
Combining Model-Based and Model-Free
approaches in achieving sample efficiency

in Reinforcement Learning

Anjali Nair

November 18, 2022

University of Groningen

Combining Model-Based and Model-Free approaches in achieving sample
efficiency in Reinforcement Learning

Master’s Thesis

To fulfill the requirements for the degree of
Master of Science in Artificial Intelligence

at University of Groningen under the supervision of
Prof. dr. Raffaella Carloni (Artificial Intelligence, University of Groningen)

and
Dr. Matthia Sabatelli (Artificial Intelligence, University of Groningen)

Anjali Nair (s4234790)

November 18, 2022

3

Contents
Page

Acknowledgements 5

Abstract 6

1 Introduction 7
1.1 Research Questions . 8
1.2 Thesis Outline . 8

2 Theoretical Framework 10
2.1 Reinforcement Learning . 10

2.1.1 Model-free Reinforcement Learning . 12
2.1.2 Model-based Reinforcement Learning . 14
2.1.3 Model Predictive Controller . 15
2.1.4 Proximal Policy Optimization . 15
2.1.5 Environment . 17

3 Background Literature 20
3.0.1 Literature Survey . 20

4 Material 24
4.1 Data collection . 24
4.2 Data pre-processing . 24

5 Methods 25
5.1 Architecture . 25
5.2 Model-Based training . 27
5.3 Planning with MPC and PPO . 28
5.4 Task Description . 28

5.4.1 Experiment 1 - Deciding on planning horizon length 29
5.4.2 Experiment 2 - Comparing planning with MPC to planning with MPC and PPO 29
5.4.3 Experiment 3 - Robustness to rewards . 29
5.4.4 Experiment 4 - Applicability to other model-free algorithms 30

6 Experimental Setup 31
6.1 Tools and Technologies . 31
6.2 Performance Criteria . 31

6.2.1 Cumulative Rewards . 31
6.2.2 Mean Square Error . 31
6.2.3 Gait analysis . 32

6.3 Hyper-parameters . 32
6.3.1 Feed forward neural network hyper-parameters 32
6.3.2 Model-free Hyper-parameters . 33
6.3.3 Model-based Hyper-parameters . 34

4 CONTENTS

7 Results and Discussion 36
7.1 Results . 36

7.1.1 Experiment 1 . 36
7.1.2 Experiment 2 . 37
7.1.3 Experiment 3 . 39
7.1.4 Experiment 4 . 42

7.2 Discussion . 42
7.2.1 Experiment 1 . 42
7.2.2 Experiment 2 . 44
7.2.3 Experiment 3 . 45
7.2.4 Experiment 4 . 47

8 Conclusion 49
8.1 Limitations and Future Work . 50

Bibliography 51

5

Acknowledgments
I would like to thank Prof. Dr. Raffaella Carloni and Dr Sabatelli for their support and expert insights
during the course of this project. Their supervision provided direction and clarity in understanding
the intricacies and challenges of the problem.

I would also like to thank my friends and family for the constant moral support through this journey.

6

Abstract
Reinforcement Learning is broadly classified into model-free (MF) and model-based (MB) approaches.
While MF approaches have repeatedly proved successful in solving a variety of robotic applications,
the training is often accompanied with the need of large number of learning samples [1]. In absence
of a simulation, sampling from the real environment can be expensive and lead to hardware wear and
tear. Model-based (MB) reinforcement learning approaches on the other hand, plan trajectories in a
learned model and execute only a subset of the transitions in the real environment. However, the re-
liance on the learned model and inherent modelling errors cause model-based approaches to struggle
in achieving performance comparable to MF.

