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Abstract

The currently available numerical Standard Model predictions for the branching fraction of the
B+

c → τ+ντ decay are analyzed based on their input parameters. Through error analysis of these
parameters, the B+

c meson decay constant and the Vcb CKM matrix element emerge to be key factors.
The study of the B+

c meson decay constant prompts an analysis of HISQ and NRQCD formulation
used to discretize the heavy bottom quark onto a lattice for lattice QCD calculations. The study
of the Vcb matrix element prompts an analysis of the different methods of exclusive determinations
and another look at the difference between exclusive and inclusive determinations. Based on the
obtained insights from these analyses, both an exclusive and an inclusive updated prediction of the
branching fraction are computed. The updated prediction of the branching fraction is determined
to be (1.96 ± 0.09) × 10−2 using an exclusive determination of Vcb and (2.28 ± 0.10) × 10−2 using
an inclusive determination of Vcb. These improved predictions can be used as reference for future
comparison to an experimental measurement of this branching fraction, aiding in the search for
physics beyond the Standard Model.
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2 Introduction
The first aspect of particle physics that most people encounter is the concept of quarks, which are the
smallest particles known. There are six different quark flavors: up, down, charm, strange, top and
bottom. These quarks are part of a class of elementary particles called fermions. This fermion class
furthermore includes leptons. The lepton family includes the well-known electron and two other charged
particles called muon and tau and their respective neutrinos.

The Standard Model (SM) has been very successful in explaining the behaviour of elementary
particles. Nonetheless, the SM is not the perfect theory. First of all, the SM is an incomplete theory since
it only describes three out of four fundamental forces, omitting the gravitational force. Furthermore,
there are some phenomena that cannot be explained by the SM, for example the abundance of matter
over antimatter in the universe. The SM predicts that matter and antimatter should have been created
in almost equal amounts, which is contradicted by observations of a big asymmetry between matter
and antimatter. Another phenomenon that cannot be explained by the current SM is the existence of
dark matter and dark energy, which are thought to make up most of the contents of our universe.
These quantities are invisible since all light seems to pass through it, as it does not interact with
the electromagnetic force. Its presence can only be inferred from gravitational effects. Dark matter
and dark energy dominate the structure and evolution of our universe and are therefore important for
understanding our universe. [1–3]

These deficiencies of the SM prompt particle physicists to search for physics beyond the Stan-
dard Model (BSM). At the time of writing, no conclusive evidence has been found of BSM. Nonetheless,
numerous hints of BSM have been found which further encourage the search for BSM. This search can
be performed by comparing experimental results to their respective SM theoretical prediction. An ex-
ample of one of these searches for BSM, relevant for this thesis, is testing for lepton flavour universality
(LFU). LFU follows from the SM since the SM describes the three charged leptons as identical apart
from a difference in their mass. Therefore, the charged leptons are expected to couple in an identical
way to their respective interaction particles, which means that lepton flavor has no effect on the coupling
between charged leptons and bosons. LFU violation would be a clear sign of BSM. Therefore, examining
LFU is a good test of the SM. [4]

This LFU can be tested for using the Large Hadron Collider beauty (LHCb) experiment. Their
LHCb detector specifically focuses on measuring bottom quark decays. The plan of the LHCb group at
the Van Swinderen Institute is to experimentally measure the tauonic decay of the Bc particle, containing
a bottom and a charm quark. This decay, B+

c → τ+ντ , will be measured using the data that the LHCb
experiment at CERN will collect in the following years. In the B+

c → τ+ντ decay mode, the Bc meson
decays into a final state containing only leptons, specifically a charged tau lepton and a tau neutrino.
This decay is a probe for LFU violation since it can be compared with decay modes to the other leptons,
B+

c → `+ν`. This comparison can be made between the branching fraction, the probability of the
decay mode, of the tauonic decay and branching fraction of the decay modes to the other leptons, which
produces a ratio. This experimental ratio can in turn be compared with the SM expectation of this ratio.
Experimental results of ratios of equivalent decays have been shown to deviate from the SM expectation
[5]. Since the decay mode B+

c → τ+ντ has not been measured before, it could provide new information
in the search for BSM.

To be able to make this comparison using B+
c → τ+ντ , the SM prediction for the branching

fraction of the tauonic decay B+
c → τ+ντ should be as accurately as possible. The branching fraction for

B+
c → τ+ντ decay within the Standard Model is about 0,02 [6, 7]. The currently available predictions

differ by a factor 2 in uncertainty, which brings up the question where this difference comes from and
how this difference effects the branching fraction prediction. This will be investigated by analyzing
the involved input parameters, which will reveal their underlying controversies and lead to an updated
prediction of the branching fraction.
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3 The Standard Model and its elementary particles
Matter is composed of elementary particles. These elementary particles can be divided into particles with
a half-integer spin called fermions and force carriers with an integer spin called bosons. This division
can also be observed in figure 1, where the mass, charge and spin of each known elementary particle is
given and a division is made based on these properties.

Figure 1: The Standard Model of particle physics. [8]

3.1 Fundamental forces and bosons
Interactions between elementary particles are governed by four fundamental forces, mediated by boson
force carriers. These boson force carriers can be observed at the right side of figure 1.
The strongest of the fundamental forces is the strong nuclear force. It uses gluons as force carriers
to interact over short distances of about 10−15 meters. The second of four fundamental forces is the
electromagnetic force. This force is weaker than the strong nuclear force, but acts over infinite distances
using photons as their force carriers. Both the bosons of the strong nuclear force and the bosons of
the electromagnetic force, gluons and photons, are massless. The weak nuclear force is an even weaker
fundamental force than the electromagnetic force and acts over short distances of about 10−18 meters.
This weak force is mediated by W+, W− and Z bosons, which have a mass of 80.4 and 91.2 GeV
respectively. The last of the four fundamental forces, the gravitational force, can act over infinitely large
distances and is by far the weakest force. This gravitational force could possibly be mediated by bosons
called gravitons, but these have not yet been discovered. [2, 9]

3.2 Fermions
Fermions can be sub-divided into quarks and leptons, as can be observed in figure 1. Leptons are fermions
that cannot interact via the strong nuclear force, while quarks can interact via the strong force. Leptons
can be subdivided into -1e charged leptons and neutral neutrinos. Quarks can be subdivided into up-type
quarks with a charge of + 2

3e and down-type quarks with a charge of - 13e.
Both quarks and leptons can be organized into three generations with increasing mass, which was pro-
posed by Kobayashi and Maskawa in 1973 [10]. Each generation contains an up-type quark, a down-type
quark, a charged lepton and a neutral neutrino as can be observed in figure 1. The first generation
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contains the up quark, down quark, electron and electron neutrino. Similarly, the second generation con-
tains the charm quark, strange quark, muon and muon neutrino. Finally, the third generation contains
the top quark, bottom quark, tau and tau neutrino.

