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Abstract
Diabetes is one of the most common diseases worldwide, affecting 9.3% of people during their life-
time [32]. Diabetic Retinopathy (DR) is a complication of diabetes caused by elevated blood sugar
levels. It damages the retina, which can cause blindness if left undiagnosed and untreated. Partial
or total vision loss is also observed in some patients [20]. Around 34.6% of patients suffering from
diabetes experience DR [13]. This project focuses on learning-supported visual pathology analysis
in Diabetic Macular Edema (DME), which is the most common reason for vision loss in DR patients
[9]. Deep learning and Optical Coherence Tomography (OCT) technologies have brought trustwor-
thiness and reliability in detecting retinal diseases. They have significantly enhanced the diagnostic
performance of eye posterior segment disease [36].

Similar works have been done using a large dataset with labeled OCT images for retinal disease classi-
fication [26]. Models created by Kermany et al. [26] have depicted high accuracy, but their specificity
and sensitivity display lower confidence than expected. Panozzo et al. [37] proposed a methodology
using seven morphological features that increase the specificity and sensitivity of diabetic maculopa-
thy diagnosis. In this project, deep learning methods are used to build Convolutional Neural Network
(CNN) models that classify these seven morphological features plus an additional feature in a super-
vised learning setup. The trained models are later evaluated, and their metrics are studied in detail.

For this project, a dataset was prepared by the National Autonomous University of Mexico (UNAM),
and clinical evaluation was manually done for each OCT image. As a result, ground truth labels for
each OCT image are provided. Supervised learning is adopted using the ground truth labels to train
the classification models to classify the features and predict the occurrence of DME. In this thesis,
eight different morphological features are studied: foveal Thickness range, Macular Volume, presence
of intraretinal Cysts, state of the Ellipsoid Zone and External Limiting Membrane, Disorganization of
the Inner Retinal Layers, number of Hyperreflective foci, subfoveal Fluid, and Vitreoretinal relation-
ship.

This project focuses on utilizing deep learning and machine learning algorithms to investigate the
relationship between eight morphological features. The trained models are used to classify and detect
the presence of individual and combined features against the novel data (test set). The results are
further evaluated to establish the accuracy and reliability of the model to diagnose DME in OCT im-
ages with the usage of transfer learning. The results of the experiment illustrate the most substantial
relationship between Thickening (T) and Macular Volume (MV). The results indicate that Cysts (C)
is the prominent singleton feature that positively reinforces the accuracy of the trained DME detec-
tion model. Similarly, the combination of Thickening (T) and Macular Volume (MV) is the most
prominent two-feature combination that positively reinforces the accuracy of the model. The average
sensitivity and specificity for the prediction of DME is approximately 96% for both using single fea-
tures and combinations of features.

Keywords— Deep learning, Machine learning, Diabetic Retinopathy (DR), Diabetic Macular Edema
(DME), Optical coherence tomography (OCT)
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1 Introduction
Diabetes is one of the most prevalent chronic diseases, affecting around 415 million people globally.
It is projected to be risen up to 750 million by 2030 [37]. DME is the most common cause of visual
impairment in patients with diabetes mellitus. Roughly around 75,000 new patients in the United
States show symptoms of diabetes mellitus annually [4]. The article published by the International
Diabetes Federation shows that more than 21 million people are affected by DME globally and that
approximately one in 14 people with diabetes has some degree of DME [51].

One of the consequences of diabetes on the human eyes is DR, which is caused by damage to the
blood vessels of the light-sensitive tissue at the retina. DME is a progressive phase of DR and can
result in permanent vision loss [38]. ”The pathogenesis of DME is complex and multifactorial. It
occurs mainly due to disruption of the Blood-Retinal Barrier (BRB), which leads to increased accu-
mulation of fluid within the intraretinal layers of the macula [4]”.

Currently, there are some techniques such as Fluorescein Angiography (FA) and spectral-domain opti-
cal coherence tomography (SD-OCT) for the assessment of Diabetic Maculopathy (DM). Specifically,
SD-OCT presents both quantitive and qualitative information and provides high-resolution images in
a non-invasive (not involving the introduction of instruments into the body) and repeatable way [37].
There are eight qualitative morphological parameters on SD-OCT images as follows [37]:

• Thickening (T)

• Macular Volume (MV)

• Size of intraretinal Cycts (C)

• State of Ellipsoid Zone (EZ) / External Limiting Membrane (ELM)

• The presence of disorganization of the inner retinal layers (DRIL)

• Hyperreflective foci (H)

• The presence or the absence of Subretinal Fluid (F)

• The vitreoretinal relationship (V)

The main focus of this project is instructed toward the learning-supported visual analysis of the DME
pathology in the retina associated with diabetes. Different studies such as L. Giancardo et al. [10], I.
Hecht et al. [31], and H. Y. Li et al. [54] have demonstrated the potential of using classical and deep
learning algorithms to automatically extract the characteristics that determine the presence or absence
of DME in the fundus and OCT images. However, this project focuses only on the OCT images as a
specialized study.

This project has three main goals. The first goal is to classify and detect the eight mentioned morpho-
logical features separately and singularly on OCT images and study the relationship between them.
The second goal is to simultaneously detect only two morphological features (combined features) on
OCT images. The third goal is the detection of DME using the models trained on single features and
various combinations of them on a new dataset of OCT images.
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The data necessary for this project was not readily available. A team of medical experts was responsi-
ble for manually labeling the OCT images based on the morphological features observed. The labels
are used as the ground truth while training the classification models to classify and identify the men-
tioned morphological features separately and their combinations. The models are then used to predict
the occurrence of DME in novel data.

This thesis is structured as follows: Section 2 introduces related works and similar techniques in this
field of study. Section 3 provides background information about the methodologies embraced in the
project. The section further elaborates on the fundamentals of investigating the disease and medical
images. Section 4 shows the approach used in this project and elaborates on consecutive steps to
achieve the goals. Section 5 depicts the network architecture and its building blocks. The section
further demonstrates the dataset used in the project in further detail and reveals some examples of
the images used in this project. Section 6 addresses the hardware and software environment used in
this project and represents the techniques and strategies used to implement the project. In addition,
it represents the evaluation metrics used in this project to measure model performance. Section 7
addresses the results and analysis used from the experimentation and provides some insight into the
obtained results. The section further discusses the results and makes a comparison with the related
works. Section 8 concludes the thesis, and finally, Section 9 depicts the directions for future works in
this field of study.
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2 Related Work

2.1 OCT-based grading system
According to work done by Panozzo et al. [37], DME has been classified in several ways - according
to its location, extent, or nature on OCT images. A grading protocol is proposed in their work to take
seven morphological features (excluding Macular Volume) into account, mentioned in Section 1, and
evaluate them. The grading protocol then classifies DME on OCT images in four distinct stages based
on the seven mentioned morphological features. The proposed grading protocol system for classifying
DME has been called TCED-HFV, in which each letter represents a morphological feature. The OCT
images are graded based on the presence of each feature corresponding to its label. Then graded OCT
images are individually categorized into one of the four different stages of DME as follows [37]:

1. Early DME

2. Advanced DME

3. Severe DME

4. Atropathic maculopathy

Figures 1 and 2 show DME progression in the four stages separately. To better represent the TCED-
HFV score in this thesis, a vector is defined consisting of seven values showing the label of each
feature in order (T, C, E, D, H, F, V).

Figure 1a illustrates the early DME:
(a) Small cystoid spaces involving the temporal side of the fovea [37]. The TCED-HFV score in order
is (1, 1, 0, 0, 0, 0, 0), in which each number shows the presence of each feature according to its label.
(b) Multiple perifoveal cystoid spaces in the outer nuclear layer, the outer plexiform layer, and the
inner nuclear layer, with mild thickening of the temporal side of the macula [37]. The TCED-HFV
score is (1, 2, 0, 0, 1, 0, 1).
(c) The retinal profile is preserved, and cystoid spaces in the outer plexiform and inner nuclear layers.
The ellipsoid zone is not gradable due to subfoveal fluid, but the external limiting membrane is normal
[37]. The TCED-HFV score is (1, 2, 0, 0, 1, 1, 4).

Figure 1b illustrates the severe DME:
(a) Multiple central coalescent macrocysts in the outer nuclear layer, the outer plexiform layer, and
the inner nuclear layer with disorganization of the inner retinal layers (DRIL) [37]. The TCED-HFV
score is (2, 3, 2, 1, 0, 0, 1), in which each number shows the presence of each feature according to its
label.
(b) The central macrocyst is surrounded by large cystoid spaces involving the outer nuclear layer, the
outer plexiform layer, and the inner nuclear layer [37]. The TCED-HFV score is (2, 3, 2, 1, 0, 0, 1).
(c) Central macrocyst and multiple large cysts surrounded by a few hyperreflective foci. The external
liming membrane and the ellipsoid zone are not discernible subfoveal [37]. The TCED-HFV score is
(2, 3, 2, 0, 1, 0, 0).

Figure 2a shows advanced DME:
(a) Cystoid spaces in the outer nuclear layer, the outer plexiform layer, and the inner nuclear layer,
with thickening of the retina and central macrocyst [37]. The TCED-HFV score is (2, 3, 1, 0, 1, 0, 0),
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(a) Early DME (b) Severe DME

Figure 1: Two different stages of DME [37].

in which each number shows the presence of each feature according to its label.
(b) Intermediate cystoid spaces in the macula and the ellipsoid zone are not gradable, but the external
limiting membrane is disrupted subfoveal [37]. The TCED-HFV score is (2, 2, 1, 0, 0, 1, 0).
(c) A large pseudocyst in the fovea with cystoid spaces in the parafoveal area. The ellipsoid zone and
the external liming membrane are damaged subfoveal [37]. The TCED-HFV score is (2, 3, 1, 1, 0, 0,
1).
(d) Large cystoid spaces in the outer nuclear layer, the outer plexiform layer, and the inner nuclear
layer with a shallow subfoveal detachment. Diffuse hyperreflective foci, non-gradable ellipsoid zone,
but discontinuous external liming membrane [37]. The TCED-HFV score is (2, 3, 1, 0, 1, 1, 1).

Figure 2b shows Atrophic diabetic maculopathy:
(a) Central retinal thinning with disorganization of the inner retinal layers (DRIL). The external liming
membrane and the ellipsoid zone are not discernible subfoveally, and the retinal pigment epithelium
is atrophic [37]. The TCED-HFV score is (0, 1, 2, 1, 1, 0, 0).
(b) Central retinal thinning with DRIL. The external limiting membrane and the ellipsoid zone are not
distinguishable subfoveally, and the retinal pigment epithelium is irregular and focally atrophic [37].
The TCED-HFV score is (0, 1, 2, 1, 0, 0, 0).

The work done by Pannozo et al. [37] proposes a method to classify DME solely on selected mor-
phological features, which was a new way to classify DME in comparison to their prior work. Un-
fortunately, the study did not leverage machine learning methods’ capabilities to classify and predict
DME diseases.
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(a) Advanced DME

(b) Atrophic DME

Figure 2: Two different stages of DME [37].

2.2 Deep learning in ophthalmology

According to A. D. Moraru et al. [36], the collaboration of deep learning and OCT technologies has
brought trustworthiness in detecting retinal diseases. It has enhanced the diagnostic performance of
eye posterior segment diseases. With the increase in population age and obesity, the occurrence of DR
also increases, leading to many cases of vision loss. There are several means of screening and man-
agement in DR using machine learning classes and techniques to detect and classify different types
of DR from medical images. Support Vector Machine (SVM), multiple layer perceptron classes, and
radial basis function neural networks, can perform the same analysis as ophthalmologists for the reti-
nal images [36].

The methodologies of medical image analysis are revolutionized by using deep learning algorithms
using OCT and fundus images. The potential of AI in ophthalmology improves patient access to clin-
ical diagnosis and reduces healthcare costs [36].

2.3 OpticNet architecture

S. Amit Kamran et al. [30] represents a highly accurate automated system to diagnose DR and other
retinal diseases. Achieving an adequate diagnosis is feasible by using SD-OCT techniques, which
show the morphology of retinal layers. DR resembles another wide variety of retinal diseases; it
is not uncommon for misclassifications to occur during the diagnosis. A successful differentiation
between various degeneration of retinal layers and their underlying causes has been achieved by S.
Amit Kamran et al. [30], thanks to their novel convolution neural network architecture with a flawless
accuracy of 99.8% and 100% for two separately available retinal SD-OCT datasets.

