
A QCD Investigation of the Proton Mass

S. P. Andela (S2989360)

Supervisor: Prof. Dr. D. Boer

2nd examiner: Prof. Dr. R. G. E. Timmermans

October 10, 2022

Abstract

In quantum chromodynamics (QCD), the proton mass can be derived from the
matrix elements of the energy-momentum tensor (EMT). A natural question
that arises is whether the proton mass can be decomposed, e.g. into a quark
and a gluon part. Multiple decompositions have been synthesized, depending
on different criteria like gauge invariance, Lorentz invariance and locality. As of
yet there is no one universal decomposition of the proton mass. In this thesis
we compare the existing decompositions and their relation to each other. This
thesis contains a review of QCD in general, the EMT and how it is related to
the proton mass. Special attention is paid to the renormalization of the EMT
for which operator mixing must be involved. The different decompositions of
the proton mass and the role of the trace anomaly are examined. We compute
numerical results for the mass decompositions and present and discuss graphs
of the running of these decompositions.
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1 Introduction
Nearly all the mass of known matter is contained in protons and neutrons -
the particles that make up the nuclei of atoms. And yet we know surprisingly
little about the distribution of mass inside particles like the proton itself. When
the proton was first discovered, scientists thought it to be an elementary par-
ticle, just like the electron. Later, as more and more particles (particularly
hadrons) were discovered, scientists started noticing patterns among the masses
and charges of the hadrons. This eventually led to the belief the proton consists
of three smaller particles called quarks: two up- and one down-quark. They are
held together by massless gluons in a ball of radius ∼ 1 fm. The total mass
of the proton (∼ 938 MeV) can however not be explained by the sum of the
masses of the three quarks (∼ 9 MeV). The rest of the mass must be contained
in the kinetic energy of the quarks and gluons and the confinement energy of
the quarks. A simple uncertainty principle argument for instance shows that
the confinement energy of the quarks must be ∼ 300 MeV [1]. The modern
picture of a proton is a sea of quarks and gluons described by QCD with three
valence quarks: two up- and one down-quark. A natural question that arises in
this picture is: how much quark and how much gluon is a proton? This thesis
tries to give some insights into this question.

In this context, the QCD energy-momentum tensor (EMT) plays a key role.
Its matrix elements relate to properties like the mass and momentum of a proton,
but also its spin, angular momentum and even pressure and shear distributions
[2]. In this thesis we focus on the mass of the proton and how it can be decom-
posed into contributions from the masses and energies of the quarks and gluons.
We investigate several decompositions from literature [3, 4, 5]. All of these de-
compositions are derived from the EMT via either the Hamiltonian (which is
related to the energy-component of the EMT) or the EMT trace. From the
phenomenological point of view, we compute the numerical results of the mass
decompositions and discuss their scale dependence. For the numerical inputs of
the necessary matrix elements we use the parton momentum fractions and the
scalar charge of the proton.

The thesis is organized as follows: in chapter 2, we review QCD and how
it is based upon the gauge symmetry SU(3). We derive the (classical) QCD
Lagrangian, equations of motion and the EMT. In chapter 3, we then review
quantization and renormalization of QCD. We discuss the scale dependence of
the theory and calculate the QCD beta function and quark mass anomalous
dimension. In chapter 4, we discuss operator renormalization and operator
mixing. We then apply this to the renormalization of the operators that form
the EMT. We also derive the EMT trace anomaly from the dilatation current.
Lastly, in chapter 5 we discuss how the mass of the proton is derived from the
EMT, either through its trace or the Hamiltonian. We then investigate four
mass decompositions: one 2-term decomposition by Tanaka [5], a 2-term de-
composition by Lorcé [3], a 4-term decomposition by Ji [4] and an improvement
on Ji’s decomposition by Rodini et al. [2]. We use numerical inputs from [2] to
compute the numerical values of the mass decompositions and produce graphs of
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the running of these decompositions as function of scale. Based on these graphs
we discuss the large- and small-scale behaviour of the mass decompositions.
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2 An introduction to QCD
A good grasp of the theory of QCD is needed to fully understand the content
of this thesis. Therefore this chapter explains the basics of QCD as a field
theory and how it obtained from the SU(3) gauge symmetry of the color charge
in quarks. Section 2.1 treats the Lie group SU(3) and its representations for
quarks and gluons. Section 2.2 uses this theory to build the QCD Lagrangian.
The theory in these sections is mostly adapted from [6]. Readers who are familiar
with QCD can skip these sections. In section 2.3 the energy-momentum tensor
is discussed and the QCD EMT is derived.

2.1 The Lie group SU(3)

According to QCD, quarks possess a a set of three related charges called color
charges. Therefore they are represented mathematically by a three-component
vector of spinor fields ψi(x) with i = 1, 2, 3. The theory of QCD is invariant
under local rotations of this vector, meaning only colorless particles can exist
in nature. These rotations are unitary operators and can therefore be form
the gauge symmetry group U(3). The pure phase transformations form a U(1)
subgroup and can be described with a QED-like theory. These transformations
are not of interest to us and therefore we remove this subgroup to form the
simple Lie group SU(3). We next discuss some general properties of this group.

The Lie group SU(3) is defined as the 8-dimensional group of all 3×3 unitary
matrices g with determinant 1. Any element of SU(3) can be written as the
exponential of a Hermitian matrix. If we consider matrices infinitesimally close
to the unit matrix1, we can write:

g(α) = 1+ iαaT a +O(α2), (1)

where a = 1, . . . , 8 and repeated indices are summed over. The anti-hermitian
matrices T a are called the generators of the group. A property of Lie groups is
that the commutator of two generators is again a linear combination of genera-
tors:

[T a, T b] = ifabcT c. (2)

The fabc determine the structure of the group and are therefore called the
structure constants of SU(3). They are completely anti-symmetric and obey
the Jacobi identity.

To describe QCD mathematically, we must use different matrix represen-
tations of SU(3) for the different parts of the theory. For a d-dimensional
representation r, we replace T a with d × d matrices tar in the equations above.
The matrices are normalized based on the traces of their products. Specifi-
cally, we can choose a basis for the generators T a such that, for any irreducible
representation:

Tr
[
tar t

b
r

]
= C(r)δab. (3)

1As SU(3) is a continuously generated group, any element can be reached by the repeated
action of these infinitesimal elements.
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where C(r) is a constant for every representation. Furthermore, the operator T 2

is an invariant of SU(3). Therefore T 2 takes a constant value on each irreducible
representation:

tar t
a
r = C2(r) · 1. (4)

Here C2(r) is a constant, called the quadratic Casimir operator, for every rep-
resentation.

We introduce two important representations of SU(3). The quark fields
transform under the fundamental representation N of SU(3). The fundamental
representation acts on three-vectors and its elements are simply the matrices
that define SU(3): 3× 3, unitary matrices with a determinant of 1. The quark
fields then transforms under an infinitesimal element of SU(3) as:

ψi −→
[
eiα

ataN
]ij
ψi ≈

[
δij + iαa(taN )ij

]
ψj , (5)

where a = 1, . . . , 8 and taN = 1
2λ

a, λa being the Gell-Mann matrices. With this
choice of taN , we have C(N) = 1

2 and C2(N) = 4
3 .

As we will see below, QCD requires the introduction of another type of field
called gluon fields transforming under the adjoint representation G of SU(3)
(plus a gauge transformation that will be explained later). The representation
matrices of the adjoint representation are given by the structure constants:
(tbG)

ac = ifabc. Similar to the fundamental representation, we can view the
action of SU(3) as a vector rotation, this time acting on an eight-component
vector Aa. We get the transformation:

Aa −→
[
eiα

btbG
]ac
Ac ≈

[
δac + iαbfabc

]
Ac. (6)

The constants of the adjoint representation equal C(g) = C2(G) = 3. In the
rest of this thesis, we will use the notation T a = taN for the generators of SU(3)
in the fundamental representation and the structure constants for the adjoint
representation. As we are using structure constants, it is useful to write equa-
tions (3) and (4) in terms of structure constants for the adjoint representation.
We have:

Tr
[
taGt

b
G

]
= facdf bcd = C(G)δab, (7)

and:
(tcG)

ad(tcG)
db = facdf bcd = C2(G)δ

ab, (8)

which proves that the two constants are indeed equal to one another.

2.2 The Lagrangian formulation of QCD
The fundamental quantity of quantum field theories is the action S. The prin-
ciple of least action states that if a system evolves between times t1 and t2, it
will follow the ”path” in configuration space for which S is an extremum. The
action can be expressed in terms of a functional, called the Lagrangian L, as:

S =

∫ t2

t1

dtL =

∫ t2

t1

d4xL(φi, ∂µφi), (9)
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where L is the Lagrangian density and the φi represent all the fields in the
theory. The principle of least action then leads to a set of equations involving
the Lagrangian, called the relativistic Euler-Lagrange equations:

∂µ
∂L

∂(∂µφi)
=
∂L
∂φi

. (10)

Finally, solving these equations in terms of the φi results in the equations of
motion for the system.

As quarks are fermionic particles, we start with the Dirac Lagrangian for
the quark fields:

LDirac = ψ̄(i/∂ −m)ψ, (11)

where ψ̄i = (ψi)
†γ0 and γµ, µ = 0, 1, 2, 3 are the gamma matrices. A sum over

quark flavors and colors is understood. This Lagrangian is already invariant
under a global SU(3) transformation as it only depends on the combination
ψ̄ψ:

ψ̄ψ −→ ψ̄
[
e−iα

aTa][
eiα

aTa]
ψ = ψ̄ψ. (12)

However, we stipulate that the Lagrangian, like the theory, must be invariant
under an gauge SU(3) transformation. This differs from a global SU(3) trans-
formation in that it allows an independent symmetry transformation at every
point in spacetime. Therefore the kinetic term in (11) is no longer invariant;
the gauge transformation shifts the Lagrangian by −ψ̄∂µαa(x)T aψ. To obtain a
gauge invariant Lagrangian, we replace ∂µ by a covariant derivative. A covariant
derivative Dµ is defined such that (for infinitesimal transformations):

Dµψ(x) −→
[
1+ iαa(x)T a

]
Dµψ(x), (13)

i.e. Dµψ(x) has the same transformation law as ψ(x). This means that the
transformation of the covariant derivative has to counteract the extra term.
Therefore we introduce a eight new fields Aaµ which appear in the covariant
derivative:

Dµ = ∂µ − igAaµT
a, (14)

where have arbitrarily extracted a constant g. To ensure equation (13), we must
have the following transformation for AaµT a:

AaµT
a −→ AaµT

a + i
[
αa(x)T a, AbµT

b
]
+

1

g
∂µα

a(x), (15)

or:
Aaµ −→

(
δac − fabcαb(x)

)
Acµ +

1

g
∂µα

a(x), (16)

where we recognize as a transformation under the adjoint representation of
SU(3) plus a gauge transformation. The physical interpretation of Aaµ are the
eight gluon fields. The constant g is the coupling constant of the strong inter-
action.
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Next we need to add a kinetic term for the gluon fields to the Lagrangian.
The transformation law of the covariant derivative implies that:

[Dµ, Dν ]ψ −→
[
1+ iαa(x)T a

]
[Dµ, Dν ]ψ. (17)

Simultaneously, the commutator of two covariant derivatives is not a differential
operator but merely a matrix operator:

[Dµ, Dν ] = −igF aµνT a, (18)

with:
F aµνT

a = ∂µA
a
νT

a − ∂νA
a
µT

a − ig
[
AaµT

a, AbνT
b
]
. (19)

The tensor F aµν is called the gluon field tensor, similar to the electromagnetic
field tensor of QED. It equals:

F aµν = ∂µA
a
ν − ∂νA

a
µ + gfabcAbµA

c
ν . (20)

Although the gluon field tensor is not sensitive to the gauge term of the Aaµ
transformation, it is not gauge invariant. Nor should it be, as there are eight
field strengths, each associated with a given direction of rotation in the abstract
SU(3) space. Similar how the transformation (13) requires the transformation
(16), so does equation (17) require the following transformation:

F aµνT
a −→ F aµνT

a + i
[
αa(x)T a, F bµνT

b
]
. (21)

Many gauge invariant combinations can be made from the gluon field tensor,
for instance − 1

2 Tr
[
(F aµνT

a)2
]
= − 1

4 (F
a)αβ(F a)αβ . Using this term, we obtain

the QCD Lagrangian:

LQCD = ψ̄(i /D −m)ψ − 1

4
(F a)αβ(F a)αβ . (22)

It contains massive quarks interacting with massless gluons. The gluons, unlike
the photons of QED, also interact among each other due to the Aaµ cubic and
quartic terms in the Lagrangian. The whole Lagrangian depends on two param-
eters: the coupling constant g and the fermion mass m. From the Lagrangian
we also find the equations of motion:

i/∂ψ = mψ − g /A
a
T aψ, (23)

−i∂µψ̄γµ = mψ̄ − ψ̄g /A
a
T a, (24)

∂µF aµν = gfabcF bµνA
cµ − gψ̄γνT

aψ. (25)

where equations (23) and (24) hold for all quark flavors and colors.

2.3 The Energy-momentum Tensor
The energy-momentum tensor, denoted Tµν(x), describes the energy- and mo-
mentum density and flux of a system. It is the Noether current associated with
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spacetime translation invariance of the Lagrangian. This means that it is con-
served (∂µTµν = 0) and connected to the energy and momentum of a system
via Pµ =

∫
d3xT 0µ(x)). The EMT plays a crucial role in understanding global

properties like mass of particles, due to its relation to energy and momentum.
Since we’ll be using the EMT to compute the proton mass, we better derive

the EMT for QCD. As a Noether current, the EMT is given by:

TµνC =
∂L

∂(∂µφi)
∂νφi − gµνL. (26)

A problem with this canonical formula for the EMT is that it does not satisfy
gauge invariance nor symmetry in its indices µ and ν. Gauge invariance is
desirable for the EMT, as our physical world does not depend on what gauge
we choose. Symmetry in its indices µ and ν is desirable if we ever want to unify
QFT and general relativity, as there the EMT is symmetric. We can derive
a new EMT from equation (26) such that these properties are met, without
changing the meaning of the EMT in field theory. First of all, we can use the
Belinfante-Rosenfeld procedure to symmetrize the EMT [2]. To enforce gauge
invariance, we use the fact that the Lagrangian is only defined up to a derivative.
This means there is some arbitrariness in the EMT. Specifically, the charges P ν
and conservation law are unchanged if we make the transformation:

T̃µν = TµνC + ∂ρΘ
[µρ]ν , (27)

where Θ[µρ]ν is local in the fields and anti-symmetric in the indices µ and ρ [7].
For LQCD, the EMT is:

TµνC = iψ̄γµ∂νψ−(F a)µρ(∂νAaρ)−gµν
[
− 1

4
(F a)αβ(F a)αβ+ψ̄(i /D−m)ψ

]
. (28)

The first two terms of TµνC are not gauge invariant. To rectify this, we make the
transformation of equation (27) with Θµρ,ν = (F a)µρ(Aa)ν . We get:

T̃µν = iψ̄γµDνψ−(F a)µρ(F a)νρ−gµν
[
− 1

4
(F a)αβ(F a)αβ+ψ̄(i /D−m)ψ

]
. (29)

Next we use the Belinfante-Rosenfeld procedure to make the EMT symmetric.
For the case of QCD, this is equivalent to ignoring the anti-symmetric part.
Lastly we will use the equations of motion to simplify the EMT, as we will be
using the EMT on physical states only. Therefore the EMT that we will use
throughout the rest of this thesis is:

Tµν = iψ̄γ{µDν}ψ − (F a)µρ(F a)νρ +
gµν

4
(F a)αβ(F a)αβ , (30)

where γ{µDν} = 1
2 (γ

µDν + γνDµ).

In this chapter we have set up a classical field theory for the strong interac-
tion. We have modelled it as a manifestation of a SU(3) gauge symmetry in the
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abstract space formed by three quark color charges. We have seen that gauge
fields needed to be added to keep the theory SU(3) gauge-invariant. These
fields are the gluon fields and they act as the force carriers of the strong inter-
action. We have set up the Lagrangian of the theory and derived the equations
of motion. Also, we have discussed the EMT and its role in mass computa-
tions. We’ve ended this chapter with a derivation of the EMT for QCD. In
the next chapter we will quantize the theory, fully obtaining QCD. We will see
that the Lagrangian is central to this quantization. Also, we will run into some
divergences, which we will deal with using renormalization.
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3 Into the quantum realm
Everything so far was based on a classical theory. Of course we need to quantize
the theory, as the universe is quantum in nature at the small scales. This
quantization will introduce UV-divergences in the theory, a sign that something
is amiss with our theory at very high energies. As we do not have a better theory
on hand, we will fix these divergences using a process called renormalization.
We also treat the scale dependency of the quantized theory.

