure 4.6: left and right hip, knee, and ankle angles dur-
ing the gait cycle using the augmented state observation
(muscle information predicted by feed-forward neural net-
work). The policy network has 228 hidden units, and 5
prediction categories and was trained for 700 iterations of
PPO.

46/76

Chapter 4 – Results

ure 4.4e), the emerging pattern contains high variance. There is, however, still a
similar trend for both ankles with the minimum flexion occurring at ∼ 60% to 80%
of the gait cycle.

4.5 Symmetry of Models
Two quantities are observed in order to evaluate the quality of the realized gait.
Firstly, the symmetry of the left (prosthetic) and right (healthy) legs are observed.
This is done by computing the average RMSE, the symmetry angle, and the trend
symmetry for the observed mean hip, knee and ankle flexion during the gait cy-
cle. Similarly, the similarity of the listed flexion quantities during the gait cycle is
compared to that of the imitation data.

4.5.1 Left - right leg symmetry
Table 4.6 shows the RMSE, symmetry angle and trend symmetry for left and right -
hip, knee, and ankle flexion for the imitation data and models trained with complete,
reduced, and augmented observation state. The imitation data has a hip flexion trend
symmetry of 0.01. In comparison, the model trained with the complete observation
produced a hip flexion trend symmetry of 0.04. This is the most symmetrical model
(as described by the trend symmetry) for the hip and ankle flexion.

The model trained using the augmented observation state has the best performance
of all the trained models in terms of the knee flexion trend symmetry with a TS
score of 0.05. It has slightly worse performance than the complete observation state
model for the hip and ankle flexion trend symmetry. The reduced observation state
model produces the worst symmetry scores of the models. The observed hip, knee,
and ankle trend symmetry of the left and right legs were; 0.46, 0.45, and 0.37,
respectively. These are significantly worse than the left-right trend symmetry of
the imitation data, and the other observation state models. The ankle flexion trend
symmetry during the gait cycle shows a significantly worse symmetry score than the
hip and knee TS score for the complete and augmented observation space models.

4.5.2 Model - imitation data symmetry
Similar to the results presented in the previous section, the models trained with
the complete and augmented observation states produced better symmetry with the
imitation data gait cycle than the model trained using the reduced observation state.
Table 4.7 shows the results of the hip, knee, and ankle flexion symmetry for the
average gait cycle, and the imitation data. It shows good hip flexion symmetry
(TS) in both legs for the complete and augmented observation space models. The
reduced observation model also has a high level of symmetry in the left leg (TS =
0.04). However, there is much worse trend symmetry with the imitation data for

47/76

Chapter 4 – Results

Table 4.6: Symmetry of the joints in the left and right leg
during gait.

Attribute Symmetry
Measure

Model
imitation
data

complete
observation

reduced
observation

augmented
observation

Hip
Flexion

RMSE 2.45 6.08 10.56 9.70
SA 12.64 25.89 18.11 25.46
TS 0.01 0.04 0.46 0.07

Knee
Flexion

RMSE 0.46 10.92 9.94 15.11
SA 0.67 10.03 10.94 16.36
TS 0.01 0.06 0.45 0.05

Ankle
Flexion

RMSE 0.31 8.38 10.40 8.30
SA 2.02 44.13 78.35 69.90
TS 0.02 0.19 0.37 0.20

the reduced state model in the right leg (TS = 0.25). This can also be observed in
the knee and ankle flexion trend symmetry of the reduced observation state model.
The left leg shows high symmetry with the imitation data but the right (healthy) leg
shows a much worse trend symmetry with the imitation data.

The complete observation state model generates a gait with a better hip and ankle
symmetry than the augmented observation state model. However, the model trained
with the augmented observation state has a better ankle flexion trend symmetry
with the imitation data than the complete observation state model for both legs.
Both models have relatively high symmetry with the imitation data for the hip and
knee flexion during the gait cycle. There is, however, an observable decrease in
symmetry with the imitation data, for the flexion of the ankles. The average flexion
of the joints during the gait cycle which was used to obtain these results can be seen
in Figure 4.7.

4.6 Kinetic Analysis
Additional analysis was done on the model trained with the augmented observation
state. This includes investigating the stiffness of the prosthetic knee and ankle joints
during gait, as well as observing the force of the agent’s muscles during the phases
of the gait cycle. A gait cycle is made up of 8 phases: initial contact, loading
response, mid stance, terminal stance, pre-swing, initial swing, mid swing, and
terminal swing. The first five of the mentioned phases are known as the stance
phase of the gait and the latter three listed phases are the swing phase of the gait.

Figure 4.9 shows the normalized knee and ankle actuator torques during a gait cycle

48/76

Chapter 4 – Results

Table 4.7: Symmetry measures for models (trained with
different observation spaces) and the imitation data. The
average left and right, hip, knee, and ankle flexion of mod-
els are compared to the imitation data.

Leg Attribute Error
Measure

Model
complete

observation
reduced

observation
augmented
observation

Left

Hip
Flexion

RMSE 4.02 8.06 3.87
SA 19.75 49.31 13.48
TS 0.02 0.04 0.02

Knee
Flexion

RMSE 7.44 9.45 11.99
SA 8.99 10.39 12.56
TS 0.07 0.04 0.10

Ankle
Flexion

RMSE 8.44 5.36 8.02
SA 57.13 42.80 62.96
TS 0.16 0.07 0.12

Right

Hip
Flexion

RMSE 6.48 16.70 9.54
SA 24.55 34.40 28.27
TS 0.04 0.25 0.08

Knee
Flexion

RMSE 7.46 16.69 9.42
SA 8.58 13.94 10.06
TS 0.07 0.41 0.08

Ankle
Flexion

RMSE 6.48 8.61 6.87
SA 44.61 55.00 36.33
TS 0.20 0.33 0.17

and Figure 4.8 shows the normalized knee and ankle torques corresponding to the
angle of the joint during the gait cycle. The torques shown are normalized using
the amputee agent’s weight. The gait phases are also highlighted to give a better
description of the torques. These torque values have been filtered and smoothened.
This is because of the sporadic nature of the actuator control used. Due to the lack
of constraint on the output of the neural network, there is freedom for the network
to result in highly fluctuating activations of the actuators. This results in bursts of
force and undulating torques during the gait cycle. To present a clearer depiction
of the knee and ankle torques, a moving average filter was applied to the instanta-
neous normalized torque waveform using a window size of 0.11 seconds. Linear
extrapolation was used to fill the truncated parts of the waveform that resulted from
the moving average filter. A Savitzky-Golay filter with a polynomial order of 3 was
then applied to smoothen the result.

Figure 4.10 shows box plots of the muscle forces during the phases of a gait cycle
for the 11 muscles in the right (healthy) leg of the amputee agent. The combination

49/76

Chapter 4 – Results

of the actuator stiffness and the muscle forces during the gait informs us of the
practicality of the solution outside of the simulation and would be discussed further
in the next chapter.