The retinal images are studied for five specific parameters - retinal thickness, augmentation of retinal
thickening, macular volume, retinal morphology, and vitreoretinal relationship. These features act as
the foundation for identifying the growth of macular density in the retinal layer to detect DME [30].
The CNN architecture proposed by S. Amit Kamran et al. [30] is shown below in figure 3. It depicts
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three critical sections: a new residual unit subsuming Atrous Separable Convolution, a novel building
block, and a mechanism to prevent gradient degradation. The mentioned architecture does not require
any pre-trained weights, and it eases the training and deployment time of the model by many folds
[30].

Figure 3: An illustration of the OpticNet architecture proposed by S. Amit Kamran et al. [30], which
depicts three different sections as follows:
(a) illustrates how the proposed Residual Learning Unit enhances feature learning capabilities.
(b) shows how the mechanism handles gradient degradation.
(c) describes the whole CNN architecture.

The model has been benchmarked against two popular datasets of different sizes. The first dataset
is OCT2017 [26] includes 84,484 images in which there are four distinct categories of four retinal
conditions such as normal healthy retina, Drusen, Choroidal Neo-Vascularization (CNV), and DME.
The other dataset, Srinivasan2014 [15], contains 3,231 images in which there are three classes, and
the goal is to classify normal healthy specimens of the retina, Age-Related Macular Degeneration
(AMD), and DME.

The models created by S. Amit Kamran et al. [30] yielded satisfactory results. In the OCT2017
dataset [26], the model achieved the most elevated test accuracy, 99.80%, among different existing
models. It also showed impressive sensitivity and specificity metrics of 99.80% and 99.93%. In the
Srinivasan2014 dataset [15], the model achieved a state-of-the-art result by scoring 100% accuracy,
sensitivity, and specificity [30].
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2.4 ML techniques for DME classification
The work done by K. Alsaih et al. [21] proposed an automatic supervised classification framework
for SD-OCT images to identify DME versus normal images. DME can be classified based on the
evaluation of features such as retinal thickening, hard exudates, intraretinal cystoid space formation,
and subretinal fluid [21]. The features are evaluated individually and together as a set of different
combinations of the same. A model is trained on a dataset consisting of 32 OCT volumes (16 DME
and 16 normal cases). Each volume contains 128 B-scans OCT images, resulting in more than 3800
images.

The study by K. Alsaih et al. [21] investigated a generic pipeline including pre-processing, fea-
ture detection, feature representation techniques, and using classifiers to detect DME satisfactorily.
OCT volumes are pre-processed through denoising, flattening, and cropping. Histogram of Oriented
Gradients (HoG) and Local Binary Pattern (LBP) features are extracted from four levels using a mul-
tiresolution Gaussian image pyramid 1. HoG is a feature descriptor widely used in computer vision
tasks for object detection [2]. LBP is a straightforward and efficient texture operator that labels pixels
of an image by thresholding the neighborhood of each pixel. Then it assesses the output as a binary
number [1]. The LBP and the HoG features used a multiresolution image pyramid for feature repre-
sentation, resulting in a high-dimensional feature space [21]. Principal Component Analysis (PCA)
is further used to reduce the number of dimensions for visualization and feature selection. Three dif-
ferent classifiers are used in their work, such as Random Forest (RF), Linear Support Vector Machine
(Linear-SVM), and Kernel Support Vector Machine (Kernel-SVM). The SD-OCT volume classifica-
tion is performed based on the overall number of diseased scans detected in each volume, using the
majority voting rule [21].

The classification done by K. Alsaih et al. [21] showed a promising result, but their study had some
limitations. The assessment is done on a relatively small dataset. Their classification approaches in-
vestigated that the DME volume should consist of more than half of the slides having the presence of
DME. Individual and combined features were assessed in their work, and the best classification per-
formance with sensitivity and specificity of 87.5% was achieved. The results showed that their method
is still not ready for clinical purposes because of an enormous false positive detection. Additional rep-
resentation techniques and classifiers are evaluated and compared except comparing individual and
combined features. The best results were obtained for LBP vectors while represented and classified
using PCA and Linear-SVM [21].

1In an image pyramid, a signal or an image is subject to repeated smoothing and subsampling, which is a multiscale
signal representation. Pyramid representation is an old way of scale-space representation and multiresolution analysis.
Pyramid (image processing). (2022, June 27). In Wikipedia. https://en.wikipedia.org/wiki/Pyramid (image processing)
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3 Fundamentals
This section demonstrates the essentials of machine learning models for the project and provides
background information about the methodologies embraced. Also, it explains the fundamentals for
the disease investigation and describes the information required for the medical images.

3.1 Neural networks
Artificial neural networks (ANNs) are computing systems inspired by biological neural networks of
the brain. An ANNs is a group of linked nodes modeled by the neurons in a biological brain, and
the connection between nodes plays the role of the synapse in a biological brain. It can transfer
signals to the neurons in its vicinity. It is tagged as a supervised Deep-learning methodology in most
worldly-wise AI systems [5]. Warren McCulloch and Walter Pitts first proposed the idea of merging
multiple computing units into a network in 1943. In 1949, Hebb mentioned that a learning process
could happen in the synaptic connection between neurons, and it is popularly known as Hebbian
learning. After that, in 1957, Rosenblatt created the first neural network algorithm perceptron [28].
McClelland, Rumelhart, and the PDP research group introduced a back-propagation algorithm that
allows multiple layers of perceptrons to be trained with feedback. This started the main idea of the
hidden layers in the ANNs. The neural network is categorized into two principal types based on the
dataset. It can be classified based on the learning method to train the network model, i.e., Supervised
and Unsupervised learning [29][28].

3.1.1 Feed-forward neural networks

Neurons are the nonlinear components in the feed-forward neural network. They are placed in con-
secutive layers. The information flow in the feed-forward neural network proceeds through the input
layer to the output layer through the hidden layers. Nodes in each layer are connected to the other
layers, while there is no lateral connection between two nodes in one layer, and lateral feedback con-
nections are impossible. The hidden layers are critical parameters in the network because they tweak
their weights based on the feedback (learning) to drive the model toward a stable solution [14].

3.2 Convolutional neural networks
In 2012, the Convolutional Neural Network (CNN) was first proposed by Alex Krizhevsky [11].
CNN is defined as a solution to multiple problems in the field of computer vision, including pattern
recognition and data inference problems. Also, medical imaging significantly benefits from it [42].
The central part of CNN is convolutional operations, and it can be demonstrated mathematically as:

y[n] =
∞

∑
k=−∞

x[k] h[n− k] (1)

where h is a set of filter coefficients of the system, and x is the input of the system [42].

CNN is popularly known for its image recognition and object detection potential. For example, it
is able to recognize handwritten digits. It is a robust classification algorithm that can also handle
high-dimensional datasets - CNN achieves this by utilizing convolution and pooling operations [27].
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Figure 4: A fully connected convolutional neural network consisting of a sequence of connected
layers that connect every neuron in one layer to every neuron in the other layer [59].

A CNN includes one input layer, hidden layers, and an output layer. The hidden layers consist of
layers that perform convolutions which generally comprise a layer that performs a dot product of the
convolution kernel with the layer’s input matrix. In layman’s terms, computers understand an image
as arrays of pixels and depend on image resolutions. It can be shown as:

X = h×w×d (2)

where X is the input image, h is the number of height pixels, w is the number of width pixels, and d
is the dimension. For example, in an image of a 6 x 6 x 3 array of a matrix of RGB, 3 refers to RGB
(Red, Green, Blue) values.

A 2-D convolutional layer is generally comprised of a combination of the following components:
Kernel size, Stride, Padding, and number of in and out channels [42]. Figure 5 illustrates the different
layers of the convolutional layers and shows that the layers in the CNN can be divided into two
sections of the feature learning section in which the feature selection occurs, and the classification
section in which dense layers are mainly located and provides the classified output.

3.2.1 Convolution layers

The convolution layer is the core and the most crucial part of the CNN model, which aims to decrease
the image size for quicker computations of the weights and enhances its generalization. The first
layer that gains features from the input image is the convolution layer, and it maintains the connection
between pixels by learning the features of the image.

Figure 6 illustrates a convolution operation in which a kernel moves over the pixels of the image
matrix and leads to an output value by performing a dot product. The table in figure 6 depicts the
convolution of the 5x5 image matrix multiplied with a 3 x 3 filter matrix. The output will be the
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Figure 5: A complete flow of CNN to process an input image and classifies the objects based on
values. The figure is adopted from [55].

convolution operation by sliding the 3x3 filter over the 5x5 input image. Invariably, the kernels (filters)
must be smaller than the image size. An element-wise matrix multiplication for each pixel will be
done, and the results will be sum. Convolution operations depicted in figure 6 is a 2D convolution
using a 3x3 filter, while these convolutions are generally performed on 3D images. The images are
a 3D matrix with height, width, and depth dimensions, where depth means three channels for RGB.
There are two other attributes in CNN as Stride and Padding. The stride is the number of pixels that
goes over the input matrix. For Stride = 1, the kernel shifts one pixel every step, and for Stride = 2,
the filters shift two pixels per step time. Sometimes due to the filter and input image size, they do not
fit perfectly, and then padding, which surrounds all the input edge pixels with zeros, can fix the issue
[22]. The convolution operation can be shown mathematically as equation 3, where K is the kernel, X
is the input image, and Y is the convoluted output. The original image X can be obtained by equation
4, considering the kernel is an invertible matrix.

Y = K ×X (3)

X = K−1 ×Y (4)

Figure 6: Two different convolution operations with a kernel and the output [22].
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3.2.2 Pooling

Pooling is used to perform downsampling that reduces the size of the spatial dimension of the convo-
luted feature or an image. Extracting only helpful information and discarding more inferior prominent
details is the primary goal of the pooling layer [35].

The two most essential methods in pooling are average pooling and max pooling. In average pool-
ing, the average value for rectangular pooling regions of a feature map can be calculated (figure 8b).
Max-pooling is a technique of retaining only the max value within the pooled region. The pooling
operation is typically performed after the convolution layer. The goal is to extract the most prominent
feature within the pooled region, which is a characteristic of max-pooling [33][35].

Contrary to average pooling, Max pooling calculates the maximum value for rectangular pooling re-
gions of a feature map and down-samples the input image (figure 8a). The convergence rate is faster
using max-pooling, and it can yield a better generalization performance by electing superior invariant
features [7].

There is another method in pooling called Min-pooling, which is not as crucial as the mentioned two
and uses less than those. The min-pooling method calculates the minimum value for rectangular pool-
ing regions of a feature map. Figure 7 shows the differences between the mentioned three methods
for a real picture (top left) and illustrates how the various pooling methods can affect an image.

Figure 7: The results of three different pooling methods of size 9x9, applied to a real image (top left).
The figure is adopted from [60].
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(a) Max-pooling (b) Average-pooling

Figure 8: Example for the max-pooling and the average-pooling with a filter size of 2×2 and a stride
of 2×2. Credit to the Stanford lecture CS231n [19].

3.2.3 Activation functions

Activation functions are critical in the architecture of neural networks by learning the abstract fea-
tures via nonlinear transformation [45]. There is a considerable need for activation functions in neural
networks, and the selection between the best activation functions for neural networks has a significant
influence on the performance of ANNs. The output signal would only be a simple linear function if an
activation function is not used and is just a polynomial of degree one. The activation function defines
how the network accumulates the weighted sum of inputs to produce an output value. A polynomial
of degree one is simple but cannot be learned due to its limitation and complexity. ANNs without an
activation function work similarly to a Linear Regression model with limited performance and power
[24]. The candidate activation function that can be used in the deep learning model to achieve the
desired results are as follows:

1. Binary Step Function

2. Linear

3. Sigmoid

4. Tanh

5. ReLU

6. Leaky ReLU

7. Parametrized ReLU

8. Exponential Linear Unit

9. SoftMax [24]

3.2.4 Loss function

The learning process of an ANNs model is enhanced over a specific period. This is achieved by
adapting the weights to push toward an optimal solution. It would be too complex to compute the
ideal weights for a neural network model. That is why the learning process is cast as a search for the
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optimal solution and leads to a satisfactory optimal stable state of the model where training and test-
ing errors are reasonably minimized below the expected cut-off value. There are various methods to
calculate loss functions, and the selection between different loss functions might be challenging and
essential. By calculating the output error value of the models from the ground truth, the model can
be trained to reach the ability to perform respectable predictions. The error values of the model are
in their highest form when the variation of the model from the ground truth is the highest. Generally,
error values should be minimized in neural networks to drive the model toward the optimal solution.
The function used to calculate the error values of the model is called a loss function or cost function.

