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Abstract

Light harvesting in photosynthetic systems is one of the fundamental processes of life on Earth

and is not understood fully. Not only is this mechanism worth studying for its own sake, under-

standing it might also inspire industrial light harvesting systems. In recent decades, investigations

using multidimensional spectroscopy, notably 2DES and 2DIR, have improved our understanding

of common light harvesting molecular systems. An essential process in light harvesting is energy

(exciton) transport, which recent works have demonstrated involves vibronic coupling types. More-

over, vibronic couplings are potentially important in other systems such as organic photovoltaics

and organic thermo-electrics.

In recent years a new 2D spectroscopy, 2DEV, has emerged that combines infrared and visible

wavelength ranges, which is especially suitable for investigating vibronic activity, as it directly

probes couplings between vibrations and electronic states and is therefore better suited than e.g.

2DES for studying such interactions. This work aims to contribute to the theoretical underpin-

nings needed to interpret 2DEV experiment results by verifying recent theoretical investigations

and expanding thereon. Specifically, a homo- and heterodimer that feature Franck-Condon and/or

Herzberg-Teller vibronic couplings are investigated by simulating 2DEV spectra. It is found that

the different dimers have their unique features in the 2DEV spectra, which can be understood to

some degree. It is also found for the heterodimer that specific 2DEV peaks might be discerned by

changing the polarisations of the laser setup used, for non-zero dimer angles.

Keywords: Light harvesting systems, photosynthesis, exciton transport, multidimensional spec-

troscopy, 2DEV, NISE, double sided Feynman diagrams, Holstein Model, vibronic coupling, Franck-

Condon, Herzberg-Teller
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Chapter 1

Introduction

1.1 Introduction

It is important to understand the quantum mechanical phenomena underlying energy transport

when it comes to understanding for instance natural light harvesting systems and possibly creating

artificial light harvesting systems, such as organic photovoltaics [1]. It has been demonstrated that

vibronic coupling, the mixing of vibrational and electronic degrees of freedom, plays an important

role in energy transfer on a quantum level. Both intermolecular [2] and intramolecular [3] cou-

plings are important here. The overall goal of this thesis is to shed light on this problem from the

perspective of multi-dimensional spectroscopy.

Multidimensional spectroscopy has been used before to investigate systems featuring vibronic

coupling. Specifically two-dimensional electronic spectroscopy (2DES) [4] combines electromag-

netic pulses that change the electronic state of the system. Additionally, two-dimensional infrared

(2DIR) spectroscopy combining pulses that change the system’s vibrational state, has also been

used to investigate vibronic coupling [5]. Two-dimensional electronic vibrational (2DEV) spec-

troscopy is a relatively new technique that combines the frequency regimes of the aforementioned

two methods. Hence 2DEV directly probes the couplings between electronic and vibrational states

in a way that 2DES and 2DIR do not.

While 2DIR and 2DES can also probe vibronic activity, 2DEV involves both the electronic and

vibrational transition dipole moments of the investigated system, allowing for weak transitions

that may not be apparent in either 2DES or 2DIR to become more visible in 2DEV [5]. Vibronic

activity also manifests itself in linear absorption spectra, but different coupling types are not as

distinguishable in that type of spectroscopy [6].

2DEV, first proposed in 2014 [7], has been used to investigate the correlation of nuclear and

electronic degrees of freedom [5] in a more direct way. This is essentially achieved by first excit-

ing the electronic degrees of the sample and then probing the effect on the vibrational degrees.

Moreover, 2DEV has been used to investigate ultrafast excitonic transfer [8].
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Few research groups so far have performed 2DEV investigations (theory and experiment),

starting with the experiment on a laser dye [7] and later with the experiment on the vibronic

coupling in high frequency vibrational modes [9] and on intramolecular vibrational and charge-

transfer dynamics [10].

Theoretical investigations of 2DEV spectroscopy on vibronically coupled systems also include

the study of systems evolving according to classical trajectories [11] and a near analytical study

of strongly vibronically coupled systems [12]. Recent experimental 2DEV investigations include a

study of Chlorophyll a and b [13] and the probing of relaxation dynamics in β-Apo-8’-carotenal

[14].

Comparisons have been made between theory and experiment on 2DEV investigations of conical

intersections [15], of center line slope evolution [16], vibronic couplings in a solar cell dye [17], of

polarisation selective spectra [18, 19]. 2DEV has been featured in a textbook on multidimensional

spectroscopy [20] and even a 3DEV investigation has been done [21].

2DEV spectroscopy is therefore still a relatively new technique that has added value compared

to e.g. 2DIR or 2DES for investigating vibronic phenomena. In this work, three goals are set

in order contribute to the theoretical underpinnings of 2DEV: 1) verify recent theoretical 2DEV

investigations on a heterodimer [6], 2) expand a bit on those results by including laser polarisation

in the simulations and 3) simulate 2DEV spectra for a homodimer [22] that has not yet been

investigated with 2DEV.

The heterodimer features two types of vibronic coupling: Franck-Condon (FC) coupling and

Herzberg-Teller (HT) coupling, both of which are quite ’weak’ in that system. On the other

hand, the homodimer features only ’strong’ FC coupling, giving rise to uneasily interpretable

transitions between vibronically mixed states. Thus while both systems are dimers, they have

different character and are expected to have different 2DEV signatures.

The remainder of this thesis is structured as follows. In Chapter 2 the relevant physics is

introduced, most notably the general definitions of the dimers’ Hamiltonians and the setup of

the 2DEV spectra calculations via perturbation theory. The physics described in that Chapter

is translated to computer code, an overview of which is given in Chapter 3. With that code,

some previous results on the heterodimer were verified and a few new things were calculated for

both dimer types, which is presented in Chapter 4. A brief discussion on the uncertainty in these

calculations and interpretation of the results is given in Chapter 5. The conclusion is given in

Chapter 6. Finally, the Appendix contains figures illustrating specific points made in Chapter 4

and calculation details.



Chapter 2

Theory

In this section, the description of the investigated hetero- and homodimer systems is given along

with the outline of the mathematical procedure to calculate 2DEV spectra on these systems.

2.1 System definitions

The first thing to outline is the description of the systems studied in this work. The mathematical

construct outlined here is the so called Holstein Hamiltonian. It involves multiple ’sites’ that each

represent a chromophore. These sites each feature multiple electronic states. An electronic excita-

tion on such a site (combined with an electron hole elsewhere) is called an ’exciton’, a quasiparticle.

States that have an electronic excitation on different sites can be coupled via electric dipole-dipole

coupling. This work considers dimer systems, having two sites. Hence only nearest neighbour

coupling need be considered.

The total system can be in an electronically excited state: once excited or multiple excited,

though only ’once excited states’ are included in this work, as that is sufficient for basic 2DEV

investigations. Such an excited state can be referred to as the excited manifold. A ’manifold’,

because the electronic states are further divided in various sub-states: vibrational excitations. De-

pending on the precise formulation, a site can feature multiple vibrational modes that each can

accommodate a different number of vibrational quanta and that each can have a different oscillator

frequency.

Each of these vibrational modes can feature their own unique vibronic coupling activity types

and strengths. Two considered in this work [6] are 1) Franck-Condon activity, which is intramolec-

ular, involving electronic and vibrational transitions on a single site and 2) Herzberg-Teller activity,

which is intermolecular, involving electronic transitions on two sites and vibrational transitions on

a single site. Below, these concepts are mathematically defined, based on Refs. [6, 23]. Further

sources for this section are Refs. [24–26]
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2.1.1 Homodimer Hamiltonian

The Hamiltonian presented in Ref. [23] reads as follows,

H(t) = ε1(t)c†1c1 + ε2(t)c†2c2 + J(c†1c2 + c†2c1) (2.1)

+ ω0b
†
1b1 + ω0b

†
2b2 + ω0

∑
n=1,2

c†ncn[λ(b†n + bn) + λ2], (2.2)

where the first three terms describe the electronic excitation (operators c) and interaction (via the

coupling J). This represents a dimer that has fluctuating exciton energies ε1(t) and ε2(t). The last

three terms describe the vibrational excitations (operators bi) for the two separate sites and the

vibronic coupling (Franck-Condon activity) via the Huang-Rhys factor λ2. The specific numerical

values used in this model are given in Appendix B.

2.1.2 Heterodimer Hamiltonian

The Hamiltonian presented in Ref. [6] reads as follows. The electronic part is given by

HS =(hgA + hgB) |G〉 〈G|+ (2.3)

(heA + hgB + ε) |A〉 〈A|+ (2.4)

(hgA + heB + ∆E + ε) |B〉 〈B|+ (2.5)

J(|A〉 〈B|+ |B〉 〈A|), (2.6)

which describes the energies of electronic ground state (|G〉 〈G|), the electronic excitations on

either site A or B (|A〉 〈A|, |B〉 〈B|) and the dipole-dipole coupling between these excited states

(|A〉 〈B|+h.c.). The average energy difference between the ground and excited manifold is given by

ε. The excitonic gap is denoted by ∆E and represents the energy difference between the electronic

excitations on either site. The specific numerical values of the Hamiltonian parameters are found

in Appendix A.

Each of the terms in Eq. (2.6) denotes an electronic states that have vibronic substructure,

encompassed in the vibrational Hamiltonians hiI . These sub-Hamiltonians are site and electronic

manifold dependent, given in Ref. [6] by

hiI =
~ωI,i,f

2

[
p2
I,f +

(
qI,f − δie

√
2Sf

)2
]

+ (2.7)

δIA
~ωI,i,s

2

[
p2
I,s +

(
qI,s − δie

√
2Ss

)2
]
, (2.8)

where index I denotes either site A or B, the index i denotes whether the site is in the electronically

excited or ground state: (δie is one if electronically excited), the subscripts s and f denote the ’slow’

or ’fast’ vibrational mode (later captured in the index α). The oscillators’ frequencies (ωI,i,α) are

site, manifold and mode dependent. The ground manifold modes are harmonic oscillators and the
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excited manifold modes are displaced harmonic oscillators, where the displacement is characterised

by the Huang-Rhys factor, here denotes as Sα. The δie denotes that the displacement only occurs

in the excited electronic state. This displacement gives rise to a coupling between vibrational

states of differing quanta, which is Franck-Condon coupling[6].

Now this vibrational hamiltonian is rewritten to the form that is actually implemented in this

work. Combining the two modes s and f in one index α, Eq. (2.8) can be written as

hiI,α =
~ωI,i,α

2

[
p2
I,i,α +

(
qI,i,α ± δie

√
2Sα

)2
]
, (2.9)

where a ’±’ is substituted in order to track where this minus sign ends up (the physics is inde-

pendent of the sign of this displacement anyway). Now substitute the following definitions of the

momentum and position operators: p̂ = i(â† − â)/
√

2, q̂ = (â† + â)/
√

2, yielding

hiI,α =
~ωI,i,α

2

[
(i(â†I,α − âI,α)/

√
2)2 +

(
(â†I,α + âI,α)/

√
2± δie

√
2Sα

)2
]

(2.10)

=
~ωI,i,α

2

[
−(â†I,αâ

†
I,α − â

†
I,αâI,α − âI,αâ

†
I,α + âI,αâI,α)/2+ (2.11)(

(â†I,αâ
†
I,α + â†I,αâI,α + âI,αâ

†
I,α + âI,αâI,α)/2± 2(â†I,α + âI,α)δie

√
2Sα/

√
2 + 2δieSα

)]
(2.12)

=
~ωI,i,α

2

[
−(

�
���

â†I,αâ
†
I,α − â

†
I,αâI,α − âI,αâ

†
I,α +����âI,αâI,α)/2+ (2.13)(

(
��

��
â†I,αâ

†
I,α + â†I,αâI,α + âI,αâ

†
I,α +����âI,αâI,α)/2± 2(â†I,α + âI,α)δie

√
Sα + 2δieSα

)]
(2.14)

=
~ωI,i,α

2

[
â†I,αâI,α + âI,αâ

†
I,α ± 2(â†I,α + âI,α)δie

√
Sα + 2δieSα

]
(2.15)

=
~ωI,i,α

2

[
2â†I,αâI,α + 1± 2(â†I,α + âI,α)δie

√
Sα + 2δieSα

]
(2.16)

= ~ωI,i,α
[
â†I,αâI,α ± (â†I,α + âI,α)δie

√
Sα + δieSα

]
+

~ωI,i,α
2

(2.17)

= ~ωI,i,α
[
NI,α ± (â†I,α + âI,α)δie

√
Sα + δieSα

]
+

~ωI,i,α
2

(2.18)

where in Eq. (2.16) use was made of the following commutation relation: [â, â†] = ââ† − â†â = 1.