50/76

Chapter 4 – Results

(a) left hip flexion (b) right hip flexion

(c) left (prosthesis) knee flexion (d) right (healthy) knee flexion

(e) left (prosthesis) ankle plantar flexion (f) right (healthy) ankle plantar flexion

Figure 4.7: average left and right hip, knee, and ankle an-
gles during the gait cycle using the complete, reduced and
augmented observation models, as well as the imitation
data.

51/76

Chapter 4 – Results

(a) knee (b) ankle

Figure 4.8: Knee and ankle actuator stiffness during gait
cycle

(a) knee (b) ankle

Figure 4.9: Knee and ankle actuator torque during gait cy-
cle

52/76

Chapter 4 – Results

(a) biarticular hamstrings (b) biceps femoris

(c) gastrocnemius (d) gluteus maximus

(e) hip abductor (f) hip adductor

Figure 4.10: Muscle force during phases of gait cycle
(Continued on next page)

53/76

Chapter 4 – Results

(g) iliopsoas (h) rectus femoris

(i) soleus (j) tibialis anterior

(k) vasti

Figure 4.10: Muscle force during phases of gait cycle
(continued)

54/76

Chapter 5

Discussion and Conclusion

This chapter first discusses the results obtained in this research. It then summarizes
the obtained results and their implications and provides answers to the questions
which prompted this research. Recommendations for further research within this
line of study are provided and finally, concluding remarks are made.

5.1 Discussion

5.1.1 Hyperparameter selection
It was observed that models trained with a higher number of prediction categories
(above 7) generated lower rewards than using 3 - 7 prediction categories. This is
likely due to an increase in the action space, requiring more iterations to find a good
solution for the DRL task. The 700 iterations chosen from the number of iterations
selection were on a 2 prediction categories model which had a much smaller action
space. These larger action space models are more difficult to train because of the in-
creased search space for the policy to find a good solution. This means that a larger
number of iterations would be required to adequately train them. This would also
imply a much larger training duration without a guarantee of improved performance
and also reflects on the possible challenges in training the model using a continuous
action space.

Using 2 prediction categories also resulted in a lower realized average episode re-
ward. This is likely due to the mechanism of the model. There is less control over
the agent’s actions. The 15 muscles of the agent are either maximally exciting or
maximally contracting at each timestep. The knee and ankle actuators are also max-
imally actuated in either direction with respect to the action generated by the policy.
There is no do-nothing state for the action of the agent to represent a good current
state. Hence, there is a highly erratic pattern of activation of the agent. This is very

55

Chapter 5 – Discussion and Conclusion

evident in the activations of the actuators.

5.1.2 Analysis of model results
The results of the models trained using the complete, reduced, and augmented state
observations were presented in different ways. First, the average reward of 50
episodes of the trained model was obtained. To further evaluate the models, the
symmetry of both legs, as well as the symmetry with imitation data was calculated.

While training the PPO model using 2, 3, and 5 prediction categories, training with
the complete observation state generated the best performance (obtained reward)
for the agent. The augmented observation state also yielded adequate performance
on the locomotion task. It even outperformed the complete observation state model
in one instance (2 prediction categories). There was, however, a drop-off in the per-
formance of the model when using the reduced observation for the agent. This large
disparity in rewards generated from training with the reduced state and the other ob-
servation states suggests that the muscle information or at least an approximation of
it is important in the state representation of the agent in order to adequately perform
locomotion with the DRL framework.

Over 50 episodes of the simulation, the hip, knee, and ankle flexion for the right
(healthy) leg did not have a clear trend during the gait cycle (Figure 4.5) unlike in the
left (prosthetic) leg when trained with the reduced state. There was high variation
in the flexion progression for different gait cycles. The lack of coordination of
the right (healthy) leg by the reduced state model is further reflected by the lower
symmetry with the imitation data of the hip, knee, and ankle for that leg. For this
reduced state model, the symmetry for the left leg and the imitation data is much
higher than the symmetry of the right leg. This result is expected because there are
a lot more muscles in the healthy leg and the reduced state observation does not
have information on these values in its description. The learning agent thus learns
a robust way of maximizing rewards. This learned policy for the reduced state
model is not well-correlated with the imitation data and causes the agent to have a
less symmetrical and human-like gait in comparison to the model trained using the
complete and augmented observation states.

The stance phase represents about 60% of the gait cycle (Laribi & Zeghloul, 2020).
This is true for the imitation data (Figure 4.7f). It is also observable in the left
(prosthetic) leg of the model trained with the complete, augmented, and reduced
observation states. There is a steep increase in the hip flexion from approximately
60% of the gait cycle for the rest of the gait cycle (the swing phase). This corre-
sponds to the agent’s foot leaving the ground, the hips swinging the leg forward, and
finally, the contact of the feet and the ground. In the right (healthy) leg, however,
the stance phase occurs on average, for only 50% of the gait cycle. This is due to
the quicker motion of the prosthesis in comparison to the healthy leg. During the

56/76

Chapter 5 – Discussion and Conclusion

mid and terminal swing phases, the prosthetic leg is able to swing faster than the
healthy leg. This is consistent for both the complete and augmented observation
state models and can be due to a number of factors. One reason for this could sim-
ply be the lighter mass of the prosthesis in the simulation. The imitation data used
to train the model was obtained from able-bodied adults. Transfemoral amputee
users of mechanical and microprocessor-controlled prostheses have been observed
to have such asymmetry in their gait (Kaufman et al., 2012).

Overall, the variance of the hip, knee, and ankle flexion for the 50 episodes of sim-
ulation of the model that is trained with the augmented state is much more similar
to that of the model trained using the complete state. The model has a more nat-
ural gait pattern when trained by augmenting the missing muscle information with
a pre-trained neural network than when trained without the muscle information;
again, indicating the significance of the muscle information or an approximation of
it, in the observation state in order to generate a healthy gait pattern.

5.1.3 Real-world Performance
The proposed method of augmentation of muscle information using a neural net-
work can be used in real-time applications because it is not computationally expen-
sive. To further evaluate the practicality of the utilized methods outside the simu-
lation environment, the muscle force of the agent as well as the actuator stiffness
was analyzed during a gait cycle of the simulation using the augmented observa-
tion state. This approach is practical because of the gross accuracy of the Hill-type
muscle model of Opensim.

Actuator stiffness

Understanding the stiffness behavior of joints could help in further understanding
the locomotion of an agent (Günther & Blickhan, 2002). The investigation of the
knee and ankle stiffness of the simulated prosthesis is important for improving the
prosthesis and the device design. The resulting normalized torques in Figure 4.8
are consistent with results obtained from human studies. Kern et al. (2019) found
a maximum normalized ankle torque of less than 1.5Nm/kg for 20 participants for
a walking task with an added mass of up to 30% of the participant’s mass. It is
also consistent with the results of Günther & Blickhan (2002) where the maximum
normalized knee and ankle torques were 2.02Nm/kg and 3.53Nm/kg, respectively
for a running task. In this study, the normalized maximum observed normalized
knee and ankle torque during the gait of the agent is 0.93Nm/kg and 0.70Nm/kg,
respectively. The value of these joint torques lies within a reasonable magnitude
for the knee and ankle torque during a gait. It is, however, unconventional for the
observed maximum knee torque to be greater than the ankle torque. This is because
the ankle should act as a lever for propulsion (Bojsen-Møller, 1979) and is normally
the largest contributor to positive work (Farris & Sawicki, 2011). Hence, this result

57/76

Chapter 5 – Discussion and Conclusion

also shows a relatively low stiffness in the prosthetic ankle joint. This could lead
to more work done by the knee actuator and hip of the prosthesis user, in order to
maintain a normal gait pattern. This can further be improved by methods such as
reward shaping to encourage more work being done by the ankle actuator of the
prosthesis.

