
UNIVERSITY OF GRONINGEN

COMPUTATIONAL COGNITIVE SCIENCE

MASTER’S THESIS

The Influence of Connectivity Sparseness and
Alzheimer’s Disease on Pattern Separation in
a Spiking Neuron Model of the EC-DG-CA3

Hippocampal Circuit

WRITTEN

BY

Chiel Wijs

Supervisor
Dr. Jelmer P. Borst



Abstract

The mechanism of pattern separation allows the hippocampal formation, a brain structure
in the medial temporal lobe, to store similar memories using dissimilar patterns of neural
activity, preventing collusion between them. A circuit consisting of the entorhinal cortex
(EC), dentate gyrus (DG), and region CA3 of the hippocampus is seen as crucial for the
process of pattern separation. The DG in particular is thought to contribute through a
number of intrinsic neural as well as connectivity properties, one of which is the sparse
connectivity of the mossy fibers connecting the DG principal neurons to region CA3. This
research used a spiking neuron model of the EC-DG-CA3 circuit to determine how sparse
connectivity of the mossy fibers affects pattern separation. Analysis of the model indicated
that, within the used modelling framework, sparse connectivity as an isolated feature does
not promote pattern separation. Rather, the general decrease in neural activity most heav-
ily influences pattern overlap values. Additionally, the circuit was used to explore how
changes that are observed in the DG of a transgenic mouse model of Alzheimer’s disease
(AD), a type of dementia, can be used to model the deficits in long-term memory charac-
teristic of this neurological disorder. Modelling of an increase of the areas of the EC-DG
synaptic junction surfaces, which correlate with synaptic efficacy, proved to be a consis-
tent way to increase pattern overlap. This indicated it as a potential method for inducing
AD-related cognitive deficits within the model. As this research focused on how neural
and connectivity properties, as well as neurological symptoms of AD, affect a model of the
hippocampus without any learning, implementation of a model that allows for increased
pattern separation through learning across sparse connections presents itself as an inter-
esting direction for future research into the progression of AD.
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Chapter 1

Introduction

The term hippocampus refers to a group of brain structures in the medial temporal lobe as
well as a component of that formation (i.e. the hippocampus proper; Lavenex, 2012). The
group of structures, that is referred to as thehippocampal formation (HF), is known to play a
role in the formation and recall of long-term declarative memory (Eichenbaum & Cohen,
2004). The role of the hippocampus as a structure for memory systems has been exten-
sively studied through lesion studies. A well-known example is the case of patient H.M.
(Eichenbaum, 2012), who underwent surgery to remove part of the HF to mitigate seizures.
After his surgery, H.M. showed no true deficits in cognitive functioning other than for,
specifically, long-term memory. While H.M.’s long-term memories from well before the
surgery were intact, the formation of new long-term memories showed clear deficits. This
deficit, however, did not show for non-declarative, or procedural, memories. Classical con-
ditioning, priming, and skill learning were also preserved following the operation. The
following works aims to investigate how certain aspects of a computational model of the
hippocampus affects memory formation. More specifically, how these aspects affect the
overlap in stimulus induced neural activity in the hippocampus. Both the effect of sparse
connectivity between components of the HF, as well as the degradation of the brain that
occurs due to Alzheimer’s disease (AD), a form of dementia, are explored.

1.1 Pattern Separation and the Dentate Gyrus

One of processes posed as an important part of the functionality of the hippocampus is that
of pattern separation (Figure 1.1; Bakker, Kirwan, Miller, & Stark, 2008). Pattern separation is
the process of creating sparse non-overlapping neural re-representations from similar rep-
resentations. This allows clear separation between memories of potentially similar stimuli,
such that the encoding of new information does not overwrite information that is already
stored (Yassa & Stark, 2011). This process is observed to happen in the dentate gyrus (DG)
and region CA3.

The DG is a structure that lies between the entorhinal cortex (EC) and the rest of the
HF (Figures 1.2 and 1.3; Witter, 2019). The EC itself serves as the relay station between the
hippocampal formation (HF) and the neocortex. Excitatory neurons referred to as granule
cells (GC) are the principal cell type of the DG, comprising 80-90% of its neurons (Vida,
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Figure 1.1: Pattern separation. To avoid overlap in the storage of similar information,
the brain exhibits a phenomenon called pattern separation. Stimuli that induced similar
patterns of activity in a presynaptic region produce dissimilar patterns of activity in a
postsynaptic region.

Degro, & Booker, 2019). Their axons, called mossy fibers, are the main source of input
from the DG to region CA3. The mossy fibers additionally innervate a very large number
of inhibitory interneurons in both the DG and CA3, outnumbering the number of CA3
pyramidal cells contacted as much 10-fold in the rat hippocampus (Acsady, Kamondi, Sık,
Freund, & Buzsáki, 1998).

CA3 is a subregion of the hippocampus proper1 (Figures 1.2 and 1.3; Witter, 2019).
It receives input from the EC both directly and through the DG. The direct connection is
sometimes discarded in standard connectivity models of the hippocampus, as the one from
Witter shown in Figure 1.2, or specified as a weak source of excitation of CA3 during mem-
ory formation as compared to the input from the DG (Lavenex, 2012). CA3 is suggested to
play a crucial roll in the formation and retrieval of memories. Recurrent connections of the
CA3 pyramidal cells form a so called autoassociative network. This network allows the
binding and consolidation of (components of) episodic and long-term memories. Through
these recurrent connections, activation of a small part of a memory’s associated activity
pattern results in the activation of the entire pattern, allowing for the retrieval of a mem-
ory based on partial cues (Senzai, 2019). This process is referred to as pattern completion.

Multiple aspects of the DG are thought to contribute to its role in the process of pattern
separation (Bakker et al., 2008; Senzai, 2019; Lavenex, 2012): its large number of neurons as
compared to the EC, its sparse representation of stimuli due to strong hyperpolarization
of granule cells, and its sparse but very strong connections to the CA3 pyramidal cells.
The lack of direct recurrent connections between granule cells, as opposed to the CA3
autoassociative network, might also help with keeping stimulus representation sparse as
well as separate in the DG.

1.2 Modelling the Hippocampus

One method of investigating memory, the hippocampus and the effects of neurological
disorders, is through computational modelling. Neural networks (NN) are one method of

1CA comes from Cornu Ammonis, an earlier name for the hippocampus
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Figure 1.2: Entorhinal-hippocampal network. The entorhinal cortex (EC) serves as a re-
lay station between the hippocampal formation and the neocortex, which harbors higher
cognitive-functions. The entorhinal cortex projects to the dentate gyrus (DG) which in turn
projects to region CA3 of the hippocampus proper. CA3 projects a recurrent connection
onto itself, as well as it connects to region CA1. CA1 projects back to the EC both directly
and through a structure called the subiculum (Sub). Figure from Witter (2019). Figure C.1
displays a more extensive model of the entorhinal-hippocampal formation from the same
source.

computational modelling that is especially interesting, as well as suited, for the investiga-
tion of the workings of our brain; the principle of an NN is based on what neuroscientific
research has discovered about the composition, structure, and connectivity of the brain.
Spiking neural networks are particularly well suited as they mimic the spiking behaviour
of cortical neurons. That biological plausibility allows for better evaluation of the compu-
tational model (Stewart, 2012); not only the behaviour that emerges can be compared to
scientific measurements, but it can also be investigated whether the underlying cause of
this behaviour is consistent with what is seen from the brain.