An important characteristic of quarks is that they have a property called ’color’ allocated to
them. Any quark can exist in three different color states, which are indicated as the colors red, green
and blue for convenience. Isolated particles must be color neutral according to the theory of color
confinement [2]. This means that isolated quarks cannot be observed, since quarks are not color neutral.
Therefore, quarks organize themselves into composite particles, called hadrons. Hadrons are simply
particles in which two or more quarks are grouped together. There are several types of hadrons of which
mesons and baryons are the most important examples.
A meson consists of one quark and one anti-quark grouped together. The quark has a specific color
and the anti-quark must have the respective anti-color, to render the meson color neutral. Mesons that
are made of a pair of quark and anti-quark of different flavor are called flavored mesons. The names
of flavored mesons are dependent on the heavier quark, for example flavored mesons with the heaviest
quark being a bottom quark are named B-mesons and flavored mesons with the heaviest quark being a
strange quark are named kaons.
A baryon consists of three quarks grouped together. All three quarks in the baryon must have a different
color for the baryon to be color neutral. Examples of a baryon are protons, containing two up-quarks
and one down-quark, and neutrons, containing one up-quark and two down-quarks. [11]

This thesis is about a particle called a Bc meson, which contains a bottom (anti-)quark and a
charm (anti-)quark. When the meson contains a charm quark and a bottom anti-quark, it is a B+

c meson
since its charge is calculated as 2

3e − − 1
3e = 1. On the other hand, when the meson contains a charm

anti-quark and a bottom quark, it is a B−
c meson since its charge is calculated as − 2

3e−
1
3e = −1. [2]

3.3 Decay of the Bc meson
The SM decays of particles can be described by equations and visualized using Feynman diagrams, which
are space-time diagrams that describe how particles move and interact. [9]
In Feynman diagrams, all particles can also be replaced by their antiparticles and the decay is still
allowed, therefore the decay B+

c → τ+ντ is equivalent to the decay B−
c → τ−ν̄τ . Furthemore, the lepton

number must be conserved. The three different lepton numbers are the electron lepton number, muon
lepton number and tau lepton number. This conservation of lepton number can be observed in Feynman
diagrams since for each of the leptonic vertices, there is one arrow pointing into the vertex (so anti-lepton,
so L = −1) and one pointing out of it (so lepton, so L = 1) and both lines concern the same lepton. The
Bc meson, the subject of this thesis, can decay through weak annihilation using a virtual W boson [12].
This Bc meson contains two flavor-asymmetric quarks, bottom and charm, which cannot annihilate to
a gluon or photon [13]. This eliminates the strong and electromagnetic interactions, which makes the
Bc meson a good meson to study weak decays of heavy quarks. The purely weak annihilation can be
visualized in Feynman diagram 2.

W+

c

b τ+

ντ

Figure 2: Purely weak annihilation of B+
c meson.

The Bc meson can furthermore decay according to the simple spectator quark model. This is
possible via a bottom quark decay with a charm spectator quark, see figure 3, and a charm quark decay
with an anti-bottom spectator quark, see figure 4. [13]
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b̄ q̄

c c

τ+

ντ
W+

B+
c

Figure 3: Bottom quark decay with charm spectator quark, with ’q’ being either a charm or an up quark.

c q

b̄ b̄

τ+

ντ
W+

B+
c

Figure 4: Charm quark decay with charm spectator quark, with ’q’ being either a strange or a down
quark.

The decay modes shown in figure 3 and 4 are semileptonic decays, meaning that a hadron decays
into another hadron and leptons.

3.4 The CKM matrix
The Cabibbo-Kobayashi-Makawa (CKM) matrix is important to understand the behaviour of quarks
and therefore also to understand the decay of the Bc meson. The CKM matrix is an n × n complex
matrix, where n counts the number of generations. Since there are three quark generations, the CKM is
a 3x3 matrix.

VCKM =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb


The CKM matrix is non-diagonal, with the off-diagonal terms implying that weak-interaction transitions
between quark generations are allowed, which is called quark mixing. Therefore, the CKM matrix governs
all flavor changing transitions between different types of quarks (up-type quarks to all down-type quarks
and down-type quarks to all up-type quarks) in the SM. The elements Vij connect the ith left-handed
up-type quark to the jth left-handed down-type quark. [14]
Quark mixing is however always suppressed compared to the quark transitions within a generation. This
suppression can also be noticed from the sizes of the CKM elements of the non-diagonal and diagonal
elements in the following matrix [15]. [16, 17]

VCKM =

0.974353 0.22500 0.003667
0.22487 0.973521 0.04145
0.008519 0.04065 0.999142


The values in this matrix are obtained by the CKMfitter group which determines the CKM

matrix elements, like Vcb, using a global fit.

CKMfitter The CKM matrix defines four parameters for the weak charged current interac-
tions of quarks. These four parameters can be determined using different parametrizations. A commonly
used parametrization is the Wolfenstein parametrization. This parametrization allows the CKM matrix
to be expressed in terms of λ,A, ρ̄, η̄. The lambda parameter is approximately equal to 0.22. The other
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matrix elements are rewritten in terms of these four parameters as an expansion of λ [18], which results
in the following matrix. [19]

VCKM =

 1− λ2

2 λ Aλ3(ρ− iη)

−λ 1− λ2

2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1


The unitarity of the CKM matrix implies certain relations between its elements, some of which can be
visualized in the complex plane as a so-called unitarity triangle (UT). The best example of this is the
orthogonality condition between the third and first column of the CKM, namely VudVub

∗ + VcdVcb
∗ +

VtdVtb
∗ = 0 [18]. After rescaling the triangle by dividing all sides by VcdVcb

∗, the triangle gets the
coordinates (0,0), (1,0) and (ρ̄, ν̄) and can be displayed as figure 5.

Figure 5: Unitarity triangle using parameters of Wolfenstein parametrization. [17]

The CKMfitter group determines the CKM matrix elements using a global fit to all available
measurements of UT parameters. The most recent global fit is from the 2021 CKMfitter group, which
can be visualized in figure 6.
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Figure 6: The global CKM fit in the large ρ̄, η̄ plane. The constraints on the UT parameters can be
observed as the colored fields in the figure. [15,18]

Vcb The Vcb parameter is one of the elements of the CKM matrix for b→ c quark transitions.
The 2021 updated Vcb value from the CKMfitter group [15] is determined to be value (1).

|Vcb| = (41.45+0.35
−0.61)× 10−3 (1)

This Vcb value is thus an average including numerous experimental measurements. It will not be used for
an updated prediction of the branching fraction, since the value is merely an average which covers up the
information of individual measurements of either exclusive or inclusive determinations. It is therefore
only mentioned as a reference value for the current world average of Vcb.

To determine the value of the Vcb CKM matrix element directly, experimental measurements
from exclusive and inclusive reconstruction of semileptonic decays of B mesons can be used. Exclusive
reconstructions use single hadronic channels, while inclusive reconstructions use a sum of all hadronic
channels. The exclusively and inclusively determined values give conflicting results, which is a long-
standing discrepancy in Vcb determinations. This difference between exclusive and inclusive determina-
tions is therefore an important problem to consider for computing the value of the branching fraction of
B+

c → τ+ντ .

3.5 Exclusive determinations
For exclusive determinations, CKM elements, like Vcb, can only be extracted using both the external
experimental decay observables and the form factor of the specific decay mode. To understand the Vcb
determination from these quantities, some more context about recoil is needed. Therefore, recoil will be
explained first, followed by a short discussion of both the decay quantities and the form factor, ending
with a discussion on how to combine them.
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Recoil Zero-recoil is when the recoil parameter, ω, is equal to 1 (normalized). This recoil
parameter can be expressed as ω = ν × ν′, which is the product of the four-velocities of the decaying
meson and the formed meson, for example the B̄ and D∗ meson four-velocities for the B̄0 → D∗+`−ν̄`
decay. In this example, the zero-recoil point corresponds to the kinematical situation were the D∗ meson
stays at rest in the rest frame of the decaying B̄ meson. This means that a higher energy was transferred
to the formed leptonic pair. Therefore, at the zero-recoil point, the momentum transferred to the leptonic
pair, q, is maximum. So, a low value of ω corresponds to the high q2 region. [20]

Experimental decay measurements As ω goes to 1, so to zero-recoil, the differential decay
width, expressed in ω as for example in Eq. (2), vanishes [21]. This can be observed in Eq. (2) since
the term ω2 − 1 becomes 0 when ω = 1. Therefore, the experimental decay measurements are mostly
performed at higher recoil, so in the lower q2 region.

dΓ

dω
(B̄0 → D∗+`−ν̄`) = (1 + πα)

GF
2MD∗

3

4π3
(MB −MD∗)2(ω2 − 1)1/2X(w)|Vcb|2|ηEWF (ω)|2 (2)

where X(w) is the phase space factor, ηEW accounts for the leading electroweak corrections, (1 + πα)
accounts for the Coulomb attraction of the final-state charged particles and F (ω) is the form factor from
QCD [21]. A graphical representation of this relation between the decay width and the recoil parameter
can be observed in figure 7. [22,23]

Figure 7: Fit to the measured ∆Γ/∆w spectrum of the decay B → Dlνl, performing extrapolation
to ω = 1 using the CLN parameterization. The respective uncertainty of each data-point is shown by
vertical error bars and the bin widths by horizontal bars. The solid curve corresponds to the result of the
fit and the surrounding grey area indicates the uncertainty in the coefficients of the CLN parameters. [24].