Muscle force

The realized muscle force of the agent during a gait cycle of the simulation is close
to the real-world activation of muscles for different phases of the gait cycle.

During the initial contact (IC) phase of the gait cycle, the tibialis anterior muscle
generates a high amount of force Figure 4.10j. This is expected because the tib-
ialis anterior muscle’s primary function is ankle flexion and extension and in the IC
phase of the gait cycle, there is weight acceptance by the ankle. Similarly, there is
an increase in the muscle force in the pre-swing (PS) phase, between the terminal
stance (TST) and the initial swing (IS) phases. This gait phase is a transition be-
tween the stance and swing phase of the gait cycle and the foot is pushed and lifted
off the ground. There is an increase in force for the muscles responsible for ankle
flexion and extension (tibialis anterior and soleus) in this gait phase (Figure 4.10j &
Figure 4.10i).

At the terminal stance phase, the iliopsoas muscle (Figure 4.10g) which contributes
to the flexion of the hip joint records its maximum force with a median of over
3000N. Similarly, the rectus femoris muscle (Figure 4.10h) also contributes to the
flexion of the hip and increases its force in the TS and PS gait phases, in preparation
for the swing phase of the gait cycle. Conversely, the generated force by the gluteus
maximum (Figure 4.10d) reduces in the TST and PS phases and decreases further
during the swing phase of the gait cycle. The gluteus maximum’s primary function
is hip extension. This is why to achieve locomotion this muscle’s activation de-
creases during the swing phase of the gait, in order to achieve the necessary flexion
in the hip for the swinging motion of the leg. This is also observed in the biarticular
hamstrings (Figure 4.10b) which contribute to the flexing of the knee joint. For this
muscle, much lower force values are observed in the swing phase of the gait.

In the early stages of the swing phase, there is a need for the knee’s flexion to
increase in order to have sufficient clearance from the ground to swing the leg for-
ward. The biarticular hamstrings (Figure 4.10b) also contribute to the flexion of the
knee and it can be observed that there is a significant increase in the force generated
by the muscle during the PS phase. This is however not replicated in the biceps
femoris which also contributes to the flexion of the knee. A reason for this is likely
that the DRL agent learns a policy that mostly utilizes the biarticular hamstrings for
the flexion of the knee but not the biceps femoris. Reward shaping can also be used
to reduce the over-reliance on specific muscles such as the biarticular hamstrings by

58/76

Chapter 5 – Discussion and Conclusion

incorporating some biomechanical information in the calculation of rewards.

5.2 Summary of Thesis
In this project, an architecture for training a biomechanical agent without access to
muscle information was developed. This approach makes use of an artificial neu-
ral network in order to predict the agent’s muscle information; the force, length,
and velocity of the 15 muscles of the transfemoral amputee agent. DRL models
optimized with the proximal policy optimization algorithm were trained using the
complete observation state - which contains kinematic information and the force,
length, and velocity of the agent’s muscles; the augmented state - with kinematic
data and the muscle information predicted by a pre-trained artificial neural network;
and a reduced state - which had the agent’s kinematic data but no muscle informa-
tion included.

Firstly, a suitable artificial neural network architecture was chosen for the prediction
task. This model was trained in a supervised learning scenario. The metric for
selecting the model was the minimum MAE on the predicted force, length, and
velocity values for the 15 muscles of the agent using 5-fold cross-validation. A deep
neural network with 3 hidden layers produced the lowest cross-validation MAE loss
with a value of 0.11. This network architecture had an MAE of 0.082N, 0.18m, and
0.228ms−1 on the muscle force, length, and velocity predictions respectively.

To train the PPO model, a fully-connected policy network with 228 hidden units
was utilized. A similar neural network architecture was also used for the value
function with the difference being the number of units at the output layer - the value
function produces a single value hence, a single unit is used as the output of the
network. 700 iterations of PPO resulted in a reward of 194.3 while training with the
complete observation space. The augmented (kinematic data + predicted muscle
information) and reduced (kinematic data without muscle information) observation
states had 190.9 and 161.2 resulting rewards respectively. These results indicate that
training the PPO model using the complete observation state of the model results
in a higher obtained reward. The PPO model trained using the augmented muscle
information also performs well; with a reward close to using the complete obser-
vation state. Conversely, the model trained using the reduced state which does not
contain any muscle information performed significantly worse than the two other
models as expressed by their rewards. It was however surprising that the reward
obtained in an instance of training with the augmented observation state model out-
performed the model trained with the complete observation. This slight increase
in performance further supports the notion that the approximate prediction of the
muscle information is sufficient to implement an intelligent control of the amputee
agent.

59/76

Chapter 5 – Discussion and Conclusion

Further analysis carried out on the realized gait produced results consistent with
the obtained rewards of the models. The reduced state observation model showed
a low level of symmetry between the right and the left leg during gait. This was
shown to be mostly due to the lack of coordination in the right limb (which had 11
muscles). The complete and augmented state models, however, displayed a high
level of left-right leg symmetry, as well as symmetry with the imitation data.

5.3 Answers to Research Questions
• Can a transfemoral amputee model be trained to have a regular gait us-

ing Deep Reinforcement Learning without muscle information?

The empirical results from this study show that a transfemoral amputee agent
that is trained without muscle information can perform the locomotion task.
This is evident in the completion of the locomotion task. However, the results
also indicate a significant deviation from the gait pattern of the imitation data;
particularly in the healthy leg. This is supported by the higher asymmetry
in the gait of a model trained without the muscle information in the state
representation, and lower obtained reward for three of such models. This
suggests that although such a model can be trained to perform locomotion,
the resulting gait pattern is likely not going to be as intended.

• Does muscle information approximation yield features that are useful for
learning locomotion?

Training with a model that had an approximation of the muscle force, length,
and velocity information of the agent generated a significantly larger episodic
reward than the reduced state model in 3 out of 3 simulations. These empirical
results suggest that the approximated muscle features play an important role
in learning locomotion for such a transfemoral amputee.

• What are the benefits (if any) of utilizing the augmentation of muscle
information in producing a gait?

The results from this study strongly suggest that training the DRL algorithm
by augmenting the muscle information data, leads to a better performance
than using the reduced state representation. This is especially noticeable in
the accuracy of the realized gait to the target gait (imitation data). Training
with muscle information augmentation also resulted in a more symmetric gait
pattern. This is for the most part, due to more accurate gait movement in
the healthy leg of the agent which contains a much higher number of mus-
cles. Having access to these muscles (or an approximation of it) has therefore
shown to be of benefit to the training process.