Chavlis and Poirazi (2017) provided a review of computational models of pattern sep-
aration in the hippocampus. The review explores the effect of connectivity features, adult
neurogenesis in the DG, and morphological and intrinsic properties of the DG cells on pat-
tern separation. A series of models coming from the “Scharfman lab” consisting of not
only the principal granule cells of the DG, but also excitatory mossy cells (MCs) and in-
hibitory Hilar perforant path-associated (HIPP) cells that serve to regulate the activity in
the DG, as well as a type of interneuron, provided insight into their contribution to pat-
tern separation (Figure 1.3; Scharfman & Myers, 2016). Analysis of this model highlighted
the role of the connectivity between different neurons of the DG for pattern separation.
The review additionally highlights the role of a feedback connection from CA3 to the DG
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Figure 1.3: A model of the DG-CA3 circuit. The entorhinal cortex (EC) excites the dentate
gyrus (DG) and CA3 through the perforant path. Both the DG and CA3 contain inhibitory
interneurons (IN). The excitatory granule cells (GC) are the primary neuron type of the
DG, and the main output of the DG to region CA3. The excitatory mossy cells (MC) and
inhibitory Hilar perforant path-associated (HIPP) cells serve to regulate the activity in the
DG. Recurrent collaterals of the CA3 pyramidal (PYR) form the autoassociative network
that plays an important role for memory consolidation and retrieval. Figure adapted from
Scharfman and Myers (2016).

for pattern separation and concludes the section on network connectivity with the notion
that in all the reviewed works, deficits in patterns separation correlated with changes in
network sparsity. This review however does not touch upon the role of the sparse connec-
tivity of the mossy fibers, which was proposed as one of the aspects through which the DG
promotes separated representations in region CA3.

Guzman et al. (2021) used a biologically realistic, full-scale EC–DG–CA3 circuit model
to investigate the role of connectivity and synaptic properties on the efficacy of pattern
separation in those regions. Contrary to the proposed role of the sparse connectivity of
mossy fibers (as discussed so far), they found for their model that a decrease in the number
of mossy fiber axon terminals actually decreases pattern separation, instead of contributing
to it. Rather, they pose that presynaptic plasticity properties of the DG-CA3 synapses
might regulate pattern separation.

1.3 Alzheimer’s disease

One illness that affects hippocampal connectivity and synaptic properties is Alzheimer’s
disease (Setti, Hunsberger, & Reed, 2017). Alzheimer’s disease affects more than 36 million
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people worldwide, accounting for 60-70% of all dementia cases (World Health Organiza-
tion, 2021). It is a progressive neurodegenerative disease. As the illness progresses, more
and more brain tissue is affected and/or lost (Pihlajamäki & Soininen, 2012). Impairment
of the formation of episodic memories is one of the early symptoms of AD. Neuropatho-
logically, AD is characterized by so called plaques and tangles, as well as brain atrophy (i.e.
loss of neurons). Plaques, or more specifically β-amyloid (Aβ) plaques, are extracellular
clusters of β-amyloid peptides2. Intracellular neurofibrillary tangles (NFTs) consist of ag-
gregates made up of hyperphosphorylated tau protein. Two major alterations to the HF as
part of the progression of AD are a loss of the number of synapses between the EC and the
DG and an increase in the area of the synaptic apposition surface of the remaining synapses,
resulting in a stronger synaptic connection.

An often employed method for the research of Alzheimer’s disease are transgenic mice
(Kitazawa, Medeiros, & M LaFerla, 2012). Transgenic mice are genetically engineered
to overexpress a certain mutated gene, most commonly APP, presenilin-1 (PS1) and/or
presenilin-2 when used for AD research (PS2; Kitazawa et al., 2012). Mutations of these
genes are associated with abnormal metabolism of the compounds that underlie the neu-
ropathological hallmarks of AD.

Alonso-Nanclares, Merino-Serrais, Gonzalez, and DeFelipe (2013) showed that APP/PS1
transgenic mice exhibiting plaques have 37% less synapses per volume in the DG than non-
transgenic mice, drawing a similar conclusion as Smith, Adams, Gallagher, Morrison, and
Rapp (2000), although the difference is larger. Additionally, the authors show that the size
of the DG synapses, or more specifically the synaptic apposition surface (SAS) area, was on
average 41% larger for the transgenic mice.

The SAS refers to two separate surfaces, with similar areas, that are part of the synaptic
junction (Morales, Rodríguez, Rodríguez, DeFelipe, & Merchán-Pérez, 2013; Holtmaat &
Svoboda, 2009). The area of the presynaptic active zone (AZ) of the axon terminal posi-
tively correlates with the probability of neurotransmitter release. The postsynaptic density
(PSD) is the area on which the postsynaptic receptors are situated, and its area is propor-
tional to the number of receptors.

Interestingly, these results come from measurements of plaque-free zones of the DG.
As only 4% of DG volume is affected by these plaques, Alonso-Nanclares et al. (2013) pose
that the cognitive deficits observed in these mice might be most heavily influenced by the
changes to the plaque-free regions.

1.4 Thesis Layout

This thesis aims to investigate two topics concerning pattern separation in the hippocam-
pus. The goals are to explore i) how sparse connectivity affects pattern separation in a
simple model of the hippocampus and ii) how we can model the debilitating effects of
Alzheimer’s disease on pattern separation. For this sake, a model of part of the hippocam-
pus will be created, covering the EC-DG-CA3 circuit, as these regions are deemed relevant
for pattern separation.

2Peptides are short chains of amino acids and form the building blocks for larger proteins.
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The first component of this thesis will be an exploration of the sparse connectivity of
the mossy fibers (i.e. the axons of the principal dentate gyrus cells) to region CA3 of the
hippocampus and its contribution to pattern separation. As mentioned in Section 1.1, this
might be one of the attributes of the DG that contributes to pattern separated representa-
tion in CA3, where memory consolidation and retrieval occurs. More specifically, Senzai
(2019) states that “The sparseness of the mossy fiber input to CA3 pyramidal cells are
assumed to have a randomizing effect on the representations in CA3, making them as dif-
ferent as possible from each other (Treves and Rolls, 1992; Rolls and Treves, 1998; Rolls,
2013)” (p. 46). The network of Guzman et al. (2021) indicated the opposite: an increase
in sparseness, by itself, decreases pattern separation. To investigate the effect of connec-
tivity sparseness on pattern separation, different rates of, and methods for, creating sparse
connections will be explored.

The second component will be to investigate how the loss of synapses between the
entorhinal cortex (EC) and the dentate gyrus (DG), as well as the strengthening of the
remaining synapses, affects the activity and pattern separation in the same partial model
of the hippocampus. Because AD patients exhibit issues with the formation of long term
memories, the expected outcome would be an increase in pattern overlap in region CA3
following the “decay” of the connection between the EC and the DG. Examining the effects
separately, as well as combined, allows for the identification of the synaptic strengthening
as either a compensatory mechanism against the debilitating consequences of synaptic loss
or as a separate synaptic malfunction (Senzai, 2019).

This work continues firstly with a chapter on methodology that covers the modelling
framework that was used, a description of stimulus creation, experimental methodology,
the partial model of the hippocampus, and analysis methodology, among which a method
for quantifying pattern overlap. Then, results relevant to both research topics are pre-
sented. The last chapter contains a discussion of these results as well as suggestions for
future research.
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Chapter 2

Methods

This chapter will first cover the relevant aspects of the neural engineering framework
(NEF; Stewart, 2012), the framework used for creating the neural network model. Those
are the encoding of a vector signal into neural activity, the decoding of neural activity into a
vector signal, and the calculation of weight matrices used to connect neuron populations.
Second, a description of the stimuli and experiment are presented. Then, a description of
the model and arguments for relevant design choices are provided as well as description
of the implementation of the changes that occur in the DG due to AD. Lastly, a method for
measuring overlap in neural activity patterns, called the Jaccard score is discussed.