As mentioned, there are various loss functions, such as Cross entropy (CE) and mean squared error
(MSE). For better training of a neural network model, the loss function will run in the background
mathematically. The MSE is used as a target function in training and shows if training is progressing
towards a stable solution. Many ANNs architectures use the MSE as a target function for training,
and it can be displayed mathematically as [46]:

LMSE(y, ŷ) =
1
N

N

∑
n=1

(y− ŷ)2 (5)

The symbol y, ŷ, and N represent the target value, predicted value, and the number of the sample re-
spectively [46].

The other important loss function is CE. In the field of information theory and upon entropy, CE
has defined and typically calculates the distinction between two probability distributions. CE is also
called logistic loss or log loss [12]. Suppose there is a target probability distribution as P and an
approximation of the target distribution as Q. In that case, the cross-entropy of Q from P is the number
of additional bits depicting an event using Q instead of P and can be expressed as H(P, Q), in which
H is the CE function. If using the probabilities of the events from P and Q, then it can be computed
and formulated as [12]:

H(P,Q) = – ∑
x∈X

P(x) logQ(x) (6)

where P(x) is the probability of the event x in P, Q(x) is the probability of event x in Q, and the result
is in bits [12].

3.3 History of DME
DME is an indication of DR, which predominantly leads to vision loss in DR patients. There are
several systemic risk elements for the expansion of DME explained by Y. H. Yoon et al. [34], and
the most important ones are such as a longer duration of diabetes, higher glycosylated hemoglobin
(HbA1c) levels, and hypertension [34]. Various therapies have been identified to diminish the risk of
DME among patients, aiming for glycemic control and management of hypertension and serum lipids
[34].



Chapter 3 FUNDAMENTALS 21

3.4 Optical coherence tomography (OCT)
”OCT is a non-invasive imaging test using light waves to take cross-section pictures of the retina.
With OCT, ophthalmologists can see each of the retina’s distinctive layers, allowing them to map
and measure their thickness” [44]. It is used in medical imaging that employs low-coherence light
to capture micrometer-resolution, two and three-dimensional images from within optical scattering
media (e.g., biological tissue) [47].

There are many types of OCT images, from the original time-domain OCT to spectral domain (SD-
OCT) and swept-source OCT (SSOCT). In this project, images for the dataset are only spectral do-
main Optical coherence tomography (SD-OCT) images. Figure 9 explains the different layers of a
normal retina in an OCT image.

Figure 9: Explanation of different parts of retinal layers in OCT images [40].

3.5 DME in OCT images
OCT is an excellent tool for accurately assessing retinal layers because many layers underneath the
surface of the retina are easily noticeable in OCT images. It helps to site changes to eye health earlier
than just looking at the surface. It also quantifies retinal thickness and macular volume and quali-
tatively evaluates hyperreflective foci. OCT imaging plays an influential role and is widely used in
diagnosing and detecting clinical outcomes of DME [43].

This project focuses on detecting morphological patterns on OCT and then detecting DME with high
accuracy using OCT images. DME has crucial patterns when studying OCT images, such as diffused
retinal thickening (DRT) and serous retinal detachment (SRD). Still, the most important pattern for
the project is cystoid macular edema (CME) [43].
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Figure 10: DME with the reason of intraretinal cysts [53].

Various deep learning models have been used to detect optical diseases and mainly to detect DME with
a high accuracy using OCT and fundus images. However, there are not so many deep learning models
to detect morphological patterns in OCT images in such a way that can help different therapeutic
strategies for patients with DME based on OCT [43].
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4 Proposed method
This section describes all three project goals mentioned in Section 1 in further detail. Furthermore, it
proposes an approach in 5 steps to achieve the goals of this project.

4.1 Approach
As mentioned in Section 1, this project has three main goals. These three goals are accomplished in
five steps. Figure 11 illustrates a high-level view of the goals and shows the steps done in this project
and the remaining steps for future work. The five steps are addressed in this project as follows and
are discussed in further detail in the following sections:

• Step 1: Find relationships between morphological features in linear and non-linear ways. In
this regard, various correlation coefficient methods are tested. This step is discussed in details
in Section 4.2, and its results are shown in Section 7.1.

• Step 2: Classification of individual morphological features to investigate which one has the
potential for further investigation of DME detection. On this matter, individual features are
classified separately based on their labels, with the highest possible number of images for each
feature. This step is addressed in details in Section 4.3, and its results are indicated in Section
7.2.

• Step 3: Detection of the presence or absence of each morphological feature on the OCT images
separately with an equal number of images for all the features. In this regard, The labels of
features are modified to binary labels (presence or absence). This step is discussed further in
Section 4.3, and its results are indicated in Section 7.3.

• Step 4: Detection of the presence or absence of two features simultaneously (combinations of
features) on OCT images with an equal number of images for all the possible features. On
this matter, all the features are selected two by two. Furthermore, one label as a binary label
(presence or absence of both features simultaneously on OCT images) is assigned to them. This
step is addressed further in Section 4.3, and its results are indicated in Section 7.4.

• Step 5: Detection of the presence or absence of DME using the trained models on individual
features and combination of them with the usage of transfer learning. This step is discussed
further in Section 4.4, and its results are indicated in Sections 7.2, 7.3, and 7.4.

4.2 Correlation between features
The correlation coefficient (ρ) indicates the strength of the linear relationship between two variables
(X ,Y ) in a dataset which can be positive, zero, or negative. Zero correlation means no relationship
between two different variables, and each variable has the highest correlation (1.0) with itself. The
correlation coefficient is not a suitable measurement for the non-linear relationships between two
different variables. The feasible range of values for the correlation coefficient is from -1.0 to 1.0. The
correlation coefficient is calculated as follows:

ρ =
Cov(X ,Y )

σX σY
(7)
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Pearson and Spearman’s correlation are two popular and essential types of calculating a correlation
coefficient. In this project, Spearman correlation is used for the linear relationship between the fea-
tures in the dataset. Spearman correlation calculates the strength and direction of the monotonic
relationship between two variables which is calculated as [3]:

ρ = 1− 6 ∑d2
i

n(n2 −1)
(8)

ρ is the Spearman rank correlation coefficient, di is the difference between the two observation ranks,
and n is the number of observations.

In addition, the Spearman correlation coefficient is used to understand which features are related and
are close to each other. Also, a cluster map is made to check the relation of models based on their
correlation results for the eight morphological features singularly.

Hierarchical clustering or a cluster map gives a better understanding of a dataset by improving the
visual representation of correlation heatmaps and making finding groups of correlated features easier.
It can group datasets into clusters based on the relationships among the different variables. Figure 18
is a cluster map using the Seaborn Python library, which illustrates how the different variables depend
on each other and the relation between them.

4.3 Features and their combinations
As mentioned, the second step is to classify morphological features separately using the highest pos-
sible number of images for each feature. Figure 14 shows the difference in the number of available
images for each label in each feature. Eight different models are created to classify each feature sep-
arately. The results of this step are shown in Section 7.2, and each feature is studied separately. The
third step is to modify the labels of the eight morphological features to binary (presence or absence)
labels. Then, eight models are created to detect each feature separately on OCT images. Each model
uses an equal number of images for each feature in this step. The results of this step are shown in
Section 7.3. The fourth step is to detect combinations of features on OCT images. All of features are
selected two by two as combinations and one binary label is allocated to them (presence or absence of
both features simultaneously on OCT images). Ten models are created for ten possible combinations
to be detected. The results of this step are shown in Section 7.4.

4.4 Usage of transfer learning in DME detection
The fifth (last) step is to detect DME on OCT images with average sensitivity and specificity above
95 percent thanks to transfer learning using models trained on individuals and combinations of mor-
phological features. All the weights and parameters of trained models are frozen and saved and then
used for the training on a new dataset via transfer learning. One of the advantages of transfer learning
is avoiding spending much time on training and verification processes. Only the last five layers of
the models, three dense layers (also called classification layers) and two dropout layers, are unfrozen.
DME diagnosis is implemented on a new dataset of OCT images with 2 labels (DME and normal).
The results of the DME detection using transfer learning are shown in Sections 7.2, 7.3, and 7.4.
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Figure 11: A high-level view of this project design shows the steps done in this project and the
remaining steps for future work. Single features are classified and detected separately. Then, all the
models are fed to transfer learning models to detect DME. Also, combinations of features are detected
separately. Then, all the models are fed to transfer learning models to detect DME. Combinations of
more than two features can also be implemented in later works.
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5 Network architecture
This project is derived from the work done by Pannozo et al. [37] to investigate the presence or
absence of DME in OCT images by utilizing deep learning and machine learning algorithms. Their
study focuses on the grading protocol called TCED-HFV to categorize DME in four stages, mentioned
in Section 2.1. Their grading protocol has been made from the seven morphological features (Section
1). In this thesis, one additional feature called Macular Volume (MV) is added to the seven mentioned
morphological features. The central focus of this thesis is the diagnosis of DME on OCT images with
average specificity and sensitivity above 95 percent with the usage of deep learning techniques, which
has not been considered in work done by Pannozo et al. [37]. In addition, in this thesis, the mentioned
morphological features are studied and diagnosed both individually and jointly to investigate how
influential the features are for adequate detection of DME. This thesis emphasizes examining the
features profoundly and does not categorize DME into the four stages, as done in the study by Panozzo
et al. [37]. However, investigating the morphological features and combinations of them in the four
stages mentioned by Panozzo et al. [37] is an interesting future work.

5.1 OCTNet
There is a deep neural network-based classifier called OCTNet that is used for the classification of
DME, Drusen, and CNV on OCT images [42]. The OCTNet architecture introduced by Sunija A.P
et al. [42] is a lightweight convolutional neural network with six convolutional blocks. The OCTNet
is trained on a dataset with 83,484 OCT images for classification of DME, CNV, and Drusen. It
depicted an impressive 99.69% accuracy, precision, and recall.

The OCTNet architecture used in this master project is inherited from the work done by Sunija AP et
al. [42], and it is similar to the original architecture shown in Table 1. The network is also tuned for
the datasets used in this project (Section 5.3).

In the architecture proposed by Sunija AP et al. [42], six convolutional blocks are used, followed by a
ReLU activation function and a 2 x 2 max pooling operation for each block. After all six convolution
blocks, an average pooling layer plays the feature extraction role in the architecture. The size of the
output is a feature vector of 512 x 1. The feature vector is fed to three fully connected layers with two
dropouts with a factor of (0.5). The original output is a probability vector of 4 x 1 [42]. Due to the
several classification models with various labels in this project, different output layers corresponds to
the class labels accordingly.
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5.2 Model
The OCTNet architecture is used in this project as the base model for implementing the training
process. The OCTNet architecture consists of six convolutional blocks and three dense layers with
a ReLU activation function for each convolutional block. Also, CE, which is most typically used
in medical image classification among loss functions, is used in this project. Due to the overfitting
issue, a regularization technique is used in this project. Using dropout is influential in reducing the
complexity of dense layers in neural network architectures by turning off some neurons in a neural
network during training to avoid overfitting. The training and testing set ratio for all classification and
detection of features models and DME detection models are 80% - 20% and 90% - 10% in this project.

5.2.1 Activation function - ReLU

Selecting an appropriate activation function is crucial in every neural network architecture. Tanh,
ReLU, and sigmoid functions are the most commonly used activation functions in deep learning
algorithms. The ReLU has some variations - LeakyReLU and PReLU; their usage is influenced by
the study, data, and if the feedback from the ReLU variant provides better stability to the trained
model [42]. In this architecture, the activation function used is a Rectified Linear Unit activation
function (ReLU function) which is mathematically represented for an input x as:

f (x) =

{
0, x < 0
x, otherwise

(9)

5.2.2 Loss function

In deep learning, a model learns how to minimize the error by a mapping function via error back-
propagation and update the model weights [41]. For the loss function in this architecture, a CE loss
function is used to minimize the error, which is mathematically represented as:

J(θ,X) =−weight[t] log
(

expx[t]
Σ j expx[ j]

)
(10)

where x is the output of the CE classification layer, t is the target class, weight is the 4 x 1 feature
vector that stores the inverse class frequencies, X is the input batch of the images, and θ is the set of
learnable model parameters [42].

In this project, three types of CE loss have been used depending on the number of classes. Categorical
CE is adopted for the multi-class classification scenario, and binary CE or sparse categorical CE is
used for binary classifications.

CE loss is the most commonly used in medical image classification among loss functions. Due to the
class imbalance in medical images, mainly the normal class has more images, CE is the best option
to deal with this issue in this project. During each learning process and classification, a modified CE
loss function has been used with a different weight based on the number of images in each class to
suppress the class imbalance problem [41].
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5.3 Clinical data
For this project, a dataset was provided by the National Autonomous University of Mexico (UNAM),
and a team of medical experts performed clinical evaluations for each OCT image and labeled them.
As a result, the ground truth labels for each OCT image are provided in a CSV file. This dataset
is used as the primary data for this project, aiming at classifying and detecting the eight mentioned
morphological features.