60/76

Chapter 5 – Discussion and Conclusion

5.4 Recommendations for Future Research
• Reward shaping

Several results of this project have suggested the benefit of adding supple-
mentary rewards. The erratic pattern of actuator activations produces bursts
of force that would not be desired in a real prosthesis. More research can
be done using reward shaping to reduce the high variability of the actuator
torque. Similarly, future research within this line of study can also incorpo-
rate reward shaping based on human knowledge of muscle activations during
gait, in a bid to achieve even more realistic locomotion of the agent.

• Incorporate second-order information

In this project, features such as (rectilinear and translational) position and
velocities were included in the observation to train a muscle information pre-
dictor network in a supervised approach. Second-order acceleration values
were not included in this observation space. Having access to only first-order
information, the network could be limited in its prediction capacity for the
force of the muscles which is based on acceleration and even in the predic-
tion of the muscle velocities. Further research within this line of study can
investigate the benefits (if any) of using second-order information in muscle
information approximation, and in extension, how that affects gait generation.

• Utilizing continuous action space

Results from this study revealed a diminishing pattern of rewards when the
number of prediction categories of the policy network was increased. More
research is recommended on the relationship between this increasing action
space and the performance of a model trained with a reduced (or augmented)
observation space. Ultimately this relationship can be further observed by
optimizing a policy network that has a continuous action space.

• Other locomotion tasks

This research and the conclusions therein were done by an agent and imitation
subject, walking on flat terrain. While far from being a trivial optimization
task, this research has raised more questions on the applicability of the pro-
posed augmented model or the reduced model on other locomotion tasks such
as ramp or stairs ascent and descent.

5.5 Conclusion
The purpose of this research was to observe if a transfemoral amputee model can
be trained to walk using a state-of-the-art Deep Reinforcement Learning algorithm

61/76

Chapter 5 – Discussion and Conclusion

while using a reduced number of state observers. Based on the results obtained,
it can be concluded that disallowing access to the muscle information of the agent
yields a significant decline in the human-like locomotion ability of the trained agent.
Augmenting the reduced state with predicted muscle information from a pre-trained
neural network proved sufficient to improve the reward and gait symmetry of the
agent. Using this technique, the performance of the agent was comparable to that
of using the complete observation (i.e. including muscle information) of the agent.
This suggests the importance of the muscle information for the purpose of realizing
a human-like gait for the trained model. Despite the impressive results of training
with the augmentation process, it is worth exploring ways to further improve the
gait and the practicality of the agent.

62/76

References

Anand, A. S., Zhao, G., Roth, H., & Seyfarth, A. (2019). A deep reinforce-
ment learning based approach towards generating human walking behavior with
a neuromuscular model. In 2019 ieee-ras 19th international conference on hu-
manoid robots (humanoids) (p. 537-543). doi: 10.1109/Humanoids43949.2019
.9035034

Ananthakrishnan, A., Kanakiva, V., Ved, D., & Sharma, G. (2018). Automated
gait generation for simulated bodies using deep reinforcement learning. In 2018
second international conference on inventive communication and computational
technologies (icicct) (p. 90-95). doi: 10.1109/ICICCT.2018.8473310

Arslan, Y. Z., Karabulut, D., Ortes, F., & Popovic, M. B. (2019). Exoskeletons, ex-
omusculatures, exosuits: Dynamic modeling and simulation. Biomechatronics.

Becker, S. (1991, 01). Unsupervised learning procedures for neural networks. Int.
J. Neural Syst., 2, 17-33. doi: 10.1142/S0129065791000030

Bishop, C. M. (2006). Pattern recognition and machine learning (information
science and statistics). Berlin, Heidelberg: Springer-Verlag.

Bojsen-Møller, F. (1979, August). Calcaneocuboid joint and stability of the lon-
gitudinal arch of the foot at high and low gear push off. Journal of anatomy,
129(Pt 1), 165—176. Retrieved from https://europepmc.org/articles/
PMC1233091

Camargo, J., Ramanathan, A., Flanagan, W., & Young, A. (2021). A comprehen-
sive, open-source dataset of lower limb biomechanics in multiple conditions of
stairs, ramps, and level-ground ambulation and transitions. Journal of Biome-
chanics, 119, 110320. Retrieved from https://www.sciencedirect.com/
science/article/pii/S0021929021001007 doi: https://doi.org/10.1016/
j.jbiomech.2021.110320

Castro, J., Mantas, C., & Benıtez, J. (2000). Neural networks with a continu-
ous squashing function in the output are universal approximators. Neural Net-
works, 13(6), 561-563. Retrieved from https://www.sciencedirect.com/

63

https://europepmc.org/articles/PMC1233091
https://europepmc.org/articles/PMC1233091
https://www.sciencedirect.com/science/article/pii/S0021929021001007
https://www.sciencedirect.com/science/article/pii/S0021929021001007
https://www.sciencedirect.com/science/article/pii/S0893608000000319
https://www.sciencedirect.com/science/article/pii/S0893608000000319

References

science/article/pii/S0893608000000319 doi: https://doi.org/10.1016/
S0893-6080(00)00031-9

Chapelle, O., Scholkopf, B., & Zien, A. (2010). Semi-supervised learning. MIT
Press.

Chebotar, Y., Hausman, K., Kroemer, O., Sukhatme, G., & Schaal, S. (2017).
Regrasping using tactile perception and supervised policy learning. Retrieved
from https://aaai.org/ocs/index.php/SSS/SSS17/paper/view/15236

Chebotar, Y., Hausman, K., Zhang, M., Sukhatme, G., Schaal, S., & Levine, S.
(2017, 03). Combining model-based and model-free updates for trajectory-
centric reinforcement learning.

Chebotar, Y., Kalakrishnan, M., Yahya, A., Li, A., Schaal, S., & Levine, S.
(2017). Path integral guided policy search. In 2017 ieee international confer-
ence on robotics and automation (icra) (p. 3381-3388). doi: 10.1109/ICRA.2017
.7989384

Chow, C., & Jacobson, D. (1971). Studies of human locomotion via optimal pro-
gramming. Mathematical Biosciences, 10(3), 239-306. Retrieved from https://
www.sciencedirect.com/science/article/pii/0025556471900629 doi:
https://doi.org/10.1016/0025-5564(71)90062-9

Crenshaw, S. J., & Richards, J. G. (2006). A method for analyzing joint symmetry
and normalcy, with an application to analyzing gait. Gait Posture, 24(4), 515-
521. Retrieved from https://www.sciencedirect.com/science/article/
pii/S0966636205002602 doi: https://doi.org/10.1016/j.gaitpost.2005.12.002

Dahl, G. E., Yu, D., Deng, L., & Acero, A. (2012). Context-dependent pre-
trained deep neural networks for large-vocabulary speech recognition. IEEE
Transactions on Audio, Speech, and Language Processing, 20(1), 30-42. doi:
10.1109/TASL.2011.2134090

