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Abstract: Time series classification tasks can be found in a wide range of real-world applica-
tion domains, ranging from human activity recognition to electrocardiogram diagnostics. Echo
state networks have already proven to be excellent tools for such tasks, providing a natural
expression of temporal dynamics within their recurrent neural connections. Conceptors, neuro-
computational mechanisms, extend the scene of recurrent neural networks by providing high-level
conceptual and logical control on the low-level dynamics of a network. During their conception,
a demonstration displayed state-of-the-art performance on a time series classification task using
a conceptor classification scheme. This paper builds upon this demonstration to further explore
conceptors for time series classification. To do this, five variations to the original conceptor classi-
fier were proposed and evaluated on an astronomical object benchmark dataset. Additionally, an
analysis of the performance of a heuristic for determining the value of a key conceptor parameter,
aperture, was provided. It was found that all of the proposed conceptor classifier variations and
baseline echo state network classifiers were able to achieve top-level performance on the bench-
mark dataset compared to previous methods applied to this dataset. Furthermore, the aperture
analysis has shown that a significant increase in conceptor classifier performance can be achieved
when choosing the value of the aperture parameter carefully. These findings provide additional
evidence that conceptors can be utilised effectively for time series classification tasks.
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1 Introduction

Time is a constituent of everything observable and
a fundamental component of the human experience
and the dynamics of real-world processes. As a re-
sult, countless processes are registered with some
notion of time. Their dynamics can be captured as
a collection of ordered, repeated measurements of
the system over time, a time series. These mea-
surements can consist of either single or multiple
time-dependent variables, defining univariate and
multivariate time series, respectively.

A challenging task involving time series con-
cerns time series classification (TSC), where the
presented series are assumed to belong to one of
finitely many predefined but unknown classes, and
the goal is to assign them this corresponding class
label. This is a fundamental task for a broad range
of real-world applications, ranging from human ac-
tivity recognition to electrocardiogram diagnostics.

Recurrent neural networks (RNNs) seem to be
appealing tools for such time series processing
tasks. They belong to a class of artificial neural
networks where abstract neurons form a recurrent
connection between them, thus allowing them to
express temporal dynamics. It can be shown that
they are, under some assumptions, universal ap-
proximators of dynamical systems (Jaeger, 2001).

However, while various algorithms have been de-
veloped within this class, they often suffer from
problems when trained via gradient descent due to
slow convergence, vanishing or exploding gradients,
or disruption when the network is driven through
bifurcations (Lukoševičius & Jaeger, 2009). Be-
cause of this, Jaeger (2001) took a new approach
to RNN design under the name of Echo State Net-
works (ESNs), which belongs to a collective trend
referred to as Reservoir Computing (RC). This ap-
proach overcomes the aforementioned shortcomings
of gradient descent RNN training by keeping the
connection weights from the input layer to the re-
current layer (reservoir) and the connections within
this reservoir fixed at their random initialisation; no
further adaptation of these weights is undertaken.
The desired output can then be produced by a
trainable linear combination of all of these response
signals. Consequently, ESNs have shown promising
results on various TSC tasks such as speech recog-
nition (Skowronski & Harris, 2006), (Skowronski &
Harris, 2007) with low computational burdens.

Broadening the RNN scheme, Jaeger (2014)
proposed neuro-computational mechanisms, called
conceptors, which are able to control the neural
dynamics conceived within RNNs using principles
of conceptual abstraction and logic. They act as
high-level neural filters for the low-level activation
within a network and can be invoked to constrain
the neural state space to the shape that was in-
duced by patterns from which the conceptors were
learnt. The strength at which these conceptors con-
strain neural activation is dictated by the aperture
parameter and is of great importance for achieving
proper filtering.

Conceptors also allow for a discriminative and
conceptual classification scheme, where they are
used as prototypes to conceptualise the various
classes of patterns, on which a similarity measure
with a novel pattern can be imposed to classify
it. In Jaeger (2014), state-of-the-art performance
of a conceptor classifier built upon an underlying
ESN was achieved on a common benchmark, the
japanese vowel recognition task. These favourable
characteristics of ESNs and conceptors, together
with state-of-the-art performance on the aforemen-
tioned benchmark dataset, indicate merit for the
TSC scene.

Additionally, this proposed classification scheme
was, in Jaeger’s own words: ”based on numerous
ad-hoc design decisions and should be regarded
as no more than a first demonstration of the ba-
sic usefulness of conceptors for classification tasks”
(Jaeger, 2014). This, for example, includes a use-
ful heuristic for determining the value of the afore-
mentioned aperture parameter. This statement, in-
dicating much room for various alterations to the
classification scheme to be explored, became the
main motivator behind this research, for which I
have two aims:

i Propose variations to the conceptor classifier
presented by Jaeger (2014) for TSC and analyse
their performance.

ii Analyse the performance of the aperture heuris-
tic.

The first aim will be achieved by proposing five
conceptor classifier variations, built upon ESNs,
and evaluating their performance with respect to
the conceptor classifier by Jaeger (2014) and base-
line ESN classifiers on an astronomical object
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benchmark dataset. Additionally, the performance
evaluations of various previous methods applied to
this dataset will further assist in this evaluation.
The second will be achieved by comparing the per-
formance of conceptor classifiers utilising the aper-
ture heuristic to the performance of conceptor clas-
sifiers for which their aperture values were opti-
mised by an iterative optimisation scheme.

2 Background

In this section, the background necessary for this
research is laid out. This starts with a description
of the underlying echo state networks (ESNs) used
for the conceptor classifiers. It will also include two
common ESN methods for classifying time series,
to function as baseline models for a final perfor-
mance evaluation. Thereafter, the general workings
of conceptors are explained, which will include a de-
scription of how to compute them, as well as some
of their properties and functionalities. Finally, a
summary of the previous methods applied to the
dataset used in this study, as presented in Ruiz,
Flynn, Large, Middlehurst, and Bagnall (2021) is
given. The technicalities of the conceptor classifier
as given in the demonstration by Jaeger (2014) will
be provided in the methods section, to be expanded
upon in this thesis.

2.1 Echo State Networks

An ESN, as introduced in Jaeger (2001) and Jaeger,
Lukoševičius, Popovici, and Siewert (2007), is a dy-
namical system comprised of a reservoir; a recur-
rent layer of size Nx, to which Nu input and Ny

output units are added. Here, only the connections
from the reservoir to the output layer are learnt,
the connections from the input layer and within
the reservoir remain at their random initialisation.

The network provides a nonlinear expansion of
the input signal fed to it, where the goal is to ob-
tain an information-rich activation state space in
x(n) (n = 1, . . . , T ) to be able to obtain the de-
sired output ytarget from a linear combination of it
(Lukoševičius, 2012). Here, T is the length of the
signal in discrete time. The network also acts as a
form of memory, as activation values can propagate
through the network via its recurrent connections
as n increases.

The system can be described by the update equa-
tions

x̃ (n+ 1) = tanh
(
Wx(n) +W inu (n+ 1) + b

)
,

(2.1)
x (n+ 1) = (1− a)x(n) + ax̃ (n+ 1) , (2.2)

where u and x are the input signal and internal
activation states, W in and W are the Nx×Nu and
Nx×Nx weight matrices for the input and reservoir
connections, and b is the bias vector, respectively.