The number NI,α = â†I,αâI,α counts the number of vibrational excitations in this site specific

vibrational mode. When using the following Hamiltonian basis set that is defined by the ladder

operators a,

â†I,α |nI,α〉 =
√
nI,α + 1 |nI,α + 1〉 (2.19)

âI,α |nI,α〉 =
√
nI,α |nI,α − 1〉 (2.20)

the Hamiltonian elements can easily be determined. The energies on the diagonal of this vibrational

matrix are determined by

〈nI,α|hI,i,α |nI,α〉 = ~ωI,i,α [NI,α + δieSα] +
~ωI,i,α

2
, (2.21)
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which denotes that the energy of a state is determined by the number of vibrational quanta in the

oscillator compared to some reference energy. In addition, the displaced harmonic oscillators (in

the excited electronic state) get an additional energy shift.

The coupling between vibrational site states is given by these off-diagonal matrix elements:

〈mI,α|hI,i,α |nI,α〉 = ±~ωI,i,α 〈mI,α| (â†I,α + âI,α)δie
√
Sα |nI,α〉 (2.22)

= ±~ωI,i,αδie
√
Sα(
√
nI,α + 1 〈mI,α |nI,α + 1〉+

√
nI,α 〈mI,α |nI,α − 1〉). (2.23)

The term
√
n+ 1 〈m |n+ 1〉 is non-zero if m = n+1 while

√
n 〈m |n− 1〉 is non-zero if m = n−1.

Hence these two terms can be combined as:

〈mI,α|hI,i,α |nI,α〉 = ±~ωI,i,αδieδ1∆

√
Sα

√
max(nI,α,mI,α), (2.24)

where use is made of the orthonormality of the basis states and ∆ = |nI,α − mI,α| denotes the

absolute difference between the number of vibrational quanta in this vibrational mode, at this site.

In other words: this term is only non-zero for states that differ by a single quantum. The function

max(n,m) gives the maximum of the two numbers n and m. This expression for the coupling is

easily translated to computer code.

2.1.3 Comparison of Hamiltonian forms

Now if we compare the vibrational/vibronic parts of both the Hamiltonians in Eqs. (2.2 and 2.9),

we find

hhomo = ω0

∑
n=1,2

b†nbn + c†ncn[λ(b†n + bn) + λ2] (2.25)

hhetero = ~ωI,i,α
[
â†I,αâI,α + δie

(
±
√
Sα(â†I,α + âI,α) + Sα

)]
+

~ωI,i,α
2

. (2.26)

These expressions contain the same essential physics. Given that only one electronic excitation is

included in these dimer systems, δie is equivalent to c†ncn, which counts the number of electronic

excitations. However, hhetero is slightly more general: is has multiple vibrational modes per site

with frequencies that are mode and site specific, which needs to be taken into account when count-

ing vibrational quanta. Additionally, this yields mode specific Huang-Rhys factors. Note that Sα

corresponds to λ2.

In hhomo the term ~ω0/2 (not shown) can be omitted as it is a general constant in that Hamilto-

nian. Note, however that
~ωI,i,α

2
is simply a reference energy: the energies of the vibrational states

are taken in reference to electronic states.

2.1.4 Vibronic Coupling

The mentioned displacement of the harmonic oscillators in the excited electronic manifold gives

rise to Franck-Condon activity. Practically this means that an electronic excitation on a certain
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site can give rise to an additional vibrational excitation on the same site, since those states are

coupled. When two sites are electronically coupled, the combination of electronic and vibrational

coupling gives rise to vibronic activity.

Another effect incorporated in the investigations of the heterodimer[6] is the so called Herzberg-

Teller coupling, which is a non-Condon effect: it involves a nuclear coordinate dependence of the

electronic coupling between sites in the Holstein model.

This is an effect that involves a vibrational transition accompanied by a ’move’ of the exciton

from one site to another. The most simple case of this phenomenon is described for a single site,

where its nuclear coordinate qA,s influences electronic coupling with neighbouring sites, as in

J = J(qA,s) = J0(1 +
√

2ηqA,s), (2.27)

where the ’1’ represents dipole-dipole coupling between the electronic dipoles of the two sites in the

dimer. The Herzberg-Teller coupling strength is characterised by the parameter η. When placed

in the context of the Hamiltonian defined in Eq. (2.6), the nuclear coordinate qA,s dependence

implies the coupling of two states that differ in one vibrational quantum on the low energy mode

at site A and that differ in location of the exciton. (Recall that the nuclear coordinate can be

written in ladder operator notation: q̂ = (â† + â)/
√

2.)

Since the dipole-dipole coupling in Eq. (2.27) involves the same physical dipoles that cause

transitions between states, the Herzberg-Teller activity is also explicitly present in the electronic

transition dipole matrices, described in the next section. This is in contrast with the Franck-

Condon activity, which is ’fully’ captured in the system Hamiltonian.

2.1.5 Dipole matrix definitions

The interactions of the external electromagnetic fields with the system (dimer) is described by

transition dipole matrices (TDMs). The definitions of these TDMs is such that within the site

basis the electronic TDM can cause a transition between states that differ a single quantum on a

single site in the electronic part of the Hamiltonian. Similarly, the vibrational TDM is such that it

can cause a transition between states that differ a single quantum in the on-resonance vibrational

mode on a single site in site basis.

Electric TDM

The electronic TDM can be split in site specific matrices, as in

µel = µA + µB, (2.28)

where A and B describe the respective sites. These µ′s can be expanded as

µI = µI0

(
1 + δIA

√
2ηqA,s

)
(|I〉 〈G|+ |G〉 〈I|), (2.29)
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which assumes non-zero value when combining the electronic ground state with a state being

electronically excited on either site (I can be either A or B). The electronic TDM moment at

site A takes a form similar to that in Eq. (2.27), because both equations are rooted in the same

physical electric dipole and include Herzberg-Teller activity. Again, the parameter η specifies the

strength of the Herzberg-Teller coupling on the low frequency vibrational mode at site A.

In order to arrive at the form implemented in this work, as in the previous section the equation

q̂A,s = (â†A,s + âA,s)/
√

2 is substituted, yielding

〈mA,s| 〈G|µI |I〉 |nA,s〉 = 〈mA,s| 〈G|µI0
(

1 + δIA
√

2ηqA,s

)
(|I〉 〈G|+ |G〉 〈I|) |I〉 |nA,s〉 (2.30)

= 〈mA,s|µI0
(

1 + δIA
√

2ηqA,s

)
|nA,s〉 (2.31)

= 〈mA,s|µI0
(

1 + δIAη(â†A,s + âA,s)
)
|nA,s〉 (2.32)

= µI0

(
δ0∆ + δIAδ1∆η

√
max(mA,s, nA,s)

)
, (2.33)

where ∆ = |mA,s − nA,s|, similar to the derivation done in Eq. (2.24). Hence there is a transition

dipole value of µI0 if there are is no quantum difference in the low vibrational mode state. There

is a TDM value that depends on strength η, between states that have a single quantum difference

in the low frequency mode at site A.

For the homodimer analysis, the Herzberg-Teller activity is simply excluded by setting η to

zero.

Vibrational TDM

The vibrational TDM presented in Ref. [6] is simple in the sense that it only specifies transitions

between states that differ a single quantum in the specified on-resonance modes. It can be split in

site specific matrices, as in

µvib = µA,f + µB,f ,

where µI,f =
√

2qI,f |I〉 〈I|. In this work however, in the excited electronic state we take the

displacement of the on-resonance vibrational mode into account in the definition of the vibrational

TDM, using

µI,f =
√

2(qI,f − dI,f ) |I〉 〈I| =
√

2(qI,f − δie
√

2Sf ) |I〉 〈I| ,

where the displacement’s definition is in line with that in Eq. (2.8). The vibrational TDM can be

rewritten as

µvib =
√

2(qA,f − δie
√

2Sf ) |A〉 〈A|+
√

2(qB,f − δie
√

2Sf ) |B〉 〈B|

= (â†A,f + âA,f − 2δie
√
Sf ) |A〉 〈A|+ (â†B,f + âB,f − 2δie

√
Sf ) |B〉 〈B| ,
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where again use was made of (q = â† + â)/
√

2 and the fact that the on resonance modes at both

sites get the same Huang-Rhys factor Sf . So the matrix element of µvib at e.g. exciton site B

becomes

〈mB,f |µvib |nB,f〉 = 〈mB,f | (â†B,f + âB,f − 2δieδnm
√
Sf ) |nB,f〉 (2.34)

= 〈mB,f | (δ1∆

√
max(mB,f , nB,f )− 2δieδnm

√
Sf ) |nB,f〉 , (2.35)

in line with the derivation of Eq. (2.24). The right term represents diagonal elements in the TDM:

they correspond to a permanent dipole moment.

As seen, both the electronic and vibrational TDMs are split in site specific matrices. These

can be combined geometrically to represent different dimer angles, as in

µx = sin(θ)µB (2.36)

µy = µA + cos(θ)µB, (2.37)

which reflects that if the dimer angle is zero, the TDMs are parallel and that if the dimer angle is

π/2, the TDMs are perpendicular. This expression is applied to both the electronic and vibrational

TDMs, which are assumed parallel within each chromophore.

Bath Coupling

There are multiple approaches to implementing system-environment interactions in 2D spectra

calculations. The environment is called a bath. Options include different approaches to the bath

coupling, for instance by explicitly describing the bath in a bath Hamiltonian and coupling that

Hamiltonian in specific ways to the investigated system[6]. Instead of that, in this work the bath

is implemented by fluctuating Hamiltonian parameters, specifically the energy levels of the Hamil-

tonian in the homodimer, so called diagonal disorder, as in Refs. [23, 27]. This energy disorder is

caused by interactions with the bath that are not made explicit: only the net effect on the energy

levels is made explicit.

The calculation of the fluctuating energies is a Markovian process where the disorder is gener-

ated randomly in such a way that the correlation function of the disorder at two moments in time

decays exponentially[23], as in

〈εn(t)εn(t+ ∆t)〉 = σ2
ne
−∆t/tc , (2.38)

where σn is the standard deviation of the fluctuation of the specified energy level and tc is the

correlation time. This type of disorder can be generated by random number generation and using

the following expression[27], where the fluctuation at time t+ ∆t depends on that at time t:

δεn(t+ ∆t) = δεn(t)e−∆t/tc +G(σ)
√

1− exp(−2∆t/tc), (2.39)
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where σ and tc are as in Eq. (2.38) and G(σ) is a random number from a normal distribution

centered at zero with standard deviation σ. Using this expression a bath trajectory (or realisation)

can be calculated for a single dimer. Three such trajectories are shown in Chapter 4, in Fig.

4.9. This type of bath implementation is also called the overdamped Brownian oscillator oscillator

model.

The ensemble average of the collection of dimers will be calculated, which is done by summing

the 2DEV response for each of the individual dimers. The fluctuations of the individual dimer

energies will give rise to variations in the sinusoidal type response function corresponding to each,

which in turn will cause a decay of the average response signal as function of the waiting times in

the interaction process, as defined in the Feynman diagrams. The corresponding ’decay rates’ in

the respective time domains give rise to peak widths in the 2DEV spectra.