Another dataset consisting of 3000 OCT images with binary labels (Normal and DME), including
vertical and horizontal cuts, was provided aiming at the detection of DME.

The dataset contains a CSV file as ground truth for image labels consisting of eight columns (corre-
sponds to the eight mentioned morphological features) for each OCT image, and a folder contains the
corresponding OCT images. In the dataset, OCT images are provided in two different cuts, horizontal
cuts, and vertical cuts. The dataset includes 897 OCT images from real patients.

The eight prominent morphological features on the OCT images are categorized into their labels based
on their observed values and individual characteristics. The first five features are more influential than
the others for DME detection, and the last three features are adjunctive features based on Pannozo et
al. [37].

Eight mentioned morphological features are as follows:

• Thickening (T):

– Label 0: increment below 10% of normal values (315-346.5 µm)

– Label 1: increment above 10% and below 30% of normal values (347-409 µm)

– Label 2: increment of more than 30% of normal values (> 409 µm)

• Macular Volume (MV):

– Label 0: <= 0.26 µm

– Label 1: > 0.26 µm

• Size of intraretinal Cycts (C):

– Label 0: Absent

– Label 1: Mild (0-100 µm)

– Label 2: Moderate (101-200 µm)

– Lable 3: Severe (>200 µm)

• State of Ellipsoid Zone (EZ) / External Limiting Membrane (ELM):

– Label 0: Intact

– Label 1: Disruption

– Label 2: Absent

• The presence of Disorganization of the Inner Retinal Layers (DRIL):
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– Label 0: Absent

– Label 1: Present

• Hyperreflective foci (H):

– Label 0: less than 30 in number

– Label 1: higher than 30 in number

• The presence or the absence of subretinal Fluid (F):

– Label 0: Absent

– Label 1: Present

• The Vitreoretinal relationship (V):

– Label 0: Absence of any visible adhesion or traction between vitreous cortex and retina

– Label 1: IVD

– Label 2: PVD

– Label 3: VMT

– Label 4: ERM

Figure 12: Difference in vertical and horizontal OCT cross-sections in a myopic eye with posterior
staphyloma [6].
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(a) No-cysts. (b) Mild.

(c) Moderate. (d) Severe.

Figure 13: Four Cysts (C) classes concerning their experimental conditions. (a) is labeled as No-
cysts, which means medical experts on that OCT image observed no cysts. (b) is labeled as Mild,
which means the size of the cyst(s) observed by experts is(are) between 0 and 100 µm. (c) is labeled
as Moderate, which means the size of the cyst(s) observed by experts is between 101 µm and 200 µm.
(d) is labeled as Severe, meaning that the cyst(s) size is(are) bigger and is more than 200 µm.

5.3.1 Data loading and data pre-processing

For the separate classification or detection of each feature, the CSV file is cleaned based on the feature
to an ID column and the feature columns. Firstly, some images in the dataset do not have any corre-
sponding rows in the CSV because the CSV is still incomplete. Next, the invalid images are deleted;
the IDs in the CSV file with the same image’s name are matched together, and extra rows (empty
rows) are deleted. For each model, based on the classifying feature, the OCT images are divided into
classes with corresponding labels.

For example, for the feature Cysts (C), each row with the label 0 is separated into class No-cysts, and
rows with the label 1 are split into class Mild. Rows with the label 2 are assigned to the Moderate
class, and finally, the rows with the label 3 are divided into the class Severe. Four different folders
with ground truth are set up to facilitate the training process.

The input data is first pre-processed by converting them into gray-scale equivalents. Raw images
without pre-processing are fed to the training input based on the result needed. Then, from the Ten-
sorflow keras library, the function ImageDataGenerator is used to generate batches of tensor image
data with real-time data augmentation. ImageDataGenerator function also helps to easily split the
data to the train set, validation set, and test set. Also, some data augmentation is used, such as
shear range and zoom range, to make the training set difficult for the model to avoid overfitting.
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Then, the flow function of the Tensorflow Keras is used to consume data and label arrays. It generates
batches of augmented data and label arrays, generates batches of augmented data, and has two op-
tions for choosing labels from the directory or data frame. For images with the CSV label, the function
flow from dataframe is used to take the data frame and the path to a directory and generate batches
containing augmented and normalized data. For images with labels based on their directory, the func-
tion flow from directory is used to take the path to a directory and generate batches of augmented data.
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Table 1: The OCTNet architecture with the corresponding activation function for each convolutional
block and each dense layer. Batch normalization is used in each convolutional layer to speed up
training and make learning easier. The original output, calculated by the CE loss function, is a four-
class vector.

Layer Name Activations Learnables

Input (227×227×1) - -
Convolution 227×227×32 Weights 7×7×1×32 Bias 1×1×32

ReLU 227×227×32 -
Batch Norm 227×227×32 Offset 1×1×32 Scale1×1×32

Max pool 113×113×32 -
Convolution 113×113×32 Weights 7×7×1×32 Bias 1×1×32

ReLU 113×113×32 -
Batch Norm 113×113×32 Offset 1×1×32 Scale1×1×32

Max pool 56×56×32 -
Convolution 56×56×64 Weights 5×5×64×32 Bias 1×1×64

ReLU 56×56×64 -
Batch Norm 56×56×64 Offset 1×1×64 Scale1×1×64

Max pool 28×28×64 -
Convolution 28×28×128 Weights 5×5×128×64 Bias 1×1×128

ReLU 28×28×128 -
Batch Norm 28×28×128 Offset 1×1×128 Scale1×1×128

Max pool 14×14×128 -
Convolution 14×14×256 Weights 3×3×256×128 Bias 3×3×256

ReLU 14×14×256 -
Batch Norm 14×14×256 Offset 1×1×256 Scale1×1×256

Max pool 7×7×256 -
Convolution 7×7×512 Weights 3×3×512×256 Bias 1×1×512

ReLU 7×7×512 -
Batch Norm 7×7×512 Offset 1×1×512 Scale1×1×512

Max pool 3×3×512 -
Average pool 1×1×512 -

Fully connected layer 1×1×128 128×512
Dropout (50%) 1×1×128 -

Fully connected layer 1×1×32 32×128
Dropout (50%) 1×1×32 -

Fully connected layer 1×1×4 4×32
Softmax 1×1×4 -

Cross-entropy 1×1×4 -
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6 Implementation

This section explains the hardware and software environment used in this project and describes the
techniques and strategies used to implement the project. It also demonstrates the evaluation metrics
to measure how satisfactorily the models performed to enable the comparison between them.

6.1 Hardware environment

In this project, the experiments are performed and completed on the GoogleColab PRO, a Google
Research product. It permits the implementation of python code through the browser and is partic-
ularly appropriate for machine learning and data analysis projects. This project implementation is
executed on the TensorFlow 2.0 framework supported by a GPU with 25GB of RAM and 166GB of
disc memory. GPUs in GoogleColab PRO are randomly selected, such as K80, P100, and T4.

6.2 Software environment

Python3 as the programming language and GoogleColab as an editor with a provided GPU and 25GB
RAM are used for the project. TensorFlow and Scikit-learn are used as the libraries. CNN is used
as the learning method. Visualization is performed by using the popular Matplotlib and Seaborn
libraries.

6.3 Batching

Batching is one of the essential strategies for neural network learning to avoid running out of memory
during training. The most common practice for the training in each iteration is to feed all the input
data into the model. Input data can also be provided in batches of N components in each iteration,
called mini-batch. The batch size can be explained as the number of training examples operated in
one iteration. In the implementation, the mini-batch size is chosen differently for each experiment,
but the most prominent mini-batch size is 16. The size of the mini-batch affects the training speed,
and it can go beyond the CPU/GPU’s memory capacity, but it has a more negligible effect on the final
output.

6.4 Batch normalization

Batch normalization, also termed batch norm, is commonly used to train very deep neural networks
that are computationally intensive. For each mini-batch, batch normalization standardizes the inputs
to a layer, decreasing the number of training epochs and enhancing the speed of the learning process.
The study by Kaiming He et al. [18] shows the effect of using batch normalization after the convo-
lutional layers and before the activation functions on the ResNet architecture reached state-of-the-art
results on the ImageNet dataset.

A big challenge in deep learning is that when the weights are refreshed in each mini-batch, the alloca-
tion of the inputs to the other layers might change. Using batch normalization can push the learning
process toward the target when the target is moving. Batch normalization parametrizes a deep neural
network, which can solve the problem of arranging updates across multiple layers.
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6.5 Data augmentation
Augmented data differs from synthetic data because the whole synthetic data is generated entirely ar-
tificially using the original data. In contrast, augmented data is generated from original data by some
geometric transformations such as rotation. Data augmentation is useful when there is not enough
data and collecting a large amount of data is difficult. Data augmentation methods are helpful for
multiple deep-learning tasks, such as image classification and object detection. It can enhance the
performance of the deep learning model by making the training process more difficult for the model
to avoid overfitting.

For example, for the classification of dogs and cats, data augmentation can generate new similar
images of cats and dogs, which benefits in boosting the size of the dataset and sometimes balances
the amount of data for each class in case of class imbalance. Also, it forces the model to see more
images of different classes and learn for the goal of generalization and not overfit on a particular class.

6.6 Regularization
Regularization is any additional technique that aims to make the model generalize better and deliver
more promising results on the test set [23]. In other words, regularization is used in neural networks
to prevent overfitting and enhance the accuracy of a model when encountering new data.

One of the most prominent issues in training neural networks is overfitting which happens when the
model in the training process performs too well in a particular class but cannot predict very well for
the test. In other words, a model wrongly learns the unwanted detail and noise in the training data,
negatively influencing the prediction of the model for the new data, meaning the model has not been
generalized very well. Frequently, a complex network is more exposed to overfitting, and regulariza-
tion is needed to avoid overfitting.

There are three regularization techniques: L1, L2, and dropout. The work done by N. Srivastava et
al. [16] has shown that combinations of regularization methods can be used, and one of the minor test
classification errors is when using L2 and dropout in a model. In this project, L2 and dropout are used
the created models to decrease the error. Dropout is turning off some neurons in a neural network
during training. It is mainly used for fully connected (dense) neural network layers because they are
more complex than convolutional layers (figure 15). The loss function using L2 regularization is a
loss function with squared L2 norm of the weights, and it is calculated as follows:

LMSE(y, ŷ) =
1
N

N

∑
n=1

(y− ŷ)2 +λ

N

∑
n=1

ω
2
i (11)

where y is the target value, ŷ is the predicted value, N represents the number of samples, ω shows the
weight, and λ is the regularization parameter. In this project, in all models, λ = 0.01
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Figure 15: A neural network architecture with and without using dropout. The sign X shows the
turned-off neurons during the training process [58].

6.7 Transfer learning

The concept of transfer learning comes from educational psychology proposed by Charles Judd to
explain that the learning of transferring results from the generalization of experience. If there is a
connection between two activities, transfer learning can happen. For example, someone who knows
how to play the violin can learn to play the piano faster than others. In machine learning, transfer
learning is a powerful problem-solving method that focuses on transferring knowledge across do-
mains [39].

In deep learning, transfer learning happens where weights from a model trained on one task are taken
and can be used in two ways. One way is to construct a fixed feature extractor, and the other is to
initialize the weights and perform fine-tuning. In other words, transfer learning is training a neural
network model on a new dataset with pre-trained weights acquired from training it on a different
dataset, mainly used on a large dataset.

Figure 16: The difference between transfer learning and learning from scratch [57].
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Two words are used interchangeably in deep learning - transfer learning and fine-tuning, but they are
not the same. In transfer learning, the weights of all layers are frozen, and depending on the output,
fully connected layers (dense layers) can be added to classify the output, and it is usually used for
similar and small data sizes. In fine-tuning, a few layers can are frozen, and the remaining layers use
another dataset usually used for large amounts of data [50].

6.8 Evaluation metrics
Evaluation metrics for the models allow the assessment of the accuracy of a model and measure the
performance of the trained models, and describe the degree of effectiveness the models generalize
on the unseen data. Selecting appropriate evaluation metrics for a model is also essential. The over-
all predictive capability of the models can be enhanced by using various evaluation metrics for the
performance examination.

6.8.1 Accuracy and loss

One of the essential ways to evaluate machine learning models is to evaluate classification accuracy
and logarithmic loss. The term classification accuracy or accuracy is the ratio of the number of correct
predictions (True Positive plus True Negative) to the total number of input samples (summation of
True Positive, True Negative, False Positive, and False Negative). Accuracy is different in the training
set and test set, and high accuracy in the training set does not guarantee the model prediction very
well [48].