Then, given some Ny × Nx matrix W out com-
puted from the internal activation states after run-
ning the network, the output of timestep n is given
by

y(n) = W outx(n). (2.3)

2.1.1 Classification With One-hot Label

Using an ESN for TSC usually involves learn-
ing from class labels represented by a one-hot en-
coded vector, where the entry corresponding to
the correct class is equal to one and zero for the
other entries. The goal is then to find W out which
transforms the obtained (time-averaged) activation
states from the network to approximate this repre-
sentation.

In independent sessions starting from a fixed
starting activation state vector x(0) = xstart, this
is done by driving the network with samples uk(n)
(k = 1, . . . , kmax; n = 1, . . . , T ), where k is the
sample index and kmax is the number of samples
in the training set, which includes the samples of
all classes. Here, a sample is assumed to be an en-
tire sequence corresponding to one observation with
fixed length T , which will be standard throughout
this thesis. Then, having obtained the network ac-
tivation states xk(1), . . . , xk(T ) (k = 1, . . . , kmax),
the Nx sized vectors Σxk are obtained by taking
the average value of the activation states for that
sample over time

Σxk =
1

T

T∑
n=1

xk(n), (2.4)

as recommended in Lukoševičius (2012). This will
result in a time-averaged activation state vector for
every sample.

These vectors Σxk are then horizontally con-
catenated into a Nx × kmax state collection ma-
trix X = [Σx1; . . . ; Σxkmax ]. Correspondingly, a
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Ny × kmax target matrix Y target = [y1; . . . ; ykmax ]
is constructed from the kmax one-hot encoded class
label vectors yk (k = 1, . . . , kmax), where Ny is the
number of dimensions of this one-hot representa-
tion and thus classes to be distinguished. Here, for
every k, the entry of the k-th vector in Y target cor-
responding to the true class label of the matching
k-th vector of state collection matrix X is one and
zero for the other entries.

Then, computing W out is usually done via Ridge
regression, also known as regression with Tikhonov
regularisation

W out = Y targetW>
(
XX> + βI

)−1
, (2.5)

where β is a regularisation coefficient and I is the
identity matrix.

Classifying a sample u from a testing set means
feeding it to the network and obtaining the acti-
vation states x from the network’s response. These
are then again time-averaged into a vector Σx and
then multiplied with W out to obtain y

y = W outΣx. (2.6)

The predicted class label j∗ for sample u is then
decided by

j∗ = argmax
j

yj , (2.7)

where yj is the j-th entry of y.

2.1.2 Classification With One-step Predic-
tion

Another common method to utilise ESNs for TSC
is to train them as 1-step predictors of the input sig-
nal. This is done by computing an output weight
matrix per class by learning on time-delayed ver-
sions of the input signals fed to the reservoir. Clas-
sifying a sequence would then mean predicting this
signal using the generated output weights and as-
signing the class label for which the output weights
predicted the signal with the lowest error, defined
by some error function.

Technically, for each class j, an output weight
matrix W out

j is learnt from the mj class training

samples ukj (n) (j = 1, . . . , jmax; k = 1, . . . ,mj ; n =
1, . . . , T ), where jmax is the number of classes, as
follows:

• In mj independent sessions starting from
x(0) = xstart, a network is driven with
the input of each training sample ukj (k =
1, . . . ,mj). Then, the network activation states
xk(1), . . . , xk(T − 1) are extracted. The last
timestep is pruned as a target in the input sig-
nal with a timestep greater than T does not
exist.

• All of these activation states xk are then hori-
zontally concatenated into a Nx × ((T − 1) ·
mj) matrix X = [x1(1), x1(2), . . . , xmj (T −
2), xmj (T − 1)].

• Additionally, the sample input vectors
ukj are horizontally concatenated into a
Nin × ((T − 1) · mj) matrix Ytarget =
[u1j (2), u1j (3), . . . , u

mj

j (T − 1), u
mj

j (T )]. These
input vectors represent the target prediction;
the first timestep of each sample is therefore
pruned.

• The output weights W out
j are therafter com-

puted according to Equation 2.5.

Then, classifying a sample u from the testing set
means feeding it to the network and, together with
the output weights W out

j (j = 1, . . . , jmax), obtain-
ing the output vectors yj(n) (n = 1, . . . , T ) from
the networks response with 2.3. The last timestep
of the output vectors and the first timestep of the
input vector are subsequently pruned to match the
predictions with the corresponding input entry.

Finally, the predicted class label j∗ for test sam-
ple u is then decided by picking j for which the
Root-Mean-Squared error is minimal:

j∗ = argmin
j

√√√√ 1

T − 1

T−1∑
n=1

(u(n+ 1)− yj(n))
2
.

(2.8)

2.2 Conceptors

When a recurrent neural network such as the one
described in section 2.1 is driven by some signal
u, the resulting activation states x from its update
equations can be thought of to lie in an Nx dimen-
sional state cloud. From this, a conceptor C can be
created which, geometrically, takes on the form of
an ellipsoid, of which its main axes represent the
principal components of this state cloud.
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Such a conceptor can be thought of as a neu-
ral filter which characterises the activation pat-
terns within the network driven by u. For my pur-
poses, this conceptor C is an Nx ×Nx soft projec-
tion matrix, projecting activation states to a sub-
space spanned by several principal components of
the state cloud.

Conceptor matrices can be obtained by minimis-
ing the loss function

L(C) = E
[
‖Cx− x‖2

]
+ α−2‖C‖2fro, (2.9)

where the expectation E is taken over all states x.
From this equation, it can be observed that a

balance is struck between suppressing all and none
of the leading components of the conceptor. This
balance is dictated by the aperture parameter α,
where small values will shape the conceptor to the
null matrix (suppressing all states) and large values
to the identity matrix (no suppression).

Minimising the loss L(C) leads to the analytical
solution

C = R
(
R+ α−2I

)−1
, (2.10)

where R = E
[
xx>

]
is an Nx ×Nx correlation ma-

trix with the expectation E is taken over activation
states x and I is the identity matrix. Practically, R
is estimated with the approximation R = XX>/T ,
where X = [x(1), . . . , x(T )] is the Nx × T state
collection matrix from activation states x and T is
again the length of the signal.

2.2.1 Boolean Logic

A key characteristic of conceptors is that they allow
for the logic-based operations OR, NOT, and AND
to be applied to them, for which almost all laws of
Boolean logic hold. On the data level, the OR (∨)
operation can be semantically interpreted as the
merge of two datasets. For example, the resulting
conceptor from the OR operation of two separate
conceptors C and B can be described by the con-
ceptor that would be derived from the union of the
two activation state sets from which C and B were
computed. This operation applied to conceptors C
and B is formalised as

C ∨B = ¬ (¬C ∧ ¬B) . (2.11)

The NOT (¬) operation can be interpreted as
the inversion of the principle component weights

of a dataset and its application to conceptor C is
formalised as

¬C = I − C. (2.12)

The AND (∧) operation can then be straight-
forwardly interpreted by considering the interpre-
tations of the OR and NOT operations together
with de Morgan’s rule. This operation applied to
the conceptors C and B is then given as

C ∧B =
(
C−1 +B−1 − I

)−1
. (2.13)

2.3 Previous Methods

The multivariate time series classification bench-
mark by Ruiz et al. (2021) will be used to obtain the
performance evaluations of sixteen classifiers which
were applied to the dataset used in this research,
discussed in detail in section 3.1. This subsection
is devoted to briefly describe the aforementioned
classifiers.