3.1 Quantization
Central to quantization is a function called the correlation function, or Green’s
function,

G(n)(x1, . . . , xn) = 〈Ω|T{O1(x1) . . . On(xn)} |Ω〉 . (31)

We will also often use the Fourier transformed Green’s functions:

G(n)(k1, . . . , kn) =

∫
d4x1 . . . d

4xn e
i
∑n

i=1 kixiG(n)(x1, . . . , xn). (32)

Green’s functions are somewhat abstract quantities which describe a process in
which the vacuum (denoted by |Ω〉) becomes exited to form particles and oper-
ators (the Oi) at certain points in spacetime (the xi) and eventually decaying
back down to the vacuum. The square of a correlation function is related to the
probability that this process occurs.

Throughout this work, we will use the path integral formulation to quantize
the theory. The path integral formulation describes the evolution of quantum
states, e.g. from |φa)〉 to 〈φb|. It identifies a measure for every possible way or
“path” that this evolution can occur:

O1(x1) . . . On(xn)e
i
~
∫ +T
−T

d4x L(φi,∂
µφi).

In the exponential we recognize the action, which ensures the principle of least
action: around the true classical path the action varies vary slowly and the
phases add up; far away from the true classical path the action varies rapidly and
the measures cancel each other out. Therefore paths around the true classical
path are much more likely to occur. In the classical limit ~ → 0, only the classical
path survives and we regain classical Lagrangian mechanics. According to the
principle of superposition the true quantum path is then given by the sum of
the measures of all paths. The continuous limit of this sum is the functional
integral over all fields of the theory:

G(n)(x1, . . . , xn) = lim
T→∞(1−iε)

∫
DφiO1(x1) . . . On(xn)e

i
~
∫ +T
−T

d4x L(φi,∂
µφi)∫

Dφie
i
~
∫ +T
−T

d4x L(φi,∂µφi)
.

(33)
The denominator here is a normalization factor that rid us of any phase and
overlap factors that do not contribute to the physics. The limit T → ∞(1− iε)
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has been chosen to project out the vacuum state from |φa〉 and 〈φb|. From now
on we set ~ = 1.

The number of possible paths for a process is immense: quarks can interact
with each other, quark-antiquark pairs can be created or annihilated, gluons
can be emitted or absorbed etc. A general analytical solution for path integrals
in the interacting theory is not known in more than 2 spacetime dimensions [6].
Therefore we turn to a perturbative solution. We expand the exponentials in
equation (33) as a series in g:

ei
∫
d4xLQCD = ei

∫
d4xL0

[
1 + i

∫
d4y Lint + . . .

]
, (34)

where L0 = ψ̄(i/∂ −m)ψ + (∂µA
a
ν − ∂νA

a
µ)

2 is the free theory Lagrangian and
Lint = LQCD−L0 contains all the interactions (and is proportional to g). When
inserted into a correlation function, the n’th term of this expansion corresponds
to paths with n interactions. So depending on the needed precision of our
answer, we just need to compute all paths up to n interactions. Even more,
we only need to consider connected paths. Pieces that are disconnected from
all external points (i.e. vacuum fluctuations) exponentiate to a constant that is
present in both the numerator and the denominator of the correlation function
and therefore cancels out.

The easiest way to find all connected paths is by making use of Feynman dia-
grams. Feynman diagrams are pictorial representations of amplitudes of a single
path. They are connected to the mathematical expressions by a set of Feynman
rules. Connected paths translate to 1-particle irreducible (1PI) diagrams, which
are diagrams that cannot be split in two by cutting one propagator. For a full
review on Feynman diagrams, see for instance [6, 8].

Propagators

To find the basic propagators we work in the free theory (g = 0), in which
we have no interactions. The quark propagator is then given by the following
two-point Green’s function:

〈Ω|T{ψ(x1)ψ̄(x2)} |Ω〉 =
∫
Dψ̄Dψ ψ(x1)ψ̄(x2)e

i
∫
d4x
[
ψ̄(i/∂−m)ψ

]
∫
Dψ̄Dψ ei

∫
d4x
[
ψ̄(i/∂−m)ψ

] . (35)

where we have left the limits on the time integrals implicit; they are the same as
equation (33). The gluon contributions in the numerator and denominator have
canceled out. As quarks are fermions and obey anticommutation relations, we
have used Grassmann fields for the quark fields ψ and ψ̄. More information on
Grassmann fields can be found in for instance [6]. Both the denominator and
numerator in equation (35) are Gaussian integrals over Grassmann variables.
The denominator of this equation is det

(
i/∂ −m

)
. The numerator is this same

determinant multiplied by SF (x1 − x2), the functional inverse of the operator
−i(i/∂ −m):

−i(i/∂ −m)SF (x1 − x2) = δ(4)(x1 − x2).
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Performing a Fourier transform, we find:

〈Ω|T{ψ(x1)ψ̄(x2)} |Ω〉 = SF (x1 − x2) =

∫
d4k

(2π)4
ie−ik(x1−x2)

/k −m+ iε
. (36)

The gluon propagator is given by another two-point Green’s function:

〈Ω|T{Aaµ(x1)Abν(x2)} |Ω〉 =
∫
DA Aaµ(x1)A

b
ν(x2)e

i
∫
d4x
[
− 1

4 (F
a)αβ(Fa)αβ

]
∫
DA ei

∫
d4x
[
− 1

4 (F
a)αβ(Fa)αβ

] ,

(37)
where DA ≡

∏8
a=1

∏3
i=0 DAai now consists of regular complex fields. This time

the quark contributions have canceled out. The integrals in equation (37) can
be rewritten as Gaussian integrals by partial integration of the exponent2:∫

d4x

[
− 1

4
(F a)αβ(F a)αβ

]
=

1

2

∫
d4xAaµ(x)δ

ab
(
gµν∂2 − ∂µ∂ν

)
Abν(x). (38)

When trying to evaluate the Gaussian integrals we run into trouble. Because
gluons are massless they have only two polarization states. Therefore the opera-
tor gµν∂2−∂µ∂ν is singular and has no inverse. In fact, the functional integrals
in equation (37) are badly divergent. The reason for this is gauge invariance:
the Lagrangian is invariant under a gauge transformation and hence we are in-
tegrating over a continuous infinity of physically equivalent field configurations.
A solution to this problem was found by Faddeev and Popov [9]. They intro-
duced a delta function picking out one field configuration of each set of gauge
equivalent configurations. They then showed that this delta function can be
expressed as an addition to the Lagrangian:

Lg.f. + Lghost =
1

2ξ
(∂µAaµ)

2 + c̄a(−∂µDac
µ )cc, (39)

where Dac
µ = ∂µδ

ac + gfabcAbµ is the covariant derivative in the adjoint repre-
sentation. The gauge fixing term Lg.f. contains a new parameter ξ, called the
gauge-fixing parameter. As ξ is not physical (it breaks the gauge invariance of
the Lagrangian), it should not appear in any physical results. Indeed the value
of the correlation function of any gauge-invariant operator is independent of ξ
[6]. The ghosts ca are anticommuting fields belonging to the adjoint represen-
tation. Just like the gauge fixing parameter they are not physical and can’t
appear as external lines of Feynman diagrams. They interact with the gluons
and serve as negative degrees of freedom that cancel the effects of the unphysical
timelike and longitudinal polarization states of the gluons that were added by
the gauge fixing term. The ghost propagator equals:

〈Ω| ca(x1)c̄b(x2) |Ω〉 =
∫

d4k

(2π)4
i

k2
δabe−ik(x1−x2), (40)

2Remember that we are working in the free theory (g = 0) here. Therefore we do not have
any gluon-gluon interactions.
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which can be derived much like the other propagators. The ghost and gauge
fixing terms in the Lagrangian do affect the energy-momentum tensor. However,
as they are not physical, they vanish in any physical state. As we are concerned
in the proton mass (which is a physical state), we ignore these contributions
and use equation (30) as our formula for the EMT.

With the extra terms Lg.f. and Lghost, equation (38) changes to:∫
d4x

[
− 1

4
F 2 +

1

2ξ
(∂µAaµ)

2

]
=

∫
d4xAaµ(x)δ

ab
(
gµν∂2 − (1− 1

ξ
)∂µ∂ν

)
Abν(x),

The operator δab(gµν∂2 − (1− 1
ξ )∂

µ∂ν) is indeed invertible and we denote this
inverse by Dµν,ab

F (x1 − x2). Evaluating the Gaussian integrals and performing
a Fourier transformation, we find the photon propagator:

〈Ω|T{Aµ(x1)Aν(x2)} |Ω〉 = Dµν,ab
F (x1 − x2)

=

∫
d4k

(2π)4
−ie−ik(x1−x2)

k2 + iε

(
gµν − (1− ξ)

kµkν

k2

)
, (41)

Often a specific value of ξ is chosen in computations. Two convenient choices
are the Landau gauge (ξ = 0) and the Feynman gauge (ξ = 1). In these gauges
the gluon propagator takes on an especially simple form. We will be working in
the Feynman gauge in our computations.

Interactions

All interactions are treated as perturbations to the free theory and therefore
appear of the correlation function on the same footing as external fields. This
makes computing their Feynman rules particularly simple. As an example we
treat the basic quark-quark-gluon interaction gψ̄γνAbνT

bψ. We start with the
three-point Green’s function:

〈Ω|T{ψ(x1)ψ̄(x2)Aaµ(x3)} |Ω〉 .

At zeroth order of the perturbation (i.e. the free theory) this correlation function
is 0, as it contains an odd integral over Aµ. At first order, we have:∫

DADψ̄Dψ

[
ig

∫
d4y ψ̄(y)γνAbν(y)T

bψ(y)ψ(x1)ψ̄(x2)A
a
µ(x3)e

i
∫
d4xL0

]
Performing the path integrals, we get:

ig

∫
d4ySF (x1 − y)γνT

bSF (y − x2)D
µν,ab
F (x3 − y).

This expression still includes the propagation of the fields. To obtain the inter-
action itself we multiply by the inverse of the propagators and get:

ig

∫
d4yγνδ

(4)(y − x1)δ
(4)(x2 − y)δµνδabδ(4)(x3 − y).

14



Performing a Fourier transform and evaluating everything in momentum space
we arrive at:

igγµT aδ(4)(k1 + k2 + k3) (42)
where ki represents the momentum of the particle coming from xi. Note that
this result looks very similar to the original Lagrangian term; this is a benefit
of pulling the interactions out of the exponent. The other interactions can be
derived in a similar fashion, although one must be careful with the different
ways the gluons can connect to the 3-gluon or 4-gluon vertex.

In conclusion we can describe the quantized theory by means of abstract
quantities called Green’s functions, whose square relate to the probability that
the process they describe occurs. Green’s functions can be calculated pertur-
batively to the desired accuracy by computing the Feynman diagrams that are
related to said Green’s function. The Feynman rules that are needed for com-
puting the Feynman diagrams are:

1.
k

=
i

/k −m
(quark propagator),

2.

k

µ, a ν, b =
igµνδab

k2
(gluon propagator),

3.
k

a b =
iδab

k2
(ghost propagator),

4.

k3

k1

k2
µ, a = −ieγµT a,

5.

k3

k1

k2ρ, c

µ, a

ν, b

=
gfabc

[
gµν(k1 − k2)

ρ

+gνρ(k2 − k3)
µ

+gµρ(k3 − k1)
ν
]

6. k1

k2

k3

k4

µ, a

ρ, c

ν, b

σ, d

=
−ig2[fabxf cdx(gµρgνσ − gµσgνρ)

+facxf bdx(gµνgρσ − gµσgνρ)
+fadxf bcx(gµνgρσ − gµρgνσ)]
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7.

k3

k1

k2
µ, a = −gfabckµ2 ,

8. Impose momentum conservation at each vertex,

9. Integrate over each undetermined (free) momentum:
∫

d4k

(2π)4
,

10. Add a minus sign for all fermion and ghost loops

11. Divide by the symmetry factor of the diagram

where we have suppressed the +iε terms in the propagators. This concludes
the quantization of QCD using the path integral formulation. There is however
still one problem with the theory: many Feynman diagrams contain divergent
integrals over free momenta. This problem can be resolved by renormalizing the
theory, which we will do in the next section.

3.2 Renormalization
Anyone who has ever worked on QCD knows that the world of quantum field
theory is plagued with divergences. Mathematically, UV-divergences show up as
the k → ∞ limit of the momentum integrals over free momenta in the Feynman
diagrams. This indicates that quantum field theories are not perfectly valid the-
ories, but only work up to a certain momentum scale. The physical meaning of
these divergences is however not so clear. Due to the strong similarities between
QFT and statistical mechanics, many believe that QFT is merely an emergent
theory. Just like statistical mechanics describes the emergent properties of lots
of atoms together, QFT might describe the emergent properties of many incred-
ibly tiny objects. Some even say that it is the quantization of spacetime itself
(which should be around the Planck scale or 10−35 m) that breaks quantum
field theory. Whatever the true physical reasoning is behind the divergences, we
need to get rid of them to be able to use the theory. We do this by renormalizing
the theory.

General principles of renormalization

The process of renormalization starts with introducing a regulator in the theory.
The most obvious choice is a momentum cutoff: we lower the upper limit of the
momentum integrals from ∞ to Λ. Another choice, called dimensional regular-
ization, is to change the number of dimensions of the theory from 4 to d. For
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a sufficient small d the integrals are convergent. With this regulator we obtain
expressions for the divergences as limits of Λ → ∞ (or d→ 4). Next, we change
our theory to use fields and parameters that are are actually divergent them-
selves: their divergences “absorb” the divergences from the ultraviolet behaviour
of the Feynman diagrams. This absorption of infinitely many UV-divergences
by finitely many fields and parameters is not possible for every quantum field
theory. The theories for which this is possible are called renormalizable. It is
proven [6] that theories in which the coupling constants are dimensionless or
have a positive mass dimension are renormalizable. Lucky for us, this is the
case with QCD: the coupling constant g is dimensionless and the quark mass m
obviously has a positive mass dimension.

Denoting the divergent or ‘bare’ fields and parameters with a subscript B,
we start from the Lagrangian:

LQCD = ψ̄B(i /D −mB)ψB − 1

4
(F aB)

µν(F aB)µν + c̄aB(−∂µDac
µ )ccB . (43)

with (F aB)
µν = ∂µAν,aB − ∂νAµ,aB + gBf

abcAµ,bB Aν,cB , Dµ = ∂µ − igBA
µ,a
B T a and

Dµ,ac = ∂µδac+gBf
abcAµ,bB . We ignore the gauge fixing term here for simplicity

(this can be done by setting ξ = ∞). We express the divergences in the bare
parameters and fields by so called renormalization constants. What is left we
call renormalized fields and parameters, denoted with a subscript R:

Aµ,aB =
√
Z3A

µ,a
R , ψB =

√
Z2ψR, caR =

√
Zcc

a
R,

mB = ZmmR, gB = ZggR.

The renormalized parameters gR and mR then refer to the physical quark mass
and coupling constant, Green’s functions built from renormalized fields and
parameters are finite and agree with experiment. As the coupling constant will
be used very often, we drop the subscript R from here on and use simply g for
the renormalized coupling constant.

After renormalization we are working with an effective theory: it is (proba-
bly) not the true way how nature works, but we can nonetheless describe nature
with the theory. An aspect of effective theories is that they are momentum scale
dependent. If we look at nature with low energies and long wavelengths, then we
observe it coarsely. Higher energies and shorter wavelengths can reveal a finer
theory with possibly different characteristics. Therefore the effective theory
must change as function of scale. In renormalized field theories this manifests
itself as a momentum scale dependence of the parameters. Every renormaliza-
tion scheme introduces the scale dependence in one way or another. For the
momentum cutoff this is the cutoff scale Λ. For dimensional regularization the
scale dependence is not so clear. By changing the number of dimensions the
coupling constant becomes dimensionful. This is remedied by introducing a
momentum scale and rescaling the renormalized coupling constant: g → µ

ε
2 g

with ε = 4− d.
The precise formulation of the renormalization constants depends on the

choice of renormalization scheme. We can however deduce a general structure
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from the free theory. In the free theory (g = 0) there obviously are no loop
diagrams and therefore no divergences. So in the limit g → 0 all renormalization
constants must converge to unity. This means we can express all renormalization
constants as: Z = 1+O(g), which allows us to rewrite the Lagrangian in terms
of renormalized fields and parameters as follows:

LQCD = Lren + Lc.t., (44)

where Lren is the Lagrangian of equation (43) but with renormalized instead of
bare fields and parameters and Lc.t. is given by:

Lc.t. = −1

4
(∂µ(AR)

a
ν−∂ν(AR)aµ)2δ3−

1

2
gfabc(∂µ(AR)

a
ν−∂ν(AR)aµ)(AR)µ,b(AR)ν,cδ

3g
1

− 1

4
g2fabcfade(AR)

b
µ(AR)

c
ν(AR)

µ,d(AR)
ν,eδ4g1 + ψ̄R(i/∂δ2 −mδm)ψR

+ igψ̄R /ARψRδ1 − c̄aR∂
2caRδ

c
2 − gfabcc̄aR∂

µ(AR)
b
µc
c
Rδ

c
1. (45)

These extra terms are called the counterterms. The δi are related to the renor-
malization constants by:

δ3 = Z3 − 1, δ2 = Z2 − 1, δm = ZmZ2 − 1, δc2 = Zc − 1,

δ3g1 = Zg(Z3)
3/2 − 1, δ4g1 = (Zg)

2(Z3)
2 − 1,

δ1 = ZgZ2(Z3)
1/2 − 1, δc1 = ZgZc(Z3)

1/2 − 1.