Accuracy =
T P+T N

T P+T N +FP+FN
(12)

The other term, Logarithmic Loss or Log Loss, is evaluated by the false classification when a classi-
fier assigns a probability to each class for all the samples. Suppose N samples belong to M classes,
and there are:

LogLoss =
−1
N

N

∑
i=1

M

∑
j=1

yi j log pi j (13)

where yi j shows whether the sample i belongs to class j and pi j shows if the probability of sample i
belongs to class j, the goal is to minimize the logarithmic loss in training [48].

6.8.2 Confusion matrix

A confusion matrix is an NxN matrix, where N is the number of prediction classes. For example,
if there is a four-class classification task, a 4x4 confusion matrix can be used to evaluate how many
samples are predicted correctly in each class. In confusion matrices, the matrix is divided into two
dimensions, one is predicted values, and the other one is actual values along with the total number of
predictions. There are four essential terms in the confusion matrix as follows:
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• True Negative: When the model has the prediction No, the real or actual value is also No.

• True Positive: When the model predicted Yes, the actual value is also true (Yes).

• False Negative: When the model has predicted No, but the actual value is Yes (Type-II error).

• False Positive: When the model has predicted Yes, but the actual value is No (Type-I error).

6.8.3 Classification report

The classification report is another performance evaluation method in machine learning that shows a
model’s precision, recall, F1 Score, and support. It gives an insight into the overall performance of
the model.

• Precision: The ratio of True Positives to the sum of True Positive and False Positives.

Precision =
T P

T P+FP
(14)

• Recall: The ratio of True Positives to the sum of True Positives and False Negatives.

Recall =
T P

T P+FN
(15)

• F1 Score: The weighted harmonic mean of precision and recall. For the F1 Score, the value of
1.0 is the best-expected performance of the model.

F1−Score = 2∗ Precision∗Recall
Precision+Recall

(16)

• Support: The number of actual class occurrences in the dataset. The more balance support, the
structural strength of the classifier.

6.8.4 Sensitivity and Specificity

Sensitivity, recall, hit rate, or True Positive Rate (TPR) and Specificity, selectivity, or True Negative
Rate (TNR) are two measures of the performance of a model in machine learning. Sensitivity is the
proportion of true positives correctly predicted by the model, while Specificity is the proportion of
True Negatives that the model correctly predicted.

• Sensitivity:

Sensitivity =
T P

T P+FN
(17)

• Specificity:

Speci f icity =
T N

T N +FP
(18)
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7 Results and Discussion
This section explains the relationships between morphological features and shows how the features
depend on each other by finding the correlation between them. Each feature is studied separately in
this section. The features are trained and tested independently, and their results are shown. First, The
morphological features are classified with the highest number of available images for each label of
features. Second, the features are detected only in two classes with the same number of images for
the training process. Then all the trained models (5 models for the classification, and 5 models for the
detection of the features) are trained on a new dataset of OCT images to predict DME using on trans-
fer learning. Their results are compared to see which feature is more effective for DME prediction.

There are 5 influential single features out of the 8 mentioned features in Section 5.3. The other 3
features, called adjunctive features, performed insufficiently, and only the 5 features are studied. In
the next part, the combination of two features simultaneously is considered. There are 10 possible
combinations for considering two features simultaneously, based on 5 influential features. Therefore,
10 models for combinations of features are created to detect every two features simultaneously with
the same number of images for the training and testing. Then, their results are compared to find the
most effective combination for a better prediction of DME.

The results are compared and discussed at the end of the section. This section further compares the
results with the prior works.

7.1 Relevant morphological features
This project uses Spearman’s correlation to find the relationship between variables (morphological
features). There is another popular method for measuring the correlation coefficient called Pearson
correlation. The difference between Pearson and Spearman’s correlation is that Pearson only evalu-
ates the linear relationship between two continuous variables, while Spearman’s correlation can also
assess the monotonic relationship and the linear relation [52].

Figure 17 depicts Spearman’s correlation between eight features in a heatmap matrix in which the
yellow color means the highest (strongest) correlation between every two features. The dark blue
color indicates the lowest (weakest) correlation between every two features. The green squares de-
pict a moderate correlation. The strongest correlation between two features, the greater relationship
between them. Figure 18 illustrates hierarchical clusters to categorize data by similarity, which reor-
ganizes the data and displays similar content next to one another for even more depth of understanding
of the data besides the correlation heatmap.

By analyzing figures 17 and 18, the strongest correlation between all the features is the relationship
between Thickening and Macular Volume. Figure 18, the clustering map also demonstrates the closest
relationship between Thickening and Macular Volume, and then with Cysts. In addition, based on
figure 17, DRIL also has a moderate correlation with Cysts. There are four correlations greater than
0.4 between the four features. Therefore, based on the correlation heatmap and clustering map, four
features, Thickening, Macular Volume, Cysts, and DRIL, are more important and influential than
other morphological features in this project.
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Figure 17: The correlation coefficient between the eight features in a correlation heatmap matrix. The
color bar shows the range of the correlation values (0 to 1) with colors from dark blue (the weakest
correlation) to yellow (the highest correlation). The correlation between each feature and itself is 1.

Some weak correlations can be seen between adjunctive features, and the lowest correlation between
Hyperreflective foci (H) and the first three features (Thickening, Mocular volume, and cysts). Figure
18 demonstrates the lowest correlation coeffecienct between adjunctive features by cluster them taller
than other features.

As the correlation coefficient are beneficial by showing the relationship between two variables, one
downside of the correlation coefficient might be the deficiency in revealing the relationships of vari-
ables in other dimensions so that the features might be correlated non-linearly. Hence, other features
might be correlated with each other in different ways, and there is a possibility to be correlated in
higher dimensions.

In the following sections, more relationships between features can be investigated by examining the
single features separately and their combination for DME detection.
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Figure 18: This figure illustrates the correlation between every two features and shows from the
closest to the furthest relationship between features by clustering them.

7.2 Classification of individual features

In this section, the classification of each feature from the dataset is trained and tested separately with
the highest possible number of images. Figure 14 shows that most of the features do not have the
same number of images for their own classes, and some do not have a sufficient number of images
in each class for the training process. Therefore, data augmentation techniques are done for their
training and validation processes. The training and validation set ratio is 80% for the training set and
20% for the validation set. A pre-processing technique is done on all OCT images, which converts
images to grayscale images before feeding them to the model.

7.2.1 Thickening (T)

Thickening (T) refers to foveal thickness in OCT images. The term fovea refers to ”a specialized
retinal area that supports the highest visual acuity [8].” As mentioned in Section 5.3, the first morpho-
logical feature is Thickening (T) which has three labels. Figure 14 shows the number of images for
each label, and the number of images for three classes of Thickening (T) differs significantly and is
not balanced. For the Thickening (T) classification, 156 images are randomly picked for the training
process of each class, and 15 images are split from each class for the test set. The implementation



Chapter 7 RESULTS AND DISCUSSION 41

has been performed for the Thickening (T) classification using normal images as label 3 and without
normal images separately. In the end, the difference in results did not differ remarkably. Also, Based
on the model’s loss function, any overfitting has not been observed in the model, but the accuracy
function of the validation fluctuates (figure 27a). After the classification performed for the feature
thickening, the results are shown as follows:

Classification report Precision Recall F1-Score Support Train set
Average accuracy 0.70 0.60 0.60 45 468

7.2.2 Macular Volume (MV)

The second feature is Macular Volume (MV), and it has two labels as mentioned in Section 5.3. Fig-
ure 14 illustrates that the number of images for each class of the Macular Volume does not differ much
and is approximately balanced. For the classification of Macular Volume, 355 images are randomly
picked of each class for the training set, and 25 images are split for the test set for each class. The
classification of Macular Volume (MV) has been done, including normal images, and once without
normal images. As the result, the difference in results does not vary remarkably. In the Macular
Volume classification, no overfitting has been observed based on the loss function, but the accuracy
function of the validation set fluctuated (figure 27b). After the classification performed for the feature
Macular Volume, the results are shown as follows:

Classification report Precision Recall F1-Score Support Train set
Average accuracy 0.70 0.68 0.65 50 710

7.2.3 Cysts (C)

The third feature is Cysts (C) which refers to the size of the intraretinal cysts. The round and min-
imally reflective spaces within the neurosensory retina can define intraretinal cysts, which can be
located in different areas such as the outer nuclear layer, inner nuclear layer, or ganglion cell layer
[37]. As mentioned in Section 5.3, the size of intraretinal cysts are categorized into four classes.
Figure 14 shows the number of images of different labels of the Cysts (C) does not differ remarkably
and is approximately balanced. The implementation is performed separately using normal images as
label 4 and without normal images. In this feature, the results can differ significantly for classifica-
tion, including and excluding normal images. The reason is the model can overfit on normal images
and the images with label 0 (no-cysts). The reason is that the similarity between no-cysts and normal
images can be so high. The label 0, no-cysts images, might have one of the other seven features,
and distinguishing the little similarity between those are extremely difficult for the model with such a
small dataset.

The model has been trained and tested many times, no overfitting has been observed. The accuracy
function behaves naturally (figure 27c). One of the prominent issues in this model is overfitting on
the result of the testing process on the label 0, which is no-cysts. The model cannot distinguish all
four labels based on the size of the cysts. One possible reason is the fewer images of each class for
such a big multi-label classification. For the classification of Cysts (C) with four labels, 15 images
are split for the test set of each class, and 126 images are separated for the training and validation set.
The results are shown as follows:
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Classification report Precision Recall F1-Score Support Train set
Average accuracy 0.36 0.30 0.25 60 504

7.2.4 State of Ellipsoid Zone (EZ) and External Limiting Membrane (ELM)

The fourth feature is the state of the Ellipsoid Zone (EZ) and External Limiting Membrane (ELM),
which both together make one feature. As mentioned in Section 5.3, this feature has 3 labels. Con-
sidering the four outermost layers on OCT images, those layers are categorized as disrupted when
they are not perfectly detectable and as absent when there is a complete loss of foveal reflectively
in the first two bands on the four layers, and as intact when the layers are in the normal shape [37].
Figure 14 depicts that the number of images for each label of the EZ/ELM feature differs remarkably,
which means the class imbalance happens when implementing classification. For the classification of
EZ/ELM, 20 images are divided into the test set for each class, and 137 images of each class are split
into the training set and validation set.

This model has been trained and tested several times. Both loss and accuracy functions behave nat-
urally, and no overfitting is observed, but some slight fluctuations are seen in the accuracy function
(figure 27e). In the confusion matrix of the testing process, fewer images are correctly predicted for
label 1 rather than the other two labels. The reason would be the difficulty of predicting the disrupted
retinal layers rather than just a prediction of their absence or being intact. The implementation is
performed using normal images as label 3 and without normal images separately. In the end, the dif-
ference in results does not differ remarkably. For the classification of the feature EZ/ELM, the results
are demonstrated as follows:

Classification report Precision Recall F1-Score Support Train set
Average accuracy 0.66 0.55 0.52 60 411

7.2.5 Disorganization of the Inner Retinal Layers (DRIL)

The fifth feature is the Disorganization of the Inner Retinal Layers or, in short, DRIL, ”which is de-
fined as the loss of clear demarcation between the ganglion cell-inner plexiform layer complex, the
inner nuclear layer, and the outer plexiform layer in the central fovea [37]”. As mentioned in Section
5.3, the feature DRIL has 2 labels (absent and present). Figure 14 illustrates the number of images for
each label of DRIL. For this binary classification, 50 images are split into the test set of each class,
and 321 images are divided into the training and validation sets for each class.

The model has been trained and tested several times, and no overfitting is observed, but validation
accuracy in the accuracy function fluctuated remarkably (figure 27d). In the testing process, the
model does not overfit on any particular classes, but the prediction still is not frankly high for each
class. The implementation is performed separately using normal images as label 2 and without normal
images. In the end, the difference in results does not differ remarkably. For the classification of the
feature DRIL, the results are shown as follows:

Classification report Precision Recall F1-Score Support Train set
Average accuracy 0.65 0.62 0.60 50 642
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7.2.6 Adjunctive features

There are three more features called adjunctive features based on the work by Pannozo et al. [37],
which are not part of the main features. The sixth feature is Hyperreflective foci (H) which refer to
the number of Hyperreflective foci measured by dividing all the scans into two groups of high HF and
low HF. The arbitrary number 30 has been chosen for the feature as a cut-off value and is manually
counted in each scan [37]. Figure 14 shows the number of images for each of the two labels for the
feature Hyperreflective foci (H), and there is a huge difference in number between label 0 and label 1,
which means there is a class imbalance for this feature. For the classification, once the implementa-
tion has been done, including normal images as label two, and once the implementation has been done
without normal images. In both ways, it was difficult for the model to perform well. Furthermore, in
the implementation, including normal images, the model was unable to distinguish between normal
images and the label 0 (low HF) due to their feature similarity.