In an attempt to get the best of both worlds, we propose to combine the two approaches, MB and MF,
with a novel architecture. The MB counterpart of the architecture involves learning an approximate
model of the real environment and planning trajectories by means of a modified Model Predictive
Controller (MPC). Here, planning refers to rolling out trajectories in the learned environment without
the agent making these trajectories in the real environment. While a traditional MPC plans trajectories
by random action selection at every timestep, we propose to have an in-loop policy, trained through a
MF approach in directing the actions. The samples collected through this planning are used to further
train the policy for the agent. The policy attained through this approach is then fed as the initial policy
to warm start pure MF training. The MF training here serves the purpose of fine-tuning our policy to
combat incorrect planning due to model-errors in the learned environment.

While MB and MF approaches have been combined in the past, the main contribution of the proposed
architecture is in combining a traditional planner such as MPC and an MF policy, specifically in the
planning stage. A fully connected feed-forward neural network is used in learning the environment.
We choose Proximal Policy Optimisation (PPO) as the model-free algorithm, simply due to its rele-
vance and popularity in robotics.

In evaluating our architecture, we test it on the Half-Cheetah Mujoco environment, where the task is to
make the half-cheetah run forward. As in reinforcement learning, comparisons are made based on the
rewards attained in each case. We compare the performance of planning with MPC and a MF policy
as opposed to planning with only MPC. To test the superiority of the hybrid MB and MF architecture
(MBMF) to its pure MF counterpart (PPO), we compare the rewards obtained in each case. Further,
we test the sensitivity of our architecture to different rewards. We also modify our architecture to
replace PPO, an on-policy algorithm, with Soft Actor-Critic (SAC), in testing the applicability to an
off-policy algorithm. Off-policy algorithms are model-free approaches where trajectories following
old policies are also used in updating the current policy.

We find that planning with MPC and PPO together achieves higher scores than planning with MPC
alone in all scenarios tested (different rewards and MF algorithms). We also find, when trained with
the default reward, our architecture achieves scores that PPO does in 1e6 timesteps, but with 5e5
fewer timesteps. However, our architecture proves to be sensitive to the rewards. Further, since scores
do not justify the quality of the defined rewards, we analyse the gaits achieved for each reward based
on the torques applied at each joint and the stability of the centre of mass of the half cheetah. We also
note that our architecture works just as well with SAC as it does with PPO, showing its applicability
to on-policy and off-policy MF algorithms.

Chapter 1 INTRODUCTION 7

1 Introduction

Up until the 90’s, robotics and Artificial Intelligence (AI) had a clear distinction. While robotics
was concerned with machine automation, AI focused on building intelligent systems [2]. Since then,
however, the two fields have frequently crossed paths and today, application of AI in robotics is a
highly researched field. In particular, the sub-field of reinforcement learning (RL) in AI proves to be
a good fit in solving complex locomotion tasks [3][4]. RL algorithms have shown success in bipedal
[5], multi-legged [6] and humanoid [7] locomotion tasks. In spite of the suitability of these methods,
there are evident drawbacks too. Among the various downsides of reinforcement learning [8], such
as the exploration problem, training stability and low sample efficiency, in this research, we focus on
dealing with the latter.

While deep reinforcement learning (DRL) has the ability to learn highly complex tasks, this comes at
the expense of the robot, more generally referred to as the agent, taking a great deal of wrong actions
until it learns the good ones. Sample complexity in DRL refers to the number of samples from the
real environment required to train a policy in successfully learning a behaviour. A method that re-
quires a large number of real-world samples to learn is said to be sample inefficient while that which
uses fewer real world samples is considered a sample efficient method. When training in the real
world, collecting large number of samples requires the robot or the agent to be operated for long pe-
riods while it performs various actions. Long periods of operation maybe associated with high power
consumption costs. Moreover, the actions taken by the robot or agent during training may lead it to
unsafe regions, requiring manual intervention or resulting in hardware wear and tear. This makes the
application of many DRL methods in the real-world a subject of concern. In presence of a simulation
of the real environment, these drawbacks can be mitigated to certain extent, but the development of
the simulation itself becomes a new challenge. Moreover, simulations very rarely capture the com-
plexity of the real world and a robotic controller developed in a simulation may very well fail in the
real world. This is referred to as the sim-to-real gap and is a subject of much research today [9][10].
In this research, we take inspiration from DRL methods that first learn the environment through ma-
chine learning approaches and use this learned environment as a substitute to sample from. Samples
drawn from a substitute environment rather than the real environment do not count towards sample
complexity, as these samples do not pose the risks and drawbacks discussed for sampling from real
world.