For the computation of the renormalization constants it is easier to treat the
counterterms as extra vertex terms with their own Feynman rule and notation.
The Feynman rules of the counterterms are given below3. Demanding that
Green’s functions including counterterms are finite allows us to compute the
values of the δi and therefore the renormalization constants.

= i(/pδ2 −mδm),

µ, a ν, b = −i(gµνk2 − kµkν)δabδ3,

a b = −ip2δabδc2,

µ, a = igγµT aδ1.

3Only the counterterms needed to complete the renormalization of QCD to one-loop order
have been given.
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1-loop structure of QCD

We choose to calculate the renormalization constants in the modified mini-
mal subtraction (MS) scheme, combined with dimensional regularization. In
dimensional regularization the UV-divergences appear as poles in 1

ε , often to-
gether with a term ln 4πe−γE . The MS scheme then absorbs the combination[
2
ε +ln 4πe−γE

]
in the renormalization constants. Note that when working with

dimensional regularization that special care must be taken of terms of εε ! Terms
proportional to ε can still provide finite contributions to equations if they later
get multiplied by 1

ε . In this subsection we calculate the renormalization con-
stants, using Feynman diagrams and the δi. Not all δi have to be calculated, as
there are eight counterterms and only five renormalization constants. We choose
to focus on δ1,2,3,m and δc2. All the needed Feynman diagrams are computed in
appendix A.1.

Figure 2: All Feynman diagrams for 〈Ω|ψR(x1)ψ̄R(x2) |Ω〉 up to one-loop order,
including counterterms.

The δ2 and δm can be computed from the quark self-energy, i.e. the Green’s
function 〈Ω|ψR(x1)ψ̄R(x2) |Ω〉. Up to 1-loop order, there is one divergent di-
agram and one counterterm diagram, depicted in figure 2; their sum must be
finite. Therefore the δ2 and δm must equal (up to one-loop order):

δ2 = −C2(N)
αs
4π

[
2

ε
+ ln 4πe−γE

]
, (46)

δm = −4C2(N)
αs
4π

[
2

ε
+ ln 4πe−γE

]
. (47)

Here αs = g2

4π is the QCD equivalent of the fine structure constant.

Figure 3: All Feynman diagrams for 〈Ω| caR(x1)c̄bR(x2) |Ω〉 up to one-loop order,
including counterterms.

For δc2 we consider the ghost self-energy 〈Ω| caR(x1)c̄bR(x2) |Ω〉, which is very
similar to the electron self-energy. We again have one divergent diagram and
one counterterm diagram up to 1-loop order, depicted in figure 3. If we insist
their divergences cancel, δc2 must be given by (up to one-loop order):

δc2 = −1

2
C2(G)

αs
4π

[
2

ε
+ ln 4πe−γE

]
. (48)
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Figure 4: All Feynman diagrams for 〈Ω|ψR(x1)Aµ,aR (x2)ψ̄R(x3) |Ω〉 up to one-
loop order, including counterterms.

To compute δ1 we examine the effective quark-quark-gluon vertex, given
by 〈Ω|ψR(x1)Aµ,aR (x2)ψ̄R(x3) |Ω〉. We now have two divergent diagrams and
one counterterm diagram up to 1-loop order, depicted in figure 4. As their
divergences must cancel out, δ1 has to equal:

δ1 = −
(
C2(N) + C2(G)

)αs
4π

[
2

ε
+ ln 4πe−γE

]
. (49)

Figure 5: All Feynman diagrams for 〈Ω|Aµ,aR (x1)A
ν,b
R (x2) |Ω〉 up to one-loop

order, including counterterms.

For δ3 we look at the vacuum polarization 〈Ω|Aµ,aR (x1)A
ν,b
R (x2) |Ω〉. The

divergent and counterterm diagrams up to 1-loop order are depicted in figure
5. The quark loop diagram has to be multiplied by the number of fermions nf .
The other three loop diagrams make little sense separately, but combined yield
a divergence of:

iC2(G)δ
abαs
4π

(4π)
ε
2

∫ 1

0

dx ∆
ε
2

[
(2− 2ε+

1

2
ε2)gµνΓ

( ε
2
− 1
)
∆

+
1

2

(
[(2x− 1)2(2− ε)− 2(x+ 1)(2− x)− 2x(x− 1)]pµpν

+ [(2− x)2 + (1 + x)2 − 2(3− ε)(x− 1)2]p2gµν
)
Γ
( ε
2

)]
.

We recognize that (2− 2ε+ 1
2ε

2) = −(2− ε)( ε2 − 1), which means that now the
two gamma functions contribute to the same divergence (because of the relation
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xΓ(x) = Γ(x+ 1)). Using ∆ = x(x− 1)p2, we find:

iC2(G)δ
abαs
4π

(4π)
ε
2

∫ 1

0

dx∆
ε
2
1

2

(
[(2x−1)2(2−ε)−2(x+1)(2−x)−2x(x−1)]pµpν

+ [(2− x)2 + (1 + x)2 − 2(3− ε)(x− 1)2 − 2(2− ε)x(x− 1)]p2gµν
)
Γ
( ε
2

)
.

Next we tackle the pµpν coefficient: this simply equals (2− ε)(2x− 1)2 − 4. As
the total of the three diagrams must be proportional to (p2gµν − pµpν), the p2
coefficient must also equal (2− ε)(2x− 1)2 − 4. So we get:

iC2(G)δ
abαs
4π

(4π)
ε
2Γ
( ε
2

)∫ 1

0

dx ∆
ε
2
1

2
[(2− ε)(2x− 1)2 − 4](p2gµν − pµpν).

The divergent part of this diagram is therefore:

−5

3
C2(G)

αs
4π

(−i[p2gµν − pµpν ]δab)

[
2

ε
+ ln 4πe−γE

]
.

Finally, the divergences of all four diagrams must be cancelled by the countert-
erm diagram. Therefore we get:

δ3 =
(5
3
C2(G)−

4

3
nfC(N)

)αs
4π

[
2

ε
+ ln 4πe−γE

]
. (50)

Now that we have computed the needed counterterms, we can calculate the
renormalization constants. The results are:

Z2 = 1− C2(N)
αs
4π

[
2

ε
+ ln 4πe−γE

]
, (51)

Z3 = 1 +
(5
3
C2(G)−

4

3
nfC(N)

)αs
4π

[
2

ε
+ ln 4πe−γE

]
, (52)

Zm = 1− 3C2(N)
αs
4π

[
2

ε
+ ln 4πe−γE

]
, (53)

Zg = 1 +
(2
3
nfC(N)− 11

6
C2(G)

)αs
4π

[
2

ε
+ ln 4πe−γE

]
, (54)

Zc = 1− 1

2
C2(G)

αs
4π

[
2

ε
+ ln 4πe−γE

]
. (55)

This concludes the renormalization of QCD. It is instructive to check how the
cancellation of divergences works when using renormalization constants for the
quark propagator. We know that the bare propagator is (up to on-loop or-
der) the sum of two diagrams: the basic propagator and the quark self energy
diagram, computed in appendix A.1. Together, we have:

〈Ω|ψB(x)ψ̄B(y) |Ω〉 =
i

/p−mB
+

i

/p−mB
C2(N)

αs
4π

2

ε
(i[/p− 4mB ])

i

/p−mB
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plus some additional finite terms. This time we have not ignored the external
legs. This is because the external legs depend on the bare mass, while the
renormalized propagator should only depend on renormalized quantities. To
remove the dependence on bare quantities, we use mB = ZmmR and write:

i

/p−mB
=

i

/p−mR + (Zm − 1)mR
,

=

∞∑
n=0

i

/p−mR

(
(Zm − 1)mR

/p−m

)n
.

The bare propagator then equals:

〈Ω|ψB(x)ψ̄B(y) |Ω〉 =
i

/p−mR
+

i

/p−mR
C2(N)

αs
4π

2

ε
(i[/p−mR])

i

/p−mR
,

where we’ve used equation (53) to express everything as a series in αs. As the
one-loop correction already is of order αs, we only keep the leading order term
of the external legs in that term. The renormalized propagator differs from the
bare propagator by a factor Z−1

2 , coming from the quark fields. Multiplying the
basic propagator by this factor, we find an additional term of O(αs):

iZ−1
2

/p−mR
=

i

/p−mR
+

i

/p−mR
[−i(Z−1

2 − 1)(/p−mR)]
i

/p−mR

If we use equation (51) to again express everything as a series in αs, we note that
this additional term precisely cancels the divergence in the bare propagator:

〈Ω|ψR(x)ψ̄R(y) |Ω〉 =
i

/p−mR
. (56)

This concludes the proof. Even though this confirms that the renormalized
quark propagator is finite, it is good to note that equation (56) is not an exact
equation. Additional finite contributions to the renormalized propagator have
been suppressed in this derivation. The precise nature of these additional terms
depends on the renormalization scheme and the scale at which we probe the
theory.

3.3 Beta function and mass anomalous dimension
We have established before that QCD is an effective theory and therefore depen-
dent on the scale at which we probe the theory. This scale dependence manifests
itself in the momentum scale dependence, or ‘running’, of the parameters of the
theory. If we fully want to understand QCD, we need to investigate the running
of the parameters. To do so, we consider the following differential equations:

∂g

∂ lnµ
= β(g), (57)

∂mR

∂ lnµ
= mRγm(g). (58)
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The two functions on the right hand side are called the QCD beta function
and quark mass anomalous dimension respectively. They are the backbone of
many renormalization calculations and even appear in for instance quantum
anomalies.

We first focus on the beta function. We use the fact that the bare parameter
gB is scale independent and write:

0 =
∂gB
∂ lnµ

=
ε

2
µ

ε
2Zgg + µ

ε
2
∂Zg
∂ lnµ

g + µ
ε
2Zgβ(g).

All terms have a factor µ ε
2 in common, which we divide out. Also, Zg is only

dependent on µ through g2. If we define β0 ≡ 11
3 C2(G) − 4

3nfC(N), we get
Zg = 1− β0

2
αs

4π

[
ε
2 + ln 4πe−γE

]
and the equation above becomes:

(
1− 3

2
β0
αs
4π

[2
ε
+ ln 4πe−γE

])
β(g) +

(
1− 1

2
β0
αs
4π

[2
ε
+ ln 4πe−γE

]) ε
2
g = 0,

from which we deduce that up to 1-loop order the beta function is given by:

β(g) = −g
( ε
2
+ β0

αs
4π

+ . . .
)
. (59)

The equation above only holds when using dimensional regularization in 4 − ε
dimensions. When we take the limit ε→ 0, we obtain the well-known expression
of the beta function, that is independent of the renormalization scheme (up to
this order) [6]:

β(g) = −β0
g3

(4π)2
+ . . . . (60)

Depending on the value of β0, we have two possible behaviours of the coupling
constant g. If there are many quark flavors (nf > 33

2 ), the beta function is
positive. In this case g would become small at large distances and large at
small distances, meaning charges at large distances do not affect each other.
However, in our universe there are only 6 known quark flavors. Therefore the
beta function is negative and g increases at large distances, while it tends to
zero as the distance decreases. This behaviour is called ’asymptotic freedom’.
Quarks and gluons at very small distances act like free particles, hardly noticing
each other. In the large-distance limit however, the coupling constant increases
to infinity. In fact, g might reach infinity even at a finitely large distance4. It
is interesting to calculate an approximate formula for αs. If we assume that
αs � 1, we have:

∂αs
∂ lnµ

= −β0
α2
s

2π
.

This is a simple differential equation which can be solved by standard methods.
The result is:

4We do not know this for sure, as perturbation theory fails when g becomes large.
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αs(µ) =
αs(µ0)

1− αs(µ0)β0
log µ/µ0

2π

, (61)

with initial conditions αs(µ0) at µ = µ0. This confirms the story above, that
|αs| decreases with increasing energy and vice versa. Of course equation (61)
is only valid when αs is weak, as we have ignored higher order terms. To gain
an estimate for the lower bound at which αs is weak, note that equation (61)
contains a pole at µ = µ0e

2π
β0αs(µ0) ≡ Λ. This defines the scale at which αs

becomes strong and perturbation theory becomes useless for our calculations.
Using αs(2 GeV) = 0.269 (from [10]) and assuming 4 active quark flavours, we
find a lower bound of Λ = 0.121 GeV. This is in agreement with experimental
measurements, which yielded a value of Λ ≈ 0.2 GeV [6]. QCD perturbation
theory is valid when µ is larger than these values, say above µ = 1 GeV. Finally,
we can rewrite equation (61) in a simpler form using Λ:

αs(µ) =
2π

−β0 ln(µ/Λ)
. (62)

This is the most simple display of the running of the coupling constant.
The quark mass anomalous dimension can be found via a similar way as the

beta function. We use the fact that mB is scale independent and write:

0 =
∂mB

∂ lnµ
=

∂Zm
∂ lnµ

mR + ZmmRγm(g).

We divide by mR and again note that Zm is only dependent on µ through g2.
Therefore we get:

− 6C2(N)
αs
4π

[2
ε
+ ln 4πe−γE

]( ε
2
+ β0

αs
4π

+ . . .
)

+
(
1− 3C2(N)

αs
4π

[2
ε
+ ln 4πe−γE

])
γm(g) = 0.

Note that we have used equation (59) for β(g) instead of equation (60) as we
are still working in d = 4− ε dimensions. From here we conclude that the quark
mass anomalous dimension up to 1-loop order in 4 dimensions equals:

γm(g) = −6C2(N)
αs
4π

+ . . . . (63)
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4 Operator renormalization
Composite operators are products of fields evaluated at the same point in space-
time. Examples are the quark number current ψ̄γµψ(x) and the energy momen-
tum tensor Tµν(x). Calculations involving composite operators must evaluate
multiple fields infinitely close to each other. As we have seen, QFT is not fit
to handle these small distances and UV-divergences arise in the calculation of
Green’s functions. These divergences generally can’t be removed by the field
renormalizations alone. Instead we introduce a separate renormalization of the
composite operators, much like the field renormalization. Effectively, we treat
the composite operator as a field of its own, although related to the basic fields
of the theory. Sections 4.1 and 4.2 are based on [6] and deal with the basics of
operator renormalization and mixing. Sections 4.3 deals with the EMT trace
anomaly and is an extension of chapter 19.5 of [6]. Finally, section 4.4 treats
the renormalization of the EMT.

4.1 The basics
Let us consider a general composite operators O(x), constructed from the fields
φ1, . . . , φn (φ can be any type of field). We define a finite, renormalized operator
OR which is a rescaled version of the operator OB , built from bare fields5:

OR = ZOOB . (64)

The renormalized operator is renormalization scheme dependent, as is the case
with all renormalized quantities. One must however be careful to use the same
regularization as for the field renormalizations. One can use a different renor-
malization scheme from the field renormalization [2]. So far throughout this
thesis we have used dimensional regularization with the MS scheme. We will
be using the same combination for composite operator renormalization. The
renormalized composite operators are also scale dependent and therefore have
an anomalous dimension. Its value is computed as follows6:

γO(µ) =
1

ZO

∂ZO

∂ lnµ
. (65)

The value of the renormalization constant is calculated by using Green’s
functions. We define the renormalized Green’s function7:

G
(n)
R (p1, . . . , pn) = 〈Ω| OR(0)φ1,R(p1) . . . φn,R(pn) |Ω〉 . (66)

The zero-momentum insertion of the operator is chosen deliberately, as the
renormalization constants are momentum-independent and this is the easiest

5Note that ZO is defined opposite of how we defined renormalization constants so far. We
have done this to be more in agreement with other papers on renormalization of the EMT.

6The opposite sign stems again from the fact that we’ve defined ZO opposite of the theory
so far.

7We define all operators to have their vacuum expectation value removed. For instance,
whenever we write O = ψ̄ψ, we are actually saying: O = ψ̄ψ − 〈Ω| ψ̄ψ |Ω〉.
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choice. We relate G(n)
R to a bare Green’s function by:

G
(n)
R (p1, . . . , pn) =

( n∏
i=1

Z
− 1

2

φi

)
ZO 〈Ω| OB(0)φ1,B(p1) . . . φn,B(pn) |Ω〉 . (67)

The bare Green’s function can be computed by evaluating the corresponding
Feynman diagrams. As the renormalized Green’s function must be finite at all
orders, we then can calculate ZO to the desired order.