Also non-diagonal disorder could be incorporated, which means that the couplings between the

system’s states fluctuate, but that is not included in this work.
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2.2 2DEV spectroscopy calculations

In this work, the systems outlined on the previous pages are investigated by calculating so called

’third order response functions’[24–26], specifically 2DEV response functions, which are well de-

scribed in Refs. [5, 7, 20, 28]. A relatively short overview of these calculations, based on the cited

works, is reproduced here.

Linear, or one dimensional spectroscopy involves the simple process where a system is excited

by some electromagnetic pulse and then ’responds’ after some time by emitting another. Multidi-

mensional spectroscopy on the other hand, is based on a slightly more elaborate mechanism, i.e.

pulse sequence: multiple pulses interact with the system, after which the system responds with

a final pulse. The essence of multidimensional spectroscopy calculations is therefore to compute

how a system evolves after interacting with n electromagnetic pulses and how it finally ’responds’.

Two dimensional spectroscopy involves three pulses after which the system ’responds’ with a final

pulse.

The mechanism behind 2DEV spectroscopy is as follows. The system interacts with external

electromagnetic fields in the specific order depicted in Fig. 2.1. In total, the system interacts four

times with an electromagnetic field. The first two interactions happen in the ’electronic’ part of

the spectrum, while the second two interactions occur in the infrared part of the spectrum. The

fourth pulse represents the system’s response.

There are three time intervals between the four pulses. All three time intervals can be varied

to investigate the system’s time-dependent nature. The first and third time intervals are relevant

for 2DEV spectroscopy: the two-dimensional Fourier transform of the system’s response over these

two time intervals represents the 2DEV spectrum. The second time interval can be varied in or-

der to investigate so called ’beating’ patterns, which represent how the system’s 2DEV response

evolves over the waiting time.

Figure 2.1: The sequence of laser pulses used in 2DEV spectroscopy, as depicted in Ref. [7]. The

first two pulses are in the ’electronic’ band of the spectrum, meaning they give rise to electronic

(de-)excitations, while the second two are in the infrared part of the spectrum and give rise to

vibrational (de-)excitations.
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2.2.1 Polarisation of materials

On a classical scale, an interaction with an electromagnetic field can cause a polarisation within a

material. This can be described by[26]

P = ε0(χ(1)E + χ(2)E2 + χ(3)E3 + . . . ), (2.40)

where P is the polarisation, χ(n) the n-th order susceptibility and E the electric field. First and

third order are considered, not even orders, as those terms vanish for isotropic media, which is

what we will consider.

The microscopic polarisation of a system (e.g. a single molecule) is given by P (t) = 〈ψ(t)|µ(t) |ψ(t)〉,
where ψ is the system’s state and µ is the system’s oscillating dipole. The macroscopic polarisation

can be described by an ensemble average of those:

P (t) = 〈〈ψ(t)|µ(t) |ψ(t)〉〉E , (2.41)

where the subscript denotes the ensemble average. The interaction with external fields is described

perturbatively, with the perturbative Hamiltonian being

WI = −~µI(t) · ~E(t)+
↔
νI : ~E(t) ~E(t) + . . . , (2.42)

expressed as an electric multipole expansion, where the subscript I denotes interaction picture

(explained later). Only the lowest order is considered here, while the quadrupole moment interac-

tions and higher are not. As such, the interaction is described by an electronic transition dipole

moment (TDM) that couples to the external electromagnetic field.

2.2.2 Evolution after external field interactions

The evolution of the system is governed by the Schrödinger equation, which in integral form is

given by

|ψ(t)〉 = |ψ(t0)〉 − i

~

∫ t

t0

dτ1H(τ1) |ψ(τ1)〉 , (2.43)

described well in for instance Ref. [29]. The system’s Hamiltonian can be described by

H(t) = H0 +W (t), (2.44)

where H0 is the time independent Hamiltonian and W (t) is the time dependent perturbation of this

hamiltonian. Here[24] the perturbation describes the interaction of the system with the external

light, which depends on time. The corresponding interaction potential is written as[24]

W (t) = −~µ · ~E(t), (2.45)
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where ~µ is the system’s electric dipole. The solution to the Schrödinger equation for a time

independent Hamiltonian reads

|ψ(t)〉 = U(t, t0) |ψ(t0)〉 , (2.46)

where U(t, t0) is the time evolution operator, defined as

U(t, t0) = exp

(
− i
~

(t− t0)H0

)
. (2.47)

The expressions so far are in the so called Schrödinger picture, where the time evolution is ex-

pressed separate from the operators and wavefunctions. It is convenient to make a transformation

to the interaction picture where the time evolution due to the time independent part of the Hamil-

tonian, H0, is absorbed in the operators and wavefunctions. The Schrödinger equation is then

solved perturbatively by considering the time dependent part of the Hamiltonian, W (t) as the

perturbation. An operator MS(t) that exists in the Schrödinger picture is transformed to the

interaction picture MI(t) by

MI(t) = U(t, t0)†MS(t)U(t, t0), (2.48)

with U(t, t0) is as in Eq. (2.47), containing the time independent part of the Hamiltonian, H0.

Similarly, a wavefunction is transformed as

|ψI(t)〉 = U(t, t0)† |ψS(t)〉 . (2.49)

. In the interaction picture, the Schrödinger equation reads

|ψI(t)〉 = |ψI(t0)〉 − i

~

∫ t

t0

dτ1WI(τ1) |ψI(τ1)〉 , (2.50)

where the time evolution of the wavefunction is solely governed by the (time dependent) perturba-

tion: the interaction part of the Hamiltonian. This equation can be solved in an iterative manner

by substituting it into itself, yielding

|ψI(t)〉 = |ψI(t0)〉 − i

~

∫ t

t0

dτWI(τ) |ψI(t0)〉+

(
−i
~

)2 ∫ t

t0

dτ2

∫ τ2

t0

dτ1WI(τ2)WI(τ1) |ψI(τ1)〉 . (2.51)

This procedure can be repeated an arbitrary number of times, yielding

|ψI(t)〉 = |ψI(t0)〉+
∞∑
n=1

(
−i
~

)n ∫ t

t0

dτn

∫ τn

t0

dτn−1· · ·
∫ τ2

t0

dτ1(WI(τn)WI(τn−1) . . .WI(τ1)) |ψI(t0)〉 .(2.52)

The Hermitian conjugate of this equation is simple, as the WI operators are Hermitian.
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2.2.3 Response functions

As described in Eq. (2.40), a material is polarised in orders corresponding to the number of inter-

actions with an external electric field. Using Eq. (2.41) we can write the macroscopic polarisation

due to n interactions with an electric field. Using the interaction picture immediately gives[26]

P (n)(t) =
m=n∑
m=0

〈〈
ψ

(n−m)
I (t)

∣∣∣µI(t) ∣∣∣ψ(m)
I (t)

〉〉
E
, (2.53)

where φm denotes the wavefunction of a system (dimer in this case) that has interacted m times

with an external electric field. Note that n−m and m add up to n, which means that the system

responds to n interactions with an electric field, which can act on either the Bra or the Ket side of

the final response operator µI(t), which gives rise to different Feynman diagram types. Solving this

equation with various assumptions and for various parameters is at the heart of multidimensional

spectroscopy.

Substituting Eq. (2.52) in Eq. (2.53) gives

P (n)(t) =

∫ t

t0

dτKm

∫ τKm

t0

dτKm−1· · ·
∫ τK2

t0

dτK1

∫ t

t0

dτBn−m

∫ τBn−m

t0

dτBn−m−1· · ·
∫ τB2

t0

dτB1

m=n∑
m=0

(
−i
~

)m(
i

~

)n−m
(2.54)〈

〈ψI(t0)| (WI(τ
B
1 ) . . .WI(τ

B
n−m−1)WI(τ

B
n−m))µI(t)(WI(τ

K
m )WI(τ

K
m−1) . . .WI(τ

K
1 )) |ψI(t0)〉

〉
E
,

(2.55)

where all the time coordinates τBn and τKn are dummy coordinates over which is integrated to solve

the Schrödinger equation. Now invoke the interaction description WI(t) = −~µI · E(t)(t) yielding

the following three line expression

P (n)(t) =

∫ t

t0

dτKm

∫ τKm

t0

dτKm−1· · ·
∫ τK2

t0

dτK1

∫ t

t0

dτBn−m

∫ τBn−m

t0

dτBn−m−1· · ·
∫ τB2

t0

dτB1

m=n∑
m=0

(
−i
~

)m(
i

~

)n−m
(−1)n

(2.56)〈
〈ψI(t0)| (µI(τB1 ) . . . µI(τ

B
n−m−1)µI(τ

B
n−m))µI(t)(µI(τ

K
m )µI(τ

K
m−1) . . . µI(τ

K
1 )) |ψI(t0)〉

〉
E

(2.57)

E(τB1 ) . . . E(τBn−m−1)E(τBn−m)E(τKm )E(τKm−1) . . . E(τK1 ), (2.58)

where the factor (−1)n originates in the minus sign of the interaction potential WI(t). Now

assume that the electric fields have delta shape envelope: ~E(τi) ∝ δ(τi), with the peaks occurring

instantaneously at times [t1, t2 . . . tn]. The proportionality hides the electric field strengths. The

intensities of the spectra calculated in this work are given in arbitrary units: what is investigated

here is the ’spectral shape’ and not the absolute intensities of the system’s response. Hence a

proportionality sign in introduced. This yields
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P (n)(t) ∝
m=n∑
m=0

(
−i
~

)m(
i

~

)n−m
(−1)n (2.59)

〈〈ψI(t0)| (µI(t1) . . . µI(tn−m−1)µI(tn−m))µI(t)(µI(tm)µI(tm−1) . . . µI(t1)) |ψI(t0)〉〉E .
(2.60)

Note that |ψI(t0)〉 = U †(t0, t0) |ψ(t0)〉 = I |ψ(t0)〉 = |ψ(t0)〉, which shows that all the time evolution

is now contained in the transition dipole operators.

In Eq. (2.60), time is present in the following manner: it starts at t0 at either end of the inner

Bra-Ket product and reaches its highest value in the final transition dipole moment (TDM) µI(t).

Hence the operators µI(tn) . . . must be time-ordered on each respective side of the final TDM.

For instance, if a single operator is on the Ket side of the final TDM, then any of the n number

of µI ’s may take that position, while the other n − 1 operators must be ordered in their unique

time-ordered manner. This yields n unique operator orderings that all have a single µI on the Ket

side of the final transition dipole moment. Similarly, there exist n unique operator orderings that

have a single µI on the Bra side of the final transition dipole moment. Indeed these two sets of n

orderings are each other’s complex conjugate.

If two TDMs are placed on the Ket side of the final TDM, then these two operators have a

unique time ordering, as do the remaining n− 2 TDMs. Any two of the n TDMs may take these

places, which means that n(n−1)/2 unique TDMs can take these spots; the division by two reflects

that these two operators must be time ordered. So there exist n(n− 1)/2 unique terms that have

two TDMs on the Ket side of the final TDM. Again, there are n(n − 1)/2 conjugate terms that

have two TDMs on the Bra side of the final TDM.

This can be generalised to there being
(
n
m

)
= n!/(m!(n−m)!) unique terms that have m TDMs

on the Ket side of the final TDM, for an order n response. Hence each term labelled by m in

Eq. (2.60) is constituted by
(
n
m

)
different time ordered terms, which all adds up to 2n terms. All

these different orderings correspond to unique physical processes that can be represented by double

sided Feynman diagrams. Specifically, 2DEV spectroscopy investigates the response of a system

after it has interacted three times with an external electromagnetic field. Hence it is a third order

response, featuring 23 = 8 different Feynman diagrams (and their complex conjugates).