Model-free reinforcement learning (MF) methods such as PPO [11] and TRPO [12] are the popular
choice of architecture in solving locomotion tasks with continuous action space. Considering the
complexity and the potentially large search space, such MF algorithms allow a simple implementa-
tion while guaranteeing convergence to a policy. However, these models face the disadvantage of
very poor sample efficiency owing to the need of drawing large number of samples from the real en-
vironment. This makes MF methods unsuitable in many real world robotic applications. On the other
hand, model-based (MB) methods attain sample efficiency by planning on a learned environment and
taking only the relatively better or safer actions in the real environment. Thus, with MB methods,
the risk of MF methods leading to robot damage and high energy consumption can be circumvented.
The success of MB approaches relies heavily on the quality of the learned model and the planning
strategy used. Pure MB approaches, due to these bottlenecks, often fall short of the performance MF
approaches could easily provide with similar tasks.

Inspired by the implementations combining MF and MB approaches [13][14][15], we propose a new

8 Chapter 1 INTRODUCTION

hybrid MB and MF architecture to alleviate the problem of low sample efficiency in learning an opti-
mum policy using solely an MF approach, while still maintaining a performance equivalent to these
MF methods. Considering the limited development in MB approaches when compared to its MF
counterpart [16], we also hope to provide support and reasoning to further boost research in this di-
rection. Our method is tested on the Half-Cheetah, part of Mujoco [17] environments.

1.1 Research Questions
The challenge of sample complexity is concerned with requiring a large number of transitions to be
collected from the real environment. This poses a problem as with MF approaches, these transitions
are initially made on a trial and error basis. The problem of sample complexity, thus proves to be a
major hindrance in the application of DRL to robotics. Our approach proposes to achieve sample ef-
ficiency by planning transitions on a learned environment before taking them in the real environment.

To achieve sample efficiency while still attaining a promising performance, we propose to combine
MB and MF approaches of RL. The novelty of this work is in the proposed architecture where we use
a PPO policy in combination with a traditional planner (Model predictive Controller (MPC) [18]) to
plan over the learned environment. To evaluate the architecture, we compare it against using a vanilla
PPO approach and a simplification of the architecture where only a planner is used in the planning
stage. The architecture is tested on Half-Cheetah [19], part of the Mujoco environments. We further
compare the architecture when switching PPO with Soft actor-critic (SAC), an off-policy model-free
approach and analyse the results. We also experiment with reward functions for the Half-Cheetah
environment and analyse the obtained gait. The experimentation with different rewards helps in test-
ing our architecture’s robustness or drawbacks. To summarize, this thesis focuses on the following
problems:

Q1. Can our proposed MBMF architecture solve the RL task with fewer training data (higher
sample efficiency) than its model-free counterpart?

Q2. Does planning with an in-loop trained policy directing the actions for MPC give superior
performance (higher rewards) to planning with a naive MPC?

Q3. How robust is our architecture in handling various rewards and how do these rewards
compare against each other?

Q4. Does the proposed architecture solve the RL task with fewer training data even when
replacing PPO with an off-policy MF algorithm?

1.2 Thesis Outline
This paper is divided into various sections. In chapter 2, we provide an introduction to reinforcement
learning, explaining the common terminologies and approaches followed. We also provide details
regarding the specific algorithms and components involved in our architecture, including the environ-
ment.

Chapter 3 gives a brief summary on the work conducted with MB and MF approaches in the past. We
discuss how specific methods combine MB and MF approaches, how this differs from our approach

Chapter 1 INTRODUCTION 9

and the inspirations we draw from.