As an example, we consider the composite operator [ψ̄ψ](x). It interacts
with quarks via:

[ψ̄ψ] = 1.

where the square dot with dashed line indicates an interaction with a composite
operator. Up to 1-loop order, there are four Feynman diagrams associated with
the Green’s function 〈Ω| [ψ̄ψ](0)ψ(p1)ψ̄(p2) |Ω〉, depicted in figure 6. Of these,

ψ̄ψ

(a)

ψ̄ψ

(b)

ψ̄ψ

(c)

ψ̄ψ

(d)

Figure 6: All Feynman diagrams for 〈Ω| [ψ̄ψ](0)ψ(p1)ψ̄(p2) |Ω〉 up to 1-loop
order.

diagram (d) (and of course diagram (a)) is 1PI and is computed in appendix A.2.
Diagrams (b) and (c) are not 1PI, but can be viewed as quantum corrections
to the external fields. In fact, this holds at all orders: the full Green’s function
can be written as:

〈Ω| [ψ̄ψ](0)ψ(p1)ψ̄(p2) |Ω〉 = (Z2)
2Γψ̄ψ, (68)

where Γψ̄ψ is the sum of all 1PI diagrams. Up to 1-loop order, we then have:

〈Ω| [ψ̄BψB ](0)ψB(p1)ψ̄B(p2) |Ω〉 = 1+2δ2+4C2(N)
αs
4π

[
2

ε
+ln 4πe−γE

]
+O(α2

s),

where we have subtracted external legs. Here we see that only renormalizing
the fields would not have been enough: divergences of the type of diagram (d)
would still be present. Therefore we define the renormalized operator [ψ̄ψ]R(x)
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similar to equation (64). We find that the following combination must be finite
at all orders:

Zψ̄ψ
Z2

(
1 + 2δ2 + 4C2(N)

αs
4π

[
2

ε
+ ln 4πe−γE

]
+O(α2

s)

)
,

from where we conclude that:

Zψ̄ψ = 1− 3C2(N)
αs
4π

[
2

ε
+ ln 4πe−γE

]
+O(α2

s), (69)

and therefore:
γψ̄ψ = 6C2(N)

αs
4π

+O(α2
s). (70)

You might notice that γψ̄ψ is equal to −γm. This is no coincidence. We will see
later that the composite operator mψ̄ψ is RG-invariant (renormalization group
invariant). Therefore we obtain the relation:

0 =
∂mR(ψ̄ψ)R
∂ logµ

= γmmR(ψ̄ψ)R +mR

∂Zψ̄ψ
∂ logµ

(ψ̄ψ)B = (γm + γψ̄ψ)mR(ψ̄ψ)R,

proving that γψ̄ψ = −γm to all orders.

4.2 Operator mixing
Often when working with composite operators, there exist multiple, linearly in-
dependent operators which possess the same quantum numbers, symmetries and
other characteristics. These operators form a linear space on which renormaliza-
tion acts as a linear operator. Therefore the renormalization constant needs to
be generalized to a matrix and the operators mix under renormalization. If we
consider a linearly independent set Oi, i = 1, . . . , N , of operators with the same
characteristics, the relation between renormalized and bare renormalization is:

Oi
R = ZijOOj

B (71)

where the Oj
B are built from bare fields. In turn the anomalous dimension

function also must be generalized to a matrix:

γijO = µ
∂ZikO
∂µ

[Z−1
O ]kj . (72)

The value of the renormalization matrix is again calculated by using Green’s
functions. Each Oi is constructed from fields φi1, . . . , φini

(where again φ can be
any type of field). Therefore we define renormalized Green’s functions similar
to equation (66) for each operator Oi. However, because all the composite
operators have the same quantum numbers etc, we can also consider the Green’s
function of Oi with the fields that make up Oj where i 6= j. So we get the
Green’s functions:

G
(nj)
i,j,R = 〈Ω| Oi

R(0)φ
j
1,R(p1) . . . φ

j
nj ,R

(pnj
) |Ω〉 . (73)
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where i, j = 1, . . . , N . Once again we write everything in terms of bare operators
and fields. This time we get a sum of N bare Green’s functions on the right
hand side:

G
(nj)
i,j,R =

( nj∏
k=1

(Zφj
k
)−

1
2

) N∑
l=1

Zil 〈Ω| Ol
B(0)φ

j
1,B(p1) . . . φ

j
nj ,B

(pnj ) |Ω〉 . (74)

The relation between the renormalized and bare Green’s functions, similar to
equation (67), yield a system of N2 equations. This system can then be solved
for the N2 entries of the renormalization matrix.

Let us consider an example. We define the linearly independent operators:

Oµν
g = −(Fµρ)a(F

ν
ρ)a, Oµν

f = ψ̄(iγ{µDν})ψ, (75)

both with the trace in Lorentz space subtracted. Within QCD, these form
a basis for all the gauge invariant Dirac scalar, Lorentz tensor, colorless and
traceless operators that are independent under the equations of motion and
symmetric under the exchange of µ and ν. Therefore they only mix among
themselves and the mixing matrix looks like:[

Oµν
g,R

Oµν
f,R

]
=

[
Zgg Zgf
Zfg Zff

] [
Oµν
g,B

Oµν
f,B

]
. (76)

To calculate the renormalization constants, we consider the induced relations
between bare and renormalized Green’s functions:

〈Ω| Oµν
g,RψRψ̄R |Ω〉 = Zgg

Z2
〈Ω| Oµν

g,BψBψ̄B |Ω〉+ Zgf
Z2

〈Ω| Oµν
f,BψBψ̄B |Ω〉 ,

〈Ω| Oµν
g,RA

σ,a
R Aτ,bR |Ω〉 = Zgg

Z3
〈Ω| Oµν

g,BA
σ,a
B Aτ,bB |Ω〉+ Zgf

Z3
〈Ω| Oµν

f,BA
σ,a
B Aτ,bB |Ω〉 ,

〈Ω| Oµν
f,RψRψ̄R |Ω〉 = Zfg

Z2
〈Ω| Oµν

g,BψBψ̄B |Ω〉+ Zff
Z2

〈Ω| Oµν
f,BψBψ̄B |Ω〉 ,

〈Ω| Oµν
f,RA

σ,a
R Aτ,bR |Ω〉 = Zfg

Z3
〈Ω| Oµν

g,BA
σ,a
B Aτ,bB |Ω〉+ Zff

Z3
〈Ω| Oµν

f,BA
σ,a
B Aτ,bB |Ω〉 ,

The renormalized Green’s functions are finite to all orders. As there are no
renormalizations at zero-loop order, the bare and renormalized Green’s function
agree at this order. The bare Green’s functions can be calculated from the
definition of the correlation function using Wick contractions. The results are:

〈Ω| Oµν
g,RA

σ,a
R Aτ,bR |Ω〉 = −2δab

(
p{µpν}gστ + p2gσ{µgν}τ − pσp{µgν}τ − pτp{µgν}σ

)
,

〈Ω| Oµν
f,RψRψ̄R |Ω〉 = γ{µpν},

〈Ω| Oµν
f,RA

σ,a
R Aτ,bR |Ω〉 = 〈Ω| Oµν

g,RψRψ̄R |Ω〉 = 0,

all with the trace in µ−ν space subtracted. All other orders of the bare Green’s
functions can be calculated by means of Feynman diagrams. Both sides of the
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Og

(a)

Og

(b)

Og

(c)
Og

(d)

Og

(e)

Figure 7: All 1PI diagrams for 〈Ω| Oµν
g,0A

α,a
0 Aβ,b0 |Ω〉 up to 1-loop order.

equations above must have the same overall structure. Therefore it is sufficient
to compare one term of the Green’s functions to calculate the renormalization
constants. We choose to focus on the terms −2δabp{µpν}gστ and γ{µpν} for
interactions with gluons and quarks respectively.

For 〈Ω| Oµν
g,BA

α,a
B Aβ,bB |Ω〉, there are five 1PI diagrams up to one loop order,

depicted in figure 1, and eight diagrams for the external gluon field renormaliza-
tion. The external field corrections yield a divergence of 2Z3 (multiplied by the
basic interaction), where Z3 is given in equation (52). Of the diagrams in figure
7, diagram (e) contains no terms with pµ and therefore does not contribute to
−2δabp{µpν}gστ . Diagram (b) is equal to diagram (c). The divergences of all
the diagrams are calculated in appendix A.2. All together, we get:

〈Ω| Oµν
g,BA

α,a
B Aβ,bB |Ω〉 =

(
1 + 2δ3 −

5

3
C2(G)

αs
4π

[
2

ε
+ ln 4πe−γE

]
+O(α2

s)

)
[−2δabp{µpν}gστ + . . . ]. (77)

Of

(a)

Of

(b)

Of

(c)

Of

(d)

Figure 8: All 1PI diagrams for 〈Ω| Oµν
f,0ψ0ψ̄0 |Ω〉 up to 1-loop order.
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Similarly, for 〈Ω| Oµν
f,BψBψ̄B |Ω〉 there are four 1PI diagrams up to 1-loop

order, depicted in figure 8, and two diagrams for the external quark field renor-
malization. Just as in the last section, yield the external field corrections a
divergence of 2δ2. Of the 1PI diagrams, diagram (b) is equal to diagram (c).
The divergences of all the diagrams are calculated in appendix A.2. All together,
we get:

〈Ω| Oµν
g,BψBψ̄B |Ω〉 =

(
1+2δ2−

5

3
C2(N)

αs
4π

[
2

ε
+ln 4πe−γE

]
+O(α2

s)

)
[γ{µpν}−(trace)].

(78)

Of

(a)

Of

(b)

Og

(c)

Figure 9: All diagrams for 〈Ω| Oµν
f,0A

α,a
0 Aβ,b0 |Ω〉 (diagrams (a) and (b)) and

〈Ω| Oµν
g,0ψ0ψ̄0 |Ω〉 (diagram (c)) up to 1-loop order.

For 〈Ω| Oµν
f,BA

α,a
B Aβ,bB |Ω〉, there are a total of 2nf diagrams up to 1-loop

order, diagrams (a) and (b) of figure 9 for each type of fermion. Their contribu-
tion is identical. For 〈Ω| Oµν

g,BψBψ̄B |Ω〉 there is one diagram up to 1-loop order,
diagram (c) of figure 9. There are no external field corrections at this order.
The divergences of the diagrams are calculated in appendix A.2. The results
are:

〈Ω| Oµν
f,BA

α,a
B Aβ,bB |Ω〉 =

(
4

3
nfC(N)

αs
4π

[
2

ε
+ln 4πe−γE

]
+O(α2

s)

)
[−2δabp{µpν}gστ+. . . ].

(79)

〈Ω| Oµν
g,BψBψ̄B |Ω〉 =

(
8

3
C2(N)

αs
4π

[
2

ε
+ln 4πe−γE

]
+O(α2

s)

)
[γ{µpν}− (trace)].

(80)
We are now able to solve for the renormalization constants order by order.

At leading order, we have:

Zgg = Zff = 1,

Zfg = Zgf = 0.
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At next-to-leading order, the following combinations must be finite:

8

3
C2(N)

αs
4π

[
2

ε
+ ln 4πe−γE

]
+ Zgf ,

Zgg − δ3 + 2δ3 −
5

3
C2(G)

αs
4π

[
2

ε
+ ln 4πe−γE

]
,

Zff − δ2 + 2δ2 −
5

3
C2(N)

αs
4π

[
2

ε
+ ln 4πe−γE

]
,

Zfg +
4

3
nfC(N)

αs
4π

[
2

ε
+ ln 4πe−γE

]
.

All together, we conclude:

Zgg = 1 +
4

3
nfC(N)

αs
4π

[
2

ε
+ ln 4πe−γE

]
, (81)

Zgf = −8

3
C2(N)

αs
4π

[
2

ε
+ ln 4πe−γE

]
, (82)

Zfg = −4

3
nfC(N)

αs
4π

[
2

ε
+ ln 4πe−γE

]
, (83)

Zff = 1 +
8

3
C2(N)

αs
4π

[
2

ε
+ ln 4πe−γE

]
. (84)

From here the anomalous dimension and therefore the scaling of the operators
Of and Og could be calculated. This anomalous dimension is also a matrix,
meaning the scaling depends on both operators. One could say that the opera-
tors “talk” to each other. We will later see that the components of mass rules
also “talk” to each other.

4.3 Computation of the trace of the EMT
Before we tackle the renormalization of the EMT, we will compute the EMT
trace. This is a well-known result in the literature that is important to cover
here as well. The EMT is related to the divergence of the dilatation current,
which is the Noether current of scale invariance. Therefore the EMT can be
viewed as a measure of the scale invariance of a theory. In classical QCD, we
have Tµµ = mψ̄ψ. The meaning of this is clear: the masses of the fermions break
the scale invariance of the theory. In a massless theory we would have Tµµ = 0
and the dilatation current would indeed be a conserved current. Quantization
breaks scale invariance by breaking the energy spectrum into tiny discrete steps
(quanta). Therefore quantization should add a non-zero term to the trace of
the EMT that vanishes when we take the classical limit. This term is called the
quantum trace anomaly. In this section we show that a quantum trace anomaly
indeed arises when we quantize QCD.

We define a scale transformation as a transformation of spacetime xµ −→
λ−1xµ, λ > 0. Given a field theory L(φi, ∂µφi) in d dimensions, the fields φi are
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transformed as: φi(x) −→ λDiφi(λx), where Di is the mass dimension of the
field φi. For an infinitesimal scaling λ = 1+ ε, the change in φi takes the form:

δφi(x) = ε[Di + xµ∂µ]φi(x).

Here we have ignored the terms of order O(ε2). For a theory with no mass terms
or dimensionful couplings, the Lagrangian transforms similar to a field:

δL = ε[d+ xµ∂µ]L = ε∂µ(x
µL). (85)

As this is a 4-divergence, the action is invariant under this transformation and
the theory possesses a conserved current, called the dilatation current:

Dµ =
∑
i

∂L
∂(∂µφi)

(Di + xν∂ν)φi − xµL. (86)

satisfying ∂µD
µ = 0. If the Lagrangian does have a scale dependency (e.g.

through quantization), then equation (85) changes to δL = ε
[
∂µ(x

µL) + ∆
]
,

where ∆ is not a 4-divergence. This means the dilatation current is not con-
served but instead satisfies: ∂µD

µ = ∆. We interpret this as ∆ being the
measure of scale dependency of the theory.

The dilatation current is related to the energy-momentum tensor. We rec-
ognize the sum of the second and third term of equation (86) as xνTµνC . It
was shown by Callan, Coleman and Jackiw [11] that it is possible to define a
new energy-momentum tensor Tµν such that Dµ = xνT

µν . Therefore the di-
vergence of the dilatation current is equal to the trace of the energy-momentum
tensor. We won’t repeat the proof here, but instead show that the QCD energy-
momentum tensor defined in equation (30) satisfies: ∂µDµ = Tµµ. In QCD, the
sum in equation (86) reaches over the fields Aaµ, ψi and ψ̄i. We have:∑

i

Di
∂L

∂(∂µφi)
φi = F νµAν +

3

2
iψ̄γµψ. (87)

The second term on the rhs is a conserved current of QCD and therefore its
divergence equals zero. Inserting the rest into the divergence of equation (86),
we find:

∂µD
µ = ∂µ((F

a)µνAaν) + (TC)
µ
µ = Tµµ. (88)

where Tµν coincides with equation (30). Note that this implies that Tµµ = ∆
and therefore the EMT trace is also a measure of scale dependency of the theory.

Next let us calculate the QCD dilatation current. To this end we consider
the renormalized QCD Lagrangian. Apart from fields and derivatives, the renor-
malized QCD Lagrangian contains the dimensionful parameters g and m. They
transform under a scale transformation as:

δgR(µ) = εµ
∂gR
∂µ

= εβ(g),

δmR(µ) = −εµ∂mR

∂µ
= −εmRγm(g).
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The calculation simplifies by rescaling the gauge fields gAaµ −→ Aaµ such that
the parameter g is removed from the covariant derivative and only appears
in front of the F 2 term. The total Lagrangian then transforms under a scale
transformation as:

δL = ε(−2β

g
+ d+ xµ∂µ)

−(F 2)R
4g2

+ ε(d+ xµ∂µ)(ψ̄ /Dψ)R

− ε(−γµ + d− 1 + xµ∂µ)(mψ̄ψ)R,

= ε(d+ xµ∂µ)L+
εβ

2g3
(F 2)R + ε(γµ + 1)(mψ̄ψ)R.

From here we extract ∆ and conclude that:

(TR)
µ
µ = ∆ =

β

2g
(F 2)R + (1 + γµ)(mψ̄ψ)R, (89)

where we have undone the rescaling of the gauge fields. The EMT trace anomaly
is given by β

2g (F
2)R+γm(mψ̄ψ)R. If we take the classical limit, i.e. β = γm = 0,

we indeed re-obtain the classical EMT trace.