Lattice form factor The second component needed to calculate Vcb in exclusive determi-
nations are form factors. These form factors can be obtained from lattice QCD, which will be more
elaborately discussed in section 4. These lattice calculations are most accurate at high q2, so in the low
recoil region. Most form factor calculations are therefore performed at zero-recoil, so ω = 1. These form
factors can be used for normalization.

Combination of both quantities to obtain Vcb As said before, Vcb, can only be extracted
using both the experimental decay measurements and the form factor information. Since the experimen-
tal measurements are most accurate at low q2, while the lattice form factors are most accurate at high
q2, it is necessary to extrapolate the quantities found from the decay to the zero-recoil point in order to
combine both.
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The differential decay rate of a certain decay mode can be given in terms of a function F (w), which is
the form factor over the whole recoil region. Therefore, to perform an extrapolation to the zero-recoil
point, the function F (ω) has to be expressed in terms of parameters. Different parameterizations have
been suggested to describe this F (ω).
In the past, most research groups used the CLN parameterization. However, in 2017, a new unfolded data
set released by the Belle collaboration [25] triggered several theoretical analyses [23, 26, 27] to compare
the effect of the choice of a specific parameterization on the Vcb value. It was found that the CLN pa-
rameterization did not describe the experimental data good enough, whereas the BGL parameterization
did and the resulting Vcb exclusive value was also compatible with the inclusive Vcb. This was however
contradicted again by computations of the Belle Collaboration using their own full data set [28] and
other more recent publications. The Belle Collaboration made a direct comparison between the param-
eterizations to discover that the BGL parametrization gives a value for Vcb that is consistent with the
CLN parametrization. Therefore, the contradiction between exclusive and inclusive Vcb determinations
remains and there is still no consensus about the use of parameterization.

3.6 Hints for BSM physics
The SM includes the electroweak theory and quantum chromodynamics (QCD). As the name implies, the
electroweak theory includes the electromagnetic force and the weak nuclear force. QCD is the theory that
describes the strong nuclear force in the SM. Therefore, the SM describes three of the four fundamental
forces. This also directly indicates a problem of the SM, namely the exclusion of the gravitational force.
Another problem is the lack of explanation by the SM for the matter-antimatter asymmetry that we
observe in our universe.
Other hints of violation of the SM can be found when comparing branching fractions of decays that only
differ in their lepton flavor. The experimentally determined ratio between the branching fractions can
be compared with the prediction of this ratio by the Standard Model. An example of this is the ratio
of the branching fractions B → D(∗)τντ over B → D(∗)`ν` with ` being e or µ. This ratio is called
R(D(∗)). From comparing these ratios to the SM prediction, a discrepancy between the experimental
measurements and theoretical expectation value was found. These measurements were performed by
Belle, BaBar and LHCb [29–36]
An overview of all these R(D) and R(D∗) measurements is produced by the Heavy Flavor Lattice
Averaging Group (HFLAV) [5]. A recent update of this overview, which can be observed in figure 8 also
includes a new joint measurement of R(D) and R(D∗) by LHCb. In this figure, the experimental results
for combined R(D) and R(D∗) measurements are shown as ellipses and the individual measurements of
R(D∗) are shown as bands (from single points with error bars). The updated HFLAV average, which
can be observed as the red ellipse, exceeds the SM prediction by 3.2σ. This means that the average is
still in agreement with the SM since these 3 standard deviations are not enough deviation to call the
values inconsistent. In particle physics, the values are determined to differ enough to call the result a
new discovery when they differ by 5σ, so 5 standard deviations. These kinds of violations of the Standard
Model can be evidence for BSM.
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Figure 8: Measurements of the ratios R(D) and R(D∗) combined into a two-dimensional figure. The
contours correspond to ∆χ2 = 1, so the edges of the error contours are exactly one standard deviation.
The newly obtained LHCb result is shown as a purple ellipse and the new preliminary HFLAV average
of the R(D∗), R(D) ratios is shown as the red ellipse in the middle. The dashed red ellipse corresponds
to a 3σ deviation from the computed HFLAV average. The prediction of the SM can be observed as the
black dot with its respective error bars. [5]
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4 Lattice QCD
QCD is the theory that describes the strong nuclear interaction in the SM. QCD describes interactions
that are mediated by massless spin-1 bosons, called gluons. Theories of this type are called gauge theories
since they are based on a symmetry called gauge invariance. The gluons are its gauge bosons.
At short distances, thus at a high energy scale (high q2), QCD has a property called asymptotic freedom.
Asymptotic freedom implies that the interaction strength, αs, reduces at short distances. This reduction
of interaction strength between quarks allows for perturbative calculations.
On the contrary, as the distance between the quarks increases, thus at a lower energy scale (low q2), the
quark interaction gets stronger. This property of QCD at larger distances is called quark confinement.
Increasing interaction strength allows for many higher order interactions, which makes the calculation
very complicated. Therefore, at the low-energy part of QCD (long-distance physics), calculations can
only be performed using numerical simulations of the QCD theory on a space-time lattice on a computer.
These calculations are called non-perturbative calculations. [11,37]

Lattice QCD The non-perturbative method used for solving QCD theory is called lattice
QCD (LQCD). In LQCD, the lattice is made up of a discrete set of space-time points. The lattice is
usually constructed as a 4D hyper-cube with lattice-spacing a. Its four-dimensions include three spacial
dimensions and one temporal dimension. This simplification of space-time allows for numerical QCD
computations when the quarks are placed on the sites of the hyper-cubic lattice and the QCD gauge field
is placed on the links between these sites [38,39].
These LQCD calculations can in principle calculate QCD quantities to arbitrary accuracy on a computer.
However, the LQCD calculations are in practice limited by the computational resources and efficiency
of algorithms since the calculations require ever more computing power to deliver more accurate calcu-
lations.
LQCD results are accompanied by both a statistical and a systematic error. The statistical error comes
from the Monte-Carlo integration. The Monte-Carlo method is used to calculate the Feynman Path In-
tegral numerically [40]. This numerical integration needed for LQCD calculations uses randomly chosen
points at which the integral is evaluated, so the outcome approximates the correct value with respective
error bars. The systematic error comes from inaccuracies inherent to the system for example the use of
non-zero values of the lattice spacing a. This is because zero lattice spacing cannot be reached, since the
computational cost grows with a decreasing a. [39]