All code relevant to this project can be found on:
https://github.com/ChielWijs/Hippocampus-model-of-sparse-connectivity-and-
Alzheimers-disease.

2.1 The Neural Engineering Framework

The smallest computational unit of interest in the NEF is a neuron. Groups of neurons,
or neural populations, can represent any signal, which is a vector of arbitrary dimension,
through their spiking behaviour. When an individual neuron spikes is determined by its
tuning curve. Taking the example of 1-dimensional (1D) neurons, the tuning curves (can)
look like the ones displayed in Figure 2.1 (top right). This figure shows that neurons pro-
duce varying firing rates depending on the incoming signal. There are multiple attributes
used to determine this response. The first attribute is an encoding vector ei, which indi-
cates the preferred direction of a neuron. A neuron responds most strongly to a signal that
has the same direction as its encoding vector. Secondly, an intercept value that indicates at
which signal value the neuron starts firing. And third, a maximum firing rate.

As a signal is presented to a population, these properties are used to determine each
neuron’s input current. How the resulting potential is converted to spiking behaviour is
dependent on the type of neuron model that is used. The standard neuron model for the
NEF is the leaky integrate-and-fire (LIF) neuron. With this model a spike is generated
when the postsynaptic potential reaches a certain threshold, after which the potential is
set back to a baseline value that would represent a neuron’s resting potential. In addi-
tion, the model also continually "leaks" charge, such that the model returns to that resting
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potential when not presented with an input current. The bottom row of figure 2.1 shows
the subthreshold voltages and spiking behaviour of four neurons in response to a linearly
increasing signal (depicted in the upper left corner of the same figure). The spike train
is in turn passed through a low-pass filter to finally determine a continuous neural activ-
ity value ai. This filter acts as a model for how the current across a biological synapse is
translated to the current induced in a postsynaptic neuron.

Figure 2.1: NEF: encoding spikes from a time-variate signal. (Top left) A 1-dimensional
time variate signal that linearly increases with time. (Top right) Neurons’ tuning curves
determine to which signal values the neurons respond. (Bottom left) Dependent on a
neuron’s intrinsic properties, the incoming signal is converted to a subthreshold voltage.
How these voltages are converted to a spiking behaviour (bottom right) depends on the
neuron model that is used.

Naturally, to analyze a network, one would want to be able to determine what signal
a neuron population represents, that is, decoding a signal from the filtered spiking activity.
That is, to calculate an estimate x̂ of the original vector x based on the activity of a neural
population. This is possible using a linear decoder such that

x̂ = ∑
i

aidi

As the difference between x̂ and x should be as small as possible, finding di comes down
to a least-squares optimization problem, which can be solved for algebraically. It should
be noted that decoders can be solved (or approximated) for any arbitrary function (e.g. a
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square root function). The standard connection in the NEF solves for the function f(x) = x,
which means that the information is just passed along the connection.

With this information, calculating the weight matrix between neural populations is
straightforward. Suppose that information is to be passed from a neural population A with
decoding vectors di to a population B with encoding vectors ej. Instead of first decoding
the neural activity from A to a signal estimate only to encode that signal to neural activity
in B, a dot product multiplication can be used to calculate a set of weights

wij = di · ej

that suits the same purpose, directly connecting A to B.
For computer-based simulation, the Nengo Python package provides a way to con-

struct large-scale (spiking) neural networks based on the theoretical methods of the NEF
(Bekolay et al., 2014). It is an object-oriented implementation. The objects important for
this study are the ensemble, node, probe, connection, and network. A Nengo ensemble is a
group of neurons that collectively represent a vector. There are a variety of neuron models
to choose from, all with different non-linear functions used to convert the incoming signal
to an outgoing one. A Nengo node is an object that can be used to provide non-neural
input to other objects or as process output. A Nengo probe can be used to retrieve data
from the simulation. A Nengo connection can be used to connect various Nengo objects.
Depending on the object types that are connected, a connection can work with decoders
and encoders, or with connection weights. A Nengo network is an object that can contain
all of the other objects just listed, including other networks. Once specified, a network is
passed to a simulator. This object first builds the network. During this process all the set-
tings and parameters are used to create the values for the objects that are contained within
the network, the neuron tuning curves and connection weights among other things. Once
the model is build, it can be used for simulation of experiments.

2.2 Semantic Pointer Architecture

Up until now, the concept of transfer of information has been described as the transfer
of vectors. However, people do not see vectors floating around, nor do they hear a vec-
tor when someone talks to them. As such, a method is needed to assign vector values to
certain concepts such as words that allows for the systematic representation and manipu-
lation of these concepts. For this purpose, Eliasmith (2013) created a framework called the
Semantic Pointer Architecture (SPA), which uses the computational theories of the NEF to
model higher-level cognitive functioning. The SPA is based on the semantic pointer hy-
pothesis. The hypothesis states that higher-level cognitive function is made possible by
semantic pointers. Such a semantic pointer (SP) is a neural representation that contains
both semantic content as well as (syntactic) information that support the processing of this
content.

The Nengo implementation of the SPA is used for creating the vectors that represent
concepts. Before an experiment is simulated, a collection of vectors (u⃗i) is created such that
each is of unit length (||u⃗i|| = 1) and, to a certain threshold, dissimilar to one another.
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The SPA defines three vector operations that allow for the manipulation of information:
superposition, binding and unbinding1. Superposition is the act of creating a new vector by
the addition of two existing ones such that w⃗ = u⃗ + v⃗. For this research, the vector w⃗ is
additionally scaled to unit-length, such that

w⃗ =
u⃗ + v⃗

||u⃗ + v⃗||

The resulting SP vector is equally similar to, and has the same magnitude as, either of
the SP vectors from which it was created (Figure 2.2, top). As a result there will be some
overlap between the neural activity representing the new SP and the neural activity repre-
senting either component SP, but it is not the sum of the two activity patterns (Figure 2.2,
bottom). This is the case as presenting w⃗ to a model is not the same as presenting u⃗ and v⃗
simultaneously.

Figure 2.2: SPA: vector superposition. (Top) The addition of two semantic pointer (SP)
vectors results in a vector that is equally similar to both. The newly created vector is
scaled to unit-length such that all SP vectors are of the same magnitude. (Bottom) Be-
cause the new SP1,2 vector is similar to either of its components SP1 and SP2, there will be
some overlap between the neural activity representing SP1,2 and the activity patterns rep-
resenting SP1 and SP2. The oranges circles indicate active neurons, the grey circle indicate
non-active neurons.

1The latter two are not relevant for the current research, and will not be further discussed. Please see
Eliasmith (2013), Section Symbol Processing for a discussion of these operations.
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2.3 Experiment

The model of the ED-DG-CA3 hippocampal circuit performed an experiment to test the
effects of connectivity sparseness and AD-related changes to the model on pattern sepa-
ration. The stimuli presented to the model were those used for an associative recognition
task (Borst, Schneider, Walsh, & Anderson, 2013; Borst, Ghuman, & Anderson, 2016). Sub-
jects that perform an associative recognition task assess if a combination of two presented
items, usually words, is a novelty to them. For that purpose, during a training stage, they
are presented with a number of word pairs. During a subsequent testing phase, they are
presented with the original pairs, re-pairings of the original pairs, as well as novel pairs.

A behavioural phenomenon called the fan-effect is observed for the performance (i.e.
response time and error rate) on this type of associative memory task (Borst et al., 2013,
2016). Subjects perform better (i.e. shorter response time and lower error rate) for pairs of
which each word was used for only that unique pair during the training phase, so-called
fan-1 pairs. Performance is worse for pairs for which each word was used for two unique
pairs during the training phase, fan-2 pairs. Because of this fan-effect, I hypothesize that
there should be more overlap between the representations (i.e. weaker pattern separation)
of fan-2 than fan-1 pairs (but see Anderson (2007) for a different explanation).