4.4 Renormalization of the EMT
In this section we use the theory from the previous three sections to renormalize
the energy-momentum tensor of QCD. We define the operators:

O1 = −(F a)µρ(F a)νρ, O2 = gµν(F a)αβ(F a)αβ ,

O3 = iψγ{µDν}ψ, O4 = gµνmψψ,
(90)

which form a basis for all operators with the same symmetries and quantum
numbers as the EMT. We have omitted the Lorentz indices on Oi for ease of
notation. Using the operators of equation (90), we write:

Tµν = O1 +
O2

4
+O3. (91)

While the total EMT is independent under renormalization [2], the operators
that make up Tµν do need to be separately renormalized and mix under renor-
malization: 

O1,R

O2,R

O3,R

O4,R

 =


ZT ZM ZL ZS
0 ZF 0 ZC
ZQ ZB Zψ ZK
0 0 0 1



O1,B

O2,B

O3,B

O4,B

 (92)

We give a couple remarks regarding the structure of the renormalization matrix.
First of all, the linear space of EMT operators can be split into two subspaces:
the Lorentz trace- and traceless operators. The trace operators, like O2 and O4,
are essentially Lorentz scalars multiplied by the metric tensor. Therefore the
Lorentz trace- and traceless operators transform under different representations

33



of the Lorentz group [4]. This in turn means that they do not mix under renor-
malization. One can see this in the renormalization matrix, as the operators
O1,3 do not appear in the mixing of O2,4. Secondly, the operator O4 vanishes
in the limit m→ 0. Again, this is an extra characteristic which is why O4 only
mixes with itself. In fact, O4 does not need renormalization at all. This was
shown to one-loop order in section 4.1. To show this is true at all orders, note
that mBψ̄BψB appears in the renormalized Lagrangian. Therefore:

mB
∂

∂mB
〈Ω|φ1(x1) . . . φn(xn) |Ω〉 ,

= 〈Ω|
∫
d4x mBψ̄B(x)ψB(x)φ1(x1) . . . φn(xn) |Ω〉

− 〈Ω|
∫
d4x mBψ̄B(x)ψB(x) |Ω〉 〈Ω|φ1(x1) . . . φn(xn) |Ω〉 ,

= 〈Ω|
∫
d4x
(
mBψ̄B(x)ψB(x)− 〈Ω|mBψ̄B(x)ψB(x) |Ω〉

)
φ1(x1) . . . φn(xn) |Ω〉 .

must be a finite quantity (〈Ω|φ1(x1) . . . φn(xn) |Ω〉 is finite in the renormalized
theory). We recognize the operator mBψ̄B(x)ψB(x)−〈Ω|mBψ̄B(x)ψB(x) |Ω〉 as
the operator [mBψ̄BψB ](x) with the vacuum expectation value subtracted. So a
zero momentum insertion of the operator [mBψ̄BψB ](x) in any Green’s function
has to be finite. And since renormalization is independent of the momentum
inserted, we conclude that mψ̄ψ is a finite operator and needs no renormaliza-
tion.

As stated before, the trace- and traceless parts of the linear space of EMT
operators do not mix under renormalization. Therefore we can compute the
renormalization of the trace- and traceless operators separately. Since any op-
erator can be split into a trace part and a traceless part, we then can build up
the EMT renormalization matrix from these results. For the renormalization of
the trace operators, we look at the EMT trace. The bare trace in d dimensions
is given by:

(TB)
µ
µ =

d− 4

4
(FαβFαβ)B + (mψ̄ψ)B (93)

where we have used the equations of motion to obtain mψ̄ψ. Classically, the
first term drops out in the limit d → 4. In the renormalized theory however,
the bare operators contain divergences that, multiplied by 4−d

4 , yield additional
finite contributions to the trace of the EMT. The renormalized trace is given by
equation (89). Expressing it in bare operators, we get:

(ΘR)
µ
µ =

βZF
2g

(F 2)B + (1 + γm +
βZC
2g

)(mψ̄ψ)B . (94)

We find ZF and ZC by comparing equations (93) and (94):

ZF = − gε

2β
= 1 +

(
4

3
nfC(N)− 11

3
C2(G)

)
αs
4π

[
2

ε
+ ln 4πe−γE

]
, (95)

ZC = −2gγm
β

= 12C2(N)
αs
4π

[
2

ε
+ ln 4πe−γE

]
. (96)
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This completes the renormalization of the space of trace operators, which is
fully spanned by O2 and O4. The space of traceless operators is spanned by the
operators Og and Of from equation (75).

Now that we know the renormalization of the two subspaces, we split the
renormalization equations of O1 and O3 into their trace and traceless parts.
Defining Ôµν

i = 1
dg
µν(gαβOαβ

i ) and Õi = Oi − Ôi, we get:

Õ1,R = ZT Õ1,B + ZLÕ3,B , (97)
Õ3,R = ZQÕ1,B + ZψÕ3,B , (98)

and:

Ô1,R = ZT Ô1,B + ZMO2,B + ZLÔ3,B + ZSO4,B , (99)
Ô3,R = ZQÔ1,B + ZBO2,B + ZψÔ3,B + ZKO4,B , (100)

The renormalization constants ZT,L,Q,ψ are given by Zgg,gf,fg,ff respectively.
To find the remaining renormalization constants, we work out the traces of Oi.
For the bare operators, we find:

Ô1,B =
1

d
gµν(−FαβFαβ)B = −1

d
O2,B , (101)

Ô3,B =
1

d
gµν(ψ̄i /Dψ)B =

1

d
O4,B . (102)

The traces of the renormalized operators are not so simple, because renormaliza-
tion and the trace operation do not commute [12]. We parameterize the possible
anomalous terms by four unknown constants x, y, x′, y′ = O(αs):

Ô1,R = −1 + x′

d
O2,R − y′

d
O4,R, (103)

Ô3,R =
x

d
O2,R +

1 + y

d
O4,R. (104)

Actually, we can reduce the number of unknown constants by 2 by looking at
the sum Ô1,R + Ô3,R. On the one hand, this simply equals:

Ô1,R + Ô3,R = gµν
[
1 + (y − y′)

d
(mψ̄ψ)R +

(x− x′)− 1

d
(FαβFαβ)R

]
. (105)

On the other hand is the sum related to the full renormalized EMT by:

Ô1,R + Ô3,R =
1

d
gµνgαβ

[
TαβR − 1

4
Oαβ

2,R

]
. (106)

The operator O2 is already a trace (multiplied by the metric tensor) and can
therefore be contracted with the metric tensor to form the EMT trace. The full
EMT is scale independent, so (TR)

µ
µ = (Tµµ)R. Using equation (89) to write

the EMT trace in terms of the renormalized operators, we get:

Ô1,R + Ô3,R = gµν
[
1 + γm
d

(mψ̄ψ)R +

β
2g − 4−ε

4

d
(FαβFαβ)R

]
. (107)
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Comparing equations (105) and (107), we find two relations between the four
unknown constants x, y, x′, y′. Therefore we can rewrite the traces of operators
O1 and O3 as:

Ô1,R = −
1− β

2g + x

d
O2,R − y − γm

d
O4,R, (108)

Ô3,R =
x

d
O2,R +

1 + y

d
O4,R. (109)

The exact values of the constants x, y depend on the chosen renormalization
scheme. In [2], the x, y are computed for several different schemes. In this
thesis we use the MS scheme.

With these expressions for the bare and renormalized trace, we are able to
rewrite equations (99) and (100) in terms of the full operators. Next we use
equation (92) to express everything in bare operators. We then collect terms
containing the same operator. As both sides of the equation have to be equal
for all values of Oi,B , the following relations must be true:

ZM =
ZT
d

− ZF
d

(
1− β

2g
+ x

)
, (110)

ZS = −ZL
d

− ZC
d

(
1− β

2g
+ x

)
− y − γm

d
, (111)

ZB =
ZQ
d

+
x

d
ZF , (112)

ZK = −Zψ
d

+
x

d
ZC +

1 + y

d
. (113)

This solves all entries of the renormalization matrix in terms of the two con-
stants x and y. Before computing x and y in the MS scheme, we first com-
pute them in the easier MS scheme. In this scheme the renormalization con-
stants only contain poles in ε. There, all renormalization constants ZX , with
X = T,M,L, S, F,C,Q,B, ψ,K, take the following form:

ZX

∣∣∣MS
= (0, 1)X + αs

2a1,X
ε

+O(α2
s), (114)

where (0, 1)X = 1 for X = T, F, ψ and zero otherwise. We can find x and y
by taking the Laurent series of equations (112) and (113) around ε = 0 and
collecting the ε0 terms:

1

8

[
(αsa1,Q + . . . ) + x(2 + αsa1,F + . . . )

]
= 0,

1

8

[
− (2 + αsa1,ψ + . . . ) + x(αsa1,C + . . . ) + 2(1 + y)

]
= 0.

Solving these equations by order in αs yields:

x = −αs
a1,Q
2
, (115)

y = αs
a1,ψ
2
. (116)
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We next relate these equations to the MS scheme. There, the formula for the
renormalization constants is:

ZX

∣∣∣MS
= (0, 1)X + αs

2ā1,X
ε

Sε +O(α2
s), (117)

where Sε = (4πe−γE )
ε
2 = 1+ ε

2 ln 4πe
−γE + . . . . Because of this factor Sε, using

the same trick as for the MS scheme does not work: the resulting equations
will still be dependent on coefficients of ZB and ZK . However, as the difference
between the MS and MS schemes is finite, the divergent parts of equations
(114) and (117) should agree with each other. This implies that a1,X = ā1,X
(this relation is more complicated for higher order coefficients, but this order is
sufficient for our purposes). So we conclude that:

x =
2

3
nfC(N)

αs
4π
, (118)

y =
4

3
C2(N)

αs
4π
. (119)

and finally:

ZM =
11

12
C2(G)

αs
4π

[
2

ε
+ ln 4πe−γE

]
, (120)

ZS = −7

3
C2(N)

αs
4π

[
2

ε
+ ln 4πe−γE

]
, (121)

ZB = −1

3
nfC(N)

αs
4π

[
2

ε
+ ln 4πe−γE

]
, (122)

ZK = −2

3
C2(N)

αs
4π

[
2

ε
+ ln 4πe−γE

]
. (123)

This completes the renormalization of the EMT. We can summarize the results
as follows:

Z = 1+
αs
4π

[
2

ε
+ ln 4πe−γE

]
Z2, (124)

where:

Z2 =


4
3nfC(N) 11

12C2(G) − 8
3C2(N) − 7

3C2(N)
0 4

3nfC(N)− 11
3 C2(G) 0 12C2(N)

− 4
3nfC(N) − 1

3nfC(N) 8
3C2(N) − 2

3C2(N)
0 0 0 0

 . (125)

As always, the anomalous dimension matrix is key to calculating the scale be-
haviour of the EMT components. The anomalous dimension matrix is defined
by:

γij =
∂Zik

∂ lnµ
[Z−1]kj . (126)
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We have:
∂Z

∂ lnµ
=

2g

(4π)2
β(g)

[
2

ε
+ ln 4πe−γE

]
Z2 +O(α2

s),

= −2αs
4π

Z2 +O(α2
s).

As this part is already of next-to-leading order, we only need to compute the
leading order of Z−1, which is equal to unity. So we conclude:

γZ = −αs
2π


4
3nfC(N) 11

12C2(G) − 8
3C2(N) − 7

3C2(N)
0 4

3nfC(N)− 11
3 C2(G) 0 12C2(N)

− 4
3nfC(N) − 1

3nfC(N) 8
3C2(N) − 2

3C2(N)
0 0 0 0

+O(α2
s).

(127)
Here we again see that (mψ̄ψ)R is scale-independent and that (FαβFαβ)R only
mixes with (mψ̄ψ)R.

Now that we have found the anomalous dimension matrix, we compute the
values of Oi,R up to 1-loop order as a function of energy scale. We start from
the differential equation:

∂Oi,R

∂ lnµ
= γijZ (µ)Oj,R,

= −αs
2π
Zij2 Oj,R.

with the initial value Oi,R(µ0) at some energy µ0. We insert the solution of
αs(µ) to obtain:

∂

∂ lnµ
Oi,R =

Zij2
β0 ln

µ
Λ

Oj,R. (128)

As the matrix part of this differential equation is not dependent on µ, the
solution is simply a matrix exponential:

Oi,R(µ) = e

∫ lnµ
lnµ0

Z
ij
2

β0 ln
µ
Λ
d lnµ

Oj,R(µ0). (129)

The integral in the exponent is of the form
∫ b
a

1
xdx and therefore has a solution

of the form ln(b/a): ∫ lnµ

lnµ0

Zij2
β0 ln

µ
Λ

d lnµ =
Zij2
β0

ln

∣∣∣∣ ln µ
Λ

ln µ0

Λ

∣∣∣∣,
We use equation (62) to dispose of Λ in favour of αs and arrive at:

Oi,R(µ) = e
−Z

ij
2

β0
ln
∣∣ αs(µ)
αs(µ0)

∣∣
Oj,R(µ0). (130)

This result is valid up to next-to-leading order. Due to the mixing very little can
be said about the running behaviour purely based on this expression. Therefore
we do not discuss the scaling of the operators, but use the same technique for
solving the matrix differential equation to solve for the running of the mass
decompositions in the next chapter.
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5 Investigating the proton mass
Now that we have treated the energy-momentum tensor of QCD, we focus our
attention on the main goal of this thesis: investigating the proton mass. For
most purposes the proton is said to consist of three quarks, two up and one
down. However, the sum of the masses of these quarks (∼ 9 MeV) is nowhere
near the mass of the proton (∼ 938 MeV). Therefore the 3-quark picture is
replaced by a sea of quarks and gluons that contains three more quarks then
anti-quarks. Pictorially, one can say that the three quarks exchange gluons,
which in turn briefly split into a quark-antiquark pair, which exchange gluons
again, etc. This picture raises the question of how much of the proton mass
can be attributed to the quarks and how much to the gluons? Can we make
a further decomposition, splitting the quark contribution into for instance a
mass and a kinetic term? In this chapter we try to give an answer to these
questions by examining the relation between the energy-momentum tensor and
the proton mass. We give two formula’s for obtaining the mass from the EMT
and use these to discuss several decompositions of the proton mass. We also
investigate the scale dependence of these mass sum rules, which originates in
the just examined scale dependence of the EMT operators.

5.1 Deriving the proton mass
There are many ways one can calculate the mass of a proton, but we focus
on deriving the proton mass from the energy-momentum tensor. Consider a
proton state, |P 〉, with four-momentum Pµ = (E,P) and mass M = E2 −P2.
The state is normalized according to 〈P ′|P 〉 = E

M (2π)3δ(3)(P′ − P). Due to
Lorentz symmetry, the forward matrix element of the EMT in |P 〉 must have
the following general shape:

〈P |Tµν(x) |P 〉 = A(0)PµP ν + C̄(0)gµνM2, (131)

where A(∆) and C̄(∆) are scalars depending on the transferred momentum
∆ = (P ′ − P )2. The Hamiltonian of the system, satisfying H |P 〉 = E |P 〉, is
related to the EMT by H =

∫
d3x T 00. Therefore we have the relation:

〈P |H |P 〉 = E2

M
(2π)3δ(3)(0). (132)

Combining equations (131) and (132), we find that C̄(0) must be zero and we
get the formula:

〈P |Tµν(0) |P 〉 = PµP ν

M
. (133)

Even though an x-dependence was written inside the forward matrix ele-
ments above, the forward matrix elements themselves are independent of x. To
show this, we define the translation operator T̂ (x) = eiP̂

µxµ , where P̂µ is the
momentum operator satisfying P̂µ |P 〉 = Pµ |P 〉. Starting from a generic for-
ward matrix element 〈P |O(x) |P 〉, we use T̂ (x) to translate O(x) to the point
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x = 0:

〈P |O(x) |P 〉 = 〈P | eiP̂
µxµO(0)e−iP̂

µxµ |P 〉 ,
= 〈P | eiP

µxµO(0)e−iP
µxµ |P 〉 ,

= 〈P |O(0) |P 〉 .

Indeed the final result is independent of x (this does not hold for a general
matrix element, only forward matrix elements). To avoid confusion about the
x-dependence, we shall use 〈P |O(0) |P 〉 to indicate forward matrix elements of
x-dependent operators.

A formula for the mass of the proton is then obtained by taking the trace of
equation (133) [4]:

M = 〈P |Tµµ(0) |P 〉 (134)

An advantage of this expression is that it is Poincaré invariant. Indeed it relies
on the identity P 2 = M2, which defines mass as the square root of one of the
invariant Casimir operators of the Poincaré group [3]. However, the formula only
relies on the trace of the mass at a single point in spacetime. This is problematic
for a proton, which is not a point particle. Also, the precise formula depends
on the normalization of the proton, a feature that is not desirable for a physical
interpretation.