2.2.4 2DEV responses

The contribution of the different ordering of TDMs describing the ’totality’ of the 2DEV response

within the n = 3 term of Eq. (2.60) can be written neatly in a set of nested commutators:

S(3)(τ ′3, τ
′
2, τ
′
1) =

(
i

~

)3

〈〈α| [[[µv4, µv3], µe2], µe1] |α〉〉E, (2.61)

where the spot of each µ in the nested commutators is determined by the time ordering constraint;

the number in the subscript determines that time ordering. Additionally, for clarity the subscript
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’v’ or ’e’ is included to denote which TDMs correspond to electronic transitions and which to

vibrational transitions. This notation is similar to that in Ref. [28] and can be implemented

conveniently. Note that the commutators in Eq. (2.61) also capture on which side of the Feynman

diagram the interactions occur.

As an illustration, the linear (electronic) response takes the form of

S(1)(τ ′1) =

(
i

~

)
〈〈α| [µe2, µe1] |α〉〉E, (2.62)

which features one time interval and two TDM operators at each end of this time interval.

2.2.5 Feynman Diagrams

For a third order response, the 23 = 8 unique double sided Feynman diagrams are shown in Fig.

2.2. Their 8 complex conjugates are not shown, but could be represented by the mirror images

of these ones. They are categorised as being either ’Rephasing’ or ’non-rephasing’ diagrams[24].

Four types can be distinguished, as described in Fig. 2.2. Each diagram corresponds to a specific

physical process.

From left to right are shown the ground state bleach (GSB), excited state absorption (ESA),

excited state emission (ESE) and ground state emission (GSE) diagrams. Notably, the first letter

in these diagram names reflects whether the IR interactions (the final two in each diagram) occur

in the electronic ground or excited state. The sequence of TDM operators, seen in Eq. (2.61), is

written underneath each diagram.

A priori, each of these processes can occur with the same probability. 2DEV spectra are there-

fore a reflection of the strength of these different Feynman diagrams: The strength is determined

by the specific combinations of the TDMs and therefore depends on the system’s nature.
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Figure 2.2: The different Feynman diagrams that are calculated in order to obtain the 2DEV

spectra, Each diagram corresponds to a specific sequence of interactions with the external electro-

magnetic fields. The Top row displays the non-rephasing diagrams, while the bottom row displays

the rephasing diagrams. From left to right are shown the ground state bleach (GSB), excited state

absorption (ESA), excited state emission (ESE) and ground state emission (GSE) diagram types.
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Figure 2.3: Two examples of Feynman diagrams that are not included in the calculations of this

work. The main difference with those in Fig. 2.2 is that the order of infrared and visible pulses

are exchanged in time. As is often done, this work assumes that the system’s interactions with

the external magnetic fields are instantaneous, i.e. the pulse envelopes are assumed to have delta

function shape. Therefore, the interactions happen in the well defined order, depicted in Fig. 2.2.

2.2.6 Non-zero Temperature

In this work, the response to the system at non-zero temperature (used in the heterodimer analysis)

is calculated as follows. The response R corresponding to a single pathway is calculated as

R = 〈α|S |α〉 , (2.63)

where |α〉 denotes a state in site basis and S denotes the product of constants, transition dipole

and time evolution operators relevant for the investigated response type, e.g. linear or 2DEV.

One can calculate the response R to a superposition of eigenstates labelled by A, weighted by a

Boltzmann factor as

R =
∑
A

exp(−EA/kT ) 〈A|S |A〉 . (2.64)

One can insert complete site basis sets, denoted by α and β in order to write the response as

follows:

R =
∑
A,α,β

exp(−EA/kT ) 〈A|α〉 〈α|S |β〉 〈β|A〉 (2.65)

=
∑
A,α,β

(exp(−EA/kT ) 〈A|α〉 〈β|A〉) 〈α|S |β〉 (2.66)

=
∑
α,β

(∑
A

exp(−EA/kT ) 〈A|α〉 〈β|A〉

)
〈α|S |β〉 (2.67)

=
∑
α,β

fαβ 〈α|S |β〉 . (2.68)
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The result is an expression where the response function is calculated in terms of site states. Note

that in this definition it need not be the case that the system’s site Bra and Ket are identical. This

could be relevant if both the two specific site states α and β contribute to eigenstate A. However,

this does not occur for the states in the electronic ground manifold, since they are not mixed in the

models considered in this work, but it does occur for states in the electronically excited manifold,

relevant at higher temperatures.

The inner products 〈A|α〉 and 〈β|A〉 are found in the matrix elements of U , which is defined

by

Heig = U−1HsiteU, (2.69)

where the columns of U are the eigenvectors of Hsite. The inner product 〈A|α〉 is then found at

column ’A’ and row ’α’, while 〈A|β〉 is the complex conjugate of the U element at the respective

indices.

Calculating the factors fαβ requires negligible computational effort, while the terms 〈α|S |β〉
are expensive. For computational efficiency, it is chosen to reduce the number of terms in the final

expression of Eq. (2.68). This is done by introducing a threshold: only include terms for which

|fαβ| > 1
1000

∑
α,β fαβ. Doing this at a temperature of e.g. kT = 10 cm−1 yields a selection that is

limited to α and β being the ground state.

2.2.7 External field polarisations

A molecule can have transition dipole moment components in all three different spatial directions

due to its morphology. These TDMs couple to the electric component of the external electromag-

netic fields. Hence the polarisation of the different pulses with which a molecule interacts impacts

the molecule’s response. Therefore, an ensemble of molecules will also respond differently to dif-

ferent external fields’ polarisation directions. It is considered here that the ensemble of molecules

is isotropic on the scale of the ensemble.

In the case of linear absorption, if the molecules do not rotate between the two interactions with

external field, then ’ingoing’ and ’outgoing’ electromagnetic waves will be polarised in the same

direction. Hence the response will be proportional to the inner product of the TDMs at the two

respective interaction times R ∝
∑

i,j

〈
µ

(1)
i µ

(2)
j

〉
E

=
〈
µ2
x + µ2

y + µ2
z

〉
E

, where the sum i, j is over

the three spatial directions, the subscript E denotes the ensemble average and the superscripts

denote the time ordering. Because of the symmetry of a vector product, naturally no prefactor is

added to any of the three terms.

Similarly for a 2D response, the response in general form is proportional to

R ∝
∑
i,j,k,l

fi,j,k,l

〈
µ

(1)
i µ

(2)
j µ

(3)
k µ

(4)
l

〉
E
, (2.70)
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where the subscripts denote the spatial directions (∈ [x, y, z]) and the superscripts denote the TDM

ordering corresponding to the investigated Feynman diagram. This expression contains 34 = 81

different geometrical terms (for each of the Feynman diagrams) and these do get a prefactor fi,j,k,l.

All different orientations of the individual molecules are considered and the relative probability for

the molecules’ TDM components to match the direction of the external field polarisations is what

goes into these prefactors.

In this work we consider dimers that feature cylindrical symmetry. Hence a molecular frame

of reference may be chosen such that the z-component of the molecules’ vibrational and electronic

TDMs are zero. This means that in Eq. (2.70) only the x and y components need be considered.

This yields 24 = 16 different geometrical terms. Because of the ensemble isotropy, terms with a

single ’x’ or ’y’ such as µxµyµxµx do not contribute. As a result, only eight different geometrical

terms remain to be calculated.

Two different polarisation setups are discussed here: ’parallel’ and ’perpendicular’. These have

external field polarisations of ’xxxx’ and ’xxyy’ respectively. The prefactors in Eq. (2.70) are dif-

ferent for these two setups, which results in different 2DEV spectra, depending on the investigated

molecules’ nature. Most notably, the largest contributing terms µxµxµxµx and µyµyµyµy get a

prefactor three times lower in the perpendicular compared to the parallel setup. See Ref. [30]

for further details. In conclusion, these geometrical considerations thus lead to calculating eight

geometrically different 2DEV responses for each polarisation setup.
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Numerical Methods

3.1 Main numerical procedure

The method of calculating 2DEV spectra for the described dimer systems in the previous sections

is too involved to attempt doing analytically and must therefore be implemented numerically. A

flowchart of this process is shown in Fig. 3.1, where the main procedures are described.

The core of the computational method is Numerically integrating the Schrödinger equation

(NISE), which is the procedure used to determine the system’s time evolution [31]. It’s basic

assumption is that over a small time interval, the system’s Hamiltonian does not change, which

allows for easy incremental integration of the Schrödinger equation and hence the determination

of the time evolution operators.

The interaction potential is considered a perturbation in the derivation reproduced in the

previous chapter and perturbation theory is applied to this time-dependent aspect of the 2DEV

investigation: the interactions with the electromagnetic field. However, the fluctuations in the

system’s Hamiltonian due to bath coupling are treated in a more straightforward manner. The

time dependent fluctuations are calculated via the expression in Eq. (2.39) for each increment in

time ∆ti, where the subscript i denotes which of the time domains is considered (t1, t2 or t3). The

Hamiltonian is assumed to be constant over each of the time steps (with length ∆ti). The time

evolution is then simply calculated by U(ti + ∆ti, ti) = exp
(
− i

~H(ti)∆ti
)

[26].

The procedure for calculating a 2DEV spectrum for a single dimer trajectory (a single bath

realisation) is as follows. The 2DEV response is ultimately calculated on a 2D time loop over t1

and t3. The aim is to do as much work as possible outside of this double loop. Before the double

loop is started,

1. establish which temperature terms are included, by selecting the initial states that pass the

threshold defined in section 2.2.6 or manual selection.

21
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2. generate the random trajectories for each of the fluctuating Hamiltonian entries,

3. do as much work as yet possible on the interaction picture transition dipole operators, by

calculating the time evolution operators for the three time intervals. That requires generating

the Hamiltonians on each time point on the three time intervals. The t2 interval is assumed

to have the same time resolution as the t3 interval. The first TDM µ1e(0) is finalised outside

the double loop and some pre-work can be done on the other three TDMs in order to avoid

doing it redundantly.

Inside the double t1, t3 loop the following is done:

4. Finalise the transition dipole moment operators by multiplying the generated TDMs in

Schrödinger picture with the appropriate time evolution operators.

5. So far, the TDMs are known for each of the two dimer molecules for each interaction. Now

for each of the four interactions with the electromagnetic field, determine the total system

TDMs in the three geometrical directions. This allows for calculating the external fields

polarisation dependence.

6. Calculate the 2DEV Feynman diagrams by multiplying the different TDMs in all different

orderings mentioned in section 2.2.5 and taking the inner products with the initial system

state. This is done for each of the eight geometrical terms mentioned in section 2.2.7.

7. These different terms are given different geometrical factors and then added up to form the

2DEV response at one point on the 2D time grid, for a single bath trajectory.

Once the 2D time loop is completed, the 2DEV response in time domain is found for a single reali-

sation. The above procedure is then repeated for N = 1000 realisations in case of the homodimer.