The stimuli presented to the model were a set of sixteen word pair stimuli, of which
eight fan-1 pairs and eight fan-2 pairs. A 16-dimensional SP was first created for each of
the individual words. The SP vector for each word pair was then created by means of
superposition and scaling as previously explained in Section 2.2. As the research is not
concerned with the effects of learning on pattern separation, there were no separate train-
ing and testing phase. Each stimulus was presented to the model once for a period of one
second. The simulation was performed using ten models, all with a different random seed
to ensure that none are identical (e.g. different encoding vectors for the neuron popula-
tions and different semantic pointers for the word pairs).

2.4 Model

The architecture of the model is depicted in Figure 2.3. The model consist of four parts: an
input node that is used to present the stimuli to the EC, and three ensembles that represent
the EC, the DG, and region CA3 of the hippocampus proper.

The number of neurons in the EC, DG, and CA3 are 500, 5000, and 1000, respectively,
all of the leaky integrate-and-fire neuron type. West and Gundersen (1990) estimated that
the human DG and CA3-2 2 are comprised of around 17 ∗ 106 and 2.7 ∗ 106 neurons, re-
spectively (DG:CA3 ratio of 10:1.6). Estimates were done for 5 subjects with a mean age of
66.8 (SD=15.9) that had shown no neurological disorders prior to their death. Šimić, Kos-
tović, Winblad, and Bogdanović (1997) reported similar numbers with the DG containing
19 ∗ 106 neurons and CA3-2 containing 2.6 ∗ 106 neurons (DG:CA3 ratio of 10:1.4), for both
young (mean=29.8, SD=13.5; n=8) and older (mean=80.2, SD=7.9; n=10) subjects. The DG-
to-CA3 neuron ratio of 10:2 used for the model equals that used by Norman and O’Reilly
(2003) for their model of the hippocampus, and is close to that of the human subjects. The

2Regions CA3 and CA2 are often treated as a single region due to their similarity
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Figure 2.3: Model architecture. The model consist of one input node and three ensem-
bles (i.e. groups of neurons) representing the entorhinal cortex (EC), the dentate gyrus
(DG) and region CA3 of the hippocampus. The connection from the input node to the EC
converts the signal representing a stimulus to neural activity. The EC forwards this rep-
resentation through the DG to region CA3. The connection from the DG to region CA3 is
the connection of interest with regard to the modelling of sparse connectivity and its effect
on pattern separation. The earlier connection from the EC to the DG is the connection of
interest with regard to the effects of changes in the plague-free zones of the brain as it is
affected by Alzheimer’s Disease.

ensemble size for the EC is similarly based on the model from Norman and O’Reilly. The
choice for neuron counts from subject without a background of neurological disorders was
preferred to isolate the effects of the specific AD related changes of synaptic loss and in-
creased synaptic strength in the plague free zones, as loss of neurons is a major hallmark
of later stages of AD.

One notable aspect of the neurons in the DG and CA3 ensembles is that all their inter-
cepts, the signal value at which a neuron becomes active, were set to a zero value. With
the SPA, during an ISI, the vector representing the word “0” (read: zero) is usually pre-
sented. This results in an n-dimensional vector with the value zero at each position being
presented/shown to the model. Setting the intercepts of these neurons to zero thus causes
these ensembles to be silent (i.e. no spiking activity), unless a non-zero n-dimensional vec-
tor is presented. The reason that this point is important is that we see pattern separation
increase in the hippocampus during learning (Bakker et al., 2008; Yassa & Stark, 2011). If
the default intercepts would be used, this learning would also occur when the ISI is pre-
sented, which is unwanted. Even though learning is not a part of this research, taking this
into account helps generalize the findings to models that do incorporate learning. Borst,
Aubin, and Stewart (2021) similarly made use of this intercept distribution.

All objects were connected in the order of input node to EC to DG to CA3 with connec-
tions implementing the default identity function, as discussed in Section 2.1.

2.5 Modelling connectivity sparseness and the effects of AD

Connectivity sparseness was implemented by dropping (i.e. converting to zero) a percent-
age of values of the weight matrix that connects two groups of neurons. Various methods
were used to determine which weights were to be dropped: The strongest connections,
those with the highest absolute values, could be dropped; The weakest connections, those
with the lowest absolute value, could be dropped; Or connections could be dropped at
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random. To investigate the effect of connectivity sparseness of the mossy fibers on pattern
separation in CA3, 10 to 90% of connections between the DG and CA3 were dropped in
10% increments, using all three methods.

To compensate for the loss in overall activity, which by itself most probably results
in stronger pattern separation in a postsynaptic ensemble (see Appendix A), each weight
was linearly scaled such that the postsynaptic activity from a sparse network was withing
a 10% range of the activity of that same ensemble when fully connected. This process will
henceforth be referred to as activity matching. Linearly scaling of the weights can be easily
accomplished within the NEF by linearly transforming the vector communicated between
the two populations, for which a parameter is available for a Nengo connection object. The
function of that connection will stay the same, the identity function in the context of this
research, but a linear scaling of the mapping is performed after the function is applied.
Given that the default transformation value is 1, a transformation value of 1.5 increases
each weight to 150% of its initial value, as does a transformation value of 0.8 decrease each
weight to 80% of its initial value. As the intercepts for the neurons in the DG and CA3 are
all zero, a higher transform value results in more spiking activity (Figure A.1).

The effects of synaptic loss over the EC-DG connections as seen from the AD-transgenic
mice was modelled following the same methodology, without the additional activity match-
ing. The effect was tested using both the random and lowest weight dropping methods.
This according to my hypothesis that AD would either affect synaptic connections at ran-
dom, or that it would affect the smallest, and therefore the weakest, synaptic connections.
Synaptic loss of the EC-DG synapses was modelled as progressing from no loss to a loss of
37% (Alonso-Nanclares et al., 2013).

The effect of the increase of the synaptic apposition surface area of the EC-DG synapses
was modelled by upscaling the weights of a connection, similarly to the activity matching
method used on the DG-CA3 connection. SAS area was modelled as progressing from no
increase to an increase of of 41% (Alonso-Nanclares et al., 2013).

Lastly, the effect of both progressing in unison was simulated.

2.6 Quantifying Pattern Separation

To quantify the effect of sparse connectivity and the consequences of AD on pattern separa-
tion in the DG and CA3, a metric called the Jaccard score was used, following the method-
ology of Poli, Wheeler, DeMarse, and Brewer (2018). The Jaccard score3 is a measure of
similarity between two sets and is calculated by dividing the union of two sets by the
intersection of the two sets such that

J(A, B) =
|A ∩ B|
|A ∪ B| =

|A ∩ B|
|A|+ |B| − |A ∩ B|

where A and B are sets of neurons that are active during presentation of stimulus a and
b, respectively. A Jaccard score of one would indicate that two sets would perfectly over-
lap. A Jaccard score of zero would indicate that there is no overlap between the two sets.

3Also referred to as the Jaccard index or Jaccard (similarity) coefficient
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Stronger pattern separation as described earlier would thus be seen as a decrease in the
Jaccard score.