The model did not perform sufficiently for this feature due to the fewer images with label 1 (high HF).
In addition, figure 18 illustrates this feature does not have a satisfactory relationship with other more
important features.

The seventh feature is subretinal Fluid (F). As mentioned in Section 5.3, the feature has 2 labels that
refer to its presence or absence. Figure 14 depicts the number of images for each label in this feature
between all the features has the most different one, making the class imbalance even more complex
and the prediction not accurate. The number of images for label 1 (presence of subretinal Fluid) is
not really enough for accurate detection. The implementation has been done with only 73 images for
label one, and the result is not acceptable. Additionally, same as the feature HF, it does not have a
strong relationship with other features based on figure 18.

The eighth and last feature is the Vitreoretinal relationship (V) which is a simplified version of the
international Vitreomacular Traction Study Group classification [37], and as mentioned in Section
5.3, the feature has five labels. ”PVD refers to posterior vitreous detachment and is defined as no
residual vitreoretinal adhesion, demonstrated by a scan including the optic disk and IVD refers to
incomplete posterior vitreous detachment, and VMT refers to residual macular vitreous attachment
exerting anteroposterior traction, and also ERM was defined as evidence of epiretinal tissue adhering
to the macular surface [37]”.

For the classification of this feature, figure 14 shows five various labels with different numbers of
images for each. For some labels of this feature, there are not enough images for the training to make
it possible. Instead of classification, detection is also done by changing the categorization to two
labels (absence and presence). The implementation for the feature has been done, but the results still
are not satisfactory enough, and the model did not perform sufficiently for this feature.

7.2.7 Comparison of the classified individual features

In the previous subsections, eight different models with respect to their examined features were sep-
arately implemented. Some features did not have a strong relationship with other features based on
the correlation matrix. Furthermore, due to the class imbalance and insufficient training data, the
model did not perform properly for adjunctive features. As the result, one issue in this project is the
lack of enough images in the dataset for features such as Hyperreflective foci, Subretinal Fluid, and
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Vitreoretinal relationship.

In this subsection, all the features with satisfactory results and those which are effective for accurately
detecting the DME are compared. The best-performed feature is Macular Volume (MV) among the
five influential features, and then Thickening (T) performed nicely. Due to the class imbalance, the
last three features, Hyperreflective foci, Subretinal fluid, and Vitreoretinal relationship, are not con-
sidered in the table below, and also for DME detection neither.

On the one hand, one benefit of the classification of the features individually is showing their highest
possible performance for training and testing with the number of available images. The DME detec-
tion using the classified features is done in the next section. On the other hand, one of the downsides
of the results gained from the classification of single features separately is the deficiency of having
the potential to compare with each other. It is expected that the models to contain some degree of bias
due to the data sample imbalance. Hence, the comparison of their result are not accurate or reliable.
One possible solution is to compare single features with the same number of images for the training
and testing processes. Therefore, in Section 7.3, the features are detected singularly with the same
number of images, then they are compared to each other.

Feature Precision Recall F1-Score Support Trainset images Labels
Thickening (T) 0.70 0.60 0.60 45 468 3

Macular Volume (MV) 0.80 0.75 0.75 60 710 2
Cysts (C) 0.36 0.30 0.25 60 504 4
EZ / ELM 0.66 0.55 0.52 60 411 3

DRIL 0.65 0.62 0.60 50 642 2
Hyperreflective foci (H) - - - - - 2

Subretinal Fluid (F) - - - - - 2
Vitreoretinal relationship (V) - - - - - 5

7.2.8 DME detection with the usage of classified individual features

After training the model for each feature separately, the corresponding model is saved (wights and
biases), and by using transfer learning, the pre-trained model is trained again for DME detection on a
different dataset. The dataset for DME detection contains 2200 Horizontal and Vertical OCT images
in total and in 2 classes of Normal and DME images. 750 images are divided into the training set for
each class, 200 images are split into the validation set for each class, and 150 images are separated
into the test set for each class. All the training processes for each feature are implemented in the same
situation, with the same amount of images for each set, the same data pre-processing, and epochs to
see the differences between the results and make the comparison more reasonable.

After loading each pre-trained model, the last five layers (3 dense and 2 dropout layers) are unfrozen,
and the model has trained again on a different dataset to predict DME. For all 5 models, the loss
and accuracy functions behaved naturally, and no overfitting are observed. Each model was trained
and tested several times with different optimizers, and the best one for all models was the Adam
optimizer. All of the models performed exceptionally well. The results show each feature’s influence
on DME detection separately, but they are not comparable because they are not trained with equal
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number of images. The table below shows the performance of each influential feature with the usage
of transfer learning in DME detection. Thickening performed the best for the single feature, which
helped diagnose DME. However, Macular volume performed the second best, and its result is close to
the thickening. The two mentioned features are more influential and prominent in diagnosing DME.

Feature Precision Recall F1-Score Support
Thickening (T) 0.99251 0.99250 0.99250 300

Macular Volume (MV) 0.98544 0.98500 0.98500 300
Cysts (C) 0.96012 0.95667 0.95659 300
EZ / ELM 0.95914 0.95667 0.95661 300

DRIL 0.96800 0.96667 0.96664 300

7.3 Detection of individual features
Due to a shortage in the number of images for different labels of each feature, the classification of
single features is not accurate and reliable enough to compare with each other. Hence, in this sub-
section, only the detection of features singularly with an equal number of images for the training and
testing process is considered.

For each feature separately, a range of 510 to 560 images is separated to be detected if the corre-
sponding feature is available on each OCT image. Different labels of each feature are adjusted to 0
(absent) or 1 (present). For example, Cysts (C), with four labels that refer to the size of the intraretinal
cysts, is modified with two labels if any cyst is detected on the OCT image or not. In the detection of
single features, the ratio for the training and validation set is the same as in the previous section (80%-
20%). In addition, data augmentation techniques are used for the training and validation processes,
as mentioned in 5.3.1.

7.3.1 Comparison of detected individual features

Five influential features are detected separately, four of which used 560 images for training, and only
Cysts (C) is trained on 510 images due to the dataset’s shortage of label 0 (No-cysts). All five models
used 40 images for the testing process. Thickening (T) performed the best among all five features, and
Cysts (C) performed the second best. In the training process of all features, no overfitting is observed
in their loss functions, and their accuracy functions behave naturally, but a slight fluctuation is seen in
the validation accuracy. Due to the small number of validation samples, the model is unable to reach
a true stable solution.

In the Thickening detection, it was more difficult for the model to predict label 1, which means the
incrementation of retinal layers of more than 10% rather than label 0. The reason is that there is not a
specific boundary on OCT images to distinguish the incrementation of the retinal layers specifically,
and they are labeled in a range of less than 10% to above 30%.

The Macular Volume detection model did not overfit on a particular label and performed slightly
above the average. That could be improved by adding more images to the training and validation sets
for better results, as shown in the previous section (classification with the highest possible number of
images).
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In the Cysts detection, the model predicted label 0 (no-cysts) much more straightforwardly than la-
bel 1 (presence of cyst). The loss and accuracy function in the model performed naturally without
overfitting. One possible issue is the fewer images for the no-cysts label, and the model limited to the
label. For this issue, data augmentation improved performance moderately.

In the EZ/ELM, the model performed better than EZ/ELM model in the previous section, and modi-
fying the labels for the feature enhanced the results. There is not any overfitting observed in the model.

In the DRIL detection, the model is overfitting on label 1 which means the disorganization of retinal
layers. The loss and accuracy function does not show any overfitting based on their functions, but the
test set results show that the model predicts wrong images on label 1. Applying data augmentation
techniques could not make any remarkable improvement in the model. The model performed negli-
gibly better with a higher number of images for this feature, but still, this feature could be the most
challenging feature for the model to predict because there is not a specific boundary on OCT images
when disorganization of retinal layers happens. The work by Pannozo et al. [37] explain that retinal
layers are damaged but still visible in some cases, and it counts as no DRIL (label 0), which causes
uncertainty for the model to predict.

The table below reveals the results of detecting the features with the same number of images. The
results do not deliver the highest possible performance for each feature because the number of images
for each feature is limited to the smallest one, but instead, the table shows suitable leverage for
comparison between features in a comparable condition as follows:

Feature Precision Recall F1-Score Support # of Train-set images
Thickening (T) 0.76 0.75 0.75 40 560

Macular Volume (MV) 0.63 0.62 0.62 40 560
Cysts (C) 0.73 0.65 0.62 40 510
EZ / ELM 0.68 0.65 0.64 40 560

DRIL 0.67 0.57 0.51 40 560

7.3.2 DME detection with the usage of detected individual features

After training a model for each feature individually, the corresponding model is saved, and by using
transfer learning, the model is trained again for DME detection on a different dataset. The dataset for
DME detection is the same one in Section 7.2.8 with the same ratio for training and validation sets
and the same condition for the training and testing processes to make the comparison more suitable.

After loading all the models and unfroze their last 5 layers, all five models have trained again on a
different dataset to predict DME. Each model’s loss and accuracy functions behaved naturally, and
no overfitting was observed. Each model is trained with a learning rate (0.001) using the Adam and
SGD optimizers. It is observed that the Adam optimizer performed better in all models. All of the
models performed exceptionally well, but the difference in their results is a term for comparing models
trained on different features. The table below shows the performance of each influential feature with
the usage of transfer learning in DME detection in which Cysts(C) performed surprisingly the best
among features and Thickening (T) performed the second best. In addition, the results of Cysts(C)
and Thickening(T) are so close together.
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Feature Precision Recall F1-Score Support
Thickening (T) 0.96875 0.96667 0.96663 300

Macular Volume (MV) 0.94910 0.94333 0.94315 300
Cysts (C) 0.97720 0.97667 0.97666 300
EZ / ELM 0.92857 0.91667 0.91608 300

DRIL 0.95181 0.94667 0.94651 300

7.4 Detection of combined features
Aside from three adjunctive features that do not have sufficient images for the training process, five
main features are classified and detected separately in the previous subsections. Hence, ten possible
models trained on a combination of two features from the pool of five influential features are con-
structed. Another goal of this project is to find which combination of two features is more influential
in detecting DME. Hence, In this subsection, the combination of two features simultaneously is con-
sidered and studied to investigate how the detection of two features at the same time on each OCT
image can affect the detection of DME.

After the detection of each combination of features, ten combinations are compared and studied based
on the correlation heatmap (figure 17), cluster map (figure 18), corresponding classification report,
and the number of images for each training process. For each combination separately, a range of
380 to 400 images is separated for the training sets and 40 images for the test sets to be detected if
the corresponding features are available on each OCT image simultaneously (combination of them).
Furthermore, labels are adjusted to 1 (present) for OCT images having both features simultaneously
or 0 (absent) for OCT images which have neither both corresponding features. For example, the
combination of features Thickening (T) and Macular Volume (MV) is modified with two labels if
both features are available on any OCT image or not. Label 1 for an image with both Thickening and
Macular Volume, and label 0 for an image with neither Thickening nor Macular Volume. The training
and validation set and data augmentation techniques are the same as in the previous section.