Once the ensemble average 2DEV response is calculated, the frequency response domain (spec-

trum) is calculated by 2D Fourier transform of the response corresponding to each each Feynman

diagram. As mentioned in section 2.2.5, there are two classes of diagrams: rephasing and non-

rephasing, R and NR. The 2D response contains both ’absorptive’ and ’dispersive’ components

which have different lineshapes: the dispersive components feature ’phase twists’ [24] that cause

broadening and part of the lineshapes’ region to be positive and another part to be negative. These

R and NR diagrams occur in different quadrants of the Fourier Plane and can be combined in order

to cancel the dispersive components to the signal by summing them while inverting the t1 axis of

the R diagrams, as in

Rabs(ω1, ω3) = RR(−ω1, ω3) +RNR(ω1, ω3), (3.1)

which is based on the expression in Ref. [24]. The result is a so called ’absorptive’ 2D spectrum,

the characteristic feature of which is that its lineshapes are more narrow and are symmetric and

hence more easily interpretable than the separate R and NR spectra.
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Total Time domain
 2DEV response

(separate Feynmans)

Calculate Bath
(single trajectory)

Generate Hamiltonian
And TDMs

Calculate time evolution
operators for t1, t2, t3

2DEV response
(one point on time grid)

Zero Padding,
Apodisation

Calculate TDMs
Interaction picture

Choose system
(Dimer)

Calculate freq. domain
2DEV response

Calculate 2DEV for
N trajectories

Repeat for all 
different initial states

Calculate all
Feynman diagrams

Time domain
2DEV response (grid)

2DEV response on time grid

Define 2D time grid

Repeat for all
Geometrical terms

Add the trajectories

2D time grid loop

Single Trajectory

Combine rephasing,
non-rephasing into 
‘absorptive’ spectra

Figure 3.1: A flowchart illustrating the implementation of the main 2DEV calculations done in

this work. The main steps are shown, not specific tricks used to make the computation feasible

or specific ways of organising the code. A few key points in the method are the Hamiltonian

generation for each fluctuation in each bath trajectory, the calculation of the transition dipole

moments in interaction picture, the calculation of the 2DEV response function at each point on

the 2D time grid, the summing of all realisations, the zero padding and the final Fourier transform

to frequency domain.
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Note that the dimer Hamiltonian is block diagonal in the sense that the electronic ground and

excited blocks are uncoupled. That allows for the time evolution to be treated separately for each

block, which saves computational power, because matrix multiplication goes as N3. Moreover,

Hamiltonian diagonalisation, used in calculating the matrix exponentials of the Hamiltonians on

each time point is also done more efficiently for two smaller matrix blocks than for the complete

matrix.

Hence Ugg and Uee are calculated for the ground and excited manifold respectively. In line with

this, the electronic TDMs are separated in µege and µgee , allowing for the transition between the

manifolds. Moreover, the vibrational TDMs are also block diagonal and can therefore be separated

in µggv and µeeg , since they treat transitions within each respective manifold.

Another thing worth noting is that the TDMs are generated separately for the different sites,

which allows for the introduction of an angle between them. In the code used in this work, the

time evolution is done separately for the different site TDMs and the TDMs are later combined via

a dimer angle, but in retrospect it would be slightly faster to calculate the combine the different

site TDMs first and do the time evolution later.

The fact that the ground and excited manifold matrix blocks are uncoupled means that one

can shift the energy difference between these blocks, the exciton energy, to zero, or near zero in

case of an excitonic gap. The vibrational modes retain their original frequencies. Making this

shift means that the electronic frequencies relevant to the system are much lower (near zero),

which means that a lower time resolution is needed for an accurate time evolution computation.

Equivalently, making this shift allows for a more efficient use of the chosen time grid. After the

Fourier transform, the frequency axis can be shifted back to the physical values. In line with the

works [6, 22] that inspired these investigations, the shift back to physical values is not done for the

heterodimer discussed in section 4.1, but is done for the homodimer in section 4.2 with an exciton

energy of 18190 cm−1.

3.2 Further considerations on computational tractability

The multidimensional spectra calculations can get expensive quite quickly if one is not careful.

Factors that directly impact the computational cost, along with ways to tackle them are:

• System (Hamiltonian) size: having a larger basis set describing the phenomena in the system

allows for ’richer’ physics to be probed, but is expensive.

– Tackle: choose the smallest basis set needed to probe the investigated phenomena. 1)

The system only interacts twice with an EM pulse that could change the electronic state

(the first two pulses, see Fig. 2.2. Moreover, on either site of the Feynman diagram,

the initial state on either side must be in the same electronic manifold. Hence only two
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different electronic states need be included: a double electronically excited state is not

relevant in 2DEV spectroscopy that probes a system starting in the ground manifold. 2)

The same is the case for the on-resonance vibrational mode: 2DEV spectra on a system

with small vibronic coupling (either HT or FC) in that mode will mainly require a

single vibrational excitation therein, for the same reason: double vibrational excitation

will ’not’ be reached in the on-resonance mode. 3) For other vibrational modes, choose

a number of vibrational states that is appropriate for the vibronic coupling strength:

more states if the coupling is stronger.

In the homodimer, a maximum of 8 vibrational states are allowed in the system, spread

over either site, giving a total Hamiltonian size of 135. (The vibrational frequency is

the same for both sites and for both ground and excited manifold, which allows for

simple truncation by counting the total vibrational quanta present in the system.) In

the heterodimer, up to a single electronic excitation, up to a single on-resonance mode

quantum and up to three off-resonance mode quanta are allowed, yielding a Hamiltonian

size of 36.

• Number of ’temperature terms’: this means the number of states that are in the initial

superposition and in thermal equilibrium.

– Tackle: include those states that correspond to significant 2DEV spectra contributions.

This means eigenstates that have sufficient initial population (via Boltzmann factor)

and overlap with the relevant states in site basis, as described in section 2.2.6. The

homodimer investigated in this work is assumed to start in absolute ground state, while

the heterodimer (at kT = 105 cm−1) starts in a superposition of all states in the off-

resonance mode in ground manifold.

• Number of realisations (different dimer trajectories): calculating the ensemble average 2DEV

response requires computing the response for a large number of different bath trajectories.

The larger the bath fluctuations, the more realisations need be included in order for the

response to converge to the ensemble average.

– Tackle: find the number of realisations beyond which the response function barely

changes by visual inspection of the 2DEV spectra. 1000 realisations were found to be

appropriate for the homodimer investigated in this work. It was found useful to compute

the random trajectories in parallel, giving each a unique seed.

• Size of time grid: large enough to probe the essential physics. Most of the interesting

fluctuations of the time response for either of the time domains involved in multidimensional

spectra happen in the beginning of the time interval: the functions are ’decaying oscillations’.

Hence after a certain time, depending on the system itself and the bath coupling, the response
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function is effectively noise. Probing that noise is unnecessary, yet one might still want to

have a long time sample in order to obtain a high resolution in the 2DEV spectra.

– Tackle: sample the 2DEV response function up to the time when the response has ef-

fectively fully ’decayed’, for both t1 and t3. Apply zero-padding to this response, which

means adding the ’zero signal’ at the end of the sampled signal in order to obtain a

response function signal as if it were sampled for a long time. Since it is known that

the function will decay to zero after sufficient time anyway, no ’unphysical’ data is fab-

ricated here.

However, this zero-padding can introduce artefacts in the Fourier transformed 2DEV

spectra if the sampled response has not sufficiently decayed at the end of the sampling

interval. In that case the response in time domain can be described as convoluted with

a step function, the Fourier transform of which is a sinc function. Hence an artefact

that can be introduced by zero padding is the convolution of the 2DEV spectra with

sinc functions in either/both ω1 or ω3 direction, depending on whether there has been

sufficiently long sampling in the respective time domains.

A way to deal with this artefact is to multiply the time response signals with apodi-

sation functions, such as a decaying exponential ∝ exp(−ti/Λi) and/or a Gaussian

∝ exp(−(ti/
√

2σi)
2). This can smoothen the ’step’ to the padded zeros and reduce the

artefact. Moreover, this apodisation makes the calculated spectra ’smoother’.

All in all, it is a bit of an art to play around with the grid size, basis truncation, number

of realisations, apodisation functions etcetera in order to get a decent 2DEV spectrum within a

reasonable time frame. Hence, certain calculation parameters are established relatively arbitrarily

by checking at which ’accuracy’ the calculation converges sufficiently well. The parameters chosen

for the hetero- and homodimer calculations are given in Appendix A and B respectively.



Chapter 4

Results

In this chapter, the methods outlined in the previous chapter are used in order to answer the three

main goals of this work, as described in the introduction: 1) reproduce the basic 2DEV results in

a previous theoretical work on the heterodimer [6], which will be 2DEV spectra for three different

vibronic coupling cases, 2) expand on those results, which is done by varying the angle between

the transition dipoles for the chromophores and 3) calculate 2DEV spectra for a homodimer that

has not yet been investigated with 2DEV [22]. The heterodimer is discussed first.

4.1 Heterodimer

The first thing that we will try to reproduce is the basic 2DEV spectrum calculated for three

vibronic cases investigated in Ref. [6]. Those three 2DEV spectra are copied here in Fig. 4.1

for convenience of the reader. The main conclusion of this comparison is that the different vi-

bronic coupling cases leave slightly different trace in the 2DEV spectra, most notably in the ’high

frequency’ region around 400-500 cm−1 on the electronic axis. The details of the different peak

origins, positions and colours in the figure will be discussed later on in this section. For now these

spectra are shown to give the reader an impression of what will be tried to calculate.
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[H]

Figure 4.1: The basic 2DEV calculation at waiting time (t2) zero for three vibronic cases in

the heterodimer published in Ref. [6] and copied here. Each column in the figure represents a

different vibronic coupling configurations, characterised by the two parameters S and η written

above, which represent the strengths of the Franck-Condon and Herzberg-Teller activities in the

off-resonance vibrational mode respectively. Hence the left column represents a system with no

vibronic activity in the off-resonance mode, the middle has FC activity, and the right one has both

FC and HT. The top row shows the linear absorption spectra for the three different cases. See

the original work for more details. The bottom row shows the corresponding 2DEV spectra. The

horizontal axis corresponds to the electronic ’E’ part of the 2DEV, the first part of the Feynman

diagrams. The vertical axis corresponds to the infrared ’V’ part of the 2DEV, the second part of

the Feynman diagrams. The linear absorption frequency band matches the electronic band on the

horizontal axis of the 2DEV spectra and have identical ranges.

4.1.1 Reproduction of basic 2DEV result

In Fig. 4.2 the first attempt at reproducing the simplest vibronic case (leftmost column in Fig.

4.1 is shown and is compared with the simplest vibronic case result calculated in Ref. [6]. The
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linear spectrum shows two main peaks: one electronic peak ’corresponding’ to each site. They

have their main origin in the electronic part of the Hamiltonian, Eq. (2.6): the excitonic gap (100

cm−1) combined with the dipole-dipole coupling (also 100 cm−1), which means that these peaks

are found at approximately ωvis = (∆E ±
√

∆E2 + 4 ∗ J2/2, which are ∼ −62 and ∼ 162 cm−1.

In addition, there are slight shifts due to the vibronic coupling in the on-resonance mode, which

is ’on’ with Sf = 0.005 for all three vibronic cases. Extra peaks at higher frequencies occur when

there is non-zero vibronic activity in the off-resonance mode. The 2DEV spectra show the same

division into two main ’columns’ of peaks on the electronic axis, matching the two main absorption

peaks in the linear absorption.
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Figure 4.2: The initial attempt at the reproduction of the 2DEV spectrum for the simplest

vibronic case calculated in Ref. [6]. The leftmost column in Fig. 4.1 is cut out for easy comparison

and is shown here on the left: this is the original work in Ref. [6]. The right 2DEV and absorption

spectra in this figure are calculated in this work. The specifics of the calculation are presented

in Appendix A and an effort is made to set the plot parameters such that easy comparison is

possible. The vertical lines in the linear absorptions are stick spectra to illustrate which lines

contribute. In the right (new) linear spectrum, the colours of the sticks denote the different initial

state contributions (and hence reflect the non-zero temperature effects). Many contour lines are

plotted to match the style of the original work and to demonstrate less prominent 2DEV features.

Zoom in on the PDF for better visibility (vector graphics).

Without yet trying to analyse every feature in either 2DEV spectra, one prominent difference

can immediately be seen between the original work and the first attempt here. In the new calcu-

lation, the right peak in the absorption spectrum is much lower than the left; the same holds for

the right column of peaks in the 2DEV spectrum. This is not the case in the original calculation
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in Ref. [6], shown in Fig. 4.1, where the two main absorption peaks are approximately the same

in height. This difference is also observed for the two other vibronic cases, shown in the 2DEV

spectra added in Appendix C.