As per Poli et al. (2018), a neuron was deemed active when it fired a minimum num-
ber of times within a certain time frame. As there is no standard for a spiking frequency
threshold (SFT) that one would use to declare that a neuron is part of an activity pattern,
Jaccard scores were determined for various SFTs. The number of spikes that each neu-
ron produced were summed for non-overlapping periods of 100 ms, and compared to a
threshold of 10, 20, and 30 spikes (corresponding to a SFT of 100 HZ, 200 Hz, and 300 Hz,
respectively). The Jaccard score was calculated for each time frame and averaged to reach
a final quantification of pattern overlap.
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Chapter 3

Results

In this chapter, the results from the experiments are presented. First, a baseline analysis,
not pertaining to the effects of changes made to the network, concerning the fan effect
and spiking activity throughout the network are presented. Second, the results from the
activity-matched sparse connectivity implementation are presented. Lastly, this Section
contains the results from the experiment concerning the AD related changes to the hip-
pocampal network.

3.1 Baseline analysis

Analysis of the baseline model1 model shows that the DG and CA3 exhibit a larger overlap
between fan-2 pairs than fan-1 pairs (Figure 3.1, left). The difference in overlap for the
different stimuli seems a lot smaller for the EC than for the other two ROIs. Overlap is
higher in the EC for all stimuli when compared to the DG and EC, which exhibit similar
values in pattern overlap overall.

Similarly, for all SFTs, the EC exhibits a larger portion of active neurons when compared
to both the DG and CA3 (Figure 3.1, right). The DG and EC, as was the case with the
pattern overlap values, exhibit very similar values for the portion of neurons that exceed
the various SFTs. While the different stimuli induced different overlap values, this effect
of stimulus fan seems not present for the portion of active neurons. Notably, for the EC,
DG, and CA, only a small portion of neurons (<5%) meet the SFT of 300 Hz.

3.2 The effect of connectivity sparseness on pattern separation

Figure 3.2 (top) shows the effect of connectivity sparseness for the DG-CA3 connection on
pattern overlap in region CA3, with the implementation of activity matching. Using the
method of dropping the lowest weights, pattern overlap, across SFTs, increases after con-
nectivity decreases to 40-50%. Using the method of dropping the highest weights, overlap
is generally increasing for a SFT of 100 Hz. For the higher SFTs, the overlap value fluc-
tuates as the connection becomes sparser: it initially decreases, then increases, and then

1i.e. all ensembles are fully connected (no sparsity), and the connection weights are not scaled.
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Figure 3.1: Pattern overlap and neural activity in the baseline model. (Left) The effect
of fan on pattern overlap is apparent for the DG and CA3, and to a lesser extend for the
EC. Pattern overlap, in general, is higher in the EC than the DG and CA3, which have a
different neural intercept distribution. (Right) In the EC, About 40% of neurons have a
spiking frequency (SF) ≥ 100 Hz during stimulus presentation, and about half of those
exceed a SF of ≥ 200. In both the DG and CA3, about 30% of neurons exhibit a SF of
≥ 100 Hz, about a third of those have a SF of ≥ 200 Hz. For any of the ROI, only a small
portion of neurons (<5%) have a FR ≥ 300 Hz. The fan-effect is not apparent for the neural
firing rates. Error bars indicate one standard error of the mean.

decreases again, the shape of it is reminiscent of a negated sine wave. The overlap value
for the sparsest connection is slightly higher than the value at full connectivity for the
200 Hz SFT and slightly lower for the 300 Hz SFT. Dropping weights at random, in com-
bination with the activity matching process, seems to keep the overlap values, for all SFTs,
rather consistent.

Figure 3.2 (bottom) show how the fan effect is affected by the increased connectivity
sparseness. For the method of dropping the lowest weights, the effect on relative overlap
difference for fan-1 and fan-2 stimuli exhibits a pattern opposite to that seen for the pat-
tern overlap values itself. As the connectivity decreases to 40-50% the relative difference
between stimuli decreases for both SFTs, but especially for the neurons with a higher firing
rate. When dropping the highest weights, the relative difference perhaps slightly decreases
for the low SFT, but even then the effect seems minimal. For the higher SFT an interesting
pattern emerges. It exhibits a peek from 100% to 60% connectivity, after which it remains
fairly stable. When dropping weights at random, the relative difference in pattern overlap
between the fan-1 and fan-2 pairs seems consistent across connectivity sparseness, as was
the case with the overlap values.

3.3 The effect of AD related changes in the hippocampus

The figures presented here are those where synaptic loss was modelled as affecting the
weakest connections in the hippocampus, as this was deemed the most successful method
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Figure 3.2: The effect of activity-matched sparse connectivity at the DG-CA3 connection
on pattern overlap in CA3. (Top) Dependent on the method used for dropping weights,
a different relation between connectivity sparseness and pattern overlap in CA3 emerges.
Most notable is that for none of the methods there seems to be a relation where pattern
overlap generally decreases as sparseness increases. Rather, the opposite seems to be true
when dropping the weakest connections (left), for any spiking frequency threshold (SFT).
Similarly, an upward trend is seen for pattern overlap for a SFT of 100 Hz when dropping
the strongest connections (middle). Dropping weights at random seems to have little effect
on pattern overlap (right). (Bottom) The relative difference in pattern overlap between
stimuli of different fan seems to decrease as the weakest connections are removed (left).
When the strongest connections are removed (middle), the relative difference in overlap
for a SFT of 200 Hz first peaks and then stabilizes. Error bars indicate one standard error
of the mean.

of modelling the effect of AD on pattern separation in CA3. This was deemed the most
successful method as it was the one that resulted in an increase in pattern overlap in CA3.
As discussed in Sections 1.1 and 1.4, increased pattern overlap could be a viable reason for
worse performance on memory tasks, possibly resulting in collusion between memories or
the overwriting of existing memories during memory formation. With this idea, increased
pattern overlap could provide an explanation for the long-term memory deficits exhibited
by AD patients.
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To keep the current Section readable, figures regarding the model of AD where synaptic
loss occurred at random connections, as well as the intermediate effect on the DG for both
methods, can be found in Appendix B. A description of these results are presented in the
current section however.

Figure 3.3 (top) shows the effect of the progression of the AD related neurological
changes to the synapses of the EC-DG connection on pattern overlap in CA3, where mem-
ory consolidation and retrieval occurs. Synaptic loss of the weakest EC-DG synapses
(without the activity-matching compensation) seems to have no effect on pattern over-
lap in CA3. The increase of the SAS area of the EC-DG synapses, which results in a
stronger connection, seems to correlate with an increase in pattern overlap, rather con-
sistently across participant models. The in unison progression of both synaptic loss and
the increase of the SAS area of the EC-DG synapses displays a similar, nearly identical,
effect as the SAS area increase by itself.

Figure 3.3: The effect of AD related changes to the EC-DG connection on pattern overlap
in CA3 in a fully connected network. (Top) Synaptic loss of the weakest EC-DG synapses
seems to have no effect on pattern separation in CA3 (left). An increase of the synaptic
apposition surface (SAS) area of the EC-DG synapses seems to increase pattern overlap in
CA3 (middle). The progression of both in unison shows an increasing trend for the pattern
overlap in CA3. Bottom None of the AD related changes, nor the combination of both,
seems to have an effect on the relative difference in pattern overlap between fan-1 and fan-
2 stimuli in CA3. Error bars indicate one standard error of the mean.

The progression of either of the afflictions separately or in unison does not seem to
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have an effect on the relative difference in pattern overlap between stimuli of different fan
(Figure 3.3, bottom). While there might be a slight descending trend visible for the relative
difference for the progression of the increase of the SAS area of the EC-DG synapses and
the progression of AD as a whole, all data points are within a range of one standard error
of the mean from one another.

The effect of random synaptic loss of the EC-DG synapses on pattern overlap in CA3
(Figure B.2) shows a different trend than the effect of the loss of the weakest synapses
as just described. As synaptic loss of the EC-DG synapses increases, pattern overlap de-
creases. While the effect of the increase of the SAS area of the EC-DG synapses remains the
same, the combination of both also results in a slight decrease in pattern overlap in region
CA3 as both afflictions progress.