Davy, D., & Audu, M. (1987). A dynamic optimization technique for predicting
muscle forces in the swing phase of gait. Journal of Biomechanics, 20(2), 187-
201. Retrieved from https://www.sciencedirect.com/science/article/
pii/0021929087903101 doi: https://doi.org/10.1016/0021-9290(87)90310-1

de Boer, S. (2021). Deep reinforcement learning for physics-based muscu-
loskeletal model of a transfemoral amputee with a prosthesis walking on un-
even terrain. University of Groningen FSE Student Theses. Retrieved from
http://fse.studenttheses.ub.rug.nl/id/eprint/25498

De Jong, K. A. (1975). An analysis of the behavior of a class of genetic adaptive
systems. (Unpublished doctoral dissertation). USA. (AAI7609381)

64/76

https://www.sciencedirect.com/science/article/pii/S0893608000000319
https://www.sciencedirect.com/science/article/pii/S0893608000000319
https://www.sciencedirect.com/science/article/pii/S0893608000000319
https://aaai.org/ocs/index.php/SSS/SSS17/paper/view/15236
https://www.sciencedirect.com/science/article/pii/0025556471900629
https://www.sciencedirect.com/science/article/pii/0025556471900629
https://www.sciencedirect.com/science/article/pii/S0966636205002602
https://www.sciencedirect.com/science/article/pii/S0966636205002602
https://www.sciencedirect.com/science/article/pii/0021929087903101
https://www.sciencedirect.com/science/article/pii/0021929087903101
http://fse.studenttheses.ub.rug.nl/id/eprint/25498

References

Delp, S., Anderson, F., Arnold, A., Loan, P., Habib, A., John, C., . . . Thelen, D.
(2007, 12). Opensim: Open-source software to create and analyze dynamic sim-
ulations of movement. Biomedical Engineering, IEEE Transactions on, 54, 1940
- 1950. doi: 10.1109/TBME.2007.901024

De Vree, L., & Carloni, R. (2021). Deep reinforcement learning for physics-
based musculoskeletal simulations of healthy subjects and transfemoral prosthe-
ses’ users during normal walking. IEEE Transactions on Neural Systems and
Rehabilitation Engineering, 29, 607-618. doi: 10.1109/TNSRE.2021.3063015

Duan, Y., Chen, X., Houthooft, R., Schulman, J., & Abbeel, P. (2016). Benchmark-
ing deep reinforcement learning for continuous control. arXiv. Retrieved from
https://arxiv.org/abs/1604.06778 doi: 10.48550/ARXIV.1604.06778

El Bouchefry, K., & de Souza, R. S. (2020). Chapter 12 - learning in big data: Intro-
duction to machine learning. In P. Škoda & F. Adam (Eds.), Knowledge discovery
in big data from astronomy and earth observation (p. 225-249). Elsevier.

Farris, D. J., & Sawicki, G. S. (2011). The mechanics and energetics of human
walking and running: a joint level perspective. Journal of The Royal Society
Interface, 9, 110 - 118.

Feger, M. A., Donovan, L., Hart, J. M., & Hertel, J. (2015, 04). Lower Extremity
Muscle Activation in Patients With or Without Chronic Ankle Instability During
Walking. Journal of Athletic Training, 50(4), 350-357. Retrieved from https://
doi.org/10.4085/1062-6050-50.2.06 doi: 10.4085/1062-6050-50.2.06

Friedman, J. H. (1994). An overview of predictive learning and function approxi-
mation. In V. Cherkassky, J. H. Friedman, & H. Wechsler (Eds.), From statistics
to neural networks (pp. 1–61). Berlin, Heidelberg: Springer Berlin Heidelberg.

Günther, M., & Blickhan, R. (2002). Joint stiffness of the ankle and the knee in
running. Journal of Biomechanics, 35(11), 1459-1474. Retrieved from https://
www.sciencedirect.com/science/article/pii/S0021929002001835 doi:
https://doi.org/10.1016/S0021-9290(02)00183-5

Haarnoja, T., Pong, V., Zhou, A., Dalal, M., Abbeel, P., & Levine, S. (2018).
Composable deep reinforcement learning for robotic manipulation. In 2018 ieee
international conference on robotics and automation (icra) (p. 6244-6251). doi:
10.1109/ICRA.2018.8460756

Haykin, S. (2009). Neural networks and learning machines (No. v. 10). Prentice
Hall.

Hebb, D. O. (1949). The organization of behavior: a neuropsychological theory.
Science editions.

65/76

https://arxiv.org/abs/1604.06778
https://doi.org/10.4085/1062-6050-50.2.06
https://doi.org/10.4085/1062-6050-50.2.06
https://www.sciencedirect.com/science/article/pii/S0021929002001835
https://www.sciencedirect.com/science/article/pii/S0021929002001835

References

Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-r., Jaitly, N., . . . Kingsbury,
B. (2012). Deep neural networks for acoustic modeling in speech recognition:
The shared views of four research groups. IEEE Signal Processing Magazine,
29(6), 82-97. doi: 10.1109/MSP.2012.2205597

Holland, J. H. (1992). Adaptation in natural and artificial systems: an introductory
analysis with applications to biology, control, and artificial intelligence. MIT
press.

Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedfor-
ward networks are universal approximators. Neural Networks, 2(5), 359-366.
Retrieved from https://www.sciencedirect.com/science/article/pii/
0893608089900208 doi: https://doi.org/10.1016/0893-6080(89)90020-8

Huang, S., & Ferris, D. P. (2011). Muscle activation patterns during walking from
transtibial amputees recorded within the residual limb-prosthetic interface. Jour-
nal of NeuroEngineering and Rehabilitation, 9, 55 - 55.

Hussein, A., Gaber, M. M., Elyan, E., & Jayne, C. (2017, apr). Imitation learn-
ing: A survey of learning methods. ACM Comput. Surv., 50(2). Retrieved from
https://doi.org/10.1145/3054912 doi: 10.1145/3054912

Kakade, S., & Langford, J. (2002). Approximately optimal approximate reinforce-
ment learning. In In proc. 19th international conference on machine learning
(pp. 267–274).

Kalashnikov, D., Irpan, A., Pastor, P., Ibarz, J., Herzog, A., Jang, E., . . . Levine,
S. (2018, 29–31 Oct). Scalable deep reinforcement learning for vision-
based robotic manipulation. In A. Billard, A. Dragan, J. Peters, & J. Mori-
moto (Eds.), Proceedings of the 2nd conference on robot learning (Vol. 87, pp.
651–673). PMLR. Retrieved from https://proceedings.mlr.press/v87/
kalashnikov18a.html

Kaufman, K., Frittoli, S., & Frigo, C. (2012, 01). Gait asymmetry of trans-
femoral amputees using mechanical and microprocessor-controlled prosthetic
knees. Clinical biomechanics (Bristol, Avon), 27, 460-5. doi: 10.1016/
j.clinbiomech.2011.11.011

Kern, A. M., Papachatzis, N., Patterson, J. M., Bruening, D. A., & Takahashi, K. Z.
(2019). Ankle and midtarsal joint quasi-stiffness during walking with added
mass. PeerJ, 7.