Simulating fermions on the lattice To be able to simulate fermions on the lattice to
perform LQCD calculations, the so-called fermion action needs to be discretized. This discretization is
needed since the lattice is also made up of a discrete set of space-time points instead of being continuous.
The simplest discretization is the so-called naive fermion action. A problem of this naive fermion action
is that it suffers from the fermion doubling problem.
This problem arises due to formulating naive lattice fermions to have chiral symmetry. It is important
to maintain the chiral symmetry of fermions in the LQCD simulations since this is one of the properties
of a fermion that is needed to allow it to interact in the strong interaction [41]. This maintaining of
chiral symmetry can only be realized when, for d dimensions, lattice QCD produces 2d equivalent fermion
fields in the continuum limit. Since the lattice used in LQCD is a four-dimensional grid, LQCD simulates
sixteen equivalent fermion fields in the continuum limit. This introduction of unwanted doubler fermions
is called the fermion doubling problem. [39]

LQCD for the Bc meson decay On top of this fermion doubling problem, another prob-
lem arises specifically for the Bc meson decay. This problem has to do with the need to simulate quarks
on the lattice. Simulating quarks onto the lattice works well when amq << 1, where a is the lattice
spacing and mq is the quark mass. So, LQCD works well when the quark mass is small compared to
the lattice cut-off. However, when this condition is not met, lattice QCD simulations give large errors.
These large errors arise because some of the discretization errors are proportional to powers of amq, so
become large when amq is bigger than 1. Lattice QCD simulations are therefore not helpful in analyzing
heavy quarks, since the errors are too large when the mass is high. This problem arises when looking at
the Bc meson, since it contains an intermediately heavy charm quark and a heavy bottom quark. The
currently available lattice spacing causes amb ≮ 1, whilst the charm quark is an intermediate case. [39,42]
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4.1 Highly Improved Staggered Quark action
The fermion doubling problem can be tackled by using staggered fermion action instead of naive fermion
action to discretize fermions onto the lattice. This staggered fermion action, like naive fermion action,
retains the chiral symmetry of the fermions. Staggered fermions are a reduced version of naive fermions
with the difference being the partial removal of their Dirac structure. Only a single fermion Dirac
component remains on each lattice site. The staggered fermion formulation can reduce the number of
doublers to three, so staggered fermion formulation produces four fermion flavors per one continuum
flavor. These four degenerate fermion flavors, nonphysical species of quarks, are known as tastes. By
taking the fourth-root of the fermion determinant in its path integral, the three unwanted tastes can
be removed. Using staggered fermion action however causes new problems like taste-symmetry breaking
that can cause large discretization errors. [22, 39]
These problems can in turn be solved by using highly-improved staggered quark action (HISQ), first
introduced by ref. [43]. HISQ adds additional terms to the lattice action which suppresses taste-symmetry
breaking and reduces some of the discretization errors, including O(a2) and O(amq)

n. Therefore, the
fermion doubling problem is solved using HISQ.
The remaining problem to simulate the heavy quarks of the Bc meson onto the lattice is also be addressed
by HISQ. As said before, the problem with simulating this Bc meson onto the lattice are the discretization
errors proportional to powers of amq. Since HISQ suppresses these O(amq)

n errors, this method is
also useful for the Bc meson containing heavier quarks where the error would otherwise become too
high. Charm quarks can be directly simulated using HISQ and using very fine lattice spacings enables
simulations of the bottom quark mass close to the physical bottom quark mass [43, 44]. To also use the
HISQ formulation for these bottom quarks, extrapolation in mb is needed. This extrapolation makes use
of the mass dependence predicted by the heavy quark effective theory (HQET). This HQET uses heavy
quark symmetry to make accurate predictions about heavy quarks whilst controlling the theoretical
errors. The extrapolation in the heavy-quark mass up to the physical bottom quark mass and the
extrapolation to zero lattice spacing (both extrapolations to continuum) that are needed using HQET
are important sources of error that remain for HISQ calculations [45]. Another important source of error
for HISQ calculations are statistical errors from the extrapolation fit and errors from the shifts to include
missing real world effects like electromagnetism.

Heavy Quark Effective Theory HQET is an effective field theory which can be used for
non-perturbative QCD calculations like LQCD by providing an extrapolation of heavy quark masses.
This extrapolation then allows the use of the HISQ formulation in LQCD for bottom quarks on the
lattice, thus for B+

c meson calculations.
HQET works by performing a systematic expansion in the powers of ΛQCD/mq, with well-defined errors.
In this expansion, HQET uses the heavy quark limit mq → ∞. This approximation enables non-
perturbative treatment of heavy quarks. To obtain quantitative results from these calculations using
the heavy quark limit, some corrections have to be included since the quark masses are not infinite [46].
Firstly, power corrections in the expansion in ΛQCD/mq need to be included. These power corrections
are most needed for ΛQCD/mc, since this term is bigger than ΛQCD/mb as mc is smaller than mb.
Furthermore, logarithmic corrections need to be included since some quantities depend on the strong
coupling constant which depends on mq logarithmically. HQET incorporates these and other corrections,
for example also radiative corrections, in its theory to perform calculations.
Therefore, it is possible to make calculations with well-defined errors by performing a systematic expan-
sion in the powers of ΛQCD/mb,c. This means that HISQ combined with HQET solves both the fermion
doubling problem and the heavy quark mass problem. HISQ combined with HQET can therefore be
used to simulate charm and bottom quarks and therefore the B+

c meson onto the lattice for LQCD
calculations [38,44].

4.2 Nonrelativistic QCD
An entirely different solution to the LQCD problems, other than the HISQ formulation using HQET, is
discretizing the bottom quark using improved non-relativistic QCD (NRQCD). NRQCD is in principle
used for heavy-heavy, quarkonium, systems which are a bound state of a heavy quark and its respective
heavy anti-quark. However, it can also be used for other systems, like the flavored Bc meson. It can
be used for the bottom quark of the Bc since the typical velocity of a bottom quark inside a hadron
is non-relativistic [47, 48]. This approach would be less successful for charm quarks, since their smaller
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mass makes them much less non-relativistic [43].
A big advantage of NRQCD is that the discretization errors are much easier to control since no extrap-
olation in mb is needed. On the other hand, the NRQCD operators have a non-relativistic expansion
and must have their normalization matched to the normalization of the appropriate continuum operator.
Both the non-relativistic expansion and the normalization problem introduce systematic uncertainty into
its results [49]. Another disadvantage of NRQCD is that some of the parameters need to be determined
perturbatively. Perturbative calculations describe a complicated quantum system in terms of a simpler
one (for which the mathematical solution is known) and work by adding an additional perturbing Hamil-
tonian representing a weak disturbance to the system. The physical quantities of the slightly perturbed
system can then be expressed as corrections to the quantities of the simple system. These corrections
are small compared to the size of the quantities themselves, which means that these values can be used
for approximate calculations. So, including perturbative calculations limit the precision of the final
results [39,48].
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5 The branching fraction
A branching fraction is the probability of the decay via a specific decay mode. It indicates the fraction
of particles that decay via this mode as part of all possible decay modes, with a total of 1. Therefore, a
branching fraction has a numerical value between 0 and 1.

5.1 The branching fraction formula
The numerical SM prediction for the branching fraction of the B+

c → τ+ντ decay can be determined
using the following formula [6, 7]:

B(B+
c → τ+ντ )

SM =
G2

F

8π
|Vcb|2 f2Bc

τBc mBc m
2
τ

(
1− m2

τ

m2
Bc

)2

(3)

In formula (3), GF is the Fermi coupling constant, |Vcb| is a matrix element of the Cabibbo-
Kobayashi-Maskawa (CKM) matrix for the transition between the c and b quarks of the Bc meson, fBc

is the Bc meson decay constant, mBc is the Bc meson mass, mτ is the tau lepton mass and τBc
is the

meson lifetime.

The units of all parameters in this thesis are given according to the natural units system, which
sets ~ (reduced Planck constant) and c (speed of light) equal to one. This means they can be omitted
from the unit of a parameter. For example the Fermi coupling constant, denoted by GF using the natural
unit system, is in fact described by GF

(~c)3 .