7.4.1 Thickening (T) and Macular Volume (MV)

The first two features among 10 possible combinations are Thickening (T) and Macular Volume (MV),
which performed very well in the detection and classification of features singularly and significantly
affect the detection of DME separately. The correlation between the two features, based on the cluster
map in figure 18, is 0.82, which means these two features are highly correlated. In this subsection, a
model trained on both features is a binary classification in which an image can either have Thickening
and Macular Volume or none of these features. For this binary classification, 400 images are used for
the training process, and 40 images are used for the test set. Each set is split equally for each class in
the training and test sets. The loss and accuracy functions behaved naturally, and no overfitting was
observed based on the loss function (figure 28a). The model predicted the images with label 0 slightly
easier than images with label one. Then the model is trained and saved afterward to be used for DME
detection via transfer learning. The classification report of the model before transfer learning is as
follows:

Classification report Precision Recall F1-Score Support
Average accuracy 0.79762 0.75 0.73958 40
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7.4.2 Thickening (T) and Cysts (C)

The second combination of features is Thickening (T) and Cysts (C), which performed singularly well
in classification and detection individually, and are expected to perform satisfactorily as a combination
on OCT images. The correlation between the two mentioned features, Thickening, and Cysts, based
on the cluster map in figure 18 is 0.48, which means these two features are moderately correlated. As
mentioned in the previous section, Thickening and Cysts separately affect the detection of DME. In
this subsection, a model trained on both features is a binary classification in which an image can either
have Thickening and cysts or none of these two features. For this binary classification, 390 images
are separated for the training set, and 40 images are split for the test set (195 images for each class
in training and 20 images for each class in the test set). Anything abnormal is not observed based on
the accuracy and loss functions (figure 28b), and the model prediction performance is above average.
Then the model is trained and saved afterward to be used for DME detection via transfer learning.
The classification report of the model before transfer learning is as follows:

Classification report Precision Recall F1-Score Support
Average accuracy 0.72 0.70 0.69 40

7.4.3 Thickening (T) and DRIL

The third combination is Thickening (T) and DRIL, and the correlation between the two mentioned
features, based on the cluster map in figure 18 is 0.31, which means these two features are moderately
correlated. Thickening performed individually better than DRIL in the classification and detection
of single features and significantly better for the detection of DME separately. In this subsection, a
model trained on both features is a binary classification in which an image can either have Thickening
and DRIL or none of these features. For this binary classification, 390 images are separated for the
training set and 30 images for the test set (195 images for each class in training and 15 images for
each class in the test set). The loss function illustrated no overfitting (figure 28c), and validation in
the accuracy function fluctuated highly. Then the model is trained and saved afterward to be used for
DME detection via transfer learning. The classification report of the model before transfer learning is
as follows:

Classification report Precision Recall F1-Score Support
Average accuracy 0.71 0.63 0.60 30

7.4.4 Thickening (T) and EZ/ELM

The fourth combination is Thickening (T) and EZ/ELM, and the correlation between the two men-
tioned features, based on the cluster map in figure 18 is 0.26, which means these two features are
weakly correlated. These two features were not expected to perform better than the other combi-
nations as they are correlated weakly. Thickening performed significantly better than EZ/ELM in
previous models for individual features. In this subsection, a model trained on both features is a
binary classification in which an image can either have Thickening and EZ/ELM or none of these
features. For this binary classification, 400 images are separated for the training set and 40 images
for the test set. The loss and accuracy function behave naturally (figure 28d), but slight overfitting
can be observed in the test set results because the model can predict well either on label 0 or label
1. The model is trained and saved afterward to be used for DME detection via transfer learning. The
classification report of the model before transfer learning is as follows:
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Classification report Precision Recall F1-Score Support
Average accuracy 0.68 0.65 0.64 40

7.4.5 Macular Volume (MV) and Cysts

The fifth combination is Macular Volume (MV) and Cysts (C), which are two crucial features as
shown in the classification and detection of them on the OCT images in previous sections. Based on
the cluster map in figure 18, the correlation between them is 0.43, which means these two features
are moderately correlated. They also significantly affect the detection of DME individually, and it is
expected to perform well as a combination. In this subsection, a model trained on both features is a
binary classification in which an image can either have Macular Volume and Cysts or none of these
features. For this binary classification, 400 images are separated for the training set and 30 images
for the test set (200 images for each class in training and 15 images for each class in the test set). The
loss and accuracy functions behaved naturally, and no overfitting was observed based on the functions
and the test set results (figure 28e). Then the model is trained and saved afterward. The classification
report of the model before transfer learning is as follows:

Classification report Precision Recall F1-Score Support
Average accuracy 0.78 0.77 0.76 30

7.4.6 Macular Volume (MV) and DRIL

The sixth combination is Macular Volume (MV) and DRIL. The correlation between the two men-
tioned features, based on the cluster map in figure 18, is 0.31, which means these two features are
moderately correlated. As mentioned in the previous section, Macular Volume and DRIL significantly
affect the detection of DME separately. In this subsection, a model trained on both features is a binary
classification in which an image can either have Macular Volume and DRIL or none of these features.
For this binary classification, 386 images are separated for the training set and 40 images for the test
set (193 images for each class in training and 20 images for each class in the test set). The loss and
accuracy functions illustrated some moderate fluctuations (figure 28f), and the issue could be solved
by adding additional images. The model predicted the correct number of images above the average,
but still not significantly well. Then the model is trained and saved afterward. The classification
report of the model before transfer learning is as follows:

Classification report Precision Recall F1-Score Support
Average accuracy 0.63 0.62 0.62 40

7.4.7 Macular Volume (MV) and EZ/ELM

The seventh combination is Macular Volume (MV) and EZ/ELM, and the correlation between the two
mentioned features, based on the cluster map in figure 18 is 0.26, which means these two features are
weakly correlated. As mentioned in the previous section, Macular Volume and EZ/ELM significantly
affect the separate detection of DME. In this subsection, a model trained on both features is a binary
classification in which an image can either have Macular Volume and EZ/ELM or none of these
features. For this binary classification, 330 images are separated for the training set and 30 images
for the test set (165 images for each class in training and 15 images for each class in the test set).
The correlation between the two features shows that they might not have a strong relationship and
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good performance, but the model performed well. Figure 28g shows the loss function of the model.
Then the model is trained and saved afterward. The classification report of the model before transfer
learning is as follows:

Classification report Precision Recall F1-Score Support
Average accuracy 0.71 0.70 0.70 30

7.4.8 Cysts (C) and DRIL

The eighth combination is Cysts (C) and DRIL, and the correlation between the two mentioned fea-
tures, based on the cluster map in figure 18, is 0.4, which means these two features are moderately
correlated. In this subsection, a model trained on both features is a binary classification in which an
image can either have Cysts and DRIL or none of these features. For this binary classification, 400
images are separated for the training set and 40 images for the test set (200 images for each class in
training and 20 images for each class in the test set). The model was expected to perform well as
these two features are moderately correlated and might have a strong relationship, but it performed
surprisingly worse. The reason could be that the model is confused between images with cysts and
disorganized retinal layers (because of their similarities), and the model predicted the wrong labels.
Figure 28h shows that no overfitting is observed in this model. Then the model is trained and saved
afterward. The classification report of the model before transfer learning is as follows:

Classification report Precision Recall F1-Score Support
Average accuracy 0.59 0.57 0.56 40

7.4.9 Cysts (C) and EZ/ELM

The ninth combination is Cysts (C) and EZ/ELM, and the correlation between the two mentioned
features, based on the cluster map in figure 18 is 0.25, which means these two features are weekly
correlated. In this binary classification, there are only 38 images that have both features simultane-
ously, and it is not a sufficient number of images for training a model. So, the result of this model is
not available due to this issue, and it can be solved by adding a considerably more number of available
images for the training and testing process. It is descoped from this research study.

7.4.10 DRIL and EZ/ELM

The last combination is DRIL and EZ/ELM, and the correlation between the two mentioned features,
based on the cluster map in figure 18, is 0.37, which means these two features are moderately cor-
related. In this subsection, a model trained on both features is a binary classification in which an
image can either have DRIL and EZ/ELM or none of these features. For this binary classification,
220 images are separated for the training set and 20 images for the test set (110 images for each class
in training and 10 images for each class in the test set). Several fluctuations are observed in their loss
and accuracy functions (figure 28i), and the reason is the few images in training and especially vali-
dation sets. The issue might be solved by adding more images to the datasets. Also, the result of the
testing set might not be accurate and reliable due to the shortage in the number of images. Then the
model is trained and saved afterward. The classification report of the model before transfer learning
is as follows:

Classification report Precision Recall F1-Score Support
Average accuracy 0.74 0.70 0.69 20
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7.4.11 Comparison of combined features

All 10 models with different feature combinations were studied in the previous subsection. The
combination of Thickening (T) and Macular Volume (MV) performed the best among them. After
that, Thickening (T) and Cysts (C) performed the second best because the results of the combination
of DRILL and EZ/ELM are not undoubtedly reliable and accurate due to the shortage in the number
of images for the test (20 images) and training process. The more images for the training and testing
process, the more precise and reliable results will be. The result of the Cysts and EZ/ELM is also
insufficient and not comparable with the other combinations, and was expected a better performance
for the combination of Cysts and DRIL, and reason is the uncertainty of the model for the prediction
between cysts and disorganized retinal layers. Then all 9 sufficient models are saved to be used via
transfer learning to predict DME on a different and more extensive dataset.

Feature Combination Precision Recall F1-Score Support
Thickening & Macular Volume 0.80 0.75 0.74 40

Thickening & Cysts 0.72 0.70 0.69 40
Thickening & DRIL 0.71 0.63 0.60 30

Thickening & EZ / ELM 0.68 0.65 0.64 40
Macular Volume & Cysts 0.78 0.77 0.76 30
Macular Volume & DRIL 0.63 0.62 0.62 40

Macular Volume & EZ / ELM 0.71 0.70 0.70 30
Cysts & DRIL 0.59 0.57 0.56 40

Cysts & EZ / ELM - - - -
DRIL & EZ / ELM 0.74 0.70 0.69 20

7.4.12 DME detection with the usage of features combination

In the previous section, the combination of features was used, and 10 possible combinations were
studied. Then, all 9 sufficient models were saved, and except their last 5 layers, all their layers and
weights were frozen and trained on another dataset, as mentioned in Section 7.2.8. Models for each
feature are implemented in the same situation, with the same amount of images for each set, the same
data pre-processing, and the same epochs to see the differences between the results to compare them
more accurately.

In this section, all 9 models are trained again with a low learning rate (0.001), and the loss and
accuracy functions behaved naturally, and no overfitting can be observed. Each model is trained and
tested many times with the SGD and the Adam optimizers, and the best one for all models was the
Adam optimizer. All of the models performed remarkably well, but the difference in their results can
be a term for comparing models trained on different features. The table below shows the performance
of each influential feature with the usage of transfer learning in DME detection. Thickening (T)
& Macular Volume (MV) combination performed the best among the 10 combinations. However,
the combination of Thickening (T) and EZ/ELM performed the second best and close to the first.
Furthermore, these two mentioned combinations are more influential and prominent in diagnosing
DME. The number of images for the DME dataset can ensure reliability and accuracy for the results
achieved. The table shows all possible combinations of features in a comparable condition as follows:
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Feature Combination Precision Recall F1-Score Support
Thickening (T) & Macular Volume (MV) 0.98382 0.98333 0.98333 300

Thickening (T) & Cysts (C) 0.968 0.96667 0.96664 300
Thickening (T) & DRIL 0.95914 0.95667 0.95661 300

Thickening (T) & EZ / ELM 0.98077 0.98 0.97 300
Macular Volume (MV) & Cysts (C) 0.9717 0.97 0.96 300

Macular Volume (MV) & DRIL 0.95625 0.95333 0.95326 300
Macular Volume (MV) & EZ / ELM 0.97771 0.97667 0.97665 300

Cysts (C) & DRIL 0.96875 0.96667 0.96663 300
Cysts (C) & EZ / ELM - - - -

DRIL & EZ / ELM 0.95732 0.95333 0.95323 300

7.5 Discussion
The three goals of the thesis, mentioned in Section 1, are fulfilled separately to detect DME with
average specificity and sensitivity of 96%. Relationships between morphological features are studied
using Spearsman’s correlation. The results show that the correlation between Thickening (T) and
Macular Volume (MV) is the strongest, with the highest value (0.82). The classification of features
individually with the highest number of available images for each feature in the dataset is done. The
results indicate that Thickening (T) has the highest potential to enhance the accuracy of DME di-
agnosis. The identification of features by equally leveling the number of images of each feature is
accomplished. The results demonstrate that Cysts (C) is the most noticeable singleton feature that
boosts the DME detection if only the presence or absence of features is considered. The detection of
10 possible combinations of two features simultaneously is done with an equal number of images for
each feature. The results show that the combination of Thickening (T) and Macular Volume (MV)
is the most prominent combination of all possible combinations to increase the accuracy of DME
detection.

The results for the three goals are achieved satisfactorily, but in some cases, uncertainty and unre-
liability are observed. Examining the 8 mentioned features allowed a more accurate prediction of
DME with increased specificity and sensitivity for detecting DME. However, no specific and clear
boundaries were observed for the diagnosis of DME because, in some cases such as DRIL (Section
7.3.1), the feature did not detect clearly due to some limitations, such as the shortage in the number of
images for some features based on their labels, and the complexity of features in terms of their nature.

The classification of DME with the highest number of available images for each feature in the dataset
indicates the best possible performance for each feature individually. However, it cannot guarantee a
proper comparison among features because of the difference in the number of images for each fea-
ture. The results of the classification of features singularly is a method to show which feature plays
the most significant role in detecting DME more accurately in the larger scale of images. In this
thesis, Macular Volume (MV) and Thickening (T) performed closely and the best to be classified on
each OCT image, and usage of those features in the detection of the DME. However, Macular volume
got a better specificity of 77.4% and sensitivity of 75% than Thickening with a specificity of 65% and
sensitivity of 60% in the classification of features individually. In addition, after transfer learning, the
model used Thickening (specificity of 99% and sensitivity of 99%) performed slightly better than the
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model that used Macular volume (specificity of 98.5% and sensitivity of 98.5%) in the DME diagno-
sis.