Interestingly, the effect of at random synaptic loss of the EC-DG synapses on pattern
separation in the DG show an opposite trend to that seen in CA3 (Figure B.4): The synaptic
loss results in an increase in pattern overlap in the DG. The trends are the same for the DG
and CA3 when synaptic loss was modelled as affecting the weakest synapses between the
EC and the DG (Figures 3.3 and B.3).

Given the non-existent to negligible effect of the synaptic loss of the weakest connec-
tion of the EC-DG synapses on pattern overlap in CA3, an additional simulation was per-
formed. Instead of starting the connection at 100% connectivity, the connection started at
10% connectivity. As such, this simulation affected connections with much higher weights,
and thus stronger influence, than the first simulation of synaptic loss. Inspecting Fig-
ure A.2 it seems that the 10% strongest connection have a stronger influence on pattern
separation than the lowest 90%. Figure 3.4 Shows the results of this additional simulation
of the effect of AD related changes to the EC-DG synapses.

Indeed, synaptic loss occurring at already sparse EC-DG synapses induces an effect
on pattern overlap in CA3. An increase in sparseness results in weaker pattern overlap,
similar to the result from the experiment with fully connected EC-DG synapses which were
dropped at random (Figure B.2). The initial sparseness of the EC-DG synapses does not
seem to change how the increase in SAS area affects pattern overlap.
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Figure 3.4: The effect of AD related changes to the EC-DG connection on pattern overlap
in CA3 in an already sparse network. (Top) Synaptic loss of the weakest EC-DG synapses
seems to decrease pattern overlap in CA3 (left). An increase of the synaptic apposition
surface (SAS) area of the EC-DG synapses seems to increase pattern overlap in CA3 (mid-
dle). The progression of both in unison, when initial connectivity of the EC-DG synapses
was set at 10%, seem to have a zero net effect on pattern overlap in CA3 (right). (Bottom)
None of the AD related changes, nor the combination of both, seems to have an effect on
the relative difference in pattern overlap between fan-1 and fan-2 stimuli in CA3. Error
bars indicate one standard error of the mean.
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Chapter 4

Discussion

For this study, two topics with regard to structural connectivity of the hippocampus and
its effect on overlap between neural activity patterns have been investigated. Both these
topics were researched using a spiking neuron model of the network consisting of popu-
lations representing the entorhinal cortex (EC), the dentate gyrus (DG), and region CA3 of
the hippocampus proper. The first topic that was researched was how sparse connectivity
of the mossy fibers that connect the DG and CA3 affects pattern overlap in region CA3.
The sparse but strong connectivity of these synapses seen at the rodent and human hip-
pocampus is thought to be one of the aspects through which the DG contributes to pattern
separation in region CA3, where the consolidation during memory storage and pattern
completion during memory retrieval is thought to occur (Senzai, 2019). The second topic
was to experiment with a way to simulate the effects of Alzheimer’s disease (AD) related
neurological changes to plaque-free zones in the DG on, again, pattern overlap in region
CA3. Alonso-Nanclares et al. (2013) showed that plaque bearing mice exhibited synaptic
loss of the synapses connecting the EC and the DG. In addition, the area of the synaptic ap-
position surface (SAS), the surfaces at both ends of the synaptic cleft, whose areas correlate
with synaptic efficacy, increases. This phenomenon is speculated either to be a compen-
satory mechanism for the loss of transmission due to synaptic loss or to be a synaptic
malfunction by itself (Senzai, 2019).

4.1 The effect of increased network sparsity

Analysis of the effects of weight scaling, without any change to network connectivity, in-
dicated that a decrease in synaptic activity in and of itself can be the cause of a decrease
in pattern overlap (Figure A.1). The weight scaling directly fulfills a scaling of the infor-
mation vector that is passed through a connection. As the intercepts of the CA3 neurons
population were all set to zero, them representing a shorter vector results in less spiking
activity. With the idea to prevent this effect from colluding with the influence of the con-
nectivity sparseness a method referred to as activity matching was applied, where the loss
in post synaptic neural activity due to synaptic loss was compensated through scaling of
residual connection weights.

With this activity matching approach, it seems like increased connectivity sparseness
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does not produce the effect as we might expect it. After all, the general train-of-thought
is that the sparseness of the modeled connection might contribute to pattern separation
(Bakker et al., 2008; Senzai, 2019; Lavenex, 2012). None of the methods of dropping weight
to increase sparseness (i.e. discarding the lowest, discarding the highest weight, or dis-
carding them at random) results in a consistent decrease in pattern overlap, as can be seen
from Figure 3.2 (top).

A possible explanation for the effect observed when dropping the lowest weights comes
from the fact the that strongest connections seem disproportionately influential on pattern
overlap. Dropping the lowest weights without the activity matching process has seem-
ingly no effect on pattern separation (Figure A.2, top). However, it does have an effect on
neural activity, which decreases as the weakest connections are dropped (Figure A.2, bot-
tom). As such, during the experiment, the activity matching procedure results in a scaling
of the connection weights as the connection becomes sparser. This results in the strength-
ening of the remaining, already strongest, connections, increasing pattern overlap.

Not only do the strongest connections seems most influential on pattern overlap, they
also seems disproportionately influential on the amount of neural activity (Figure A.2,
bottom); dropping the 20% strongest connection results in less activity than dropping the
80% weakest. When dropping the highest weights, the weight scaling that is necessary to
accomplish activity matching must thus be quite severe. Even though the remaining weak-
est connections have less influence on pattern overlap, their extreme excitation apparently
still results in an increase in pattern overlap. Even though the excitation is assumed to
be rather extreme due to the activity matching process, it seems that the effect on overlap
between neurons at higher spiking frequency thresholds (200 − 300) does not necessarily
follow the presented reasoning. It might be that this effect is less constant/predictable due
the smaller portion of neurons that meet these spiking frequency thresholds (Figure 3.1,
right and Figure D.1), but that is merely speculative. The effect of dropping the highest
weights displays a somewhat similar wave pattern for pattern overlap and the portion of
active neurons for a spiking frequency ≥ 300 Hz.

When inspecting Figures A.2 and A.1, it seems that dropping weights at random and
down scaling the connection weights (from one down to zero) show a similar effect on
both pattern overlap and neural activity. Given that dropping weights at random, with
activity matching, results in fairly constant overlap values, it thus seems that dropping
these weights, without activity matching, has a similar effect on the network as the weight
scaling.

The effect of the activity matched sparseness does compare to that found by Guzman
et al. (2021). The analysis of their biologically realistic model of the EC, DG, CA3 network
also indicated that the sparsity of the mossy fibers decreased, rather than increased pattern
separation. Interestingly, the authors applied the same concept of activity matching to
preserve the activity level of their network. The varying sparsity was modelled as an
increase/decrease of the number of synaptic boutons (i.e. axon terminals) of each dentate
gyrus granule cell. They do not seem to specify to which target neurons, new or existing,
these additional boutons connect.
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4.2 The modeller’s toolbox: How to regulate pattern separation

It should be noted that the way through which sparseness is created within the model does
not (necessarily) reflect the natural process of brain development. While it might be helpful
to try and isolate the effect of connectivity sparseness within the modelling approach, I
see no reason why the brain would adhere to this principal of activity matching during
development, nor does it make sense that the brain would start with a fully connected
network. Considering this, it thus seems that the findings could be used to support the
idea that increased connectivity sparseness aids pattern separation.