First, three variations on the dynamic time warp-
ing (DTW) algorithm are considered, proposed by
Shokoohi-Yekta, Hu, Jin, Wang, and Keogh (2017).
Dynamic time warping is a 1-nearest neighbours
classifier with a distance metric accounting for
some offset between the compared time series. In-
dependent DTW (DTWI) treats each dimension of
the multivariate time series separately. Dependent
DTW (DTWD) measures distances between mul-
tiple dimensions simultaneously. Adaptive DTW
(DTWA) implements a threshold to decide whether
to use DTWI or DTWD.

The second classifier described in their paper is
the Hierarchical Vote Collective of Transformation-
based Ensembles (HIVE-COTE) (A. Bagnall,
Flynn, Large, Lines, & Middlehurst, 2020) and is
an ensemble of various univariate time series clas-
sifiers.

Other ensemble classifiers include Generalized
random shapelet forest (gRFS) (Karlsson, Papa-
petrou, & Boström, 2016), Canonical interval for-
est (CIF) (Middlehurst, Large, & Bagnall, 2020),
and The multiple representation sequence learner
(MrSEQL) (Le Nguyen, Gsponer, Ilie, O’Reilly, &
Ifrim, 2019). gRFS and CIF are tree-based clas-
sifiers using shapelets (Ye & Keogh, 2011) and
Canonical Time-Series Characteristics, Catch22
(Lubba et al., 2019), respectively. MrSEQL is also
a tree-based classifier which uses symbols derived
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from Symbolic Aggregate Approximation (SAX)
(Lin, Keogh, Wei, & Lonardi, 2007) or Symbolic
Fourier Approximation (SFA) (Schäfer & Högqvist,
2012).

Another symbolic classifier WEASEL+MUSE
(MUSE) (Schäfer & Leser, 2017) extracts words
from the time series using Multivariate Unsuper-
vised Symbols and Derivatives, MUSE and SFA.
These words are filtered and the remaining words
are used to build a logistic regression classifier.

The study also evaluates several deep learning-
based methods, which includes Residual Network
(ResNet) (Z. Wang, Yan, & Oates, 2017), Incep-
tionTime (Ismail Fawaz et al., 2020), and Time
series Attentional Prototype Network (TapNet)
(Zhang, Gao, Lin, & Lu, 2020), all being convo-
lutional neural networks. ResNet is comprised of
three convolutional layers to which residual connec-
tions are added that let the input bypass these lay-
ers. InceptionTime builds upon ResNet by adding
”inception” modules, which first reduce the dimen-
sionality of the time series to then apply convolu-
tions of various sizes. TapNet combines the output
of a Long Short-Term Memory network and con-
volutional layers using random subsets of the di-
mensions of the time series. The dimensionality of
these feature representations is reduced and used
as a prototype for each class, which are then used
to match a test sample based on a distance metric.

As a final classifier, the random convolutional
kernel transform (ROCKET) (Dempster, Petitjean,
& Webb, 2020) is described. It produces features
based on a large number of random convolution
kernels, which are thereafter used to construct a
linear classifier.

3 Methodology

In this section, the methods utilised for achieving
the aims of this research are described. First, the
dataset used for the evaluation of the conceptor
classifiers is laid out, together with some prepro-
cessing steps. Thereafter, a quick note on the un-
derlying networks used for the conceptor and base-
line classifiers, as well as the method for aperture
selection is provided. Then, the conceptor classifier
as demonstrated in Jaeger (2014), together with
the proposed alternative conceptor classifiers are
described. Following this section, the experimental

setup taken to evaluate the performance of these
classifiers is discussed. Finally, an overview of the
experimental setup of the aperture analysis is given.

This project was implemented in Python 3.10.0,
for which the code is available at https://github
.com/VlegelsJamie/Conceptor-Classifiers.

3.1 Dataset

The performance of each conceptor classifier
was evaluated on the LSST astronomical object
dataset. The dataset represents a subset of the
dataset used for The Photometric LSST Astronom-
ical Time Series Classification Challenge (PLAs-
TiCC) (Bahmanyar et al., 2018) and was cre-
ated by A. J. Bagnall et al. (2018) for multivari-
ate time series classification performance bench-
marking. The dataset is publicly available and
was retrieved from their Time Series Classifica-
tion website in the datasets listing http://www

.timeseriesclassification.com/dataset.php.
Originating from a 2018 Kaggle competition,

PLAsTiCC was an open data challenge in prepara-
tion for observations from the Large Synoptic Sur-
vey Telescope (LSST), which will gather informa-
tion on a large portion of the sky over 10 years
from 2022 onwards. The challenge entailed classi-
fying light curves driven by the physical processes
of 14 different classes of astronomical objects, rang-
ing from supernovae to binary stars orbiting around
their common barycenter. These light curves are
measurements of an object’s brightness as a func-
tion of time — by measuring the photon flux in six
different astronomical filters or passbands. These in-
clude the ultra-violet, visual and infrared regions of
the light spectrum. As opposed to containing ad-
ditional meta-data as in the PLAsTiCC dataset,
the LSST dataset only contains the aforementioned
light curves.

Each sample is provided as a 6-dimensional time
series made from the flux measurements of 6 differ-
ent passbands over a period of 36 timesteps. Figure
3.1 depicts an exemplary light curve for each class.

These samples were chosen to be representative
of the shape of the majority of class samples. How-
ever, it must be noted that the range of observed
values of samples follows a positively skewed distri-
bution.

The dataset consists of 4925 samples, of which
2459 and 2466 were used to construct the train-
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Figure 3.1: Exemplary light curves from the LSST dataset. Each subplot depicts a representative
single class sample, in which the values of the 6 passbands are plotted against 36 discrete timesteps.
Each colour represents a certain passband.
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ing and testing set, respectively (per design of the
benchmark). Table 3.1 shows the class distribution
of the entire dataset, which can be observed to be
imbalanced. The training and testing set both fol-
low this presented class distribution, apart from
seven classes for which the testing set has an addi-
tional sample.

Class Name #Samples Samples (%)
Mira Variable 14 0.28

KN 47 0.95
µ-lensing 69 1.40

SLSN 103 2.10
SNIax 125 2.54

SNIa-91bg 136 2.76
RR Lyrae 154 3.13

AGN 241 4.89
TDE 247 5.02
SNIbc 306 6.21
EBE 540 10.96

M-dwarf 626 12.71
SNII 763 15.49
SNIa 1554 31.55

Table 3.1: Distribution of class samples in the
LSST dataset.

3.2 Preprocessing

As a first preprocessing step, the data is standard-
ised to address the scale variance of the differ-
ent passbands. This variance in scale might lead
certain passbands with large scales to dominate
the amount of impact on the classification decision
compared to passbands with small scales.