Kidziński, Ł., Mohanty, S. P., Ong, C., Hicks, J., Francis, S., Levine, S., . . . Delp, S.
(2018). Learning to run challenge: Synthesizing physiologically accurate motion
using deep reinforcement learning. In S. Escalera & M. Weimer (Eds.), Nips
2017 competition book. Springer: Springer.

66/76

https://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://doi.org/10.1145/3054912
https://proceedings.mlr.press/v87/kalashnikov18a.html
https://proceedings.mlr.press/v87/kalashnikov18a.html

References

Koopman, B., Grootenboer, H. J., & de Jongh, H. J. (1995). An inverse dy-
namics model for the analysis, reconstruction and prediction of bipedal walk-
ing. Journal of Biomechanics, 28(11), 1369-1376. Retrieved from https://
www.sciencedirect.com/science/article/pii/0021929094001857 doi:
https://doi.org/10.1016/0021-9290(94)00185-7

Laribi, M. A., & Zeghloul, S. (2020). Chapter 4 - human lower limb oper-
ation tracking via motion capture systems. In M. Ceccarelli & G. Carbone
(Eds.), Design and operation of human locomotion systems (p. 83-107). Aca-
demic Press. Retrieved from https://www.sciencedirect.com/science/
article/pii/B9780128156599000044 doi: https://doi.org/10.1016/B978-0
-12-815659-9.00004-4

Leshno, M., Lin, V. Y., Pinkus, A., & Schocken, S. (1993). Multilayer feedfor-
ward networks with a non-polynomial activation function can approximate any
function. New York University Stern School of Business Research Paper Series.

Levine, S., Finn, C., Darrell, T., & Abbeel, P. (2016). End-to-end training of
deep visuomotor policies. Journal of Machine Learning Research, 17(39), 1–40.
Retrieved from http://jmlr.org/papers/v17/15-522.html

Levine, S., Pastor, P., Krizhevsky, A., Ibarz, J., & Quillen, D. (2018). Learning
hand-eye coordination for robotic grasping with deep learning and large-scale
data collection. The International Journal of Robotics Research, 37(4-5), 421-
436. Retrieved from https://doi.org/10.1177/0278364917710318 doi:
10.1177/0278364917710318

Levine, S., Wagener, N., & Abbeel, P. (2015). Learning contact-rich manipula-
tion skills with guided policy search. In 2015 ieee international conference on
robotics and automation (icra) (p. 156-163). doi: 10.1109/ICRA.2015.7138994

Li, M., Wen, Y., Gao, X., Si, J., & Huang, H. (2021). Toward expedited impedance
tuning of a robotic prosthesis for personalized gait assistance by reinforcement
learning control. IEEE Transactions on Robotics, 1–10. Retrieved from http://
dx.doi.org/10.1109/TRO.2021.3078317 doi: 10.1109/tro.2021.3078317

Liu, L., & Hodgins, J. (2017, 06). Learning to schedule control fragments for
physics-based characters using deep q-learning. ACM Transactions on Graphics,
36, 1. doi: 10.1145/3072959.3083723

Marshall, R., Wood, G., & Jennings, L. (1989). Performance objectives in hu-
man movement: A review and application to the stance phase of normal walk-
ing. Human Movement Science, 8(6), 571-594. Retrieved from https://
www.sciencedirect.com/science/article/pii/0167945789900043 doi:
https://doi.org/10.1016/0167-9457(89)90004-3

67/76

https://www.sciencedirect.com/science/article/pii/0021929094001857
https://www.sciencedirect.com/science/article/pii/0021929094001857
https://www.sciencedirect.com/science/article/pii/B9780128156599000044
https://www.sciencedirect.com/science/article/pii/B9780128156599000044
http://jmlr.org/papers/v17/15-522.html
https://doi.org/10.1177/0278364917710318
http://dx.doi.org/10.1109/TRO.2021.3078317
http://dx.doi.org/10.1109/TRO.2021.3078317
https://www.sciencedirect.com/science/article/pii/0167945789900043
https://www.sciencedirect.com/science/article/pii/0167945789900043

References

McCulloch, W. S., & Pitts, W. (1943, Dec 01). A logical calculus of the ideas
immanent in nervous activity. The bulletin of mathematical biophysics, 5(4), 115-
133. Retrieved from https://doi.org/10.1007/BF02478259 doi: 10.1007/
BF02478259

Melo, L. C., & Maximo, M. R. O. A. (2019). Learning humanoid robot running
skills through proximal policy optimization.

Mhaskar, H., & Micchelli, C. A. (1992). Approximation by superposition of sig-
moidal and radial basis functions. Advances in Applied Mathematics, 13(3), 350-
373. Retrieved from https://www.sciencedirect.com/science/article/
pii/019688589290016P doi: https://doi.org/10.1016/0196-8858(92)90016-P

Mitchell, T. M. (1997). Machine learning. New York: McGraw-Hill.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T. P., Harley, T., . . .
Kavukcuoglu, K. (2016). Asynchronous methods for deep reinforcement learn-
ing.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra,
D., & Riedmiller, M. (2013). Playing atari with deep reinforcement learn-
ing. Retrieved from https://arxiv.org/abs/1312.5602 doi: 10.48550/
ARXIV.1312.5602

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A., Veness, J., Bellemare, M., . . . Has-
sabis, D. (2015, 02). Human-level control through deep reinforcement learning.
Nature, 518, 529-33. doi: 10.1038/nature14236

OpenSim. (2012). Opensim user’s guide [Computer software manual].
Retrieved from https://simtk-confluence.stanford.edu:8443/display/
OpenSim/User%27s+Guide

Park, H., Yu, R., Lee, Y., Lee, K., & Lee, J. (2020, 07). Understanding the stability
of deep control policies for biped locomotion.

Peng, Z., Luo, R., Huang, R., Hu, J., Shi, K., Cheng, H., & Ghosh, B. K. (2020).
Data-driven reinforcement learning for walking assistance control of a lower limb
exoskeleton with hemiplegic patients. In 2020 ieee international conference on
robotics and automation (icra) (p. 9065-9071). doi: 10.1109/ICRA40945.2020
.9197229

Raveendranathan, V. (ongoing). Simplified transfemoral amputee model for deep
reinforcement learning. Internal Research.

Raveendranathan, V., & Carloni, R. (2020). Musculoskeletal model of an osseointe-
grated transfemoral amputee in opensim. In 2020 8th ieee ras/embs international

68/76

https://doi.org/10.1007/BF02478259
https://www.sciencedirect.com/science/article/pii/019688589290016P
https://www.sciencedirect.com/science/article/pii/019688589290016P
https://arxiv.org/abs/1312.5602
https://simtk-confluence.stanford.edu:8443/display/OpenSim/User%27s+Guide
https://simtk-confluence.stanford.edu:8443/display/OpenSim/User%27s+Guide

References

conference for biomedical robotics and biomechatronics (biorob) (p. 1196-1201).
doi: 10.1109/BioRob49111.2020.9224422

Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage
and organization in the brain. Psychological review, 65 6, 386-408.