Figure A.2 shows that dropping either the strongest connections, or connections at ran-
dom, without activity matching, results in stronger pattern separation in region CA3. An-
other method for reducing pattern overlap would be to apply a linear mapping to the
function over the connection between two stimuli, not for activity matching, but to pur-
posefully reduce the amount of neural activity. As said, there seems to be no argument to
preserve neural activity at a certain level from a biological point-of-view when initiating
the model. It should be clear that both these methods work with, and perhaps due to, the
all zero intercepts of the post population. While further work should indicate how sparse-
ness affects pattern overlap with the default random distribution of intercepts, based on
the underlying mathematics, it seems not the case that the linear mapping would produce
the same consistent effect on neural activity with the default random distribution of inter-
cepts.

Also, further application for modelling with Nengo does not require a certain level of
neural activity necessarily1. This research has so far focused on the process of creating
sparse representations of memories in CA3 from the information that reaches the hip-
pocampal formation from the neocortex. This however is only one part of hippocampal
functionality. In order to “relive” one’s memory, there has to be a way to have a memory
that is stored in CA3 induce activity in the neocortex that would be similar to the informa-
tion that was originally encoded. Some model of hippocampal functioning successfully
implement this process through error-driven learning mechanism that connects CA3 to
the next-in-line region CA1 (Ketz, Morkonda, & O’Reilly, 2013). In a nutshell, the error-
driven learning signal is created through the activity in CA1, and a signal coming from
the EC, whose activity was also used to drive activity in CA3 for initial memory encoding.
Borst et al. (2021) used an error-driven learning rule in a similar fashion for their model of
associative recognition. In Nengo, the learning rule that they used, called the prescribed
error-sensitivity (PES; MacNeil & Eliasmith, 2011) rule, is used to adapt the connections
weights. For the calculation of this weight change, a leaning rate constant and the variable
presynaptic activity ai (see Section 2.1 for a description of how this value is calculated)
both act as a linear scalar of the error signal. As such, a decrease in overall spiking activity,
with subsequently lower ai values, can be compensated for by selecting a larger learning
rate value if necessary.

Intercept selection has been presented a couple of times as a one of the reasons as to
why sparseness and weight scaling have their particular influence on pattern overlap. The
analysis of the baseline model shows that intercept selection by its own right could be con-

1Within reason that is, it might be necessary to at least have enough activity to represent a vector consis-
tently to some degree for example.
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sidered a method for regulating pattern overlap. Using the identity function to connect
all the neural populations, it seems that population size is not influential on pattern over-
lap, as the DG and CA3 exhibit very similar pattern overlap values (Figure 3.1, left) even
though the DG ensemble contains five times as much neuron’s. What is apparent is the
large difference in overlap values for the EC and both DG and CA3. What differentiates
the EC from the other two regions is that its neural intercepts are distributed according
to the default random distribution. As such, it seems that, due to the assumptions of the
NEF, populations size by itself cannot be used to regulate pattern overlap. It should be
considered that this conclusion is based on the use of the Jaccard score as the measure of
overlap, and that the reported scores are all averages. Within the NEF, larger populations
are capable of more accurately representing a value over time. Future experiments could
indicate how population size might thus still influence the behaviour of a spiking neuron
model of cognition.

The seemingly non-existent effect of stimulus fan on neural activity (Figure 3.1, right)
most probably arises from the fact that the vectors used to represent the word pairs are all
of equal length. As discussed, the amount of activity of the DG and CA3 neurons correlates
with the length of the represented vector. As such, stimulus fan has no effect on the amount
of neural activity in these regions. The relation between vector length and neural activity
for the randomly distributed intercepts of the EC population was not investigated for this
work. However, also for the EC we see that stimulus fan has no effect on the amount of
neural activity.

4.3 Pattern separation through learning

While this research so far has focused on a static model of the hippocampus, behavioural
data shows that pattern separation also occurs as an active process: Repetition aids our
memory performance, for example during associative recognition tasks (Borst et al., 2013,
2016). It is even so that the term pattern separation as used in scientific literature most
commonly refers to this active process.

Borst et al. (2021) presents a new learning rule for the NEF/Nengo that accomplishes
this active pattern separation in such a way that a model of associative recognition (AR)
produces neurological activity, in addition to behaviour, similar to that exhibited by human
subjects. The learning rule relies on reorientation of the neural encoders, in effect changing
the signals for which the neurons are most active. During presentation of a stimulus, post-
synaptic neurons that are active above a certain threshold orient their encoders towards
the incoming signal, while neurons that are active below a certain threshold orient their
encoders away from the incoming signal. This results in a fraction of the neurons becom-
ing more responsive the next time that the stimulus is presented, while the rest becomes
less active. The results is a decrease in pattern overlap given selection of a threshold.

This model of associative recognition shows neural dynamics quite comparable to that
seen from human subjects, both in terms of timing of activity of certain regions of the
brain as well as the amount of activity’s dependence of stimulus fan. On the downside,
the difference in error for fan-1 and fan-2 stimuli does not match the human data as well:
the model exhibits a larger difference in error rate. Here the opportunity presents itself
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to incorporate the findings of the current research with this existing literature. Figure 3.2
(bottom) shows that increasing sparsity by dropping the weakest connection results in a
smaller relative difference in overlap value between fan-1 and fan-2 stimuli. The major
issue is that the learning rule used by Borst et al. (2021) does not allow the use of sparse
connections, as it was developed for use with a connection that makes use of decoders and
encoders, not connection weights.

A solution would be to create a learning rule that allows for adaptation of synaptic
weights, instead of encoders. Consider the commonly used Hebbian theory of long-term
potentiation which postulates that synchronous pre- and postsynaptic activity strength-
ens, while asynchronous activity weakens, the connection between neurons (Hebb, 1949).
Add to this a threshold that postsynapatic activity should exceed for strengthening of the
connection to take place during synchronous pre- and postsynaptic activity. Given a suf-
ficiently high threshold, after a time, only a number of the neurons that were initially re-
sponsible for representing a stimuli will still be active during stimulus presentation. While
considerable efforts have been made to implement such a learning rule, they have not yet
proven successful.

One way by which the AR model of Borst et al. (2021) might still benefit from the cur-
rent findings, without the need for the additional learning rule, is to introduce an interme-
diary ensemble to the memory system. When placed between an input ensemble and the
memory ensemble (which fulfills the purpose of region CA3), sparse connectivity over the
connection from the input to the intermediary ensemble might serve the purpose of reduc-
ing the relative difference in pattern overlap between fan-1 and fan-2 stimuli even before
the signal reaches the memory ensemble. This proposed solution however is speculative,
future implementation should indicate if this makes a feasible solution to the “faulty” error
rates produced by the AR model.

4.4 Simulating Alzheimer’s disease

The simulations indicate that loss of EC-DG synapses in and of itself is not detrimental to
pattern separation in region CA3. The opposite even seems to emerge for this particular
model, assuming that the EC-DG synapses are affected at random, the pattern overlap
values in CA3 decreases. While the increased SAS area increases overlap, the progression
of both in unison still results in an overall decrease. In that case, we would actually expect
increased memory performance. Overall, it seems that any increase in overlap in CA3, for
this model, is solely dependent on the increased SAS area, implement as a linear mapping
of the communicated vector, and therefore a scaling of the connection weights.

While specified as a separate topic of research withing this paper, there is overlap in
the findings of the research into the effect of sparse connectivity and that of Alzheimer’s
disease. As a fact, the main difference between the simulations is which connection was af-
fected, and to what degree. As such, it seems like results from the first part of this research
provides us with an interesting proposition with regards to the “role” of the increased
synaptic apposition surface area. As presented earlier, there is still speculation as to the
cause of the increase in the SAS area. Is it a way by which the brain tries to compensate
for the loss of synapses, or is it a separate, simultaneously occurring malfunction? Let us
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hypothesize that it is compensatory. In that case we should wonder what it exactly tries
to compensate for: maybe the loss on overall neural activity, or perhaps even an observed
decline in cognitive functioning. The results from the activity matched experiment into the
effect of increased sparsity (i.e. synaptic loss) shows us that the former could potentially
induce increased pattern overlap in CA3, with a deficit in memory performance as a con-
sequence. Were it a separate synaptic malfunction, then this model also shows that. The
separate effect produces a consistent increase in pattern overlap. However, as previously
described, this is most likely the results of the intercept selection for this model.