The numerical value of the branching fraction can be determined when the values of all pa-
rameters in the formula are known. Ref. [6] performed this computation and predicted the following
numerical value for the branching fraction B+

c → τ+ντ :

B(B+
c → τ+ντ )

SM = (1.95± 0.09)× 10−2 (4)

Ref. [7] also performed this computation and determined the following numerical value:

B(B+
c → τ+ντ )

SM = (2.25± 0.21)× 10−2 (5)

I have tried to reproduce both the value (4) computed by ref. [6] and the value (5) computed
by ref. [7] as a check for further calculations of the inclusive and updated branching fractions. The value
of (4) could be almost exactly reproduced as (6) using their input values, with a small difference visible
which could be due to different rounding or slightly different input values (since not all input values were
available). This was however not the case for the value (5) as its numerical branching fraction could not
be reproduced using the exact same input values that were used in the article (see table 19 of ref. [7] for
an overview of their input values). The numerical value that was calculated instead is (7).

B(B+
c → τ+ντ )

SM = (1.96± 0.10)× 10−2 (6)

B(B+
c → τ+ντ )

SM = (2.07± 0.20)× 10−2 (7)
The reproduced values (6) and (7) will be used as the exclusive predictions to be analyzed for the
remainder of this thesis.

Ref. [7] furthermore mentions an inclusively determined value for Vcb:

|Vcb| = (41.62+0.26
−0.80)× 10−3 (8)

Using this inclusively determined Vcb value, the numerical prediction of the branching fraction
of the decay B+

c → τ+ντ is found to be (9).

B(B+
c → τ+ντ )

SM = (2.29± 0.19)× 10−2 (9)

The exclusively determined value, (7), has an uncertainty that is more than twice as high as the
uncertainty accompanying exclusive prediction (6). Furthermore, inclusive prediction (9) has a numerical
value that is higher than the exclusive predictions. These differences can be investigated by looking into
the parameters of the formula.
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5.2 Parameter error analysis
In this section, firstly the theory behind errors and error propagation is discussed, followed by an error
analysis of the parameters used for computing the branching fraction value.

5.2.1 Error theory

All measurements come with a certain degree of uncertainty. These uncertainties arise since quantities
cannot be measured exactly. As measurement results are often used to calculate some other quantity,
an error in the measurement will also lead to an error in the final calculated quantity. To describe how
errors propagate and influence the final result, error analysis is used. [50]

There are two different kinds of errors, so-called random (statistical) errors and systematic
errors. Random errors are caused by random fluctuations in the experiment, which means that their
sign and magnitude vary statistically when the measurement is repeated. On the other hand, systematic
errors have the same sign and magnitude upon repeated measurement, which means they will not reveal
upon repeated measurement.

Random (statistical) errors could be due to slight fluctuations in the environment, measurement
instrument or the way that the value is read from a scale [51].
If a large number of repeated measurements is performed of a single quantity, these errors can be derived
from the statistical spread in the results. The error is usually defined such that 68% of the measurement
results does not differ more than the error from the true value, which is one standard deviation. If however
only a single or a few measurements are performed, an estimate has to be made of the uncertainty in
the result since there are not enough measurements to provide a statistical spread in the results. This
estimate should be the error with which it can be reasonably expected that there is a probability of 68%
that the difference between the measured and the true value is not greater than the assigned error. [52]

Systematic errors are often methodical (measurement instrument influences the quantity to be
measured) and instrumentation errors (due to the calibration accuracy of an apparatus) [51].
These systematic inaccuracies are reproducible, but difficult to detect since they will not reveal upon
repeated measurement as they cannot be distinguished from the measurement value. Systematic errors
can therefore not be eliminated by adding more measurements. This error can only be corrected for if its
sign and magnitude are known from other unrelated and independent measurements. Using these results,
the systematic error can be (partially) eliminated from the final result by an appropriate correction. In
practice, unrelated and independent measurements are often not available, which means the systematic
error cannot be corrected for and is propagated into the final result.

5.2.2 Error propagation

To analyze how errors of separate parameters influence the final result, the propagation of errors has
to be calculated. For each parameter, its contribution to the error of the final result can be calculated
separately and then the squares of the individual errors are added to give the square of the resulting
error, which is called the quadratic addition of errors. For example, for the equation Z = AnB, an error
is obtained according to Eq. (10). Several of these standard error relations have been derived, which can
be used to calculate the error of the branching fraction. [52,53]

∆Z = Z

√
(n× (

∆A

A
)2 + (

∆B

B
)2 (10)

5.2.3 Error analysis

In order to have a better look at the errors of all the branching fraction parameters, the errors can be
graphically displayed by dividing the errors by their respective value, resulting in figure 9.

17



Figure 9: Errors of all parameters of the branching fraction formula, relative to their values.

What stands out most from figure 9 is that the relative errors of Gf , mBc and mτ are much
lower than the relative errors of the other parameters. These parameters have small uncertainties.
Furthermore, some significant differences can be observed between the error fractions of the parameters
used by ref. [6] and ref. [7].
To further investigate the error fractions, it is important to look at how the parameter errors propagate
into the branching fraction error. To visualize this, a figure can be made of the error contribution of the
different parameter errors to the total branching fraction error. These error contributions are calculated
using eq. 10. An overview of the results can be visualized as a bar plot in figure 10. The results can
also be separated per numerical prediction into individual pie plots in figure 11 to clearly show the
contribution of each parameter to the branching fraction error.

Figure 10: Error contribution of the error of each parameter is expressed as a fraction of the total
branching fraction error.
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Figure 11: Error contribution of the error of each parameter is expressed as a percentage of the total
branching fraction error for all predictions separately.

From figure 10, it can be concluded that the errors of the Vcb and fBc
parameters have the

biggest error contribution to the branching fraction error. In this figure, there are also clear differences
visible between the parameter error contributions of the different predictions. This can be observed even
more clearly from the pie plots in figure 11. From these pie plots, it becomes clear that for the ref. [6]
prediction, the biggest contribution to the branching fraction error comes from the Vcb error. On the
other hand, the biggest contribution to the branching fraction error for the ref. [7] prediction comes
from the fBc

error. This difference in contribution per parameter in the ref. [7] prediction is even more
pronounced for the inclusive prediction, since the error of the inclusively determined Vcb value is twice
as low as the error for the exclusively determined Vcb value. Therefore, the Vcb error contribution to
the total branching fraction error is lower for the ref. [7] inclusive prediction. This makes Vcb and fBc

important parameters to consider for investigating the differences between the branching fraction values.
Therefore, the focus of this thesis will lie on these parameters. The fBc

and Vcb parameters will be
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closely examined in section 6 and section 7, respectively. The other parameters are shortly discussed in
the sections 5.2.3.1 and 5.2.3.2 below.

5.2.3.1 The Fermi coupling constant, τ lepton mass and Bc meson mass The Fermi coupling
constant is determined experimentally and specifies the coupling by a W boson in weak interactions. This
coupling can be approximated as a four-point interaction, since the range that the W boson travels is
short.
The value of this Fermi coupling constant, the mass of the Bc meson and the mass of the tau lepton can
be obtained from the Particle Data Group (PDG) [39]. The input parameters of the analyzed predictions
were all obtained from the 2018 PDG, but two of them, GF and mBc

were slightly updated in the 2022
PDG review [17, 54]. The tau lepton mass value however remains the same in the 2022 PDG compared
to the 2018 PDG and can be found in (11).

mτ = (1776.86± 0.12)× 10−3 GeV/c2 (11)

The input parameters and slightly updated parameters can be summarized in the following tables:

GF Value Error Unit Reference
2018 1.1663787× 10−5 0.0000006× 10−5 GeV [39]
Updated, 2022 1.1663788× 10−5 0.0000006× 10−5 GeV [17]

mBc Value Error Unit Reference
2018 6274.9× 10−3 0.8× 10−3 GeV [39]
Updated, 2022 6274.47× 10−3 0.32× 10−3 GeV [17]

5.2.3.2 The Bc meson lifetime (τBc) τBc is the Bc meson lifetime. The HFLAV [55] has found
(12) as the 2021 average τBc

value.