In the new calculation, the peak height differs by a factor ∼ 10. Since this ratio is found for

all three vibronic cases and in both the absorption and 2DEV spectra, it can be deduced that

this difference is rooted in the ’electronic’ parameters of the calculation. That means that the

coupling J , the electronic transition dipole moment ratio µA/µB and the excitonic gap ∆E are

involved. (All the vibrational parameters play a much smaller role in this peak ratio.) That is, if

the calculation is qualitatively done ’correctly’.

After checking (and correcting!) the computer code many times, it was decided to investigate

whether the parameters presented in Ref. [6] were indeed the ones used. A simple model Hamilto-

nian, mimicking the electronic part of the heterodimer was set up, with varying excitonic coupling

and varying electronic TDM ratio’s. The excitonic gap was assumed correct (100 cm−1), given the

matching peak location in the absorption spectra. The ratio of the ’left’ and ’right’ absorption

peaks was calculated for varying µA/µB and J . The result is shown in Fig. 4.3 and a qualitative

discussion of the figure’s main features is provided.
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Figure 4.3: Shown is log10 (Iβ/Iα), the log ratio of the two ’exciton’ peak heights in linear

absorption of a simple three state Dimer system as function of the site TDM ratio µB/µA and

exciton coupling J . Zero temperature is assumed. Note that A and B denote the sites (site

basis) while α and β denote the two ’excitonic’ eigenstates. The excitonic gap in this dimer is

∆E = 100 cm−1. In those dimers considered in this work that include one or more vibrational

modes, the ratio of the two main ’exciton’ peaks is primarily determined by the dipole-dipole

coupling J and by the ratio of the oscillator strengths: µB/µA. That is, if the vibronic coupling is

’small’, i.e. when the Frank-Condon and Herzberg-Teller coupling are small. A slice of this figure

at µB/µA = 1/4 can be seen in Appendix D.

The fine blue line indicates the region in parameter space where one of the two eigenstates is dark:

the ’right’ peak corresponding to ’site B’ has zero intensity on the blue line parameter region. The

three dashed lines indicate the regions where the linear absorption peaks have the indicated ratios.

Note that the peaks are equal in height for zero coupling J with a TDM ratio of one (two identical,

uncoupled sites). Moreover, the figure shows a symmetry: the peak ratio is invariant when both

the TDM ratio µB/µA and J are inverted.

Another peculiar observation is that two peaks of non-zero height exist in a dimer that has a TDM

of zero at one of the sites. This happens at the line of µB/µA = 0 if the coupling J is non-zero:

due to the coupling, ’site B’ borrows oscillator strength from ’site A’.

It is found that at the published parameters (J = 100 and µA/µB = −1/4), the absorption

peak ratio is indeed Iα/Iβ ∼ 10, as found in the new 2DEV calculation shown in the right column

of Fig. 4.2. From Fig. 4.3, it was expected that either the dipole strength ratio µA/µB or the

excitonic coupling J used in the calculation of [6] was not as reported, but differed by a minus sign.

When flipping the coupling to J = −100 cm−1, the spectra shown in Fig. 4.4 are found, which
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show a ratio of the left and right linear absorption peaks that is now closer to unity, approaching

the spectra reported in Fig. 4.1, though slight differences still exist in the linear absorption. The

minus sign flip in the original paper [6] was indeed confirmed by the first author Eric A. Arsenault.
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Figure 4.4: The second attempt at the reproduction of the 2DEV spectrum for the simplest

vibronic case calculated in Ref. [6] (the leftmost column in Fig. 4.1). This time with J =

−100 cm−1. Other specifics of the calculation are reported in Appendix A

2DEV peak origins

Besides the clear distinction of two main columns in the 2DEV spectra due to the exciton peak

coupling, other 2DEV features can also be understood. It is worth noting that in this simplest
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vibronic case S = 0 and η = 0, which means that both FC and HT coupling, which are imple-

mented in the off-resonance mode, are turned off. Four main peaks (near ωIR ∼ 1650 cm−1) are

red, while four other main peaks and (two in either column) and additional smaller peaks are blue.

In this case, the different colours correspond to different Feynman diagrams, as the diagrams have

different sign, as described in section 2.2.5.

The four red peaks are ’ground state bleach’ (GSB) signals in a square configuration: two

columns for reasons described above and two rows because the two different sites have different

vibrational modes. The high frequency (on-resonance) modes have frequencies of 1650 and 1660

cm−1 in the electronic ground states of site A and B respectively. In the ground state bleach

process the system is 1) electronically excited and subsequently de-excited back to ground state

and 2) vibrationally excited and subsequently de-excited. Moreover, the states in the electronic

ground manifold are uncoupled to other states. Therefore the energy difference between the ab-

solute ground state and the on-resonance vibrationally excited states on either site are also 1650

and 1660 cm−1. The GSB peaks are expected to lie on exactly those values on the IR axis, which

is exactly what is seen in the calculation of this work, the right 2DEV of Fig. 4.4.

The highest four blue peaks are ESA and are all a vibrational excitation and subsequent de-

excitation in the electronically excited manifold. Each column corresponds to either site ’A’ or ’B’

being excited. In each column there are two blue peaks: the highest frequency blue peak (at 1630

or 1615 cm−1 in the left 2DEV of Fig. 4.4 corresponds to the vibrational excitation occurring in

the electronic ground state on the site where the electronic excitation is not. The low frequency

blue peak in each column(at 1573 or 1590 cm−1 in the left 2DEV of Fig. 4.4) corresponds to the

pathway where vibrational excitation occurs on the same site as the electronic excitation.

There are also two ESA peaks of much lower intensity, one per column (at 1573 or 1590 cm−1

in the left 2DEV of Fig. 4.4). These two peaks occur at the same IR frequency as the aforemen-

tioned two ESA peaks. Their pathway is attributed to the vibrational excitation occurring in ’the

vibrational mode’ in the electronically excited state on the site where the electronic excitation is

not. Yet, this ’excitation’ is possible due to the dipole-dipole coupling between the sites.

Now all six peaks seen in both 2DEV’s in Fig. 4.4 have a pathway attributed to them in terms

of the ’site basis states’. These descriptions are not exact since the attributed ’site states’ are not

eigenstates, but the system is simple enough for some sense to be made out of these ’site state

pathways’. It is not so simple for the homodimer in the next section.

The original calculation in the left 2DEV of Fig. 4.4 shows the GSB and ESA peaks at

slightly different value: all at approximately 5 cm−1 lower frequency on the IR axis. Eric A. Ar-

senault was asked about the origin of this discrepancy and he attributed it to the system-bath

implementation. In Ref. [6], the bath is implemented as a set of harmonic oscillators coupled to

each energy level in the system Hamiltonian. In this work’s presented 2DEV calculation of the
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heterodimer however, the bath is not implemented: a proper ensemble average is calculated for

the homodimer, but not for the heterodimer.

However, a few variations on baths were newly investigated, by letting all the vibrational modes’

energies and exciton energies fluctuate with values such that the peak widths in Fig. 4.1 were

approximately recovered. These investigations however, did not yield a shift in the peaks on the

IR axis in the 2DEV spectra. One case is given in Appendix E. Indeed it can be understood that

fluctuations on the ground manifold vibrational modes’ energies yields a peak broadening, but no

peak shift on the IR-axis, because the fluctuating states are uncoupled. Hence this work’s bath

implementation style cannot cause the ’extra 5 cm−1’ shift seen in Fig. 4.1. Further details on

the original work’s bath implementation are found in Ref. [6].

Three vibronic coupling cases

Using the updated model parameters used in Fig. 4.4, all three vibronic cases are calculated and

shown in Fig. 4.5. Several observations can be made:

• The GSB peaks remain almost identical for the three cases, as in the original comparison in

Fig. 4.1.

• The two main ESA peaks in the left column remain approximately in place for the three

cases, which is also the case in Fig. 4.1.

• There is extra activity in the 400-500 cm−1 region on the electronic axis when FC or HT

activity is turned on, though this is not seen as prominently as in Fig. 4.1.

• A feature emerges near ωIR ≈ 1550 cm−1 when vibronic activity is turned on and it is slightly

lower in frequency for HT than for FC, as in 4.1.

• Specific peak height ratios between the two columns do not exactly match those in Fig. 4.1,

seen in the linear absorption spectra: in the new calculation, the right column is slightly

higher than the left, in all three cases. This is not the case in the original three cases,

where they are equally high or the left one is slightly higher. Still, the two main peaks are

approximately equally high in all three cases.

Hence there is quite some similarity between the calculation of this work and that in Ref. [6]. The

main remaining difference is the aforementioned 5 cm−1 shift on the IR axis.
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Figure 4.5: The 2DEV spectra for the same three vibronic cases discussed in Ref. [6], seen in

4.1.

ESE and GSE diagrams

Shown so far are the GSB and ESA Feynman diagrams. The ESE and GSE spectra that are

described in Fig. 2.2 do not seem to yield more information compared to the GSB and ESA

spectra and are effectively a mirror image of Fig. 4.5. For completeness, the ESE and GSE

diagrams are shown in Fig. 4.6. These peaks are found at the same position on the visible axis,

but at the inverted positions on the infrared axis, which can be understood from the diagrams in

Fig. 2.2. In the second stage (t3 interval) of the Feynman diagrams, for ESA and GSB the third

interaction (which is an infrared pulse) happens on the left side of the diagram, while for ESE and

GSE this interaction happens on the right side of the diagram.
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The vibrational mode that is on resonance with this pulse only has two levels in this system,

with a very low (0.005) Huang-Rhys factor. That in turn means that during the t3 interval the high

mode excitation sits on the Bra side for GSE and ESE and on the Ket side for GSB and ESA. It is

precisely the difference of energy between the two sides of the diagram during a time interval that

determines a peak’s frequency corresponding to that time interval. The relevant expression for the

2DEV spectra’s peak position is the relevant time evolution element ∝ exp(−i/~∗(EBra−EKet)t3),

explaining the position of GSE and ESE peaks in different quadrants of the Fourier plane.
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Figure 4.6: The ESE and GSE diagrams for identical parameters used in Fig. 4.5.
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4.1.2 Dimer angle variation

As explained in section 2.2.7, different pulse polarisations can be used to investigate the (dimer)

systems. The dimer system defined in Ref. [6] does not have an explicitly defined an angle be-

tween the chromophores: it is somehow absorbed in the ratio of the dipole moments. Hence the

calculation so far (after the definition of the coupling and TDM ratio) is a one dimensional one

in geometrical space. However, the angle can be varied explicitly, which is done in this section.

An angle is introduced between the TDMs of the chromophores, keeping the excitonic coupling

constant at 100 cm−1, which could also have been varied, as the coupling and TDMs have the

same physical dipoles at their origin, but that was not done here.

Two angles are investigated: 10◦ and 20◦. 2DEV spectra are calculated for parallel and per-

pendicular setups and are subtracted. In line with the previous section, the same three vibronic

cases are considered. The result for 10◦ is shown in Fig 4.7 and for 20◦ in 4.8. It is seen that

specific peaks show a difference between the two polarisation setups, while others do not. Several

observations can be made

• The 2DEV difference is larger for 10◦ than for 20◦, as expected ’intuitively’.

• For both angles, in the GSB peaks only a prominent difference is seen in the peaks at

ωIR ≈ 1660 cm−1, which correspond to the vibrational mode in the electric ground state on

site A. The other two GSB peaks (corresponding to the vibrational mode in the ground state

of site B) do not show a difference for either angle: the non-zero difference at those peak

locations is thought to be the tail of the difference at ωIR ≈ 1660 cm−1.

• The most prominent difference is seen for two peaks in the left column: one is a GSB peak

mentioned above: it shows the largest difference. The other is an ESA peak at ωIR ≈
1620 cm−1.