Chapter 4 gives details on the process of data collection for our MB approach and discusses how and
why we pre-process this data. Once we have set the baselines for the problem at hand, with chapter
5, we discuss the architecture proposed and how the various components of our architecture ties up
together. We further discuss the various experiments conducted in evaluating the architecture. This
section is followed up by chapter 6, giving details about the tools used in developing the project and
the set hyper-parameter values. We also discuss the evaluation criteria used for the various experi-
ments.

Finally, in chapter 7 we document all obtained results and interpret them.

10 Chapter 2 THEORETICAL FRAMEWORK

2 Theoretical Framework
In this section, we give an introduction to reinforcement learning and the various terminologies ac-
companying it. All prior knowledge required to understand our methodology is covered in this section.

2.1 Reinforcement Learning
Reinforcement learning is an approach to learning from mistakes. In the world of AI and Machine
Learning (ML), RL can be defined as the process of an agent learning a behaviour based on its interac-
tion with the environment. Formally, an RL problem is defined as a Markov Decision Process (MDP).
MDP is a decision process where the decision at timestep t + 1 is only dependent on the decision at
timestep t and independent of the past. To further delve into RL and its formulation as an MDP, one
must be exposed to the basic elements of RL [20]. The basic structure of an RL problem is as shown
in figure 1, where,

• Agent is the learner or the decision making entity. When solving an RL problem, it is the
agent whose behaviour we wish to optimise.

• Everything outside the agent, i.e the world in which the agent behaves is referred to as
the environment. The agent interacts with the environment at every timestep t, by taking
an action at that transitions the agent from its current state, st to the next state st+1.

• Transition function defines the probability of the agent transitioning from one state to
another when taking a particular action and is defined as:

T (st+1|st ,at) = p(ss+1|st ,at) (1)

The transition function is in essence the dynamics of the environment.

• Reward is a signal that informs the agent if a particular action taken from a state is
favourable, given the current task to be performed. The reward is predefined and is part
of the environment. This entails that the reward cannot be changed by the agent. The
agent therefore must change its behaviour to collect better rewards. The reward received
at timestep t is denoted as rt . Just as the transitions are probabilistic, the rewards too are
sampled from a probabilistic function defined as:

R(rt |st ,at) = p(rt |st ,at) (2)

In short, when the transition function T and reward function R of an MDP are known,
the probability of a state and reward pair (st+1,rt), given a state and action pair (st ,at) is
written as p(st+1,rt |t ,at). This formulation completely defines the environment.

• Policy defines the behaviour of the agent in the environment. It maps a state in the
environment to an action the agent takes when in that state. It is denoted as πθ, where θ

Chapter 2 THEORETICAL FRAMEWORK 11

is the policy parameter. In a general case, a policy is probabilistic in nature, i.e a policy
maps a state to a probabilistic distribution of actions to be taken from that state. It is
defined as:

πθ = p(at |st) (3)

Therefore, if an agent following policy πθ, is in state st , the probability that the agent will
take action at would be πθ(at |st). The policy is essentially the controller that we desire
to learn.

• A series of transitions defined by (st ,at ,rt ,st+1) is called a trajectory, denoted by τ.

Figure 1: Reinforcement Learning Structure

The sum of rewards collected over a trajectory is called the return. As the trajectory length increases
so would the return. For a trajectory of infinite length, this definition of return would lead to an
infinite sum. Thus, the rewards gained at every timestep are weighted such that, immediate rewards
are prioritized over those in the future. The weights are defined by the discount factor, γ. With this
consideration, the discounted return in RL is defined as:

Gt = rt+1 + γrt+2 + γ
2rt+3 + ...=

∞

∑
k=0

rt+k+1,

where 0 ≤ γ ≤ 1
(4)

Thus, the goal of an RL problem is to maximize this discounted return rather than the cumulative
return. While the reward gives immediate feedback, the next element of RL, value function Vπ(s)
gives an estimate of how good it is for the agent to be in state s. Value function maybe defined with
respect to the state (state-value function) or a state-action pair (action-value function).