τBc
= (0.510± 0.009)× 10−12 s (12)

This average is dominated by two recent measurements from the LHCb experiment.
One 2014 LHCb article, ref. [56], performed τBc

measurements on the semileptonic decay B+
c →

J/ψµ+νµX, with J/ψ → µ+µ−. The Bc meson lifetime was determined to be (0.509 ± 0.008stat ±
0.012syst)× 10−12 s.
Another 2015 LHCb article, ref. [57], determined the Bc meson lifetime using an entirely different
approach. Using the LHCb data, the difference between the decay width of the hadronic modes
B+

c → J/ψπ+ and B+ → J/ψK+ was determined. From this difference in decay width and using
the expression ∆Γ ≡ ΓB+

c
−ΓB+ = 1

τ
B

+
c

− 1
τB+

and the known B+ lifetime, the B+
c lifetime was obtained.

This resulted in a lifetime of (0.5134± 0.011stat± 0.0057sys)× 10−12 s in which the systematic error also
includes the uncertainty related to the B+ meson lifetime.
Since both measurements are in good agreement and the uncertainties for both measurements are un-
correlated, a combined value can be computed, where the statistical and systematic uncertainties are
added in quadrature, which leads to the value (0.5114 ± 0.0093 )× 10−12 s. A few other measurements,
from CMS, CDF and D0, lower the HFLAV average by a fraction to (0.510± 0.009)× 10−12 s, as can be
observed in the overview provided by figure 12.

Figure 12: Measurements of B+
c lifetime [55]
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A note regarding the units of the meson decay lifetime; the meson lifetime is measured in
seconds, but its unit in the branching fraction formula (3) is in GeV −1. This means that the lifetime
has to be converted from s to GeV −1 using the following conversion relation: 1 s = 1.52×1024 GeV −1.
After converting, the following value for the Bc lifetime is obtained:

τBc
= (7.75± 0.137)× 1011 GeV −1 (13)
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6 The meson decay constant (fBc
)

A decay constant is a single number which expresses the amplitude for a meson to annihilate to a single
particle, for example to a W boson. The decay constant value has to do with the overlap between the
wave-function of the quark and the wave-function of the anti-quark [58]. The decay constant therefore
contains information about the meson itself [59]. For the B+

c meson, the meson decay constant is
described by fBc . Both ref. [6] and ref. [7] use fBc values determined by the HPQCD collaboration. This
HPQCD collaboration focuses on achieving high-precision results for LQCD calculations, specifically
calculations on heavy quarks.

Ref. [6] uses (14), from a 2012 HPQCD article [60], as their fBc value.

fBc
= (0.427± 0.006)× 10−3 GeV (14)

Ref. [7] uses (15), from a 2015 HPQCD article [59], as their fBc
value.

fBc = (0.434± 0.015)× 10−3 GeV (15)

An overview of these different values of fBc
can be made using figure 13.

Figure 13: fBc
values and their respective errors. The ”HISQ-NRQCD” value is computed by the 2015

HPQCD article [59] used by Fleischer et al. [7] and the ”HISQ-HISQ” value is computed by the 2012
HPQCD article [60] used by Amhis et al. [6].

In figure 13, it can be observed that the values agree with each other but differ significantly in
their uncertainty. The decay constant determined by ref. [59] using HISQ-NRQCD has an uncertainty
that is more than twice the uncertainty of ref. [60] using HISQ-HISQ. Therefore, it is interesting to
investigate the differences between the 2012 and the 2015 HPQCD determinations of fBc

.

Both articles use HISQ formulation for the discretization of the charm quark of the B+
c meson

onto the lattice for LQCD. The articles however differ in their approach to tackle the bottom quark
discretization onto the lattice. The 2012 HPQCD article, ref. [60], tackles discretizing the heavy bottom
quark onto the lattice by the HISQ formulation, see section 4.1, while the 2015 HPQCD article, ref. [59]
tackles discretizing the heavy bottom quark onto the lattice by the NRQCD formulation, see section 4.2.

As said before, the 2012 HISQ-HISQ result has an uncertainty that is twice as small as the
2015 HISQ-NRQCD uncertainty. The HISQ-HISQ result has a lower uncertainty since it uses relativistic
formulation which enables the use of simple continuum-like operators that couple to the formed W
boson. The advantage of these operators is that they can be chosen to be absolutely normalized [49].
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Therefore, no new errors are introduced due to normalization. Furthermore, the error is reduced since
the calculation is performed over a wider range of values of the lattice spacing.

6.1 Choice between the HISQ and the NRQCD parameterization
There is no clear reason to prefer either the HISQ-NRQCD or the HISQ-HISQ formulation other than
the difference in uncertainty.
Something that should be taken into consideration is the lack of recent fBc

measurements. One recent
paper, ref. [61], has investigated the decay constant within the nonrelativistic quark model. This paper
produced the following result: fBc = 0.439±0.030±0.017 with the first uncertainty due to losing Lorentz
covariance and the second uncertainty due to varying the parameter sets. A problem of this result is
that it has an even higher uncertainty for the decay constant than the HPQCD results.
Another paper from 2019, ref. [45], has produced updated results for most D- and B-meson decay
constants using HISQ-HISQ discretization for LQCD. Ref. [45] was able to calculate the B-meson decay
quantities for the first time directly at the physical bottom quark mass. This could be done because of
the use of finer lattice spacings than ever before. This reduced the discretization errors to a level small
enough to enable the physical bottom quark mass simulation. This direct simulation of the physical
bottom quark mass eliminates an important source of uncertainty arising from the otherwise needed
extrapolation in the heavy-quark mass up to the bottom quark mass. Their results for B-meson decay
constants are about three times more precise than the previous best LQCD calculations performed by
HPQCD [60,62]. [45] With this in mind, the 2012 HISQ-HISQ result from ref. [60] is chosen as the current
best result as it is anticipated that the HISQ-HISQ formulation is the way to go forward to obtain the
most accurate fBc value.

6.2 Numerical overview fBc

fBc Value Error Unit Discretization Reference
Amhis et al. 0.427× 10−3 0.006× 10−3 GeV HISQ-HISQ [60]
Fleischer et al. 0.434× 10−3 0.015× 10−3 GeV HISQ-NRQCD [59]
Updated 0.427× 10−3 0.006× 10−3 GeV HISQ-HISQ [60]
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7 The Vcb parameter
The prediction of the SM decay fraction B+

c → τ+ντ by ref. [6], prediction (6), uses the following
exclusive value for Vcb:

|Vcb| = (39.09± 0.68)× 10−3 (16)

The prediction of the SM decay fraction B+
c → τ+ντ by ref. [7], prediction (7), uses the following

exclusive value for Vcb:
|Vcb| = (39.58± 1.17)× 10−3 (17)

An overview of these exclusive Vcb values: (16),(17) and the inclusive value (8): (41.62+0.26
−0.80)×

10−3, introduced in section 5, can be made using figure 14.

Figure 14: An overview of the ”Inclusive” Vcb value (8) [7], ”Exclusive HFLAV” Vcb value (17) [7] and
”Exclusive FLAG” Vcb value (16) [6] and their respective errors.