Rosenblatt, F. (1962). Principles of neurodynamics: Perceptrons and the theory
of brain mechanisms. Spartan Books. Retrieved from https://books.google
.nl/books?id=7FhRAAAAMAAJ

Salwan, D., & Kant, S. (2020, 04). Ddpg vs ppo in prosthetics. Journal of Critical
Reviews, 7, 2020. doi: 10.31838/jcr.07.09.482

Sartoretti, G., Paivine, W., Shi, Y., Wu, Y., & Choset, H. (2019, Oct). Distributed
learning of decentralized control policies for articulated mobile robots. IEEE
Transactions on Robotics, 35(5), 1109–1122. Retrieved from http://dx.doi
.org/10.1109/TRO.2019.2922493 doi: 10.1109/tro.2019.2922493

Schulman, J., Levine, S., Moritz, P., Jordan, M. I., & Abbeel, P. (2015). Trust
region policy optimization. arXiv. Retrieved from https://arxiv.org/abs/
1502.05477 doi: 10.48550/ARXIV.1502.05477

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal
policy optimization algorithms.

Sonoda, S., & Murata, N. (2017, sep). Neural network with unbounded activa-
tion functions is universal approximator. Applied and Computational Harmonic
Analysis, 43(2), 233–268.

Sutton, R., & Barto, A. (2018). Reinforcement learning, second edition: An intro-
duction. MIT Press.

Sutton, R., Barto, R., Barto, A., Barto, C., Bach, F., & Press, M. (1998). Re-
inforcement learning: An introduction. MIT Press. Retrieved from https://
books.google.nl/books?id=CAFR6IBF4xYC

Thelen, D. (2003, 03). Adjustment of muscle mechanics model parameters to simu-
late dynamic contractions in older adults. Journal of biomechanical engineering,
125, 70-7. doi: 10.1115/1.1531112

Tu, X., Li, M., Liu, M., Si, J., He, & Huang. (2020). A data-driven reinforcement
learning solution framework for optimal and adaptive personalization of a hip
exoskeleton.

Wen, Y., Li, M., Si, J., & Huang, H. (2020). Wearer-prosthesis interaction for
symmetrical gait: A study enabled by reinforcement learning prosthesis control.
IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28, 904-
913.

69/76

https://books.google.nl/books?id=7FhRAAAAMAAJ
https://books.google.nl/books?id=7FhRAAAAMAAJ
http://dx.doi.org/10.1109/TRO.2019.2922493
http://dx.doi.org/10.1109/TRO.2019.2922493
https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1502.05477
https://books.google.nl/books?id=CAFR6IBF4xYC
https://books.google.nl/books?id=CAFR6IBF4xYC

Wen, Y., Si, J., Brandt, A., Gao, X., & Huang, H. H. (2020). Online reinforcement
learning control for the personalization of a robotic knee prosthesis. IEEE Trans-
actions on Cybernetics, 50(6), 2346-2356. doi: 10.1109/TCYB.2019.2890974

Wen, Y., Si, J., Gao, X., Huang, S., & Huang, H. H. (2017). A new powered
lower limb prosthesis control framework based on adaptive dynamic program-
ming. IEEE Transactions on Neural Networks and Learning Systems, 28(9),
2215-2220. doi: 10.1109/TNNLS.2016.2584559

Williams, R. J. (1992, may). Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Mach. Learn., 8(3–4), 229–256. Retrieved
from https://doi.org/10.1007/BF00992696 doi: 10.1007/BF00992696

Wu, Y., Mansimov, E., Liao, S., Grosse, R., & Ba, J. (2017). Scalable trust-region
method for deep reinforcement learning using kronecker-factored approximation.
arXiv. Retrieved from https://arxiv.org/abs/1708.05144 doi: 10.48550/
ARXIV.1708.05144

Yang, X.-S. (2010). A new metaheuristic bat-inspired algorithm. Retrieved from
https://arxiv.org/abs/1004.4170 doi: 10.48550/ARXIV.1004.4170

Zifchock, R. A., Davis, I., Higginson, J., & Royer, T. (2008). The symmetry angle:
A novel, robust method of quantifying asymmetry. Gait Posture, 27(4), 622-
627. Retrieved from https://www.sciencedirect.com/science/article/
pii/S0966636207002111 doi: https://doi.org/10.1016/j.gaitpost.2007.08.006

70

https://doi.org/10.1007/BF00992696
https://arxiv.org/abs/1708.05144
https://arxiv.org/abs/1004.4170
https://www.sciencedirect.com/science/article/pii/S0966636207002111
https://www.sciencedirect.com/science/article/pii/S0966636207002111

Appendix A

A.1 Observation Space
Table A.1: Complete observation space for the trans-
femoral amputee agent. [1-46] is the reduced observation
space. [47-91] are the muscle information that are pre-
dicted using a feed-forward network.

index Agent’s body part feature measurement unit
1 pelvis position (x) m
2 pelvis position (y) [height] m
3 pelvis position (z) m
4 pelvis velocity (x) m/s
5 pelvis velocity (y) m/s
6 pelvis velocity (z) m/s
7 pelvis list radians
8 pelvis rotation radians
9 pelvis tilt radians
10 pelvis list velocity rad/s
11 pelvis rotation velocity rad/s
12 pelvis tilt velocity rad/s
13 right leg ground reaction force (x) N
14 right leg ground reaction force (y) N
15 right leg ground reaction force (z) N
16 right hip abduction rad
17 right hip flexion rad
18 right knee flexion rad
19 right ankle flexion rad
20 right hip abduction velocity rad/s
21 right hip flexion velocity rad/s

Continued on next page

71

Appendix A

index Agent’s body part feature measurement unit
22 right knee flexion velocity rad/s
23 right ankle flexion velocity rad/s
24 left leg ground reaction force (x) N
25 left leg ground reaction force (y) N
26 left leg ground reaction force (z) N
27 left hip abduction rad
28 left hip flexion rad
29 left knee flexion rad
30 left ankle flexion rad
31 left hip abduction velocity rad/s
32 left hip flexion velocity rad/s
33 left knee flexion velocity rad/s
34 left ankle flexion velocity rad/s
35 left knee actuator force N
36 left knee actuator velocity rad/s
37 left knee actuator control R
38 left knee actuator power W
39 left knee actuator activation R
40 left knee actuator actuation R
41 left ankle actuator force N
42 left ankle actuator velocity rad/s
43 left ankle actuator control R
44 left ankle actuator power W
45 left ankle actuator activation R
46 left ankle actuator actuation R
47 right hip abductor fiber force N
48 right hip abductor fiber length m
49 right hip abductor fiber velocity m/s
50 right hip adductor fiber force N
51 right hip adductor fiber length m
52 right hip adductor fiber velocity m/s
53 right iliopsoas fiber force N
54 right iliopsoas fiber length m
55 right iliopsoas fiber velocity m/s
56 right gluteus maximus fiber force N
57 right gluteus maximus fiber length m
58 right gluteus maximus fiber velocity m/s
59 right biarticular hamstrings fiber force N
60 right biarticular hamstrings fiber length m
61 right biarticular hamstrings fiber velocity m/s