To make each passband contribute approxi-
mately equally to the final classification decision,
each passband was individually preprocessed into a
standardised format. Due to the non-normality of
the data (aforementioned positive skew), the me-
dian value and interquartile range from the pass-
bands were used to shift and scale them respect-
fully. Formally, this means that for every passband
i in the dataset, the transformed passbands S̃i were
acquired according to

S̃i =
Si −median(Si)

Q3(Si)−Q1(Si)
, (3.1)

where Si are the unprocessed values of passband
i (i = 0, . . . , 6), median(Si) is the median value

of all unprocessed samples in the training set of
passband i, and Q3(Si) and Q1(Si) are the values
of the third and first quartile of all unprocessed
samples in the training set of passband i.

As a second step, due to the risk of overexcit-
ing the network, the samples were then individually
scaled an additional time such that the minimum
and maximum values across the samples were con-
fined to a range of [−1, 1] according to

S̄k =
S̃k

max(S̃k)−min(S̃k)
, (3.2)

where S̄k is the final preprocessed sample k, S̃k is
the previously k-th processed sample, max(S̃k) is
the maximum value of sample S̃k, and min(S̃k) the
minimum value of sample S̃k.

Figure 3.2 displays the effect of the aforemen-
tioned preprocessing steps on samples from three
different astronomical objects.

3.3 Network Configuration

For every conceptor and baseline classifier, an echo
state network with 6 input units, a constant bias
term, and leaky integrator units with update equa-
tions 2.1 and 2.2 was created.

This was done by creating a fully connected
reservoir weight matrix W , an input weight matrix
W in, and a bias vector b sampled from a normal dis-
tribution centred around 0.0 with a standard devi-
ation of 1.0. Thereafter, W was scaled to a spectral
radius ρ, W in to W in

scale, and b to bscale. The start
activation state vector xstart was initialised to the
zero vector. A note on how these parameter values
were chosen is given in section 3.6.

3.4 Aperture Adaptation

Optimal aperture values for conceptors were found
by first computing a preliminary conceptor C̃ from
a correlation matrix R according to

C̃ = R (R+ I)
−1

(3.3)

and then adapting the aperture via an aperture
adaptation operation ϕ on the conceptor C̃ accord-
ing to

ϕ (C, γ) = C̃
(
C̃ + γ−2

(
I − C̃

))−1
, (3.4)
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Figure 3.2: Three exemplary light curves from the LSST dataset before (top row) and after
preprocessing (bottom row)

where ϕ(C, γ) is the aperture adjusted conceptor
obtained from the preliminary conceptor C̃ by scal-
ing its aperture by a factor of γ.

Instead of cross-validation on the training data to
optimise the aperture adaptation factor γ, Jaeger
(2014) selects the value for which the gradient of
the squared Frobenius norm

∆(γ) =
d

d log(γ)
‖ϕ (C, γ) ‖2fro (3.5)

is maximal. This research follows the same method
for deciding on aperture values.

Practically, γ was obtained by computing the
quantities ‖ϕ(C̃, 2y)‖2fro for y = 0, . . . , 15. Then,
the pairwise differences between these values were
computed. Finally, they were interpolated using a
cubic spline and the support point ymax for which
the value of the gradient was maximal was chosen
for γ, yielding γ = 2ymax .

3.5 Conceptor Classifiers

In this section, first, the ”standard” conceptor clas-
sifier as presented in Jaeger (2014) is laid out.
Thereafter, all of the technicalities of the proposed
conceptor classifiers will be presented. This in-
cludes three variations on the CStandard classifier:
CReduced, CCombined, and CTubes. These techniques
primarily aim to provide an alternative way to em-
ploy the activation states from an ESN to construct
conceptors. Additionally, two alternative conceptor
classifiers based on reservoir excitation space sim-
ilarity (CReservoir), and forecasting (CForecast) are
proposed.

In contrast to the standard conceptor classifier,
where an echo state network is utilised passively by
merely acting as a feature expansion step, the latter
two methods refer back to the network dynamics in
the testing stage. In this way, a key characteristic of
conceptors comes more actively into play, namely,
acting as neural filters to confine a network to the
mode of processing typical for the patterns the con-
ceptor was learnt from.
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3.5.1 CStandard

This classification method follows the demonstra-
tion in Jaeger (2014) and is presented here again
for clarity.

Conceptually, this method involves learning a
”positive evidence” conceptor for every class from
the activation states induced in a network by the
samples belonging to that class. Additionally, a cor-
responding ”negative evidence” conceptor is com-
puted, which represents the activation states that
were not induced by any of the other class sam-
ples. When testing, the induced activation states
of unseen samples are then directly compared to
these conceptors, yielding evidence for both types
of conceptors for each class. Finally, class labels are
then decided based on the maximum value of the
combination of both pieces of evidence.

Technically, for each class j, a positive evi-
dence conceptor C+

j was first learnt from the mj

preprocessed class training samples ukj (n) (j =
1, . . . , 14; k = 1, . . . ,mj ; n = 1, . . . , 36) as follows:

• In mj independent sessions starting from
x(0) = xstart, the network described in sec-
tion 3.3 was run with the input of each
training sample ukj (k = 1, . . . ,mj). Then,

the network activation states xk(1), . . . , xk(36)
were extracted and concatenated into a sin-
gle 36 · Nx dimensional column-vector xk

j =

[xk(1); . . . ;xk(36)].

• The obtained xk
j were then horizontally con-

catenated into a (36 ·Nx)×mj matrix X from
which a correlation matrix Rj = XX>/mj

was computed. From Rj , a preliminary ”pos-

itive evidence” conceptor C̃+
j was then con-

structed via Equation 3.3 and has a size of
(36 ·Nx)× (36 ·Nx).

Thereafter, for each class j, an additional prelim-
inary negative evidence conceptor C̃−j which repre-
sents the event of not being any of the other classes
was computed as

C̃−j = ¬
∨
{C̃+

1 , . . . , C̃
+
j−1, C̃

+
j+1, . . . , C̃

+
14}. (3.6)

Then, for both the preliminary positive evidence
and negative evidence conceptors, their aperture
was adapted using the method described in section
3.4. However, instead of adjusting the aperture by

the mean values of the found aperture adaptation
factors γ+j and γ−j as in Jaeger (2014), the aperture
adaptation factors remained unaltered once found
for each conceptor. This has proven to yield a sig-
nificant increase in performance for all of the con-
ceptor classifiers. This adjustment will therefore be
standard throughout this research.

Finally, classifying a sample u from the testing
set meant feeding it to the network and again ob-
taining a single vector x consisting of the concate-
nated network activation states. For each positive
evidence conceptor C+

j , its corresponding negative

evidence conceptor C−j , and test vector x, the pos-

itive evidence quantity E+
j was computed by

E+
j = x>C+

j x, (3.7)

the negative evidence quantity E−j by

E−j = x>C−j x, (3.8)

and the combined evidence quantity Ej by

Ej = E+
j + E−j . (3.9)

The predicted class label j∗ for sample u was then
decided by

j∗ = argmax
j

Ej . (3.10)

Following thorough experimentation, it was
found that this equally weighted blend of positive
and negative evidence did not always work opti-
mally for the various classifiers proposed in this the-
sis. Large variations for both types of evidence were
found depending on the parameters of the underly-
ing network. To account for this type of flexibility,
a linear blending operation of evidence

Ej = (1− µ)E−j + µE+
j (3.11)

is needed, where µ is a parameter indicating the
amount of blending. µ = 1.0 would mean only the
positive evidence is used for Ej and µ = 0.0 would
mean only the negative evidence is used.