State-value function, written as vπ(st), gives the expected return of being in state st , given that the
agent follows a policy π. In other words, while reward tells the agent if taking an action at is good at

12 Chapter 2 THEORETICAL FRAMEWORK

time step t, the state-value function gives an estimate of how advantageous it is for the agent to be in
state st , given that it follows a policy π in order to achieve the final goal. The state-value function is
mathematically defined as:

vπ(st) = Eπ[Gt |st] = Eπ[
∞

∑
k=0

γ
krt+k+1|st] (5)

where Eπ[.] denotes the expected value of a random variable where the agent follows policy π.

Action-value function gives an estimated value for a state action pair as opposed to the state-value
function, which gives an estimate for a state alone. The action-value function is defined as

qπ(st , at) = Eπ[Gt |st , at] = Eπ[
∞

∑
k=0

γ
krt+k+1|st , at] (6)

To find an optimal policy implies to find the path with highest returns from a state and is denoted
as π∗

θ
. An RL problem may have multiple optimal policies. However, all optimal policies share a

common value-function. This is the optimal value-function that yields highest value compared to all
other value-functions. The optimal value-function is defined as:

V ∗(st) = maxπ Vπ(st) (7)

While the state-value and action-value functions are described as expectations in equation 5 and 6,
they are recursive in nature. Thus, formulating the state-value function with the MDP components,
we get the central equation of RL -the Bellman Equation:

vπ(st) = ∑
at

π(at |st). ∑
st+1,rt

p(st+1,rt |st ,at)(rt + γvπ(st+1)), (8)

As seen, this central equation of reinforcement learning breaks down the value function defined in
equation 5 into two parts - the immediate reward and discounted value function or the expected re-
ward for the next state. The inner sum is further multiplied by the probability of transitioning between
the two states with the given reward. This probability terms encapsulates the transition and reward
functions. Finally, the product obtained so far is multiplied by the probability of taking an action from
the current state. This probability as stated previously is the policy π. Summing over all possible ac-
tions from a state, we get the value for the value-state function from state st .

Model is the final element of RL that may or may not be available. The model is a formulation
of the real environment, including the transition and reward functions. The model encapsulates the
behaviour of the real environment. Based on the availability of a model, RL approaches are broadly
classified into model-based and model-free learning [21].

2.1.1 Model-free Reinforcement Learning

Model-free (MF) RL approaches are followed in the absence of a model. This entails that the agent
has no information regarding the environment (transition probability and reward functions) and must
learn largely through trial and error. Thus, in MF methods, the agent must take an action in blind and
learn the quality of actions as they are experienced. With model-free approaches, the agent tries to
learn a policy that maximizes the returns over finite number of timesteps taken in the environment.

Chapter 2 THEORETICAL FRAMEWORK 13

Figure 2: Actor-Critic Architecture

The goal of MF learning is to optimise the value functions (state-value or action-value) or in other
words, to find the policy that maximizes the value functions for every state.

Some common MF approaches include Q-learning [22], policy-gradient [23] and actor-critic [24]. In
this thesis, we work with actor-critic category of MF algorithms. Structurally, actor-critic approach
is composed of two blocks as shown in figure 2 - the actor, which represents the policy and the
critic, which critiques the actions taken by the policy. In DRL, the two blocks are traditionally neural
networks. The policy takes the agent’s state as input and produces an action. The critic network
models the value function and critics the actions taken by the policy. Thus, the policy is run to collect
samples (st ,at) while the critic which models the value function for the current policy, gives the
value for the state st . Using these values, the policy is updated by gradient descent. Depending on
the formation of the policy gradient, actor-critic methods could be of various types. In this section,
we discuss the standard actor-critic approach - TD actor-critic as it forms the basis. TD stands for
temporal difference and is defined as:

δt = rt+1 + γV (st+1)−V (st), (9)

where V is the value function modeled by the critic and st+1 is the state agent arrives on taking action
at from state st . The TD error evaluates the quality of action at from state st . Intuitively, if δt is
positive, it signifies that the probability of selecting at from st , i.e p(st ,at) must be increased while a
negative δt indicates a reduction in p(st ,at). Formally, this change in probabilities is the updation of
the policy network. The policy network learns through the classical policy-gradient method [25]. The
gradient for the policy network is calculated as:

14 Chapter 2 THEORETICAL FRAMEWORK

∇J(θ)≈
T−1

∑
t=0

∇θlogπθ
(at ,st)δt (10)

Model-free approaches are named such, as the policy is constructed without having an insight into the
environment dynamics. This entails that during the initial stages of training, model-free approaches
require the agent to make blind trajectories in the environment. This also means, that these approaches
require the agent to take many trajectories in order to find an optimal policy, thus making them sample
inefficient.

2.1.2 Model-based Reinforcement Learning

Model-based (MB) methods are set of methods that use a model and planning in solving the RL prob-
lem. Unlike with MF methods, MB methods do not learn through plain trial-and-error. A model is
used to predict how the environment behaves on taking an action without the agent requiring to take
the action in the real environment. This behaviour defines the transition and the associated reward.
Therefore, given a state and action, the model produces the next state and reward. If the model is
stochastic, it will instead produce a distribution of states and rewards. Models that output a distri-
bution are called distribution models while those that produce a definite state and reward are called
sample models. The advantage of having such a model is to predict future experience and learn from
it without the agent actually experiencing it. To gather experiences, a planning algorithm is employed.

While the word planning is used with varying meanings in different fields, in the field of RL, planning
refers to using a model of the environment to learn a policy. An algorithm that performs planning is
called a planner. Typically, the planner uses a strategy to produce multiple trajectories. The planner
generates the actions to be taken from a state and the model predicts the transition state and reward on
taking the given state and action. A series of such transitions makeup a trajectory. These trajectories
are evaluated to quantitatively define their quality and these evaluations are then used to update the
policy accordingly. The quality of a trajectory is defined by the discounted sum of rewards of the
transitions or an expectation of this value. The strategy used to recommend the actions varies among
the planners used. The policy itself is not updated by the planner, which is only responsible for
generating the trajectories. This is called planning over state-space as the planning strategy explores
various states in the environment. In brief, the difference between planning and learning through an
MF approach is that the planner simulates experiences, while MF approaches require the agent to
encounter the experiences.

The model-based approaches focus on learning the transition dynamics and reward function of the
environment and planning over this learned model. A model is mathematically defined as:

fψ(st ,at) = p(rt ,st+1|st ,at), (11)

where ψ parameterise the weights of the model f. In most cases this model is an approximation of
the real world. In creating the model, real world transitions are collected, generally using a random
policy to form a dataset. This dataset is then used to train, in our case, a neural network such that,
given a state and action, the network produces the next state or a distribution of next states and the
reward or distribution of rewards associated with the transition. Thus, the neural network learns the
environment behaviour from labelled data collected from the environment. This is parallel to super-
vised learning.

Chapter 2 THEORETICAL FRAMEWORK 15

The model and planner together only simulate experiences. These experiences may then be used
to learn the policy through maintaining a tabular record of actions, a process of updating the value
functions as with MF approaches or through other means [26][27]. While at first glimpse, model-
free methods seem more straightforward and applicable, model-based approaches have been found
to have their benefits. The most obvious advantage of model-based methods is its sample efficiency.
Samples in this case are drawn from the real environment, only to construct the model. The controller
or policy, which requires a large number of samples for updating can be drawn from the learned
model. In robotic applications, if the controller must be trained directly on the real system, we risk
damages to the agent’s physical body or surroundings during action exploration and succumb to high
energy consumption. In such situations, compressesing the environment dynamics into a function and
allowing planning on this function, can alleviate the burdens of a real environment.