• There is a clear distinction between peaks in this 2DEV subtraction within the individual

vibronic cases. However, the difference between the vibronic cases is much less prominent in

these subtractions.
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Figure 4.7: Shown is the difference between the 2DEV spectra calculated for two different

pulse polarisations: ”parallel” minus ”three times perpendicular”. An angle of 10◦ between the

chromophore TDMs is introduced. These spectra are calculated using the same parameters as in

Appendix A except for the new TDM angle. The vibrational and electronic transition dipoles are

again assumed parallel per chromophore. A different colour scheme from previous figures is chosen

to illustrate that these figures show a difference between 2DEV spectra. The contours are drawn

at the same intervals, illustrating the relative magnitudes of the peak differences: largest difference

is approximately 5%, relative to the highest peak in the 2DEV’s in Fig. 4.4.
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Figure 4.8: The same calculation as in Fig. 4.7 but with a larger angle between the transition

dipole moments: 20◦. The largest difference between the parallel and perpendicular signals is now

approximately 20% compared to the highest peak in Fig. 4.4.
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4.2 Homodimer

The previous section concerns a dimer that features only slight vibronic mixing (weak coupling):

J was on the order of the excitonic gap, while the Huang Rhys factors and the parameter specify-

ing the HT activity were small. In this section, a dimer with strong vibronic mixing character is

discussed: the homodimer defined in Ref. [22, 23]. It has a larger Huang-Rhys factor (S = 0.58)

and excitonic coupling (J = 800 cm−1), see Appendix B.

Since for the heterodimer the vibronic mixing is quite weak, there is a strong correspondence

between the eigenstates and site-states, meaning that the peaks in the 2DEV spectrum can be

’labelled’ by describing the phenomena as if they involve transitions between site-states rather

than eigenstates. This procedure is not valid for the homodimer’s 2DEV spectrum, where the

character of the individual sites is lost. As such, a less detailed description of the individual peaks

in the 2DEV spectra will be given for the homodimer.

The energy fluctuations due to the dimer-bath coupling are shown in Fig. 4.9 for three dif-

ference trajectories (three different dimers in the ensemble) in order to get an impression of the

bath implementation.
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Figure 4.9: Shown are three noise trajectories for the exciton energies on the two dimer sites.

Each color represents a different bath trajectory, while each linestyle represents a different exciton

site: the continuous line site A and the dotted line site B. The waiting time t2 is set to 100 fs in

this case. During this waiting time the bath variations (δEA and δEB) are updated with a time

resolution equal to that chosen for the t3 interval. As the t3 interval is longer than the t1 interval,

the energy fluctuations have a larger overall spread on t3.

4.2.1 Basic 2DEV spectra

The first calculation discussed in this section is the homodimer’s linear response, which is shown

in Fig. 4.10. This is calculated to get an impression of the system’s energy structure and to have

a basic test of this work. There are no two distinct ’exciton’ peaks seen in Fig. 4.10, which is due

to the strong inter-site coupling. Instead, the system is vibronically mixed to the point that the

individual sites are not recognisable. The response in Fig. 4.10 corresponds well to Figure 1b in

Ref. [22], giving at least some assurance in the validity of this work’s calculation. Additionally, the

’monomer spectrum’ was verified, as seen in Appendix F, which is calculated for the same system

by changing J = 100 cm−1 to zero.
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Figure 4.10: Shown is the linear absorption spectrum for the investigated homodimer. The

top figure shows the linear response in time domain, which ’decays to zero’ after approximately

50 fs. The bottom figure shows the linear response in frequency domain. The black vertical lines

depict the stick spectrum, calculated without noise. Zero padding was applied to the time domain

response signal for increased resolution, but only the initial 100 fs is shown where the signal is

non-zero. (The ”init. eigstate: 1” is administrative, denoting that the spectrum is calculated for

the system in ground state; state index 1 and not 0 because of the exciton downshifting described

in section 3.)

Having demonstrated the linear absorption spectrum, the 2DEV spectrum is calculated next,

shown in Fig. 4.11. The left and middle columns of the figure show that the 2DEV response

for all diagrams feature a line at a single value on the IR axis. That value is ωIR = 1220 cm−1,

the frequency of the vibrational mode in this homodimer. When starting this calculation, the

possibility was anticipated that the strong vibrational coupling (Franck-Condon Factor S = 0.58)

would cause more elaborate structure along the IR axis, but a more simple 2DEV spectrum is

found instead. This is a result in itself.

To elaborate on this finding: contrary to the heterodimer investigated above, the homodimer

has all vibrational modes with identical frequency in the electronic ground and excited manifolds.

As noted before for the heterodimer, the splitting of the ESA and GSB ’peak groups’ on the IR

axis is attributed to the fact that the system features different vibrational mode frequencies in
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the ground and excited manifolds. Further separation along the IR axis of the peaks within either

GSB or ESA diagram type was attributed to the vibrational modes being slightly different for the

two sites.

The vibrational modes in the homodimer are not different between ground and excited mani-

folds, nor are they different between either site A or B. Hence, no splitting occurs along the IR-axis

and the different diagrams add up to zero, seen in the bottom row of Fig. 4.11: there are no peaks.

In short, the finding that the signal adds up to zero is linked to the assumption that the vibrational

modes are identical.

It is evident that the 2DEV ’spectral shape’ is quite different for the different Feynman dia-

grams. Especially GSE stands out from the others.

Additionally, as can be seen in the right column of Fig. 4.11, barely a difference is found

between the parallel and perpendicular 2DEV spectra (other than the overall factor 3).
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Figure 4.11: 2DEV spectra for the homodimer. Each row represents the labelled Feynman

Diagram type, see. Fig. 2.2 for elaboration. The bottom row is the sum of all diagrams. The

left column shows the 2DEV spectra for the configuration where all external magnetic fields are

polarised in the same direction; the middle column shows the spectra for the configuration where

the first two fields are polarised perpendicularly to the second two, multiplied by a factor 3; the right

column shows the difference between the preceding columns, which is found to be approximately

zero.

The colours represent the intensity (in arbitrary units) of the 2DEV spectra at the indicated

combination of ’electronic’ and infrared frequencies on the respective axes. The diagrams in each

column get the same scaling factor: the left column is scaled to maximum absolute value one,

which means the highest (negative) peak of the ESA diagram has an intensity of minus one; the

middle column gets that same factor times an extra factor 3 for easy comparison, as elaborated in

section 2.2.7.

The contours are plotted at intervals of 0.1. The rest of the specifics of the 2DEV spectra are

summed up in Appendix B. The waiting time t2 is zero.



46 CHAPTER 4. RESULTS

Slices of the 2DEV spectra shown in Fig. 4.11 at ωIR = 1220 cm−1 are shown in Fig. 4.12.

Here it can more clearly be seen that there is hardly a difference between the parallel and perpen-

dicular polarisation setups.

Of the different diagram types, the ESA shows a peak structure that has most overlap with the

linear absorption, especially at frequencies below ∼ 20500 cm−2. Both GSB and ESA start devi-

ating significantly from the linear absorption shape at that frequency. In line with the observation

that the diagrams add up to zero, the GSB and ESA spectra ’lose’ intensity to the GSE and ESE

diagrams at higher frequencies.
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Figure 4.12: Shown is a slice at ωIR = 1220cm−1 of all the 2DEV spectra and differences shown

in Fig. 4.11. The scaling is kept the same. Each color represents a different Feynman diagram

type. The solid lines depict the parallel setup, the dashed lines the perpendicular setup and the

dotted lines depict the difference between those. In addition, the linear absorption spectrum is

shown (both ’standard’ and multiplied by a factor −1), for comparison with the 2DEV spectra

shapes.

4.2.2 Three waiting times

The last computation to be discussed is the comparison of the homodimer’s 2DEV spectra for

several waiting times: three t2 times. In Fig. 4.13, these times are varied in order to get an

impression of the time evolution of the dimer. Following the order of magnitude in Figure 4 in Ref.

[22], a waiting time up to 100 fs is chosen. The main conclusion here is that most of the spectral

beats seem to happen at ωVIS frequencies above ∼ 20000 cm−1, where the strongest GSE and ESE
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signals are. The sum of the Feynman diagrams remains zero for the different waiting times.

Though it is not done in this work, the intensity at a single point in the 2DEV spectra could

be traced as function of t2. Additionally, the center line slopes could be investigated as function

of the waiting time.
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Figure 4.13: Shown are the 2DEV spectra for three different t2 waiting times, the ’middle time

interval’, as defined in Fig. 2.2. The waiting times are 0, 50 and 100 fs respectively. The colourbar

is identical to that in Fig. 4.11.
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Discussion

In this Chapter, several aspects to the validity and reliability of this work’s results are discussed

qualitatively. More specifically, several sources of uncertainty are explained. As is the case for

many computational investigations, there is a trade-off in the implemented model’s complex-

ity/elaborateness and the sub-sequential computational cost. Uncertainty arises both from the

chosen theoretical framework and from approximations within that framework.

5.1 Uncertainty inherent to the applied theory

In this work, dimers with various basic properties are investigated. The relevance of the chosen

systems is as follows: the heterodimer features a basis set that covers the most simple case of a

dimer that includes both Franck-Condon and Herzberg-Teller activity, particularly in the fact that

only one chromophore accommodates these activities in its low frequency mode. While real life

systems are not expected to be limited to this simple configuration, this is the simplest case to

investigate these two activities. For instance, real life systems could feature both these vibronic

activities over a chain of chromophores. Hence this limitation immediately suggests future inter-

esting investigations.

Additionally, in the homodimer it is assumed that all vibrational modes are identical. As

seen, this assumption leads to the total 2DEV spectrum being a zero signal. Moreover, basic as-

sumptions such as the dipole-dipole approximation, delta-pulse envelope, zero temperature in the

homodimer, accommodation of a single electronic excitation are made in the 2DEV calculation,

all of which assume some ’ideal’ scenario in their respective aspects.

It is worth noting that in the calculations of this work, no bath coupling is added in the main

investigation of the heterodimer and that for the homodimer investigations only the two exciton

energies are fluctuated. Of course in real systems, the vibrational modes and couplings between

energy levels also fluctuate.
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5.2 Errors due to finite computation time

Aside from theoretical approximations as above, an explicit error analysis on the uncertainty in

the 2DEV spectra in this work would involve calculating many 2DEV spectra to investigate how

sensitive they are to specific parameter changes. Such analysis is not done in this work, yet some

description of reasons for uncertainty can be given.

Errors/uncertainties in the calculation are introduced by truncations that are necessary in order

to limit computation time. Things that directly relate to computational cost and precision are:

1. 2D time grid size, refining this is a bit of an art. Additionally, the zero padding on the time

domain 2DEV response introduces slight artefacts in the form of ’ripples’ on the peaks, as

the peaks are convoluted with sinc functions. These are eliminated as far as possible, but

should be mentioned.

2. Number of Feynman diagrams included in the calculation. All possibilities were included, but

for the heterodimer, the GSE and ESE diagrams did not yield extra information compared

to GSB and ESA.

3. Choosing the Hamiltonian size necessarily introduces basis truncation artefacts, specifically

because of the number of vibrational quanta allowed in the total system. In case of large

Huang-Rhys factors, as in the homodimer, 2DEV peaks are shifted for ’small’ basis sets, as

seen in Appendix G. Initially there was confusion in the 2DEV findings, because the basis

set chosen for the analysis of the homodimer was a bit too small. It could accommodate 7

vibrational excitations in the entire system, which lead to additional peaks that were not

quite understood. Moreover, all Feynman diagrams did not quite add up to zero. As such,

it is tricky to guess which artefacts remain as the result of the chosen final basis set.