To avoid these issues, Lorcé [3] suggests using a different formula for the pro-
ton mass. This formula uses the normalized expectation value of some spatially
extended operator:

〈O〉 ≡
〈P |

∫
d3x O(x) |P 〉
〈P |P 〉

. (135)

The normalized expectation value of T 00(x) is then equal to the normalized
forward matrix element of the Hamiltonian. From equation (132) we see that if
we equate this in the rest frame of the proton, we get:

〈T 00〉
∣∣
P=0

=M, (136)

Although this formula solves the issues surrounding formula (134), we have lost
frame independence: the formula only holds in the rest frame of the proton.
Because the forward matrix element is independent of x, the integral over x
simply evaluates to the space-time volume V = (2π)3δ(3)(0). This factor cancels
the delta function divergence of the norm 〈P |P 〉. We then find:

M = 〈P |T 00(0) |P 〉
∣∣
P=0

(137)

Both equations (134) and (136) (or equivalently equation (137)) have been used
in the literature and to calculate the proton mass. In the rest of chis chapter we
review several mass decompositions from the literature and will therefore also
use both equations.
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5.2 The mass decompositions
Both formula’s for the proton mass are linearly related to (parts of) the EMT.
This allows us to examine proton mass decompositions through decompositions
of the EMT. The most common decomposition of the classical (symmetric) EMT
of equation (30) into a quark and gluon part is:

Tµν = Tµνq + Tµνg , (138)

with:

Tµνq = iψ̄γ{µDν}ψ, (139)

Tµνg = −(F a)µρ(F a)νρ +
gµν

4
(F a)αβ(Fa)αβ . (140)

where in equation (139) a sum over quark flavors and colors and in equation
(140) a sum over gluon colors is understood. The quark part also contains a
gluonic component, due to the covariant derivative. The gluonic part of the
EMT contains both the kinetic energy of the gluons and the gluon-gluon in-
teractions. While the matrix element of the full EMT was constricted by the
Hamiltonian of the system, the matrix elements of Tµνq and Tµνg suffer no such
constriction. Therefore we introduce 4 form factors Ai(0) and C̄i(0) (i = q, g)
such that, similar to equation (131):

〈P |Tµνi (0) |P 〉 = Ai(0)
PµP ν

M
+ C̄i(0)Mgµν . (141)

The conservation of the total EMT imposes two constraints on these form fac-
tors:

Aq(0) +Ag(0) = 1, C̄q(0) + C̄g(0) = 0. (142)

Therefore any mass rule based on this decomposition (without further decom-
position), has at most two independent terms.

After renormalization equation (138) holds for both the bare and renormal-
ized operators. The bare operators however are not necessarily finite: they can
contain divergences that cancel when we sum them to form the total EMT. This
translates to the proton mass: if we base our mass decompositions on the bare
operators, we might end up with divergences in the mass terms, even though
their sum is finite. Therefore all proton mass decompositions described below
are based on (and expressed in) renormalized operators.

Tanaka’s mass sum rule

The first mass rule we treat is a two-term decomposition by Tanaka et al. [5].
It is based on the trace of the decomposition depicted in equation (138). The
traces of the operators iψ̄γ{µDν}ψ and −(F a)µρ(F a)νρ have been treated in
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section 4.4. Using the calculated values of x and y, we find:

(Tq,R)
µ
µ =

(
1 +

4

3
C2(N)

αs
4π

)
(mψ̄ψ)R +

2

3
nfC(N)

αs
4π

(FαβFαβ)R, (143)

(Tg,R)
µ
µ =

14

3
C2(N)

αs
4π

(mψ̄ψ)R − 11

6
C2(G)

αs
4π

(FαβFαβ)R. (144)

Their sum indeed reproduces the total QCD trace. In the background field
method the 1-loop corrections to the gluon kinetic term in the effective La-
grangian can be separated into a quark-loop (∝ 4

3nfC(N)) and a gluon-loop
(∝ − 11

3 C2(G)) contribution [6]. This separation coincides with the decompo-
sition of the 〈(FαβFαβ)R〉 term in equations (143) and (144). A similar corre-
spondence could be invoked on the quark mass term. Because of this simple
correspondence, [5] states that this decomposition is well-defined and of physical
origin. The mass sum rule is given by:

M = M̄q + M̄g, (145)

with:

M̄q = 〈P | (Tq,R)µµ(0) |P 〉 , M̄g = 〈P | (Tg,R)µµ(0) |P 〉 . (146)

The quark and gluon contributions in this decomposition are related to the form
factors via:

M̄i =M(Ai + 4C̄i) (147)

Lorcé’s 2-term mass sum rule

A second two-term sum rule, proposed by Lorcé [3], also uses the decomposition
of equation (138), but focuses on the T 00

i to find the mass (equation (137)). To
give more insight in this sum rule, we rewrite the T 00

i as follows:

T 00
q,R = (mψ̄ψ)R + (iψ†D · αψ)R, (148)

T 00
g,R =

1

2
(E2 +B2)R. (149)

where αi = γ0γi. In the first term on the r.h.s. of equation (148) we recognize
the quark mass term. The second term in that equation is usually referred to as
the kinetic plus potential energy of the quarks. The operator in equation (149)
represents the total energy stored in the gluon fields. The sum rule is then given
by:

M = M̃q + M̃g, (150)

with:

M̃q = 〈P |T 00
q,R(0) |P 〉

∣∣
P=0

, M̃g = 〈P |T 00
g,R(0) |P 〉

∣∣
P=0

. (151)

In terms of the EMT form factors we have:

M̃i =M(Ai + C̄i), (152)
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proving that M̄i 6= M̃i (unless C̄i = 0).
Lorcé also shows an argument why his sum rule is in his eyes the best sum

rule. He poses that a proton can be seen as made up from two effective coupled
fluids, one consisting of quarks and one consisting of gluons. In this picture,
the EMT form factors can be related to the partial internal energy Ui and the
partial pressure-volume work Wi:

Ui = (Ai + C̄i)M, Wi = −C̄iM. (153)

The internal energies represent the sum of all the potential and kinetic energies.
Therefore the total mass of a system is given by the sum of all internal energies
in the rest frame:

M =
∑
i

Ui. (154)

The pressure-volume work represents the pressures and stresses of the fluids on
each other and the outside world. In a stable system, there is no interaction
with the outside world and the total pressure-volume work should vanish:∑

i

Wi = 0. (155)

These statements are in agreement with the conditions posed on the EMT form
factors. Of course any mass rule should only be concerned with the internal
energies; the pressure-volume work that one fluid exerts on another should be
irrelevant for the mass. His own sum rule does obey this principle: M̃i = Ui.
Tanaka’s mass components however include a pressure part: M̄i = Ui − 3Wi.
Therefore (in the effective coupled two-fluid picture) Tanaka’s sum rule is not
physical and the fact that the

∑
i M̄i = M is the result of the total pressure-

volume work vanishing.
In the effective coupled two-fluid picture it is also non-sensible to compose

a mass sum rule consisting of more than two components, as this would in-
advertently lead to a pressure contribution. A sum rule based on more than
two fluids is however also impossible, as quarks (or gluons) would then be part
of two fluids simultaneously. Lorcé does offer a 4-part decomposition, but he
refrains from giving a physical interpretation to this 4-term decomposition and
says it can at best be seen as some sort of virial decomposition. Of course, all
of this is dependent on whether the effective coupled multi-fluid picture can be
used to describe a proton.

Ji’s mass sum rule

We now turn to the four-term sum rule proposed by Ji [4], focused on the
Hamiltonian density T 00(0). In this sum rule the EMT is decomposed into a
traceless part and trace part according to:

Tµν = T̄µν + T̂µν , (156)
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where T̂µν = 1
dg
µνTαα. As the traceless and trace parts do not mix under

renormalization, both are finite and scale-independent composite operators and
the separation is completely physical. This implies:

M = 〈P | T̄ 00(0) |P 〉
∣∣
P=0

+ 〈P | T̂ 00(0) |P 〉
∣∣
P=0

. (157)

From equation (134) one can see that the second term on the right hand side,
i.e. the trace part, contributes exactly 1

4M . It is tempting therefore to conclude
that the trace of the EMT contributes 25% of the proton mass. This would
however be wrong. The second term on the right hand side is actually only a
quarter of the trace, as can be seen in the definition of T̂µν . The traceless part
of equation (157) can however be expressed in terms of the trace part [2]. Recall
that, due to equation (131), in the rest frame the forward matrix element of the
EMT is zero except for T 00. In particular, in the rest frame the EMT has no
off-diagonal elements and we have the relation:

〈P | T̄ 00(0) |P 〉
∣∣
P=0

=
3

4
〈P |Tµµ(0) |P 〉

∣∣
P=0

(158)

So again we find that the proton mass is fully determined by the forward matrix
elements of the EMT trace.

Ji then further decomposes both the trace and traceless parts. The traceless
part is decomposed into a quark and gluon part:

Tµνq,R =
(
ψ̄iD{µγν}ψ − (trace)

)
R
, Tµνg,R = −

(
(F a)µα(F a)να − (trace)

)
R
.

(159)
The trace in Tµνq,R is given by

(
gµν

d mψ̄ψ
)
R

. As mψ̄ψ is finite, we can ignore the
ε terms arising from the factor 1

d and write:

Tµνq,R = (ψ̄iD{µγν}ψ)R − gµν

4
(mψ̄ψ)R. (160)

For Tµνg,R, we write the trace as follows:(gµν
d

(F a)αβ(F a)αβ
)
R
=
([1
4
− 1

4

4− d

d

]
gµν(F a)αβ(F a)αβ

)
R
. (161)

The former term then combines with the FµαF να to form the total gluon con-
tribution to the EMT, while in the latter term we recognize the trace anomaly.
Therefore the total gluon part equals:

Tµνq,R = −
(
(F a)µα(F a)να − gµν

4
(F a)αβ(F a)αβ

)
R

− β

8g

(
(F a)αβ(F a)αβ

)
R
− γm

4
(mψ̄ψ)R. (162)

The trace of the EMT, as given in equation (89), is decomposed into a quark
mass contribution and a gluon field tensor contribution:

Tµνm,R =
gµν

4
(1 + γm)(mψ̄ψ)R, Tµνa,R =

gµν

4

β

2g
(FαβFαβ)R (163)
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Finally, Ji’s mass sum rule is based upon T 00, equation (137). Using a similar
rewriting as for equations (148) and (149), we find:

M ′
q = 〈P | (ψ†iD · αψ)R |P 〉

∣∣
P=0

+ 〈P | 3
4
(mψ̄ψ)R |P 〉

∣∣
P=0

, (164)

M ′
m = 〈P | 1 + γm

4
(mψ̄ψ)R |P 〉

∣∣
P=0

, (165)

Mg = 〈P | 1
2
(B2 +E2)R |P 〉

∣∣
P=0

− 〈P | β
4g

(B2 −E2) |P 〉
∣∣
P=0

− γm
4

(mψ̄ψ)R |P 〉
∣∣
P=0

, (166)

Ma = 〈P | β
4g

(B2 −E2)R |P 〉
∣∣
P=0

. (167)

Ji then assigns a physical meaning to the gluon pieces: Mg represents the gluon
kinetic and potential energy as in the classical case, i.e. without the trace
anomaly; Ma represents the gluon part of the trace anomaly. Originally, Ji
defined 1

2 (B
2 + E2)R as the traceless gluon kinetic and potential energy [13],

opposed to our full gluon EMT definition which also contains the trace anomaly.
Therefore we have to subtract the trace anomaly separately in equation (166) to
agree with Ji’s mass rule. To obtain suitable linear combinations of renormalized
operators for the quark part of the decomposition, Ji then reorganizes Mq and
Mm:

Mq = 〈P | (ψ†iD · αψ)R |P 〉
∣∣
P=0

, (168)

Mm = 〈P | (1 + γm
4

)(mψ̄ψ)R |P 〉
∣∣
P=0

. (169)

We can now easily assign a physical meaning to the quark pieces: Mq represents
the quark kinetic plus potential energy and Mm represents the quark mass term.
They uphold the relations M ′

m + Ma = 1
4M and M ′

q + Mg = 3
4M , as these

combinations yield the trace- and traceless parts of the EMT. Therefore even
though Ji’s mass rule has four components, only two of these are independent.
This is in agreement with the text below equation (142).

Rodini’s mass sum rule

Rodini et al. [2] proposes a three-term mass rule using a similar method as Ji.
Their decomposition differs from Ji’s method in the order in which they renor-
malize the EMT and take out the trace. The non-commutation of the renor-
malization and the trace operation results in a consequent additional scheme
dependence. They do not apply the separation (157) to the full EMT, but to
the individual quark and gluon parts:

Tµνi,R = T̄µνi,R + T̂µνi,R. (170)
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Using the relations for the traces of the renormalized quark and gluon parts
(equations (143) and (144)), we find:

T̄ 00
q,R = (mψ̄ψ)R + (iψ†D · αψ)R − 1 + y

4
(mψ̄ψ)R − x

4
(FαβFαβ)R, (171)

T̂ 00
q,R =

1 + y

4
(mψ̄ψ)R +

x

4
(FαβFαβ)R, (172)

T̄ 00
g,R =

1

2
(B2 +E2)R − γm − y

4
(mψ̄ψ)R − 1

4

( β
2g

− x
)
(FαβFαβ)R, (173)

T̂ 00
g,R =

γm − y

4
(mψ̄ψ)R − 1

4

( β
2g

− x
)
(FαβFαβ)R. (174)

We see here that Ji’s method of decomposing the EMT is equal to setting
x = y = 0, also called the D2 scheme. In this scheme the entire trace anomaly
originates from the gluon sector. Rodini’s mass rule is then given by:

M = M̂ ′
q + M̂ ′

m + M̂ ′
g + M̂ ′

a, (175)

with:

M̂ ′
q = 〈P | T̄ 00

q,R(0) |P 〉
∣∣
P=0

, M̂ ′
m = 〈P | T̂ 00

q,R(0) |P 〉
∣∣
P=0

, (176)

M̂ ′
g = 〈P | T̄ 00

g,R(0) |P 〉
∣∣
P=0

, M̂ ′
a = 〈P | T̂ 00

g,R(0) |P 〉
∣∣
P=0

. (177)

Just like Ji, Rodini et al. want to obtain suitable linear combinations of renor-
malized operators. To this end, they consider the following linear combination:

M̂q = M̂ ′
q + cqmM̂

′
m + cqaM̂

′
q,

M̂m = (1− cqm)M̂ ′
m + cmaM̂

′
a,

M̂g = M̂ ′
g + cgaM̂

′
a,

M̂a = (1− cqa − cma − cga)M̂
′
a,

with:

cqm =
(−3 + y) β2g + x(3− γm)

(1 + y) β2g − x(1 + γm)
,

cqa = −cma =
4x

(1 + y) β2g − x(1 + γm)
,

cga = 1.

This leads to the very simple result:

M̂q = 〈P | (ψ†iD · αψ)R |P 〉
∣∣
P=0

, (178)

M̂m = 〈P | (mψ̄ψ)R |P 〉
∣∣
P=0

, (179)

M̂g = 〈P | 1
2
(B2 +E2)R |P 〉

∣∣
P=0

, (180)

M̂a = 0. (181)
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The connection with the original quark- and gluon- decomposition of equation
(138) is now lost, as the quark part (M̂q and M̂m) has absorbed part of the
gluon part of the decomposition. This sum rule can however be seen as a finer
version of Lorcé’s decomposition, splitting the quark part into a quark mass
term and a quark kinetic and potential energy term.

The mass rules of both Ji and Rodini et al. are based on a decomposition
of the full 00-component of the EMT. In dimensional regularization, the entire
trace anomaly is derived from the bare gluon EMT (as is shown by equation
(93)). As dimensional regularization only affects the spatial part of spacetime,
T 00 is somewhat special as it is left untouched by dimensional regularization.
The full trace anomaly is then contained in the spatial part of the trace and
should not appear in any mass rule based on T 00. Rodini et al. base their mass
rule on this premise, setting M̂a = 0. This line of reasoning is however not true
in general. Other regularization schemes, like the momentum cutoff, do affect
the time-dimension and therefore do induce (part of) the trace anomaly in T 00

[13]. Therefore the question whether the trace anomaly yields truly a separate
contribution to the proton mass remains.

5.3 Numerical results
Now that we have examined the mass decompositions from a operator point of
view, let us compute their numerical values. In the last section it was stated that
mass decompositions based on the EMT decomposition (138) have at most two
independent terms. This implies that only two independent numerical inputs
are needed to fix all the terms of the different mass decompositions. It is very
hard to extract information of the matrix elements of the EMT directly from
experiment, due to the weakness of the gravitational force [3]. All that we need
though are the form factors Aq,g(0) and C̄q,g(0), or equivalently the parameters a
(the average fraction of hadron momentum carried by the quarks) and b (related
to the proton scalar charge 〈P | ψ̄ψ |P 〉) [4]. We follow [2] and define a parameter
b as:

Mb = (1 + γm) 〈P | (mψ̄ψ)R |P 〉
∣∣
P=0

. (182)
Using the trace of the EMT, we then find for the scalar gluon operator:

M(1− b) =
β

2g
〈P | (FαβFαβ)R |P 〉

∣∣
P=0

. (183)

There are multiple methods for fixing the parameter b, two of which are ex-
plained in [2]. We take a rough weighted average of the results of these two
methods at the scale µ0 = 2 GeV, yielding b = 0.2.