This is analogous (but less efficient to compute)
to the morphing operation as proposed in Jaeger
(2014)

C∗j = (1− µ)C−j + µC+
j , (3.12)

on the positive and negative evidence conceptors
for 0.0 ≤ µ ≤ 1.0 and then computing the evidence
value Ej directly from C∗j with

Ej = x>C∗j x. (3.13)
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For the remainder of this paper, this additional
hyperparameter µ is introduced to the classifiers,
which dictates this blending of evidence.

3.5.2 CReduced

Due to the concatenation of activation states to
form x, this vector scales according to the number
of reservoir units Nx times the length of the sample,
which is 36. Considering conceptors grow quadrat-
ically in size with x, this only allows underlying
reservoirs with a small number of reservoir units to
be employed for this task.

As a first method to reduce the dimensionality
of the vectors from which the conceptors are con-
structed, the average of the activation states over
time is taken instead of concatenating them to-
gether.

Technically, for each class j, a positive evi-
dence conceptor C+

j was first learnt from the mj

preprocessed class training samples ukj (n) (j =
1, . . . , 14; k = 1, . . . ,mj ; n = 1, . . . , 36) as follows:

• In mj independent sessions starting from
x(0) = xstart, the network described in sec-
tion 3.3 was run with the input of each train-
ing sample ukj (k = 1, . . . ,mj). Then, the net-

work activation states xk(1), . . . , xk(36) were
extracted and time-averaged into a single Nx

dimensional vector Σxk according to 2.4.

• The obtained Σxk were then horizontally con-
catenated into a Nx×mj matrix X from which
a correlation matrix Rj = XX>/mj was com-
puted. From Rj , a preliminary ”positive evi-

dence” conceptor C̃+
j was then constructed via

Equation 3.3 and has a size of Nx ×Nx.

The definitive positive and negative evidence
conceptors C+

j and C−j were obtained according to
the same procedure as with the standard conceptor
classifier. These conceptors were then morphed to
form C∗j according to 3.12.

Classifying a sample u from the testing set meant
obtaining a single vector Σx from the network’s
response, representing the time-averaged reservoir
states. Then, the combined evidence value Ej was
obtained by computing

Ej = Σx>C∗j Σx (3.14)

and the predicted class label j∗ for sample u was
decided by 3.10.

3.5.3 CCombined

As a second method, the activation states are
left as is and function as separate feature vec-
tors. Thus, each sample generates 36 feature vec-
tors from which the conceptors will be learnt. These
types of conceptors are standard throughout Jaeger
(2014) for stationary sequences of potentially infi-
nite length, but will now be tested on these non-
stationary finite length sequences. The final evi-
dence values will then be given as a summation of
evidence over the timesteps.

More technically, for each class j, a positive ev-
idence conceptor C+

j was again learnt from the

mj preprocessed class training samples ukj (n) (j =
1, . . . , 14; k = 1, . . . ,mj ; n = 1, . . . , 36) as follows:

• In mj independent sessions starting from
x(0) = xstart, the network described in sec-
tion 3.3 was run with the input of each train-
ing sample ukj (k = 1, . . . ,mj). Then, the net-

work activation states xk(1), . . . , xk(36) were
extracted. These activation states were left as
is and not concatenated into a single column
vector.

• The network activation states xk

were then horizontally concatenated
into a Nx × (36 · mj) matrix X =
[x1(1), x1(2), . . . , xmj (35), xmj (36)] from
which a correlation matrix Rj = XX>/(36·mj)
was obtained. From Rj , a preliminary positive

evidence conceptor C̃+
j was then constructed

again via Equation 3.3 and has a size of
Nx ×Nx.

Definitive positive and negative evidence concep-
tors were then again computed from which C∗j was
formed.

Classifying a sample u from the testing set meant
obtaining activation states x from the network’s re-
sponse. Then, the combined evidence value Ej was
obtained by computing

Ej =

36∑
n=1

x(n)>C∗j x(n) (3.15)

and the predicted class label j∗ for the sample u
was decided by 3.10.
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3.5.4 CTubes

As a third method, conceptors are not only com-
puted per class but also per timestep. Here, concep-
tors encode ”state region tubes” along time charac-
teristic of a particular class. The final evidence val-
ues will then be given as a summation of evidence
over the timesteps, for which a separate conceptor
is evaluated at each timestep.

Technically, for each class j, the positive evidence
conceptors C+

j (n) (n = 1, . . . , 36) were learnt from

the mj preprocessed class training samples ukj (n)
(j = 1, . . . , 14; k = 1, . . . ,mj ; n = 1, . . . , 36) as
follows:

• In mj independent sessions starting from
x(0) = xstart, the network described in sec-
tion 3.3 was run with the input of each train-
ing sample ukj (k = 1, . . . ,mj). Then, the net-

work activation states xk(1), . . . , xk(36) were
extracted.

• Then, for each timestep n, these activation
states were horizontally concatenated into
Nx ×mj matrices X(n) = [x1(n), . . . , xmj (n)]
from which correlation matrices Rj(n) =
X(n)X>(n)/mj were obtained. From Rj(n),
the preliminary positive evidence conceptors
C̃+

j (n) were then again constructed via Equa-
tion 3.3 and have a size of Nx ×Nx.

Thereafter, for each class j and timestep n,
the preliminary negative evidence conceptor C̃−j (n)
was computed via

C̃−j (n) = ¬
∨
{C̃+

1 (n), . . . , C̃+
j−1(n),

C̃+
j+1(n), . . . , C̃+

14(n)}
(3.16)

and together with the positive evidence conceptor,
their apertures were adjusted according to section
3.4. Then, for each class j and timestep n, the pos-
itive evidence conceptor C+

j (n) and negative evi-

dence conceptor C−j (n) were linearly interpolated
to obtain C∗j (n) via

C∗j (n) = (1− µ)C−j (n) + µC+
j (n). (3.17)

Classifying a sample u from the testing set meant
again obtaining activation states x and computing
the evidence quantity Ej by

Ej =

36∑
n=1

x(n)>C∗j (n)x(n). (3.18)

The predicted class label j∗ for sample u was then
decided by 3.10.

3.5.5 CReservoir

As mentioned, this method utilises the characteris-
tic of conceptors in their ability to filter activation
states which are atypical to the patterns from which
the conceptors were computed. With this method,
the reservoir is run once to compute class concep-
tors and then a second time with the learnt concep-
tors in the update loop. In this second step, the ac-
tivation states within the network are constrained
by the applied conceptor. The class label is then
assigned to the class for which its conceptor con-
strained these states the least, measured by the er-
ror between the original and constraint activation
states. To apply a conceptor to the update loop
of the ESN, the conceptors computed per timestep
were utilised.

This means that, for each class j and timestep
n, a positive evidence conceptor C+

j (n) was learnt
as described in the second method of section 3.5.4.
No negative evidence conceptors were computed for
this method.

Then, classifying a sample u from the testing set
meant feeding it to the network and obtaining the
activation states x from the network’s response.