4. While the implementation of non-zero temperature effects introduces uncertainty in the

2DEV spectra, as not all states are chosen to be occupied initially,

5. The number of realisations added to arrive at a 2DEV response of a realistic ensemble is

chosen as a compromise between computational tractability and accuracy. Inherently, less

noise is present for a higher number of trajectories.

5.3 Specific 2DEV findings

A few remaining comments of the differences between this work’s 2DEV heterodimer spectra and

those in Ref. [6] are the following.

• The fact that the different vibronic cases show a less prominent difference around the 400-

500 cm−1 region in Fig. 4.4 than in 4.1 is not fully understood. The linear absorption in Fig.
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4.4 shows the ’bulge’ in that regime for the FC and HT cases, but the 2DEV does not seem

to do so ’sufficiently’. It was considered that the temperature was not implemented properly

in the sense that higher energy initial system states were not contributing. However, that

does not seem to be the explanation, as the corresponding ’bulge’ in the linear absorption

for the HT case in Fig. 4.4 is due to the lowest initial energy state.

• The system-bath implementation in Ref. [6] leads to a shift on the IR axis of the 2DEV

spectra that is not found in this work. It was investigated whether this work’s bath imple-

mentation, based on fluctuating system energy levels, could also account for such a shift.

That was done by trying several noise variations on the vibrational energy levels that would

approximately recover the peak widths in the original work. Yet, these fluctuations did not

yield a shift on the IR axis of the peaks, as expected.

• Slightly different definitions of the vibrational TDM, the one in this work taking the displace-

ment in excited state into account, could explain some of the slight remaining differences

between the heterodimer 2DEV spectra in this work and those in Ref. [6], but this is not

investigated specifically.
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Conclusion

In this work, a 2DEV calculation method was implemented and applied to two types of dimer

systems in order to contribute to the theoretical background of 2DEV spectroscopy, a relatively

new technique. Three goals were set in this work 1) to verify the basic results of 2DEV work on

a heterodimer [6], 2) to expand on those results by including laser polarisation in the calculation

and 3) to use calculate 2DEV spectra for a homodimer with strong vibronic coupling that had not

been investigated with 2DEV previously.

The first goal was achieved in the sense that basic features of GSB and ESA peaks were repro-

duced: two columns of peaks were found, which verified the previous work in Ref. [6] qualitatively.

Moreover, the four GSB peaks were found to match, except for a shift of approximately 5 cm−1

on the IR-axis. This same shift was also found for the ESA peaks. This shift is attributed to

the difference in the specific system-bath implementation between this work and the original. The

original work shows features in the region from ωVIS = 400-500 cm−1 of the 2DEV spectra for the

vibronic cases when Franck-Condon and Herzberg-Teller activity are present. This is reproduced

to some degree, but the found 2DEV features in that region are much less prominent than in the

original work.

The second goal of this work was achieved by introducing an angle between the heterodimer’s

two different chromophore transition dipole moments. Two of these ’dimer angles’ were investi-

gated (10◦ and 20◦) by computing 2DEV spectra, assuming two different polarisation setups of the

external electromagnetic fields: perpendicular and parallel. The difference between these spectra

yielded a ’2DEV subtraction’ that manifests itself clearly for certain peaks, but not for others.

Most notably, the 2DEV difference is larger for the larger angle, as expected. Additionally, the

2DEV peaks belonging to the lower energy ’exciton’ excitation shows a larger dependence than

the higher energy ’exciton’.

The third goal was achieved already by calculating the 2DEV spectra for the dimer defined in

Ref. [22]. While in the heterodimer the peaks of the different Feynman diagrams did not overlap

due to the dimer’s specifics, this was not the case for the homodimer. As such, the 2DEV peaks
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were found on a single value of the IR-axis: at the vibrational quantum of the harmonic oscilla-

tor in the homodimer. The non-zero Franck-Condon activity does not cause a splitting of 2DEV

peaks along the IR-axis. As a result, the total sum of all the Feynman diagrams is zero: the 2DEV

signal that would be measured for the homodimer is zero under the made assumptions. In other

words, a difference in vibrational frequency between the ground state and excited state is crucial

for generating a 2DEV signal and strong vibronic coupling alone (of Franck Condon type) does

not induce a 2DEV signal.

The findings of this thesis outlined above lead to new interesting research questions. This

work can be expanded upon in various ways. The investigated dimer had the ’strong’ vibronic

activity in a mode that was off-resonance with the 2DEV probe, while the homodimer had the

’strong’ vibronic activity in a mode that was on-resonance with the 2DEV probe. It would be

interesting to investigate the direct influence of having the 2DEV on- or off-resonance with the

strongly coupled vibrational mode. This might be done by defining a single dimer system with two

vibrational modes, one of which has strong vibrational coupling, and calculating 2DEV spectra for

two different regions on the IR axis, which is achieved by using the distinct modes’ TDM operators.

One reason for the relevance of this work is the role of vibrational coupling in exciton/energy

transport in natural light harvesting systems, organic photovoltaics etcetera. Such energy trans-

port happens in molecular aggregates and systems larger than a dimer. Hence it is interesting to

extend the calculations in this work to a trimer or larger, rather than dimer only: the mathematics

and computer code are readily extendable. It is interesting to check how the difference between

vibronic cases changes when extending the molecular chain. This is more expensive than the dimer

calculation, but in case of relatively weak coupling, the number of vibrational states need not be

large. As such the Hilbert space dimension can remain relatively low and so these computations

are expected to be tractable.
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A Parameters used in the heterodimer calculation

Most of these dimer parameters/specifics are directly copied from Ref. [6] (if available). Some,

such as the dimer angle are introduced here.

Dimer parameters

Parameter Symbol Magnitude

Dimer angle θ [0◦, 10◦, 20◦]

Average electronic transition energy ε Kept zero

Excitonic gap ∆E 100 cm−1

Excitonic coupling J ±100 cm−1

Electronic TDM ratio µAe/µBe −1/4

Vibrational TDM ratio µAv/µBv 1

On-resonance vibrational quantum, ground manifold A ~ωA,g,f 1650 cm−1

On-resonance vibrational quantum, ground manifold B ~ωB,g,f 1660 cm−1

On-resonance vibrational quantum, excited manifold A ~ωA,e,f 1545 cm−1

On-resonance vibrational quantum, excited manifold B ~ωB,e,f 1540 cm−1

Off-resonance vibrational quantum, A ~ωA,s 200 cm−1

Max nr. of off-resonance mode quanta νMAX 3

Huang-Rhys factor, all on-resonance modes Sf 0.005

Huang-Rhys factor, off-resonance mode Ss [0, 0.1]

HT activity strength η [0,−0.15]

Dimer temperature kT 105 cm−1

Hamiltonian size NH 36

Other 2DEV parameters

Parameter Symbol Magnitude

t1 time resolution dt1 20 fs

t1 array length Nt1 130

t3 time resolution dt3 7 fs

t3 array length Nt3 1100

Waiting time t2 0 fs

Zero padded t1 array size Nt∗1 1000

Zero padded t3 array size Nt∗3 10000

Gaussian apodisation on t1 σ1 500 fs

Gaussian apodisation on t3 σ3 3000 fs

Exponential apodisation on t1 Γ1 120 fs

Exponential apodisation on t3 Γ3 1800 fs



B Parameters used in the homodimer calculation 63

B Parameters used in the homodimer calculation

Most of these dimer parameters are directly copied from Ref. [23] (if available).

Homodimer parameters

Parameter Symbol Magnitude

Dimer angle θ 15◦

Average electronic transition energy ε0 18190 cm−1

Excitonic coupling J 800 cm−1

Electronic TDM ratio µAe/µBe 1

Vibrational TDM ratio µAv/µBv 1

Vibrational quantum ω0 1220 cm−1

Max nr. of vibrational quanta allowed in dimer νMAX 8

Huang-Rhys factor λ2 0.58

Solvent standard deviation σ 500 cm−1

Solvent correlation time tc 40 fs

Dimer temperature kT 0 cm−1

Hamiltonian size NH 135

Other 2DEV parameters

Parameter Symbol Magnitude

Number of averaged trajectories Nreal 1000

t1 time resolution dt1 1 fs

t1 array length Nt1 110

t3 time resolution dt3 2 fs

t3 array length Nt3 200

Waiting time t2 [0, 50, 100] fs

Zero padded t1 array size Nt∗1 1000

Zero padded t3 array size Nt∗3 10000

Gaussian apodisation on t1 σ1 25 fs

Gaussian apodisation on t3 σ3 70 fs

Exponential apodisation on t1 Γ1 N/A

Exponential apodisation on t3 Γ3 N/A
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C Initial attempt at heterodimer 2DEV reproduction
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Figure C1: Initial attempt at reproducing the 2DEV spectra for the same three vibronic cases

discussed in Ref. [6], seen in 4.1. As mentioned in the main text, the left/right peak ratio differs

from that published in Ref. [6], is found for all three vibronic cases and is therefore most likely

rooted in the ’electronic parameters’ of the calculation.
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D Slice of log peak ratio figure
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Figure D1: A slice at µB = 4µA of the peak ratio as function of coupling and dipole ratio shown

in Fig. 4.3. Here, the vertical axis represents both the individual peak intensities (a.u.) from 0 to

1; and the ratio between these, as indicated. As mentioned, the excitonic gap is 100 cm−1. Note

that at µB = 4µA and J = 100, the peak ratio is approximately one.
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E Noise on the heterodimer
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Figure E1: The 2DEV spectrum for the heterodimer FC case (middle vibronic case) with noise

on the energy levels of the system. The timescale chosen for the bath fluctuation is Λ = 50 fs. The

excitons have an independent fluctuation of σ = 80 cm−1. The high frequency vibrational modes

(on resonance with the 2DEV probe) are all given independent fluctuations of σf = 10 cm−1, while

the low frequency mode gets σS = 2 cm−1. 200 trajectories are averaged in this spectrum. The

exponential apodisations of Γ1 = 1/600 fs−1 and Γ3 = 1/9000 fs−1 and Gaussian apodisations of

σ1 = 100 fs and σ3 = 1600 fs are put on the time domain response. This is sufficient to demonstrate

that the GSB peaks do not shift on the IR-axis in this bath implementation for noise that cause

peak widths of the same order as those in Fig. 4.1.
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F Monomer spectrum (for homodimer model)
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Figure F1: Shown is the linear response of the monomer, which is the homodimer system with

the excitonic coupling J set to zero. The plot layout is the same as in Fig. 4.10: the top graph

displays the response function in time domain, while the bottom displays the response function in

frequency domain. The spectrum shows the vibronic progression that is expected for a monomer

with a relatively large Huang-Rhys factor. This corresponds well to Figure S1 in Ref. [23] and is

calculated as a test of the computer implementation.

(The ”init. eigstate: 0” is administrative, denoting that the spectrum is calculated for the system

in ground state (state index 0).
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G Basis truncation for the homodimer
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Figure G1: The stick linear absorption spectra for six different basic truncations. The dashed

lines depict the system’s eigenenergies at each truncation. The sticks are calculated from the

electronic transition dipole moments in eigenbasis. No disorder is included in this calculation and

the system temperature is zero.

The difference between these bases is the number of maximum vibrational quanta present in the

system: νMAX. Note that the Hilbert space dimension ’H dim’ is not proportional to ν2
MAX.

However, in a homodimer, the Hamiltonian size would be proportional to the square of ’one plus

the maximum number of vibrational quanta per site’, if the truncation would be done by limiting

the number of vibrations per site, rather than the total number of vibrations in the system.

This plot helps find a compromise between computational effort and accuracy.
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Figure G2: The comparison of 2DEV spectra for the homodimer (no disorder included) in order

to investigate the artefacts introduced by basis truncation. The most noticeable feature is the fact

that the different Feynman Diagrams do not add up to zero if the basis set is too small. Based on

this comparison combined with the linear stick spectra seen in Fig. G1 a basis is chosen with a

νMAX = 8