For the second numerical input we define the parton momentum fractions ai
in the proton as:

3

4
Maq = 〈P | T̄ 00

q,R |P 〉
∣∣
P=0

,
3

4
Mag = 〈P | T̄ 00

g,R |P 〉
∣∣
P=0

, (184)

where aq is a shorthand notation for the sum of the momentum fractions of all
active quark flavours. The ai satisfy the sum rule aq + ag = 1, similar to the
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i M̄i M̃i Mi M̂i

q -0.074 0.394 0.234 0.234
m - - 0.167 0.160
g 1.002 0.544 0.350 0.544
a - - 0.188 -

Table 1: The numerical results of the different mass decompositions at µ = 2
GeV. All results are in units of GeV and for O(αs) accuracy.

form factors Ai(0). Therefore they yield one independent numerical input. We
take ai from [2] at the scale µ0 = 2 GeV and four active quark flavours, yielding
aq = 0.586 (and ag = 0.414). Of course the calculations of this thesis are only
of one-loop order and not of two-loop order, but this will make little numerical
difference. We write the values of the forward matrix elements used in the mass
decompositions as functions of the numerical inputs:

〈P | 1
2
(B2 +E2)R |P 〉

∣∣
P=0

=
3

4
Mag +

γm − y

4(1 + γm)
Mb+

(1
4
− gx

2β

)
M(1− b),

(185)

〈P | (FαβFαβ)R |P 〉
∣∣
P=0

= 2 〈P | (B2 −E2)R |P 〉
∣∣
P=0

=
2gM(1− b)

β
, (186)

〈P | (ψ†iD · αψ)R |P 〉
∣∣
P=0

=
3

4
Maq +

y − 3

4(1 + γm)
Mb+

gx

2β
M(1− b), (187)

〈P | (mψ̄ψ)R |P 〉
∣∣
P=0

=
Mb

1 + γm
. (188)

Lastly, the value of the coupling constant at µ = 2 GeV is given by αs = 0.269
(one loop order) [2].

In table 1 we present the numerical results for the several sum rules at µ = 2
GeV. All decompositions agree that most of the proton mass at µ = 2 GeV
comes from the gluons. The quark mass term seems to contribute 0.16 GeV to
the proton mass. As the masses of the three valence quark add up to about 0.009
GeV, this validates the quark-gluon sea picture with more quarks than just the
three valence quarks. In the MIT bag model, three massless quarks confined to
a spherical cavity of radius 1 fm have a total kinetic energy of 0.6 to 0.7 GeV
[4]. Assuming the quark kinetic energy of a proton is somewhat similar to this,
the quark-gluon interactions contribute -0.3 to -0.4 GeV in the models of Rodini
et al. and Ji. This negative contribution can be interpreted as a binding energy
of the quarks and gluons. Lorcé’s decomposition does not make a distinction
between the quark mass term and other quark contributions, but is still in rough
agreement . A surprising contrast to this is Tanaka’s decomposition, based on
the EMT trace. There the quarks actually have a very small, possibly even
slightly negative total contribution to the proton mass 8. Given that the quark

8Because we performed our analysis only at 1-loop order, the uncertainties are too large
(α2

s ∼ 0.07) to state with certainty that the quark contribution is negative.
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mass and kinetic contributions to M̄q are definitely positive, this would imply
that the quark-gluon interactions yield contribution to the proton mass roughly
equal to the negative sum of the mass and kinetic terms. This is a much larger
contribution than the -0.3 to -0.4 GeV. Of course whether we can make the
distinction between kinetic energy and quark-gluon interaction is questionable:
any decomposition that separates the two is no longer gauge invariant. Lastly,
we note that in Ji’s mass rule the different contributions are fairly close to each
other, making the gluon dominance the weakest in that decomposition.

Of course the results of table 1 are but a snapshot of the proton mass at one
particular scale. To obtain a full picture of the proton mass decompositions, we
must also investigate the running of the mass decompositions. To do so, we first
calculate the running of the forward matrix elements of equations (185) through
(188):

∂

∂ logµ

1

2
(B2 +E2)R =

∂

∂ logµ
O00

1,R +
1

4

∂

∂ logµ
O00

2,R, (189)

∂

∂ logµ
(B2 −E2)R =

∂

∂ logµ
O00

2,R, (190)

∂

∂ logµ
(ψ†iD · αψ)R =

∂

∂ logµ
O00

3,R, (191)

∂

∂ logµ
(mψ̄ψ)R = 0. (192)

The renormalization of 00-components of the EMT operators is identical to
the renormalization of the full operators. Therefore we obtain the differential
equation:

∂

∂ logµ


1
2 (B

2 +E2)R
(B2 −E2)R
(ψ†iD · αψ)R

(mψ̄ψ)R

 = −αs
2π
A


1
2 (B

2 +E2)R
(B2 −E2)R
(ψ†iD · αψ)R

(mψ̄ψ)R

 (193)

with:

A =


4
3nfC(N) 1

3nfC(N) − 8
3C2(N) 2

3C2(N)
0 4

3nfC(N)− 11
3 C2(G) 0 12C2(N)

− 4
3nfC(N) − 1

3nfC(N) 8
3C2(N) − 2

3C2(N)
0 0 0 0

 (194)

This differential equation has the same structure as the differential equation at
the end of section 4.4 and therefore has a similar solution:

1
2 (B

2 +E2)R(µ)
(B2 −E2)R(µ)
(ψ†iD · αψ)R(µ)

(mψ̄ψ)R(µ)

 = e
− A

β0
log
∣∣ αs(µ)
αs(µ0)

∣∣ 
1
2 (B

2 +E2)R(µ0)
(B2 −E2)R(µ0)
(ψ†iD · αψ)R(µ0)

(mψ̄ψ)R(µ0)

 (195)

From here we can calculate the running of the different mass decompositions.
Figure 10 shows the result for the four decompositions treated in the last sec-
tion. We see that our conclusions at µ = 2 GeV do not relate to other scales due
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scale dependency and the mass operators mixing with each other. All decompo-
sitions agree that at small distances (high energy) the gluon energy contributes
the most to the proton mass and the quark energy contribution the least. An
extended momentum scale domain even shows that the quark energy contribu-
tion is negative in the high-energy limit for all decompositions. This supports
the hypothesis that at a high energy scale the proton consists mainly of glu-
ons. Obviously a dominance of gluons in the proton increases the gluon energy
contribution to the proton mass. Also, with more gluons, we have more quark-
gluon interaction per quark. As the quark-gluon interaction to the proton mass
is negative, this results in a lower quark energy at a higher momentum scale.

Figure 10: Scale dependence of the different mass decompositions. All mass
components are graphed together with their sum for the scale range µ = 1− 5
GeV. In this region we have 4 active quark flavours, which we treat as if they
have identical masses.

At the lower end of the momentum scale domain, the decompositions do
not agree as much with each other. Specifically, the decomposition of Tanaka
is very weakly scale dependent, which would imply that the gluon contribu-
tion dominates the proton mass at all scales. The other three decompositions
show that the quark and gluon contributions would become roughly equal at a
low momentum scale. Of course we only know this for sure above 1 GeV, as
below that scale the higher-order effects become important and we cannot use
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perturbation theory anymore. Moreover, there is also a physical reason why
we can’t say much about momentum scales smaller than 1 GeV. The Compton
wavelength associated with a particle of 1 GeV is 1fm, roughly the size of a
proton. Therefore, probing the proton at a momentum scale < 1 GeV means
we are averaging over an area larger than the proton. Lastly, we note that the
quark mass term is RG-invariant, as we have shown before.

In conclusion, the decompositions based on the trace (Tanaka) and the
Hamiltonian (Lorcé, Ji and Rodini et al.) yield very different numerical re-
sults for the quark- and gluon contributions to the proton mass. They seem to
agree more with each other in the high-momentum scale region, but we cannot
provide a physical reasoning for this phenomenon. The high-momentum scale
behaviour can be explained by assuming that the proton consists mainly of glu-
ons at high scale. The low-momentum scale behaviour of the Hamiltonian based
decompositions show a roughly equal contributions of the quarks and gluons to
the proton mass.
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6 Conclusions
This thesis deals with the mass of the proton and how it can be decomposed, in
the theory of QCD. We have reviewed QCD as a gauge theory with symmetry
group SU(3), its Lagrangian and energy-momentum tensor, a key component
for investigating the mass of the proton. We have quantized and renormalized
QCD, paying special attention to the scale dependency of the theory. We have
seen that QCD is an asymptotically free theory, meaning it behaves as a free
theory at very small distances / high momenta. On the other hand, QCD seems
to be unworkable below an energy of Λ ≈ 0.2 GeV, due to a diverging coupling
constant. For perturbative purposes, a lower momentum limit of ∼ 1 GeV is
advised, unless one has access to many-loop calculations.

Next, we have reviewed operator renormalization, which is needed on top of
the field renormalization when working with composite operators. We have seen
that in the case of multiple operators with the same quantum numbers, these
operators mix under renormalization. Next, we have renormalized the operators
that form the EMT. Even though the EMT as a whole is RG-independent,
mixing does take place between the operators. We have shown that the trace of
the EMT is a measure for the scale-invariance of a theory. The scale dependence
that is introduced by quantizing the theory leads to the well-known EMT trace
anomaly, which we have derived.

In chapter 5 we have derived the proton mass from the EMT via forward
matrix elements. We have treated two different derivations, one focusing on
the EMT trace and the other on the Hamiltonian (related to the 00-component
of the EMT). Even though the trace method was Lorentz invariant, just like
mass itself, it was local and dependent on the renormalization of the proton
state. Both these properties are not desirable for a proton mass formula. The
Hamiltonian method did not have these issues, but required the proton to be
at rest, singling out one frame of reference. We then looked at four mass de-
compositions. The two-term decomposition by Tanaka, based on the trace of
the EMT, separated the mass into a quark- and gluon part, mimicking the
quark- and gluon loop contributions to the effective gluon kinetic term in the
effective Lagrangian of the background field method. Lorcé based his two-term
decomposition of the Hamiltonian and reasoned an effective two-fluid picture,
in which only the internal energy of the quark- or gluon fluid can truly con-
tribute to the mass. The pressure effects of the fluids cancel each other out and
should not be accounted towards any mass decomposition. Ji’s decomposition
based on the Hamiltonian acknowledges four terms: a quark mass contribution,
a quark kinetic and potential energy contribution, a gluon energy contribution
and a contribution from the trace anomaly. Lastly, a three-term contribution
by Rodini et al. reinterprets the trace anomaly as part of the gluon kinetic and
potential energy, claiming that there is no true separate trace anomaly contribu-
tion to the proton mass. This is true when using dimensional regularization and
the mass formula based on T 00, but not for other regulators like the momentum
cutoff nor for the mass formula based on the trace of the EMT.

Finally, we have used numerical inputs for the matrix elements that make up
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the decompositions and computed the numerical values of all decompositions.
We have also computed the running of all the decompositions graphically. All
decompositions agreed that at high energies the gluon energy was the main
contribution to the proton mass. At the low energy limit however, there was
controversy between the decompositions. This controversy seems to originate
in the different formula’s to calculate the proton mass. The decomposition by
Tanaka showed that the quark contribution was very small and even slightly
negative for all energies. The other decompositions agreed that the quark (en-
ergy) contribution became more dominant at low energies. The quark mass
contribution, present in Ji’s and Rodini’s decompositions, was responsible for
about 0.16 GeV. It would be interesting to see what numerical values these same
decompositions would be for a pion, which is known to be the lightest hadron
and acts as a nearly massless goldstone boson. It is expected that the quark
mass term plays a much more dominant role in pion decompositions.
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A Calculation of Feynman Diagrams
In this appendix the divergent parts of 1-loop Feynman diagrams needed in
this thesis are calculated. The diagrams are all computed using dimensional
regularization and the external legs are ignored. The general structure is as
follows:

1. Change the number of dimensions from 4 to d.

2. Combine the denominators using Feynman parameters.

3. Shift the integration variable such that the denominator takes the form
[l2 −∆]n for some n ∈ N.

4. Simplify the numerator, use the substitution lµlν → 1
dg
µν l2 to express

everything as much as possible in l2 and throw away all terms without
UV-divergences (terms of lx with x < 2n− 4 or terms odd in l).

5. Use the identities of appendix A.4 of [6] to perform the integrals.

Finally, the result can be interpreted in d = 4 − ε dimensions, yielding the
divergences as poles in 1

ε .

A.1 QCD diagrams

k

p− k

The diagram above equals the following integral:∫
ddk

(2π)d
(igγµT a)

i(/k +m)

k2 −m2
(igγµT

a)
−i

(p− k)2
.

By introducing a Feynman parameter and shifting the integration variable to
l = k − xp, this integral simplifies to:

−g2C2(N)

∫ 1

0

dx

∫
ddl

(2π)d
N

[l2 −∆]2
,

where:

N = γµ(/l + x/p+m)γµ,

∼ (2− d)x/p+ dm,

Performing the momentum integral, the full diagram equals (setting d = 4− ε):

−iC2(N)
αs
4π

(4π)
ε
2Γ
( ε
2

)∫ 1

0

dx
(
(ε− 2)x/p+ (4− ε)m)∆− ε

2 .
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Finally using the identities Γ
(
ε
2

)
= 2

ε − γE +O(ε) and xε = 1 + ε lnx+O(ε2),
the divergent part of the diagram equals:

C2(N)
αs
4π

(i[/p− 4m])

[
2

ε
+ ln 4πe−γE

]
. (196)

a b
k

p− k

The diagram above equals the following integral:∫
ddk

(2π)d
(−gfxybpµ) i

k2
(−gfayxkµ)

−i
(p− k)2

.

By introducing a Feynman parameter and shifting the integration variable to
l = k − xp, this integral simplifies to:

−g2C2(G)δ
ab

∫ 1

0

dx

∫
ddl

(2π)d
N

[l2 −∆]2
,

where:

N = pµ(l + xp)µ,

∼ xp2,

Performing the momentum integral, the full diagram equals (setting d = 4− ε):

−iC2(G)δ
abαs
4π

(4π)
ε
2Γ
( ε
2

)∫ 1

0

dx xp2∆− ε
2 .

Finally, the divergent part of the diagram equals:

1

2
C2(G)

αs
4π

(−ip2δab)
[
2

ε
+ ln 4πe−γE

]
. (197)

µ, a

p− k

q − k

k

The diagram above equals the following integral:∫
d4k

(2π)4
(igγαT x)

i(/q − /k +m)

(q − k)2 −m2
(igγµT a)

i(/p− /k +m)

(p− k)2 −m2
(igγαT

x)
−i
k2
.
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By introducing Feynman parameters and shifting the integration variable to
l = k − xp− yq, this integral simplifies to:

g3[C2(N)− 1

2
C2(G)]T

a

∫ 1

0

dx

∫ x

0

dy

∫
ddl

(2π)d
2Nµ

[l2 −∆]3
,

where:

Nµ = γα([1− y]/q − x/p− /l +m)γµ(−y/q + [1− x]/p− /l +m)γα,

∼ γα(−/l)γµ(−/l)γα,

∼ l2
(2− d)2

d
γµ.

Performing the momentum integral, the full diagram equals (setting d = 4− ε):

i[C2(N)− 1

2
C2(G)]

αs
4π
gγµT a

(ε− 2)2

2
(4π)

ε
2Γ
( ε
2

)∫ 1

0

dx

∫ x

0

dy ∆− ε
2 .

Finally, the divergent part of the diagram equals:

[C2(N)− 1

2
C2(G)]

αs
4π

(igγµT a)

[
2

ε
+ ln 4πe−γE

]
(198)

µ, a k

p− k

q − k

The diagram above equals the following integral:∫
d4k

(2π)4
(igγαT x)

i(/k +m)

k2 −m2
(igγβT y)

−i
(p− k)2

−i
(q − k)2

× gfaxy
[
gµα(2q − p− k)β + gαβ(2k − p− q)µ + gβµ(2p− q − k)α

]
.

By introducing Feynman parameters and shifting the integration variable to
l = k − xp− yq, this integral simplifies to:

−1

2
g3C2(G)T

a

∫ 1

0

dx

∫ x

0

dy

∫
ddl

(2π)d
2Nµ

[l2 −∆]3
,

where:

Nµ = γα(/l + x/p+ y/y +m)γβ
[
gµα([2− y]q − [1 + x]p− l)β

+ gαβ(2l − [1− 2x]p− [1− 2y]q)µ + gβµ([2− x]p− [1 + y]q − l)α
]
,

∼ γα/lγβ
[
gµα(−l)β + gαβ(2l)µ + gβµ(−l)α

]
,

∼ −(4− 4

d
)l2γµ.
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Performing the momentum integral, the full diagram equals (setting d = 4− ε):

iC2(G)
αs
4π
gγµT a(3− ε)(4π)

ε
2Γ
( ε
2

)∫ 1

0

dx

∫ x

0

dy ∆− ε
2 .

Finally, the divergent part of the diagram equals:

3

2
C2(G)

αs
4π

(igγµT a)

[
2

ε
+ ln 4πe−γE

]
. (199)

µ, a ν, b

k

k − p

The diagram above equals:

(−1)

∫
ddk

(2π)d
Tr

{
(igγµT a)

i(/k − /p+m)

(k − p)2 −m2
(igγνT b)

i(/k +m)

k2 −m2

}
.