In figure 14, it can be observed that the exclusive values are consistent with each other, but
are both discrepant with the inclusive value. Since the exclusive and inclusive values do not agree with
each other, it is interesting to look at the difference between exclusive and inclusive determinations.
Furthermore, there is a clear difference in the size of the uncertainty of the exclusive Vcb values, which
is another interesting subject for further investigation. Therefore, both determinations will be discussed
more elaborately.

Exclusive determinations make use of semileptonic B decays with a specific hadron in the final
state. Examples of these exclusive decay modes are to a D or D∗ meson, namely B → D`ν` and
B → D∗`ν`. In order to look at such a specific decay and use it for determining Vcb, the full hadronic
state has to be reconstructed. One also has to take the form factor into account. These form factors
need to be calculated non-perturbatively, for which input from lattice QCD calculations is necessary.
An inclusive semileptonic B decay can be described by B → Xc`ν` in which Xc is the final hadronic
state including a charm quark. This means that the inclusive determination uses all B decays involving
a b → c`ν` transition. Therefore, to use an inclusive determination, a theoretical analysis summing all
possible hadronic states is needed. This thus means that one sums over all possible final states of the
decay, so it is a sum over all possible exclusive decay modes followed by their respective phase space
integral (the phase space represents all possible states of a system). Summing over all decay modes simply
means that they can be ignored, which is an advantage as this eliminates some hadronic uncertainties.
For calculating inclusive semileptonic decays, operator product expansion (OPE) makes sure that the
non-perturbative effects are suppressed by powers of the quark mass and are parameterized by inclusive
quantities that can be extracted from experimental data [63]. This OPE works well for heavy quarks,
such as the bottom quark, since the non-perturbative effects are suppressed by powers of the heavy quark
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mass. This specific form of OPE is called heavy quark expansion (HQE), which is distinct from HQET1.
For inclusively determining the Vcb, the non-perturbative effects are parameterized using parameters that
can be measured using observables of B → Xc`ν` decays, such as the moments of lepton energy and the
hadronic invariant mass distributions in semileptonic B decays [55, 63]. The total decay width, which is
an inclusive quantity, can be well approximated by HQE as a double-expansion in the strong coupling
constant αs and inverse powers of the heavy-quark mass [64].
To find Vcb from inclusive determinations, a global fit is performed. This global fit is a simultaneous fit
to the HQE parameters, the quark masses and the absolute values of CKM matrix elements [39,65,66]

7.1 Exclusive determination
Exclusive determinations have not only been in conflict with inclusive determinations, but also with
themselves. This internal conflict comes from alternative calculations of the hadronic form factors. These
alternative calculations arise from different parameterizations, the BGL and the CLN parameterization.
Some articles, refs. [23, 26], have shown that these parameterizations lead to different results for the
exclusive determination of Vcb.

The first prediction of the SM decay fraction B+
c → τ+ντ , prediction (6) by ref. [6], uses the

following exclusive value for Vcb:
|Vcb| = (39.09± 0.68)× 10−3 (18)

This value was determined by the FLAG 2019 review group [67] using the Boyd, Grinstein, and Lebed
(BGL) parametrization for an exclusive determination of the B → D(∗)`ν` decay mode.

The second prediction of the SM decay fraction B+
c → τ+ντ , prediction (7) by ref. [7], uses the

following exclusive value for Vcb:
|Vcb| = (39.58± 1.17)× 10−3 (19)

This value was determined by HFLAV 2018 review group [55], using the Caprini, Lellouch and
Neubert (CLN) parametrization for an exclusive determination of the B̄ → D`−ν̄` decay mode. This
value is in agreement with the value obtained from another hadronic decay mode B̄ → D∗`−ν̄`.
The error is given as one error (added in quadrature) in (19), but can also be separated into an experi-
mental and a theoretical error, as can be observed in (20).

|Vcb| = (39.58± 0.94exp ± 0.37th)× 10−3 (20)

This separation into an experimental and theoretical error provides some more insight into the origin
of the error of the Vcb value. The first uncertainty covers for statistical and systematic uncertainties
coming from experimental measurements. The second uncertainty covers the theoretical uncertainty
coming from LQCD calculations and electroweak corrections. The electroweak corrections come from
the radiative corrections of the HQET calculations.

7.1.1 Form factors from LQCD

Next to this difference in used parameterization, the exclusive Vcb predictions also differ in the used form
factor normalization.
The form factor at zero-recoil that the FLAG 2019 review group [67] uses for their Vcb determination
from B̄ → D∗+`−ν̄` is dominated by lattice inputs from the Fermilab/MILC and HPQCD collaborations
which are both based on MILC FB→D∗

(1) result calculated for the B̄ → D∗+`−ν̄` channel in the lattice
unquenched Nf = 2 + 1 approximation [68].

F (1) = 0.906± 0.004stat ± 0.012syst (21)

where the first error is statistical and the second error is the sum in quadrature of all systematic errors.

The form factor at zero-recoil that the HFLAV 2018 review group [55] uses for their Vcb deter-
mination from B̄ → D+`−ν̄`, GB→D(1), is produced by the MILC collaboration [69].

G(1) = 1.0541± 0.004stat ± 0.008syst (22)
1Note that HQE is not the same as HQET introduced in the theory section. HQET is used for extrapolations of heavy

quark masses in lattice QCD calculations of exclusive determinations, whilst HQE is used for expressing inclusive quantities
as a double expansion using the high mass of heavy quarks.
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Ref. [69] has been able to reduce the uncertainty of the zero-recoil form factor due to the use
of a much larger data set with several lattice spacing and lighter pions. For this result, ref. [69] has also
included the heavy quark discretization error to the systematic error estimate, which makes the result
more accurate.

7.1.2 Parameterizations

FLAG uses the BGL parameterization while HFLAV uses the CLN parameterization for their Vcb deter-
minations. Both the BGL and the CLN parameterization are based on the same unitarity constraints
but differ in that CLN employs HQET relations to reduce the number of parameters. [70] This means
that CLN only needs four independent fit parameters, ηEWF (1)|Vcb|, ρ2 and the form factor ratios R1

and R2, to describe the system, while BGL needs more parameters for the fit. [23, 26]
By using a fit of these form factor parameters, the results from the decay can be extrapolated to the
zero-recoil point, where the normalization form factor, F (1) or G(1), from LQCD and the ηEW can be
used to calculate the value of Vcb from ηEWF (1)|Vcb| [21]. [55, 71]

7.1.3 Updated exclusive Vcb

It seems that the BGL and the CLN parameterizations used to determine the exclusive Vcb value are
compatible with each other, as could be observed in figure 14. There is however a clear difference in
uncertainty and still no full consensus about the use of parameterization.
In this thesis, the HFLAV average from 2021 [72] using the CLN parameterization is chosen as the
updated exclusive Vcb value, since this HLFAV average is obtained from a combined fit of exclusive Vub
and Vcb measurements. This allows for inputs from |Vub|/|Vcb| measurements from LHCb, which provide
extra input compared to only Vcb inputs. This combined fit can be observed in figure 15.

Figure 15: Combined exclusive |Vub| and |Vcb| determination, 2021 HFLAV. For comparison, the inclu-
sively determined Vcb value from the global fit, 42.19 ± 0.78, is also indicated with its respective error
bars at the top right of the figure. [73]

The result of this combined fit for |Vcb| is found to be the value (23), which is used as the
updated exclusively determined Vcb value.

|Vcb| = (39.10± 0.50)× 10−3 (23)
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7.1.4 Numerical overview exclusive Vcb

Exclusive Vcb Value Error Parameterization Reference
Amhis et al. 39.09× 10−3 0.68× 10−3 BGL FLAG [67]
Fleischer et al. 39.58× 10−3 1.17× 10−3 CLN HFLAV [55]
Updated 39.10× 10−3 0.50× 10−3 CLN HFLAV [72]

7.2 Inclusive determination
The disadvantage of exclusive determination is that the final hadronic state has to be taken into account,
which brings extra uncertainty. Therefore, it is also important to look at the inclusive determination of
|Vcb|.
Ref. [7] computes the branching fraction of B+

c → τ+ντ using an inclusively determined value, value
(8), from the CKMfitter group as of summer 2019 [74]. This group has determined the Vcb value from a
global fit. For inclusive determinations, this fit is performed using input from only inclusive quantities.