Continued on next page

72/76

Appendix A

index Agent’s body part feature measurement unit
62 right rectus femoris fiber force N
63 right rectus femoris fiber length m
64 right rectus femoris fiber velocity m/s
65 right vasti fiber force N
66 right vasti fiber length m
67 right vasti fiber velocity m/s
68 right biceps femoris fiber force N
69 right biceps femoris fiber length m
70 right biceps femoris fiber velocity m/s
71 right gastrocnemius fiber force N
72 right gastrocnemius fiber length m
73 right gastrocnemius fiber velocity m/s
74 right soleus fiber force N
75 right soleus fiber length m
76 right soleus fiber velocity m/s
77 right tibialis anterior fiber force N
78 right tibialis anterior fiber length m
79 right tibialis anterior fiber velocity m/s
80 left hip abductor fiber force N
81 left hip abductor fiber length m
82 left hip abductor fiber velocity m/s
83 left hip adductor fiber force N
84 left hip adductor fiber length m
85 left hip adductor fiber velocity m/s
86 left gluteus maximus fiber force N
87 left gluteus maximus fiber length m
88 left gluteus maximus fiber velocity m/s
89 left iliopsoas fiber force N
90 left iliopsoas fiber length m
91 left iliopsoas fiber velocity m/s

73/76

Appendix A

A.2 Muslce information prediction

Table A.2: Results of muscle information prediction net-
work on the validation data.

Muscle Force Length Velocity
MAE min max sigma MAE min max sigma MAE min max sigma

Hip Abductor 0.111 0.003 1.144 0.1792 0.019 0.555 1.036 0.070 0.166 -4.459 2.91 0.929
Hip Adductor 0.099 0.006 1.055 0.196 0.032 0.314 1.049 0.078 0.445 -5.744 4.396 0.819
Iliopsoas L 0.127 0.032 1.280 0.362 0.012 0.913 1.327 0.090 0.390 -2.615 6.344 1.116
Glut max R 0.081 0.001 0.997 0.144 0.037 0.673 1.188 0.104 0.488 -5.899 1.417 1.227
Hamstring R 0.006 0.008 0.938 0.151 0.006 0.330 1.208 0.190 0.009 -8.139 17.257 0.9407
Rectus Femoris R 0.161 0.000 1.050 0.176 0.022 0.452 1.486 0.215 0.296 -6.655 5.872 1.481
Vasti R 0.074 0.000 0.840 0.129 0.007 0.645 1.357 0.166 0.142 -9.790 1.961 2.182
Bifmesh R 0.082 0.000 1.291 0.354 0.014 0.086 1.287 0.087 0.369 -40.385 23.197 1.217
Gastrocnemius R 0.007 0.000 0.697 0.107 0.007 0.308 1.307 0.202 0.012 -12.403 8.019 1.947
Soleus R 0.006 0.000 0.527 0.069 0.007 0.426 1.349 0.189 0.011 -13.630 2.920 2.341
Tib ant R 0.074 0.032 1.228 0.299 0.014 0.570 1.336 0.127 0.346 -4.290 18.604 1.783
Hip abductor L 0.120 0.000 1.188 0.234 0.018 0.558 1.211 0.076 0.523 -8.502 7.609 1.386
Hip adductor L 0.143 0.000 1.132 0.222 0.013 0.377 1.136 0.091 0.199 -10.067 8.731 1.217
Glut max L 0.006 0.000 1.204 0.243 0.008 0.669 1.384 0.108 0.009 -11.815 17.786 1.876
Iliopsoas L 0.005 0.000 1.330 0.331 0.006 0.603 1.339 0.096 0.010 -10.190 10.376 1.706
Average 0.082 0.000 1.330 0.252 0.018 0.308 1.486 0.191 0.228 -40.385 23.197 1.884

A.3 Maximum isotropic force and optimal length of
muscles

Table A.3: Maximum isotropic force and optimal fiber
length of 11 muscles of the transfemoral amputee agent.

Muscle Maximum isotropic
force (N)

Optimal length
(m)

hip abductor 4460.29 0.0845
hip adductor 3931.8 0.087
iliopsoas 2697.34 0.117
gluteus maximus 3337.58 0.157
biarticular hamstrings 4105.46 0.069
rectus femoris 2191.74 0.076
vasti 9593.95 0.099
biceps femoris 557.11 0.11
gastrocnemius 4690.57 0.051
soleus 7924.99 0.044
tibialis anterior 2116.81 0.068

74/76

Appendix A

A.4 Symmetry of left and right joints

(a) Imitation data (b) complete state

(c) augmented state (d) reduced state

Figure A.1: Mean and standard deviation of hip flexion
during gait using different observation state representa-
tions.

(a) Imitation data (b) complete state

(c) augmented state (d) reduced state

Figure A.2: Mean and standard deviation of knee flex-
ion during gait using different observation state represen-
tations.

75/76

Appendix A

(a) Imitation data (b) complete state

(c) augmented state (d) reduced state

Figure A.3: Mean and standard deviation of ankle flex-
ion during gait using different observation state represen-
tations.

A.5 Visualization of Simulation

(a) 40 iterations (b) 100 iterations (c) 200 iterations

(d) 400 iterations (e) 700 iterations

Figure A.4: Snapshots of transfemoral amputee model
during training process. Model trained using complete
observation state, 5 prediction categories, and 228 hidden
layer size.

76/76

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Research Questions
	Significance of Study
	Thesis Outline

	Theoretical Background
	Machine Learning
	Unsupervised Learning
	Supervised Learning
	Semi-supervised Learning
	Reinforcement Learning

	Deep Reinforcement Learning Policy Optimization
	Policy Gradient Methods
	Trust Region Methods
	Proximal Policy Optimization

	Artificial Neural Networks
	McCulloch-Pitts Neuron
	Perceptron
	Multi-Layer Perceptron
	Optimization

	Related Work

	Research Methods
	Materials
	Opensim
	The Agent
	The Imitation Dataset

	Proximal Policy Optimization
	Reward Injection
	Goal Reward
	Imitation Reward
	Penalty

	Deep Reinforcement Learning with a Reduced State Observation
	Experimental Setup
	Predicting the Muscle Information
	Training the Learning Agent

	Performance Criteria
	Muscle Information Prediction
	Agent's Locomotion

	Results
	Hyperparameter search
	Experiment for number of iterations
	Experiment for number of hidden units
	Experiment for number of prediction categories

	Muscle Information Prediction
	Comparison of Results for Models Trained with Different Observation Types
	Realized Gait
	Complete observation
	Reduced observation
	Augmented observation

	Symmetry of Models
	Left - right leg symmetry
	Model - imitation data symmetry

	Kinetic Analysis

	Discussion and Conclusion
	Discussion
	Hyperparameter selection
	Analysis of model results
	Real-world Performance

	Summary of Thesis
	Answers to Research Questions
	Recommendations for Future Research
	Conclusion

	References
	Appendix
	
	Observation Space
	Muslce information prediction
	Maximum isotropic force and optimal length of muscles
	Symmetry of left and right joints
	Visualization of Simulation