For future works, the effect of synaptic loss and increases SAS area might prove quite
informative. As was described in the previous Section, an NEF learning rule that imple-
ments pattern separation awhile allowing for the sparsification of the connection will have
to be developed. It would be interesting to see how the AD related affliction affect the
brain during stimulus presentation; After all, our brain is a dynamic system, not a static
one as is the model used for this research.

4.5 Limitations and considerations

One rather obvious limitation, but no less major because of it, is the architecture of the
model. It is quite simple, relying only on feed-forward connections and a single neu-
ron type. While the neurons themselves might be a fair model of biological neurons, the
model as a whole can hardly be considered biologically accurate. While Figure 1.2 was
presented as a representative of the connectivity of the hippocampal formation in the In-
troduction, more extensive schematics show the intricacies and extend of the connectivity
of the various components (See Figure C.1). While the weight matrices of the model con-
tain both positive and negative weights, resembling excitatory and inhibitory synapses, it
does not encompass the connectivity of the different neurons types, even within the DG
itself (Figure C.2), and the influence they have on activity in the DG. The simplification of
the observable is of course a necessity when it comes to modelling the brain. Even the very
extensive model of the hippocampus presented by Trujillo (2014) and the models discussed
by (Chavlis & Poirazi, 2017) cannot encompass every single connection that we find in the
HF. In addition, models that produce the expected behaviour, even though the underlying
cause of it might not be true to biology, are not necessarily less useful because of it.

One consideration – for the study of Alzheimer’s disease in general – is that much of
our knowledge is based on research into non-human mammals, especially rodents. For
example, the mouse model of AD investigated by Alonso-Nanclares et al. (2013) is based
only on the presence of plaques, the mice exhibited no neurofibrillary tangles, even though
these are one of the neuropathological hallmarks of AD for human patients. As they them-
selves state, this model allows them to isolate the effects of plaque formation. However,
due to the differences in brain organization between mice and humans (Felipe, 2010; as
cited by Alonso-Nanclares et al., 2013), even if the isolated effects would be clear, extrapo-
lation of their findings to human subject might prove difficult. It should be noted however
that this does not mean that findings as presented by them or the findings from the current
research are not valuable for the overall research into AD. Even if the underlying mecha-
nisms do not work as we expect, finding a consistent way to regulate something such as

28



pattern overlap can help us with modelling the behavioural consequences of AD.
One of the most valuable additions for the research into Alzheimer’s disease would

be data from human participants similar to the type we see from rodents from, for exam-
ple, Alonso-Nanclares et al. (2013). While Alzheimer’s disease is ultimately fatal, being
accounted the seventh-leading cause of death in the United States of America in 2020 and
2021, it is mostly older subjects that die from it (Alzheimer’s Association, 2022). As such,
there is little opportunity for the use of invasive methods for the collection of human data
regarding the development of AD. While neuroscientists can currently select from a more
than impressive arsenal of non-invasive imaging techniques, the invasive techniques used
for the study of animals that have met their end prematurely provide much more detail.
With regard to data from behavioural experiments, it would be interesting for this research
to see how Alzheimer’s disease affect the fan effect on performance on associative recog-
nition tasks.

As discussed earlier, I see the implementation of a learning rule that results in pattern
separation while allowing for the use of sparse connection as a most interesting addition
to the Nengo toolbox. With it, it would be possible to see how the sparse connectivity of
the mossy fibers affects learning, and how the progression of AD influences the formation
of long-term memory.

4.6 Conclusion

In conclusion, analysis of the model has shown that both intrinsic neuron properties as
well as network connectivity can be selected to regulate the amount of pattern overlap
in neural populations. These findings pertain to the overlap values as present when the
model is first initiated. As such, this knowledge could be used to tune models where an
expected output cannot be accomplished through the use of learning or the setting of net-
work parameters not discussed in this work. Future implementation of an algorithm that
allows for the modelling of the effect of learning on pattern separation in a sparse network
would present an interesting direction for the modelling of the progression of Alzheimer’s
disease (AD). Concerning this neurological illness, this research has provided a systematic
approach for the regulation of increased pattern separation in the neural network model of
the hippocampus, inspired by the changes that occur in the brain during the progression
of AD. A consistent method for modelling the consequences of AD on behaviour might
allow us to make predictions about the performance of AD patients on particular tasks,
which could be a great benefit as data from this type of patients can be difficult to acquire.
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Appendix A

The effect of weight scaling on
pattern separation and the need for
activity matching.

Figure A.1: The effect of weight scaling on pattern overlap in CA3. Application of a linear
mapping over the connection between the dentate gyrus (DG) and regions CA3 results in
linear scaling of the connection weights. For a given spiking frequency threshold it seems
that pattern overlap (left) and the fraction of active neurons (right) strongly correlate.
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Figure A.2: The effect of sparse connectivity at the DG-CA3 connection on pattern over-
lap in CA3. (Top) As connections become sparse, pattern overlap decreases when the
highest weights are dropped, or when they are dropped at random. From these figures,
it becomes apparent, that the 10% strongest connections exert a disproportional amount
of influence on the pattern separation value. (bottom) For any of the dropping methods,
neural activity decreases as the connections become sparser. Because of this it is hard to
say whether an observed reduction in pattern overlap is due to the effect of sparseness
itself, or the general decrease in neural activity.
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Appendix B

Complete results for the AD
experiment

Figure B.1: The effect of AD related changes to the EC-DG connection on pattern overlap
in CA3. Synaptic loss affects the weakest connections between the EC and the DG. At full
progression, 41% of synapses are lost. The SAS area increase is implemented as a scaling
of the connection weights between the EC and the DG. At full progression, weights were
scaled to 137% of their original value
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Figure B.2: The effect of AD related changes to the EC-DG connection on pattern overlap
in CA3. Synaptic loss affects the connections between the EC and the DG at random. At
full progression, 41% of synapses are lost. The SAS area increase is implemented as a
scaling of the connection weights between the EC and the DG. At full progression, weights
were scaled to 137% of their original value
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Figure B.3: The effect of AD related changes to the EC-DG connection on pattern overlap
in the DG. Synaptic loss affects the weakest connections between the EC and the DG. At
full progression, 41% of synapses are lost. The SAS area increase is implemented as a
scaling of the connection weights between the EC and the DG. At full progression, weights
were scaled to 137% of their original value
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Figure B.4: The effect of AD related changes to the EC-DG connection on pattern overlap
in the DG. Synaptic loss affects the connections between the EC and the DG at random.
At full progression, 41% of synapses are lost. The SAS area increase is implemented as a
scaling of the connection weights between the EC and the DG. At full progression, weights
were scaled to 137% of their original value
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Appendix C

Hippocampal and DG connectivity

Figure C.1: Extensive schematic of the connectivity between the various components of
the entorhinal-hippocampal network. Figure from Witter (2019)
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Figure C.2: Schematic of the inter connectivity of the different neuron types in the den-
tate gyrus. Figure from Thomas et al. (2009)
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Appendix D

Neuron firing rates for the activity
matching experiment

Figure D.1: The effect of activity-matched sparse connectivity at the DG-CA3 connection
on firing rates in CA3.

41