By introducing a Feynman parameter and shifting the integration variable to
l = k − xp, this integral simplifies to:

−g2C(N)δab
∫ 1

0

dx

∫
ddl

(2π)d
Nµν

[l2 −∆]2
,

where:
∆ = x(x− 1)p2 +m2,

and:

Nµν = Tr
{
γµ(/l − [1− x]/p+m)γν(/l + x/p+m)

}
,

∼
(8
d
− 4
)
gµν l2 − x(x− 1)(4gµνp2 − 8pµpν) + 4m2gµν .

Performing the momentum integral, the full diagram equals (setting d = 4− ε):

iC(N)δab
αs
4π

(4π)
ε
2

∫ 1

0

dx ∆
ε
2

[
4gµν

( ε
2
− 1
)
Γ
( ε
2
− 1
)
∆

+ [x(x− 1)(4gµνp2 − 8pµpν) + 4m2gµν ]Γ
( ε
2

)]
.

This expression seems to contain two different divergences. However, using the
relation xΓ(x) = Γ(x + 1) we see that they actually both gamma functions
contribute to the same divergence of Γ

(
ε
2

)
. Writing out ∆, we then combine

the terms and find:

iC(N)δab
αs
4π

(4π)
ε
2Γ
( ε
2

)∫ 1

0

dx ∆
ε
2 8x(x− 1)(gµνp2 − pµpν).
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Finally, the divergent part of the diagram equals:

4

3
C(N)

αs
4π

(−i[gµνp2]δab − pµpν)

[
2

ε
+ ln 4πe−γE

]
. (200)

µ, a ν, b

k

k − p

The diagram above equals:

1

2

∫
ddk

(2π)d
gfaxy[gµα(2p− k)β + gαβ(2k − p)µ + gβµ(−p− k)α]

−i
k2

× gf byx[gνβ(−p− k)α + gβα(2k − p)ν + gαν(2p− k)β ]
−i

(k − p)2
.

The factor 1
2 is a symmetry factor. By introducing a Feynman parameter and

shifting the integration variable to l = k − xp, this integral simplifies to:

g2C2(G)δ
ab

∫ 1

0

dx

∫
ddl

(2π)d
Nµν

[l2 −∆]2
,

where:
∆ = x(x− 1)p2,

and:

Nµν =
1

2
[gµα([2− x]p− l)β + gαβ(2l + [2x− 1]p)µ + gβµ(−[1 + x]p− l)α]

× [gνβ(−[1 + x]p− l)α + gβα(2l + [2x− 1]p)ν + gαν([2− x]p− l)β ],

∼ 3

d
(d− 1)gµν l2 +

1

2

[
(2x− 1)2(d− 2)− 2(x+ 1)(2− x)

]
pµpν

+
[
(2− x)2 + (1 + x)2

]
p2gµν .

Performing the momentum integral, the full diagram equals (setting d = 4− ε):

iC2(G)δ
abαs
4π

(4π)
ε
2

∫ 1

0

dx ∆
ε
2

[
− 3

2
(3− ε)gµνΓ

( ε
2
−1
)
∆+

1

2

(
[(2x−1)2(2− ε)

− 2(x+ 1)(2− x)]pµpν + [(2− x)2 + (1 + x)2]p2gµν
)
Γ
( ε
2

)]
. (201)

At this point we cannot proceed any further, as the two gamma functions yield
different divergences. Therefore we continue with the two diagrams that are
intimately linked with this diagram: the ghost loop correction and the gluon
tadpole correction to the vacuum polarization.
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µ, a ν, b

k

k − p

The diagram above equals:

(−1)

∫
ddk

(2π)d
(−gfxaykµ) i

(k − p)2
(−gfybx(k − p)ν)

i

k2
.

By introducing a Feynman parameter and shifting the integration variable to
l = k − xp, this integral simplifies to:

−g2C2(G)δ
ab

∫ 1

0

dx

∫
ddl

(2π)d
Nµν

[l2 −∆]2
,

where ∆ is equal to the gluon loop diagram and:

Nµν = (l + xp)µ(l + [x− 1]p)ν ,

∼ 1

d
gµν l2 + x(x− 1)pµpν .

Performing the momentum integral, the full diagram equals (setting d = 4− ε):

iC2(G)δ
abαs
4π

(4π)
ε
2

∫ 1

0

dx ∆
ε
2

[
1

2
gµνΓ

( ε
2
− 1
)
∆− x(x− 1)pµpνΓ

( ε
2

)]
. (202)

µ, a ν, b

k

The diagram above equals:

1

2

∫
ddk

(2π)d
[−2ig2faxyf bxy(d− 1)gµν ]

−i
k2
.

Due to its intimate link with the gluon loop correction and the ghost loop
correction to the vacuum polarization, we force it to look like the other diagram
by multiplying it by 1 = (k−p)2

(k−p)2 . Next we introduce a Feynman parameter and
shift the integration variable to l = k − xp. The integral simplifies to:

−g2C2(G)δ
abgµν

∫ 1

0

dx

∫
ddl

(2π)d
N

[l2 −∆]2
,

59



where ∆ is equal to the gluon loop diagram and:

N = (d− 1)(l + [x− 1]p)2,

∼ (d− 1)l2 + (d− 1)(x− 1)2p2.

Performing the momentum integral, the full diagram equals (setting d = 4− ε):

iC2(G)δ
abαs
4π

(4π)
ε
2

∫ 1

0

dx ∆
ε
2

[
(6− 7

2
ε+

1

2
ε2)Γ

( ε
2
− 1
)

− (3− ε)(x− 1)2p2Γ
( ε
2

)]
. (203)

A.2 Operator diagrams
Interactions with ψ̄ψ

[ψ̄ψ]

k k

p− k

Expressed as an integral, this diagram equals:∫
ddk

(2π)d
(igγµT a)

i(/k +m)

k2 −m2
(1)

i(/k +m)

k2 −m2
(igγµT

a)
−i

(p− k)2

We combine the denominators by introducing a Feynman parameter and shift
the integration value to l = k − xp. The result is:

−ig2C2(N)

∫ 1

0

dx

∫
ddl

(2π)d
2(1− x)N

[l2 −∆]3
, (204)

with:
N = γα(/l + x/p+m)(/l + x/p+m)γα.

Only the term with two factors of l results in a divergence. Therefore we ignore
the rest and write N = dl2. The full Feynman diagram therefore contains the
term:

−ig2C2(N)

∫ 1

0

dx
i

(4π)d/2
d

2

Γ(2− d
2 )

2
∆d/2−22(1− x)d,

which contains the divergence:

4C2(N)
αs
4π

[
2

ε
+ ln 4πe−γE

]
. (205)
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[iψ̄γ{µDν}ψ]

p p

= γ{µpν},

[iψ̄γ{µDν}ψ]

σ, a

= −gγ{µgν}σT a,

[−(Fµρ)a(F νρ)a]

σ, b τ, c

p p
= −2δbc

[
p{µpν}gστ + p2gσ{µgν}τ −

pσp{µgν}τ − pτp{µgν}σ
]
,

[−(Fµρ)a(F νρ)a]

ρ, b

σ, c

τ, d

k q

p

= 2if bcd
[
gρσgτ{µ(p − k)ν} + gστgρ{µ(q −

p)ν}+gτρgσ{µ(k−q)ν}+gρ{µgν}σ(p−k)τ +
gσ{µgν}τ (q − k)ρ + gτ{µgν}ρ(k − q)σ

]
,

[−(Fµρ)a(F νρ)a]

λ, b

ρ, c σ, d

τ, e

= 2g2
[
fxbcfxde

(
gλ{µ[gν}σgρτ −

gν}τgρσ] − gρ{µ[gν}σgλτ − gν}τgρσ]
)

+

fxbdfxce
(
gλ{µ[gν}ρgστ − gν}τgρσ] −

gσ{µ[gν}ρgλτ − gν}τgλρ]
)

+

fxbefxcd
(
gλ{µ[gν}ρgστ − gν}σgρτ ] −

gτ{µ[gν}ρgλσ − gν}σgλρ]
)]

.

Figure 11: Interactions of the traceless EMT-like operators.
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Interactions with −(Fµρ)a(F νρ)a and iψ̄γ{µDν}ψ.

[−FµρF νρ − (trace)]

p

k

k + p

The Feynman diagram above equals:

∫
ddk

(2π)d
(igγαT a)

i(/k + /p+m)

(k + p)2 −m2
(igγβT b)

(
−i
k2

)2

(−2δab)
[
k{µkν}gαβ

+ k2g {µ
α g

ν}
β − kαk

{µg
ν}
β − kβk

{µgν}α

]
− (trace). (206)

We combine the denominators by introducing a Feynman parameter. The result
is:

−ig2C2(N)

∫ 1

0

dx

∫
ddl

(2π)d
2(1− x)Nµν

[l2 −∆]3
, (207)

with:

l = k + xp,

Nµν = 2γα(/l + (1− x)/p+m)γβ
[
(l − xp){µ(l − xp)ν}gαβ + (l − xp)2g {µ

α g
ν}
β

− (l − xp)α(l − xp){µg
ν}
β − (l − xp)β(l − xp){µgν}α

]
− (trace),

For our case, we are only interested in traceless, divergent terms that contain the
structure γ{µpν} = γ{νpµ}. Ignoring all other terms and replacing all lαlβ →
gαβ

d l2, Nµν simplifies to:

Nµν = 2(2− 4

d
)(x+ 1)l2

[
γ{µpν} − (trace)

]
.

The full Feynman diagram therefore contains the term:

−ig2C2(N)

∫ 1

0

dx
i

(4π)d/2
d

2

Γ(2− d
2 )

2
∆d/2−24(2− 4

d
)(1− x2)

[
γ{µpν} − (trace)

]
,

which contains the divergence:

8

3
C2(N)

( g

4π

)2[2
ε
+ ln 4πe−γE

][
γ{µpν} − (trace)

]
. (208)

62



[iψ̄γ{µDν}ψ − (trace)]

σ, a τ, b

k k

k + p

The Feynman diagram above equals:

(−1)

∫
ddk

(2π)d
Tr

[
(igγσT a)

i(/k +m)

k2 −m2
γ{µkν}

i(/k +m)

k2 −m2
(igγτT b)

i(/k + /p+m)

(k + p)2 −m2

]
−(trace).

(209)
We combine the denominators by introducing a Feynman parameter. The result
is:

−ig2C(N)δab
∫ 1

0

dx

∫
ddl

(2π)d
2(1− x)Nµνστ

[l2 −∆]3
, (210)

with:

l = k + xp,

Nµνστ = Tr
[
γσ(/l − x/p+m)γ{µ(l − xp)ν}(/l − x/p+m)

γτ (/l + (1− x)/p+m)
]
− (trace).

For our case, we are only interested in traceless, divergent terms that contain
the structure p{µpν}gστ . Ignoring all other terms, the denominator simplifies
to:

Nµνστ = 2
[
(
4

d
− 2)x− x2

]
l2p{µpν}gστ − (trace).

The full Feynman diagram therefore contains the term:

−ig2C(N)δab
∫ 1

0

dx
i

(4π)d/2
d

2

Γ(2− d
2 )

2
∆d/2−24(1−x)

[
(
4

d
−2)x−x2

][
p{µpν}gστ−(trace)

]
,

which contains the divergence:
2

3
C(N)

( g

4π

)2[2
ε
+ ln 4πe−γE

][
(−2δab)p{µpν}gστ − (trace)

]
. (211)

[iψ̄γ{µDν}ψ − (trace)]

p p

p− k
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The Feynman diagram above equals:∫
ddk

(2π)d
(igγαT a)

i(/k +m)

k2 −m2
γ{µkν}

i(/k +m)

k2 −m2
(igγαT

a)
−i

(p− k)2
.

We combine the denominators by introducing a Feynman parameter. The result
is:

−ig2C2(N)

∫ 1

0

dx

∫
ddl

(2π)d
2(1− x)Nµν

[l2 −∆]3
, (212)

with:

l = k − xp,

Nµν = γα(/l + x/p+m)γ{µ(l + xp)ν}(/l + x/p+m)γα.

For our case, we are only interested in traceless, divergent terms that contain
the structure γ{µpν} = γ{νpµ}. Ignoring all other terms, Nµν simplifies to:

Nµν = x
(d− 2)2

d
l2
[
γ{µpν} − (trace)

]
.

The full Feynman diagram therefore contains the term:

−ig2C2(N)

∫ 1

0

dx
i

(4π)d/2
d

2

Γ(2− d
2 )

2
∆d/2−22(1−x)x (d− 2)2

d

[
γ{µpν}−(trace)

]
.

which contains the divergence:

1

3
C2(N)

( g

4π

)2[2
ε
+ ln 4πe−γE

][
γ{µpν} − (trace)

]
. (213)

[iψ̄γ{µDν}ψ − (trace)]

p

p

k

The Feynman diagram above equals:∫
ddk

(2π)d
(igγαT a)

i(/k + /p+m)

(k + p)2 −m2
(−gγ{µgν}αT a)

−i
k2

− (trace).

We combine the denominators by introducing a Feynman parameter. The result
is:

ig2C2(N)

∫ 1

0

dx

∫
ddl

(2π)d
Nµν

[l2 −∆]2
, (214)
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with:

l = k + xp,

Nµν = γ{µ(/l + (1− x)/p+m)γν} − (trace).

For our case, we are only interested in traceless, divergent terms that contain the
structure γ{µpν} = γ{νpµ}. Ignoring all other terms, the numerator simplifies
to:

Nµν = 2(1− x)
[
γ{µpν} − (trace)

]
.

The full Feynman diagram therefore contains the term:

ig2C2(N)

∫ 1

0

dx
i

(4π)d/2
Γ(2− d

2
)∆d/2−22(1− x)

[
γ{µpν} − (trace)

]
which contains the divergence:

−C2(N)
( g

4π

)2[2
ε
+ ln 4πe−γE

][
γ{µpν} − (trace)

]
. (215)

[−FµρF νρ − (trace)]

σ, a τ, b

p

p

k

The Feynman diagram above equals:

1

2

∫
ddk

(2π)d
gfaxy[gσα(p−k)β+gαβ(2k+p)σ+gβσ(−2p−k)α] −i

(p+ k)2
2igf bxy

×
[
gταgβ{µ(p− k)ν} + gαβgτ{µ(2k + p)ν}

+ gβτgα{µ(−2p− k)ν} + gτ{µgν}α(p− k)β

+ gα{µgν}β(2k + p)τ + gβ{µgν}τ (−2p− k)α
]−i
k2

− (trace).

We combine the denominators by introducing a Feynman parameter. The result
is:

−ig2C2(G)δ
ab

∫ 1

0

dx

∫
ddl

(2π)d
Nµνστ

[l2 −∆]2
, (216)

with:

l = k + xp,

Nµνστ = a humongous expression
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For our case, we are only interested in traceless, divergent terms that contain
the structure p{µpν}gστ . Ignoring all other terms, the numerator simplifies to:

Nµνστ =
(
(1 + x)2 + (2− x)2

)[
p{µpν}gστ − (trace)

]
.

The full Feynman diagram therefore contains the term:

− ig2C2(G)δ
ab

∫ 1

0

dx
i

(4π)d/2
Γ(2− d

2
)∆d/2−2

×
(
(1 + x)2 + (2− x)2

)[
p{µpν}gστ − (trace)

]
,

which contains the divergence:

−14

6
C2(G)

( g

4π

)2[2
ε
+ ln 4πe−γE

][
(−2δab)p{µpν}gστ − (trace)

]
. (217)

[−FµρF νρ − (trace)]

σ, a τ, b

p

k

p+ k

The Feynman diagram above equals:∫
ddk

(2π)d
gfaxy[gσα(2p+ k)β + gαβ(−p− 2k)σ + gβσ(k − p)α]

−i
k2

× (−2δyz)[k{µkν}gρβ + k2gρ{µgν}β − kρk{µgν}β − kβk{µgν}ρ]
−i
k2

× gf bzx[gτρ(−p+ k)α + gρα(−2k − p)τ + gατ (2p+ k)ρ]
−i

(p+ k)2
− (trace).

We combine the denominators by introducing a Feynman parameter. The result
is:

2ig2C2(G)δ
ab

∫ 1

0

dx

∫
ddl

(2π)d
2(1− x)Nµνστ

[l2 −∆]3
, (218)

with:

l = k + xp,

Nµνστ = a humongous expression

For our case, we are only interested in traceless, divergent terms that contain
the structure p{µpν}gστ . Ignoring all other terms, the denominator simplifies
to:

Nµνστ =
(−4x2

d
+ 5x2 +

4x

d
+ 4− 8

d

)
l2
[
p{µpν}gστ − (trace)

]
.
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The full Feynman diagram therefore contains the term:

2ig2C2(G)δ
ab

∫ 1

0

dx
i

(4π)d/2
d

2

Γ(2− d
2 )

2
∆d/2−22(1− x)

×
(−4x2

d
+ 5x2 +

4x

d
+ 4− 8

d

)[
p{µpν}gστ − (trace)

]
.

which contains the divergence:

3C2(G)
( g

4π

)2[2
ε
+ ln 4πe−γE

][
(−2δab)p{µpν}gστ − (trace)

]
. (219)
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