Additionally, for each class j, the network was
run in independent sessions starting from x(0) =
xstart with sample u, for which the positive evidence
conceptors C+

j (n) (j = 1, . . . , 14; n = 1, . . . , 36)
were applied as

x̂j (n+ 1) = C+
j (n) x (n+ 1) , (3.19)

yielding the activation states x̂j .
The predicted class label j∗ for sample u was

then decided by picking j for which the Root-Mean-
Squared error was minimal:

j∗ = argmin
j

√√√√ 1

36

36∑
n=1

(x(n)− x̂j(n))
2
. (3.20)

3.5.6 CForecast

As a final method, not only are the internal reser-
voir activation states compared, but the network’s
response via its output units is also compared. This
is done by doing a one-step prediction task.
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This, firstly, entailed obtaining the output weight
matrices W out

j for each class j as described in sec-
tion 2.1.2. Then, with the same obtained activa-
tion states, a positive evidence conceptor C+

j (n)
was learnt for each class j and timestep n as de-
scribed in the second method of section 3.5.4.

Classifying a sample u from the testing set meant
obtaining the activation states x from the network’s
response. Additionally, the constrained activation
states x̂j were obtained via 3.19 using the concep-
tors C+

j (n) (j = 1, . . . , 14; n = 1, . . . , 36).
As the first piece of evidence, the Root-Mean-

Squared error was computed between input sample
u and the obtained output values yj from the one-
step prediction method described in section 2.1.2,
yielding an error value E1

j for every class j.
As the second piece of evidence, the Root-Mean-

Squared error was also computed between input
sample u and the obtained output values ŷj from
the same one-step prediction method using x̂j as
reservoir activation states, yielding an error value
E2

j for every class j.
As the third piece of evidence, the Root-Mean-

Squared error between outputs yj and ŷj was com-
puted, yielding an error value E3

j for every class
j.

As the last piece of evidence, the the Root-Mean-
Squared error was computed between the activation
states x and x̂j as with the previous method, yield-
ing an error value E4

j for every class j.
Finally, these error values were individually nor-

malised to a range of [0, 1] and the predicted class
label j∗ for sample u was then decided by picking
j for which the sum of these errors was minimal:

j∗ = argmin
j

4∑
h=1

Eh
j . (3.21)

3.6 Experimental Setup

All of the conceptor classifiers mentioned in section
3.5 were implemented and their performance was
evaluated on the testing set. This performance was
compared to the two ESN classifiers as described
in sections 2.1.1 and 2.1.2, functioning as a base-
line. These will be referred to as ESNOne-hot and
ESNForecast, respectively. It was also compared to
the previous methods applied to this dataset, men-
tioned in section 2.3. Accuracy was used as a met-
ric, defined as the ratio between the number of cor-

rect classifications and the number of samples in
the testing set.

The echo state network parameters ρ, W in
scale,

bscale, a, and Nx; morphing parameter µ; and Ridge
regression regularisation coefficient β, were opti-
mised for each conceptor and baseline classifier via
Bayesian optimisation, evaluated using 5-fold strat-
ified cross-validation over the training data (keep-
ing class distribution equal across the folds). These
evaluations were done using randomly initialised
reservoirs to ensure robust parameter values that
will keep the ESNs stable over a large set of ran-
dom initialisations.

For this Bayesian optimisation scheme, the
Matern kernel was used as a Gaussian process es-
timator with an added Gaussian noise with a vari-
ance of 0.04 to account for the performance dif-
ference of the randomly initialised reservoirs. The
lower confidence bound was used as an acquisi-
tion function and was minimised by evaluating it
over 10000 uniformly randomly sampled points and
choosing the point for which the acquisition func-
tion was minimal as the next candidate minimum.
This was repeated for 200 iterations.

Having obtained the optimal hyperparameters
values, the classifiers were run for 40 trials with
randomly initialised underlying reservoirs and eval-
uated on the testing set.

3.6.1 Aperture Optimisation

As the last objective of this research, the per-
formance of the aperture adaptation heuristic 3.5
was analysed by comparing it to the performance
of iteratively optimised aperture values. This was
done by optimising the individual aperture values
of the conceptors via the same Bayesian optimisa-
tion scheme as described previously, but without
the added Gaussian noise to the estimator (no ran-
domly initialised reservoirs were used; the weights
remained fixed). Here, only the aperture values
are optimised; the rest of the hyperparameters re-
main fixed at their previously optimised values. The
apertures for the positive and negative evidence
conceptors were optimised in separate runs and
thereafter combined by searching for a new optimal
µ. Due to computational constraints, this proce-
dure was only employed for the CStandard, CReduced,
and CCombined classifiers.

To determine the space to search over, the con-
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ceptor classifiers were run with a predetermined
random seed and their heuristically determined
aperture values were taken as the centre values of
the search space dimensions. Then, for each positive
aperture value, their upper and lower search space
bounds were taken as the centre value plus and mi-
nus half of this value, respectively. It was found
that the negative evidence conceptors allowed for
significantly less leeway with respect to the range
of ”good” aperture values. This meant that the up-
per and lower search space bounds for the negative
aperture values were taken as the centre value plus
and minus ten percent of this value, respectively.

Once the optimal aperture values were found, the
classifiers were run with the same random seed and
evaluated on the testing set.

4 Results

This section will provide an overview of the
achieved performance of the conceptor classifiers in
comparison with the baseline classifiers and meth-
ods from previous work, as well as an overview of
the aperture analysis results.

Table 4.1 shows the test accuracy (+ standard
deviation) of the conceptor and baseline classifiers.

Method Acc (%)
CStandard 53.12±1.88
CReduced 66.84±1.34
CCombined 65.93±1.41

CTubes 64.96±1.12
CReservoir 64.21±0.61
CForecast 65.63±0.80

ESNOne-hot 67.17±0.44
ESNForecast 59.05±0.75

Table 4.1: Accuracy (+ standard deviation) of
evaluated conceptor and baseline classifiers on
the testing set averaged over 40 trials.

It can be seen that the ESN baseline classifier
which discriminates class labels directly achieved
the highest accuracy score. Of the conceptor clas-
sifiers, the CReduced classifier achieved the highest
accuracy score. Additionally, it can be observed
that, apart from the standard conceptor classifier,
all conceptor classifiers performed better than the
baseline ESN forecast classifier. The hyperparam-

eters values that were used to obtain these results
can be found in Appendix A

Figure 4.1 shows the accuracy score of the con-
ceptor and the sixteen classifiers from previous
work. It can be observed that the ESN baseline
classifier ESNOne-hot has the highest score, with five
conceptor classifiers leading thereafter. CStandard is
the only classifier that performs worse than 50% of
all classifiers.

4.1 Aperture Optimisation

Table 4.2 shows the test accuracy of the conceptor
classifiers for which their aperture was determined
via the aperture adaptation heuristic and for which
their aperture was optimised via the Bayesian op-
timisation scheme.

Acc (%)
Method Heuristic Optimised
CStandard 53.24 54.14
CReduced 66.10 67.80
CCombined 61.39 67.44

Table 4.2: Accuracy of the evaluated conceptor
classifiers with heuristically determined aper-
ture values and Bayesian optimised aperture
values on the testing set with a fixed initial
reservoir.