The detection of DME with the same number of images enables comparing the features to figure out
the best individual feature among the available features with a limited and equal number of images.
Having the same number of images for each feature does not show the best achievable result individ-
ually, but it provides a more reasonable comparison to study the features separately. Furthermore, this
method enables valuable insights to study the DME accuracy in case only the presence or absence
of features are considered. The results of the models showed that Thickening (T) was detected more
accurately and straightforwardly than the other features individually (specificity of 75.5% and sensi-
tivity of 75%) and had the highest potential for further diagnosing DME. However, The results show
Cysts (C) (specificity of 97.6% and sensitivity of 97.6%) performed negligibly better than Thickening
(T) (specificity of 96.7% and sensitivity of 96.6%), in DME detection.

Detecting combinations of features on OCT images with an equal amount of images can indicate the
most reasonable comparison between all possible combinations considering the correlation between
every two features. The results of the models in the combinations of features show that Thickening
(T) & Macular Volume (MV) (specificity of 77.5% and sensitivity of 75%) are detected most accu-
rately among all the combinations of features. In addition, their combination is the best among all
combinations of features for further detection of DME (specificity of 98.3% and sensitivity of 98.3%).
However, Thickening (T) & EZ/ELM performed surprisingly nearly the best (specificity of 98% and
sensitivity of 98%). The essential role of Thickening (T) in the detection of DME is remarkable in
considering singular features and combining them. In addition, the correlation between Thickening
and Macular volume and the more accurate detection of them simultaneously on OCT images in-
dicates their reliability for DME diagnosis in comparison with the combination of Thickening and
EZ/ELM.

Table 2 compares the two best features in each of the three stages (classification and detection of
features individually, detection of combined features). Furthermore, figure 19 illustrates a proper vi-
sualized relationship between the correlation, classification report, and the number of images used for
training and testing processes for each combination of features and also in the detection of DME.

The work done by Panozzo et al. [37] studied seven features mentioned in Section 2.1 and proposed
a grading protocol called TCED-HFV, in which each letter represents a feature. The grading protocol
categorizes DME in four stages showing disease progression. A lack of the usage of machine learning
techniques to identify and categorize DME is notable in their work. This thesis used machine learning
techniques to classify the features automatically and compare them to investigate the most influential
feature in detecting DME more accurately. In addition, all possible combinations of two features are
used to diagnose DME. A lightweight deep learning architecture called OCTNet is used in all created
models. The lightweight OCTNet architecture boosts the accuracy and reduces the computation time
than heavy-weight architectures such as ResNet-50 or ImageNet [42].
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Table 2: A comparison between sensitivity and specificity of DME detection among the usage of
single features and combinations of them in this thesis.

Stage Feature(s) Sensitivity Specificity
Single feature classification Thickening (T) 99% 99%

Macular Volume (MV) 98.5% 98.5%
Single feature detection Cysts (C) 97.6% 97.6%

Thickening (T) 96.6% 96.7%
Combination of features Thickening(T) & Macular Volume (MV) 98.3% 98.3%

Thickening (T) & EZ/ELM 98% 98%
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Figure 19: The performance of individual morphological features and their combinations for detecting
DME on OCT images. The color bar on the right side indicates a value of the correlation coefficient
between features. Each cell consists of two values: the top one is Sensitivity (TPR). The bottom one is
Specificity (TNR). TPR and TNR are calculated for each feature and all combinations between them
in the prediction of DME. The intersection cell of each feature with itself shows the performance of
the model for the individual feature in the detection of DME.
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Table 3: This table shows a comparison among related work done to detect or classify DME with this
thesis.

Authors Dataset Sensitivity Specificity Classes
S. Amit Kamran et al. [30] OCT2017 [26] 99.8% 99.9% Normal - Drussen

84,484 images CNV - DME
S. Amit Kamran et al. [30] Srinivasan2014 [15] 100% 100% Normal - AMD

3,231 images DME
K. Alsaih et al. [21] 3800 images 87.5% 87.5% DME - Normal

Sunija A.P et al. [42] 83,484 images [42] 99.6% 99.6% Normal - Drussen
CNV - DME

Current Study 3000 images 96% 96% Normal - DME

The work by S. Amit Kamran et al. [30] demonstrated a highly accurate automated system to diag-
nose retinal disease using OCT images. As mentioned in Section 2.3, five morphological features are
considered in their work to identify DME. They proposed an architecture that does not require any
pre-trained weights, and it facilitates the training and deployment time of the model by many folds.
Their work used two popular OCT datasets, and the model performed flawlessly for both datasets.
The model achieved a sensitivity and specificity of 99.80% and 99.93% in the OCT2017 [26] dataset.
Furthermore, the model achieved a state-of-the-art result by scoring 100% accuracy, sensitivity, and
specificity in the Srinivasan2014 [15] dataset. For this thesis, in comparison to the work by S. Amit
Kamran et al. [30], the dataset that used for DME diagnosis is 40 times smaller than the OCT2017
dataset, but still, the average specificity and sensitivity (96%) for both individual and combined fea-
tures is this project, which is close to their work. On the other hand, their work achieved perfect
specificity and sensitivity (100%) in the Srinivasan2014 dataset, which consists of 3,231 OCT im-
ages. However, the result of their work for the Srinivasan2014 dataset is more satisfactory than this
thesis.

The work done by K. Alsaih et al. [21] proposed an automatic classification framework for SD-OCT
images to identify DME versus normal images based on evaluating several morphological features,
such as retinal thickening, hard exudates, intraretinal cystoid space formation, and subretinal fluid.
Their study used more than 3800 OCT images for the DME detection. A pipeline has been proposed,
including pre-processing, feature detection, feature representation techniques, and using classifiers to
detect DME satisfactorily. Individual and combined features are assessed in their work, and the best
classification performance with sensitivity and specificity of 87.5% was accomplished. Compared
to this thesis, they used a bigger dataset to diagnose DME. However, the sensitivity and specificity
of their work are lower. Furthermore, some morphological features, such as retinal thickening and
subretinal fluid, are used in their work, similar to the features used in this thesis.
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Figure 20: A comparison between the performance of different models in related work with this
project.
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8 Conclusion
Diabetes and its causes of visual impairment in people is one of the most common diseases globally.
DME is one of the products of diabetes worldwide, influencing numerous people annually. There are
various methods for examining DM, such as SD-OCT. The main focus of this thesis was instructed
on a learning-supported visual investigation of DME pathology in the retina associated with diabetes
using eight morphological features on OCT images.

Deep learning technology has great potential in classifying medical images, especially in ophthal-
mology, where different modalities such as OCT and fundus images can be used. Different disease
methodologies have been detected and classified using deep learning techniques, including cataracts,
glaucoma, age-related macular degeneration, and DR [25]. DR is a complication of diabetes that can
lead to progressive stages such as DME [38]. OCTNet architecture introduced by Sunija A.P et al.
[42], which is a lightweight and still one of the most potent architectures, is used in this thesis to
classify and detect the morphological features and then diagnoses DME on OCT images.

The models mostly performed well in classifying and detecting single and combined features. Five
single features with the highest possible available images are classified. The five single features are
also detected on OCT images with an equal number of images in their training and test sets for an
appropriate comparison among features. Also, ten possible combinations of two features are simulta-
neously detected on OCT images with an equal number of images for the training and test sets. Then
the performance of all the fifteen single and combined features models are compared. All the models
are used to diagnose DME using transfer learning in the same situation in their training processes.

The results indicate the significant role of Thickening (T) for both detected and classified OCT images
on the dataset and also for the detection of DME. The Thickening (T) classification model performed
the best among morphological features with an average sensitivity and specificity of 99%. The Thick-
ening (T) detection model performed the second best (after the Cysts(C) detection model) with an
average sensitivity and specificity of 96.7%. In DME detection using a combination of two features,
Thickening (T) & Macular Volume (MV), which have the most robust correlation coefficient among
the features, performed the best with the average sensitivity and specificity of 98.3%.

Although this thesis delivers some promising results, several limitations have to be raised, such as in-
valid labels for some images, a shortage of available images for adjunctive features, class imbalance
for some features among their labels, and the limited number of images in the dataset. These difficul-
ties caused some issues in the reliability and certainty of data and the results, but the data cleaning for
invalid labels and data augmentation for class imbalance tried to improve the accuracy, reliability, and
certainty of the results. Additional experiments need to be carried out on a larger dataset to increase
the reliability of the results.



58 Chapter 9 FUTURE WORK

9 Future Work
This thesis concentrated on the detection of DME with the usage of eight morphological features on
OCT images. There are other types of optical images, such as Fundus images. One of the other
challenges can be detecting DME using Fundus and OCT images for each patient. DME can be de-
tected by measuring the retinal thickness in both fundus and OCT images. As all the retinal layers
are distinguishable in OCT images, detecting DME is more straightforward than in Fundus images.
However, Fundus images can indicate the thickness and hard exudates in the macular region. Also,
”the OCT image shows the same changes by giving a cross-sectional view of sub-retinal layers [17]”.
So, by having both OCT and fundus images, DME might be detected easier and more accurately. One
of the disadvantages of fundus images is that observing cysts are so tricky, and they are not prominent
in fundus images [17].

Another future challenge can be DME diagnosis on a huge scale of data. Classification or detection
using machine learning techniques on large data is more accurate than a smaller amount of data. So,
having a large amount of OCT images makes DME detection more accurate and reliable. The more
images a model sees, the more accurate the prediction for unseen images will be. The number of
images in a dataset is a reason for accurate results [56]. Some data augmentation techniques are used
in this thesis. Still, various over-sampling techniques can increase the amount of data and solve class
imbalance problems. In addition, OCTNet has been chosen as the deep learning architecture for this
thesis due to its lightweight and still powerful architecture for the OCT images, but some other pow-
erful architectures, such as OpticNet, can be used in future works.

One more crucial future challenge in continuing this project is the classification of DME on OCT im-
ages in four comparable stages mentioned by Pannozo et al. [37] with the usage of machine learning
techniques. As mentioned in Section 2, DME can be categorized in four comparable stages, Early
DME, Advanced DME, Severe DME, and Atropathic maculopathy. One of the advantages of the
classification of DME into four stages is that its detection can have more insights into the progression
of the disease rather than its detection only. In work done by Panozzo et al. [37], the classification
of DME in the four stages is done without using machine learning techniques. Instead, a grading
system called TCED-HFV was used. Hence, with the usage of deep learning and machine learning
techniques, the proper stage of the DME can also be classified. DME is detected in this thesis using
the features individually and in the combination of two features. Still, the detection can be done using
three or more features simultaneously on OCT images. Besides that, some other features, such as
central foveal thickness (CFT), have been used in their work in addition to the features mentioned in
this thesis, and those features can be studied in future work.
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Appendices

A Figures

Figure 21: The gray area around the input is the padding. Either pad with zeros or the values on the
edge, Then the dimensionality of the feature map matches the input [22].

Figure 22: Illustrates the convolution operation for an multi-color image with 3 channels (RGB); The
output is squashed or aggregated as the output. image credit: (www.guru99.com, 2021) .
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Figure 23: This figure illustrates how four different pooling method perform for a black and white
image and Min-pooling yields a better result for images with white background and black object in
it. [60].

Figure 24: This figure illustrates how four different pooling method perform for a black and white
image and Max pooling gives better result for the images with black background and white object
(Ex: MNIST dataset). [60].
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Figure 25: This figure shows the categorizations of transfer learning [39].

Figure 26: This figure shows a healthy retinal layers in an OCT images in which ophthalmologist can
see all the deeper retinal layers to see if a patient has any disease or not [49].
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(a) Thickening (T) loss function. (b) Macular Volume (MV) loss function.

(c) Cysts (C) loss function. (d) DRIL loss function.

(e) EZ/ELM loss function.

Figure 27: The training and validation loss functions of the classification of each influential feature.
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(a) Thickening and Macular Vol-
ume loss. (b) Thickening and Cysts loss. (c) Thickening and DRIL loss.

(d) Thickening and EZ/ELM
loss.

(e) Macular volume and Cysts
loss.

(f) Macular volume and DRIL
loss.

(g) Macular volume and
EZ/ELM loss. (h) Cysts and DRIL loss. (i) EZ/ELM and DRIL loss.

Figure 28: The training and validation loss functions of the detection of combined features.
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