7.2.1 Updated inclusive Vcb

A recent paper, ref. [75], has determined an updated value, (24), for the inclusively reconstructed Vcb. In
(25), the errors are separated into theoretical uncertainty, experimental uncertainty and the error due to
uncertainty in the total semileptonic decay width. This paper has been able to reduce the uncertainty,
because of a better control of higher order effects and improved determinations of the heavy quark
masses [75].

|Vcb| = (42.16± 0.51)× 10−3 (24)

|Vcb| = (42.16± 0.30th ± 0.32exp ± 0.25Γ)× 10−3 (25)

The dominant uncertainty that remains for this inclusive Vcb value, (25), comes from the experimental
uncertainty, which comes from the error associated with the determination of the moments of the lepton
energy and of the semileptonic branching fraction.

7.2.2 Numerical overview inclusive Vcb

Inclusive Vcb Value Error Reference
Fleischer et al. 41.62× 10−3 0.80× 10−3 [74]
Updated 42.16× 10−3 0.51× 10−3 [75]

7.3 Prospects for future Vcb results
In the future, better results for both exclusive and inclusive reconstructions of Vcb are expected from
Belle 2. For exclusive analyses, Belle 2 will be able to help in better understanding the form factors
of B → D∗`ν` decays and reduce the relevant systematic uncertainties. For inclusive analyses, Belle 2
will try to improve the experimental determinations of the moments of lepton energy (kinetic moments)
and semileptonic branching fraction of the B → Xc`ν` decays [76]. This will reduce the experimental
uncertainty of (25) and therefore give a more accurate inclusively determined Vcb. It is furthermore
possible to use other observables of B → Xc`ν` decays to measure the non-perturbative parameters
used for HQE. Furthermore, from the theory side, the uncertainty of Vcb can be further reduced by
investigating even more higher order effects [75].
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8 Updated Standard Model prediction
8.1 Updated fBc and Vcb

For my update of the branching fraction, I have chosen the fBc value fBc = (0.427 ± 0.006) × 10−3

GeV, which is the value from the HPQCD 2012 article [60] using the HISQ-HISQ formulation. This
value is chosen as the updated value in anticipation of new, more accurate, fBc

calculations using the
HISQ-HISQ formulation in the future.

For the Vcb value, I have chosen to divide the update into an exclusive and an inclusive update,
since these determinations continue to give conflicting results and there are no clear reasons to prefer
one over the other.
The Vcb exclusively determined value was chosen to be updated to |Vcb|excl. = (39.10±0.50)×10−3, which
is the HFLAV 2021 average [72]. This value is chosen as the updated value since this value was obtained
from a combined fit including |Vub|/|Vcb| measurements, which provide extra input to the average.
The inclusively determined value was chosen to be updated to |Vcb|incl. = (42.16± 0.51)× 10−3, which is
a value computed by [75]. This value is chosen as the updated value since this value was produced with
a better control of higher order effects and improved determinations of the heavy quark mass.

8.2 Updated error analysis
The uncertainties accompanying the updated parameters can be visualized in the same figures as the
analyzed starting parameters. The updated error analysis of the relative errors per parameter can be
observed in figure 16.

Figure 16: Relative errors of the parameters of the updated branching fraction prediction, compared
with the relative errors of parameters of the investigated branching fraction predictions.

From this figure, it can be observed that the uncertainties of the Vcb exclusive and inclusive
values and of the fBc

values were all reduced. The error percentages of the Vcb and fBc
are now

approximately on the same level as the error percentage of the τBc
, around 1.5%. So, none of the

parameters have a disproportionate uncertainty percentage. This means that work has to be performed
on all three parameters, fBc , Vcb and τBc , to further reduce the error of the branching fraction to make
the SM prediction as accurate as possible.
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The parameter errors can furthermore be represented as pie plots for the exclusive and inclusive
updated predictions in 17, which visualize the error contribution of each parameter to total the branching
fraction error.

Figure 17: The error contribution of each parameter is expressed as a percentage of the total branching
fraction error for the updated exclusive and inclusive predictions.

In the pie plots of 17, there is again confirmation of the parameter errors having a more equal
representation in the total branching fraction error. There is however still a clear over-representation of
the fBc and Vcb errors in the branching fraction error due to their quadratic representation in formula
(3).

8.3 Updated branching fraction
After combining all the found updated values into the formula for the branching fraction, the following
numerical values for the exclusively and inclusively determined branching fraction B+

c → τ+ντ are
obtained:

B(B+
c → τ+ντ )

SM
excl. = (1.96± 0.09)× 10−2 (26)

B(B+
c → τ+ντ )

SM
incl. = (2.28± 0.10)× 10−2 (27)

The uncertainty of the updated exclusive prediction is equivalent with the uncertainty of the
state-of-the-art exclusive prediction. The uncertainty of the inclusive prediction is about twice as low as
the prediction that was used as a reference.
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9 Conclusion
In this thesis, I discussed the state-of-the-art SM predictions for the branching fraction of the decay
B+

c → τ+ντ and updated the numerical predictions with the latest inputs for fBc
and Vcb, which were

found to be the parameters with the biggest contribution to the uncertainty of the branching fraction.

For fBc
, the meson decay constant, the method of discretizing the heavy bottom quark onto

the QCD lattice for calculations turned out to be an important factor. Two different methods, namely
HISQ and NRQCD, are being used in the field. The HISQ formulation was chosen as the method that
should provide the updated fBc value in anticipation of new, more accurate, fBc computations using
this formulation. I anticipate this based on recently published updated results for most other D- and
B-meson decay constants.

For the Vcb parameter, the main focus of the investigation was on the difference between exclu-
sive and inclusive determinations and the different methods, involving different parameterizations, for
obtaining exclusive Vcb determinations.
From the investigation of exclusive and inclusive determinations of Vcb, no clear reason was found to
prefer one determination over the other. The Vcb value is therefore updated separately for exclusive and
inclusive determinations.
The different parameterizations possible for exclusive determinations, the BGL and CLN parameteriza-
tion, are thought to be compatible with each other. There is however no full consensus about the use
of parameterization. Therefore, the updated exclusive Vcb value was not chosen based on the use of a
specific parameterization, but based on obtaining the Vcb value from a combined fit of Vcb and Vub data.
This combined fit allows for extra |Vub|/|Vcb| input to obtain the exclusive Vcb result.
The updated inclusive Vcb value was chosen based on a reduction in uncertainty.

The updated exclusively determined prediction for the branching fraction B+
c → τ+ντ is found

to be (1.96±0.09)× 10−2. The uncertainty of this exclusive prediction is equivalent with the uncertainty of
the state-of-the-art exclusive prediction. The updated inclusively determined prediction for the branching
fraction B+

c → τ+ντ is found to be (2.28 ± 0.10) × 10−2. The uncertainty of the inclusive prediction is
about twice as low as the prediction that was used as a reference.
Therefore, the updated predictions should provide an improved prediction of the numerical value of the
branching fraction for the decay B+

c → τ+ντ , that can be used as reference for future comparison to the
experimental measurement of this branching fraction.
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