It can be observed that for all classifiers, their ac-
curacy increased when their aperture values were it-
eratively optimised. The most improvement in per-
formance can be observed for the CCombined clas-
sifier, for which its random seed resulted in rela-
tively low performance using the aperture heuris-
tic. The exact aperture values determined both via
the heuristic and optimisation scheme can be found
in Appendix B.

5 Discussion

Having obtained the necessary results, this section
will delve into the interpretations, implications, and
limitations of this study. Finally, a few recommen-
dations are given for further research.
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Figure 4.1: Accuracy of the conceptor and baseline classifiers compared to sixteen classifiers from
previous work on the LSST dataset.

5.1 Interpretations & Implications

These results imply, first and foremost, that echo
state networks are able to provide an information-
rich enough feature representation through their
non-linear expansion of its input, indicated by the
relatively high performance of the baseline models
compared to the classifiers from previous work.

Additionally, some conceptor classifiers such as
CReduced, CCombined, and CForecast are roughly able
to match the performance of the regularised lin-
ear classifier and able to outperform it when their
aperture values are optimised.

Since the aperture values of the classifiers were
optimised for a single randomly initialised under-
lying reservoir, quite large discrepancies in initial
model performance using the aperture heuristic was

observed. This might have led more ”room” to op-
timise models with ”bad” initialisations and less
room to optimise models with ”average” to ”good”
initialisations. While these results might imply that
the CCombined classifier can benefit more from aper-
ture adaptation than the other classifiers, more
data is needed. It might be particularly useful to
observe how models with good initial reservoirs re-
spond to aperture optimisation. Additionally, from
my observation (outside of the aperture analysis), it
seems that optimal aperture values for the positive
evidence conceptors can be found in a more nar-
row range across various random initialisations of
the underlying network than the optimal aperture
values for the negative evidence conceptors and are
therefore more robust. This has driven the design
decision to only optimize for a single reservoir ini-
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tialisation.
While only being tested on a single dataset, these

results also imply that conceptors can perform well
on relatively complex non-stationary time series
classification tasks and provide additional evidence
that conceptor classifiers can perform competitively
in these.

5.2 Limitations

There are, however, at least two points regarding
possible limitations of this study that might provide
additional nuance to the results.

First, the choice of performance metric was moti-
vated by compatibility with the evaluations done on
previous work provided in Ruiz et al. (2021). How-
ever, the average accuracy might be an uninstruc-
tive quality measure when the dataset is highly im-
balanced as with the dataset in this study. Misclas-
sifications for minority classes will only contribute
a small amount to the final accuracy score. This
means that a high score can still be achieved by
only correctly classifying the majority classes.

Secondly, due to computational constraints, the
search space concerning the size of the underlying
reservoirs used for the optimisation scheme was set
to an arbitrary size. In some cases, the most op-
timal solution was found for the largest permitted
reservoir size. This implies that these models are
possibly under-fitted, with no indication of the the-
oretical performance of bigger models. Therefore,
a larger difference in performance between these
models is likely to be observed when increasing the
reservoir size to the point where the model might
overfit on the training data. This issue had been
partially addressed by assigning models of simi-
lar computational complexity an equal-sized search
space for the reservoir size. However, one can better
address this issue by searching over a space that is
large enough to overfit the models.

5.3 Recommendations

The most straightforward and practical recommen-
dation for further research would be to utilise these
conceptor classifiers on a wide range of datasets;
perhaps on all datasets presented in A. J. Bagnall et
al. (2018). This will allow the overall performance
of the presented classifiers to be more reliably esti-
mated.

Additionally, following the previous section,
given that the theoretical performance of some of
the classifiers is most likely limited by the scale of
the underlying ESNs, an optimisation scheme that
includes larger ESN sizes will shed more light on
absolute performance. This, in turn, will allow a
more fair comparison with baseline models. An in-
teresting way to explore this would be to use ”diag-
onal conceptors” proposed in a Master’s thesis by
de Jong (2021). Instead of learning a conceptor per
class with Nx

2 parameters as used in this research,
diagonal matrices are used to construct conceptors,
containing only Nx parameters. This cuts back on
both computation time as well as memory usage
quite significantly.

This, in turn, makes it interesting to extend the
performance evaluation to also include an analysis
on the computational complexity of the classifiers.
As mentioned in the introduction, echo state net-
works and conceptors were conceived with, among
other considerations, an eye for low computational
burdens. It would be particularly interesting to
compare processing times and memory require-
ments to state-of-the-art classifiers, especially deep-
learning-based models.

Also in this light, since the hyperparameter µ is
only utilised in a stage when the evidence values
have already been computed and thus the models
can be evaluated cheaply, it would be wise to op-
timise this parameter by sampling from its search
space multiple times per run with the same evi-
dence values. This will lessen the computation time
as fewer full model evaluations will be needed to es-
timate µ reliably.

Moreover, it would be interesting to see how
these conceptor classifiers perform on other types of
classification tasks. As imagined hereafter, concep-
tors might lend themselves to be an intuitive tool
for tasks which can be formulated in Boolean logic
at a high-level.

One area of exploration could include tasks for
which more conceptual ”meta-data” is available.
For example, hierarchical classification problems
with taxonomic data, where the goal is to classify
classes that are related to each other via a taxon-
omy. A possible solution to such problems using
conceptors might be found in learning a concep-
tor for each class representing a ”leaf node” in the
taxonomy. Then, via Boolean logic, superclass con-
ceptors can be created from the combination of leaf
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node conceptors using the OR operation, effectively
creating parent nodes. To classify a sample would
then entail iteratively computing the evidence of
each child node conceptor starting from the top of
the hierarchy and selecting the node with the high-
est evidence. This process is then repeated with the
child node now acting as the parent node until a leaf
node is reached. This leaf node then corresponds to
the classified class.

Another area that can be explored is multi-label
classification, for which the goal is to assign mul-
tiple class labels to a sample. Qian, Zhang, and
Wang (2019) have already explored this problem
with the conceptor model proposed in Jaeger (2014)
by computing additional conceptors that represent
the data which are shared between multiple classes,
using the AND operator on conceptors. These are
then used to compute evidence values for signal
characteristics belonging to all of the classes for
which the conceptors were made.

Finally, it would be interesting to see by how
much the performance of the classifiers CReservoir

and CForecast, which have their conceptors refer
back to the ESN, can be improved by optimising
their aperture values with an iterative optimisa-
tion scheme as used on the other conceptor clas-
sifiers in this research. Additionally, other (possi-
bly cheaper) ways to optimise the aperture values
should be explored. Using an evolutionary algo-
rithm as in L. Wang, Wang, and Liu (2016) could
be extended to also be used on the classifiers pro-
posed in this paper.
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Jaeger, H., Lukoševičius, M., Popovici, D., & Siew-
ert, U. (2007). Optimization and applications
of echo state networks with leaky-integrator
neurons. Neural Networks, 20 (3), 335–352.

Karlsson, I., Papapetrou, P., & Boström, H. (2016).
Generalized random shapelet forests. Data
Mining and Knowledge Discovery , 30 (5),
1053–1085.

Le Nguyen, T., Gsponer, S., Ilie, I., O’Reilly, M.,
& Ifrim, G. (2019). Interpretable time series
classification using linear models and multi-
resolution multi-domain symbolic representa-
tions. Data Mining and Knowledge Discov-
ery , 33 (4), 1183–1222.

Lin, J., Keogh, E., Wei, L., & Lonardi, S. (2007).
Experiencing SAX: A novel symbolic repre-
sentation of time series. Data Mining and
Knowledge Discovery , 15 (2), 107–144.

Lubba, C. H., Sethi, S. S., Knaute, P., Schultz,
S. R., Fulcher, B. D., & Jones, N. S. (2019).

18

http://arxiv.org/abs/1811.00075
http://arxiv.org/abs/1811.00075
https://arxiv.org/abs/1810.00001
https://arxiv.org/abs/2107.07968
https://arxiv.org/abs/2107.07968
http://arxiv.org/abs/1403.3369
http://arxiv.org/abs/1403.3369


CATCH22: Canonical time-series characteris-
tics. Data Mining and Knowledge Discovery ,
33 (6), 1821–1852.
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Lukoševičius, M., & Jaeger, H. (2009). Reser-
voir computing approaches to recurrent neu-
ral network training. Computer Science Re-
view , 3 (3), 127–149.

Middlehurst, M., Large, J., & Bagnall, A. (2020).
The canonical interval forest (CIF) classifier
for time series classification. In 2020 IEEE
International Conference on Big Data (Big
Data) (pp. 188–195).

Qian, G., Zhang, L., & Wang, Y. (2019). Single-
label and multi-label conceptor classifiers in
pre-trained neural networks. Neural Comput-
ing and Applications, 31 (10), 6179–6188.

Ruiz, A. P., Flynn, M., Large, J., Middlehurst, M.,
& Bagnall, A. (2021). The great multivariate
time series classification bake off: A review
and experimental evaluation of recent algo-
rithmic advances. Data Mining and Knowl-
edge Discovery , 35 (2), 401–449.
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Schäfer, P., & Leser, U. (2017). Multivariate time
series classification with WEASEL+MUSE.
CoRR, abs/1711.11343 . Retrieved from
http://arxiv.org/abs/1711.11343

Shokoohi-Yekta, M., Hu, B., Jin, H., Wang, J., &
Keogh, E. (2017). Generalizing DTW to the
multi-dimensional case requires an adaptive
approach. Data Mining and Knowledge Dis-
covery , 31 (1), 1–31.

Skowronski, M. D., & Harris, J. G. (2006). Min-
imum mean squared error time series classi-
fication using an echo state network predic-
tion model. In 2006 IEEE International Sym-
posium on Circuits and Systems (pp. 3153–
3156).

Skowronski, M. D., & Harris, J. G. (2007). Auto-
matic speech recognition using a predictive
echo state network classifier. Neural Net-

works, 20 (3), 414–423.
Wang, L., Wang, Z., & Liu, S. (2016). An effec-

tive multivariate time series classification ap-
proach using echo state network and adaptive
differential evolution algorithm. Expert Sys-
tems with Applications, 43 , 237–249.

Wang, Z., Yan, W., & Oates, T. (2017). Time series
classification from scratch with deep neural
networks: A strong baseline. In 2017 Interna-
tional Joint Conference on Neural Networks
(IJCNN) (pp. 1578–1585).

Ye, L., & Keogh, E. (2011). Time series shapelets:
A novel technique that allows accurate, inter-
pretable and fast classification. Data Mining
and Knowledge Discovery , 22 (1), 149–182.

Zhang, X., Gao, Y., Lin, J., & Lu, C.-T. (2020).
Tapnet: Multivariate time series classification
with attentional prototypical network. In
Proceedings of the AAAI Conference on Ar-
tificial Intelligence (Vol. 34, pp. 6845–6852).

19

http://arxiv.org/abs/1711.11343


A Model Parameters

Parameter CStandard CReduced CCombined CTubes CReservoir CForecast ESNOne-hot ESNForecast

ρ 1.06 1.07 1.23 1.30 0.67 0.67 1.33 1.57
W in

scale 0.40 1.97 1.81 1.82 0.62 1.64 1.93 1.63
bscale 0.40 0.91 1.90 1.40 0.71 0.91 1.77 1.04
a 0.28 0.38 0.39 0.10 0.17 0.17 0.73 0.15
Nx 25 500 500 80 85 100 500 420
µ 0.00 0.00 0.28 0.80 - - - -
β - - - - - 0.0001 0.18 0.076

Table A.1: Parameter values for the echo state network (ρ, W in
scale, bscale, a, and Nx), conceptors

(µ), and Ridge regression (β).

B Aperture Values

CStandard CReduced CCombined

Conceptor Heuristic Optimised Heuristic Optimised Heuristic Optimised
C1 6.96 4.59 13.93 19.88 168.90 191.86
C2 51.98 77.93 59.71 68.73 90.51 105.98
C3 137.19 200.13 128.00 164.88 78.79 96.61
C4 222.86 143.29 168.90 205.19 68.59 96.51
C5 16.00 8.16 32.00 48.43 128.00 127.70
C6 1.52 1.23 1.52 2.08 103.97 85.87
C7 51.98 51.17 73.52 65.50 84.45 85.27
C8 6.06 3.24 18.38 14.76 274.37 150.99
C9 103.97 117.22 256.00 353.90 111.43 154.18
C10 17.15 14.50 42.22 32.12 128.00 146.63
C11 39.40 39.87 39.40 46.63 68.59 100.94
C12 1552.09 771.60 337.79 170.82 84.45 113.96
C13 22.63 18.44 36.758 25.09 97.01 89.31
C14 12.13 8.03 19.70 16.59 119.43 111.11

Table B.1: Heuristically determined and optimised aperture values of positive evidence conceptors.
Depicted for classifiers CStandard, CReduced, and CCombined. Each conceptor represents a different
class.
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CStandard CReduced CCombined

Conceptor Heuristic Optimised Heuristic Optimised Heuristic Optimised
C1 1910.85 1950.21 181.02 177.27 64.00 71.23
C2 1910.85 1739.29 194.01 180.29 64.00 59.01
C3 2048.00 1934.67 194.01 200.33 64.00 58.52
C4 1910.85 1787.22 194.01 179.03 64.00 56.85
C5 1910.85 1983.06 181.02 190.54 59.71 65.20
C6 1910.85 1748.58 181.02 190.29 64.00 64.27
C7 1910.85 1723.30 181.02 176.76 64.00 60.80
C8 1910.85 2041.73 181.02 167.49 59.71 53.87
C9 1910.85 1795.24 181.02 172.61 59.71 52.27
C10 1910.85 1899.81 181.02 176.81 59.71 66.42
C11 1910.85 1991.44 194.01 206.76 64.00 60.53
C12 1782.89 1746.46 181.02 166.58 59.71 50.49
C13 1910.85 1737.00 194.01 177.59 64.00 56.69
C14 1910.85 1924.83 181.02 170.30 64.00 58.74

Table B.2: Heuristically determined and optimised aperture values of negative evidence concep-
tors. Depicted for classifiers CStandard, CReduced, and CCombined. Each conceptor represents a dif-
ferent class.
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