2.1.3 Model Predictive Controller

Model Predictive controller (MPC) [18] is a method of process control while keeping in accordance
with specified constraints. In the realm of model-based RL, MPC is one of the most popular planners
used [14][28][29]. The structure of a traditional MPC is as shown in figure 3. One of the major boons
of creating a model mimicking the real environment is the possibility to plan in future. This entails
that one can use a planner to imagine the future without the agent having to make a move in the real
environment. Under the assumption, that the learned model is a good approximation of the real world,
this planning would require the agent to take only the relatively good transitions and learn from those.
This future in MPC is planned with the goal to optimize returns at each timestep. From the start state,
MPC plans m action sequences, each of length h. The value of h is usually kept small unlike with
standard model-free techniques. Each of the planned trajectories are completely independent and the
actions chosen at every timestep is random. For each of the m action sequences, a value indicating
its worth for the task is calculated. For RL tasks, an action sequence is considered superior if it has a
high score or low penalty. However, MPC only cares about the first action of the best action sequence
from the current state, referred to as the elite action. Only this elite action is performed by the agent in
the real environment. Thus, the agent is able to take the most optimal action from m possible actions
without any backtrack or trial and error runs in the real environment. The state reached on performing
this action is the new start state for MPC in the next iteration. In this manner, MPC optimizes the
action taken at each timestep, by performing short model roll-outs.

MPC is only a controller scheme and various modifications of it are in use. The variation lies in
the strategy used to select the actions for the m action sequences. In the most simple case, a naive
random-shooting strategy is employed [30][31]. While random-shooting has shown applicability in
non-linear dynamics, with a large search space, its relevance decreases. We need schemes which
apply some constraint to the search space. Various works also use Cross-Entropy Method (CEM)
[32] to restrict the distribution from which the actions are sampled. In general, the effectiveness of
MPC can be highly sensitive to the choice of the action selection scheme.

2.1.4 Proximal Policy Optimization

As mentioned previously, MF approaches are widely used in the field of reinforcement learning. Its
utilisation has led to a consequential rise in research and improvements in this sector. Proximal Policy
Optimization (PPO) [11], a model-free actor-critic algorithm was released in 2017 by OpenAI [33].
PPO is an on-policy training algorithm. This entails that in contrast to maintaining a replay buffer

16 Chapter 2 THEORETICAL FRAMEWORK

Figure 3: Model Predictive Controller Architecture

[34] of transitions, PPO discards all collected transitions after every policy update iteration.

θ = θ−β∇J(θ) (12)

A general equation for policy gradient updates is as shown in equation 12, where β is the stepsize for
update, θ is the neural network parameter and J is the objective function. Actor-critic algorithms have
been plagues by the issue of finding an optimal stepsize. Too small a value can result in very long
training periods while a very large stepsize could lead the policy into regions of poor performance.
PPO was developed with the motivation to alleviate this problem while maintaining a first derivative
gradient optimisation.

In achieving stable updates, PPO maintains two policy networks - a current policy network and an old
policy network, parameterised by θ and θold respectively. It further defines a policy ratio r(θ) as:

r(θ) =
πθ(a|s)

πθold(a|s)
(13)

This fraction determines how much the new policy deviates from the old policy and is used in con-
trolling the degree of policy updation. Another important factor for PPO is the advantage function.
Just as the critic evaluates the policy’s action by calculating the TD error in TD actor-critic, with PPO
the evaluation is done through an advantage function A(st ,at). Thus, PPO is an advantage actor-critic
approach. The advantage function is defined as the difference between the action-value for a state-
action pair and the state-value for the state. Intuitively, The advantage function informs the policy
how much better it is to take action at from state st as compared to the average of all actions possible
from state st . However, our critic only model the state-value function and not the action-value. Thus,
PPO uses an estimate for the advantage function defined as:

Â(st ,at) = rt + γV (st+1)−V (st), (14)

Chapter 2 THEORETICAL FRAMEWORK 17

Finally, the objective function for the PPO policy network is defined as:

JCLIP(θ) = E[min(rt(θ)Âθold(st ,at), clip(rt(θ),1− ε,1+ ε)Â(st ,at))], (15)

where ε is a PPO hyper-parameter. The clip() function further adds to the stability of PPO by ensur-
ing that if the policy ratio falls beyond 1+ ε and 1− ε, it is clipped to within this range. We further
explain the purpose of the clip function through the figure 4. Plot 4a shows the scenario where the A,
the advantage is positive. This indicates that πθ > πθold and thus, would lead to r > 1 where r is the
reward. If πθ is much larger than πθold , the computed value for r maybe larger than 1+ ε, in which
case, the value of r is clipped to 1+ ε. Similarly, in plot 4b, A is negative, indicating that πθ > πθold

or r < 1. However, if πθ is much smaller than πθold , the computed value for r risks being smaller than
1−ε, in which case, the value of r is clipped to 1−ε. The range between 1+ε and 1−ε is called the
comfort zone.

(a) Clip function for A > 0 (b) Clip function for A < 0

Figure 4: Plots depicting the clip function [11]

While TRPO [12] also restricts the update step, the formulation of the cost function makes PPO much
more efficient and is hence popularly used with continuous control tasks. Although, PPO shows
great promise in even the most complex tasks, being an on-policy algorithm, demands a large number
of samples for training. However, with our architecture, we aim to combat this drawback without
compromising on its performance.

2.1.5 Environment

All experiments have been conducted on the Half-Cheetah-v3 environment, part of Mujoco. The
half-cheetah agent has 6 actuated joints, represented by the grey circles in figure 5. The numbers
label each end of the line segments that makeup the half-cheetah’s body. The length of each segment
is as shown in table 1. The observation space is 17 dimensional, including measures of joint positions
and velocities. The 6 dimensional action space describes the torques applied to each of the joints. All
observation space values have a lower and upper limit of −∞ to +∞. All angles and velocities are

18 Chapter 2 THEORETICAL FRAMEWORK

Figure 5: Half-Cheetah with labelled joints

measured in radiance and m/s respectively. The angle of rotations allowed for each joint is given in
table 2. Torques applied to the joints have limits of −1Nm to +1Nm.

The particular environment was chosen due to its relevance as one of the common evaluation envi-
ronments in the field of DRL. By default, solving the environment is achieved by finding the controls
that helps the cheetah run. The rewards are thus defined as:

rt =
(Xt −Xt−1)

dt
− ctr weight∗

6

∑
i=1

a2
i , (16)

where Xt is the position of the centre of mass of the agent at time t, along x axis, dt is the inverse
of timesteps per frame time and ai is the torque defined in the ith dimension of the action space. By
default, ctr weight which add a weight to the penalty term is 0.1. The penalty on torque applied
encourages an efficient gait in running forward.

Segment number Segment name Segment length
1-2 back foot 0.2

cos π

2

2-3 back shin 0.15
cos π

3

3-4 back thigh 0.25
cos π

6

4-5 torso 1
5-6 head 0.3
6-7 front thigh 0.25

cos π

6

7-8 front shin 0.15
cos π

3

8-9 front foot 0.2
cos π

2

Table 1: Segment name and lengths for Half-Cheetah-v3

Chapter 2 THEORETICAL FRAMEWORK 19

Joint number Lower bound Upper bound
2 −5

6π −1
6π

3 1
4π

3
4π

4 −5
6π −1

3π

5 1
18π

1
2π

7 0 8
9π

9 −2
3π

1
9π

Table 2: Limits on Half-Cheetah-v3 joint angles

20 Chapter 3 BACKGROUND LITERATURE

3 Background Literature

3.0.1 Literature Survey

Model-free reinforcement learning methods have proved to solve variety of tasks such as grasping
[35], locomotion [36], driving [37] and navigation [38]. Their success and ease in implementation are
contributing factors to their popularity in the field of RL. However, when learning in the real-world,
these algorithms that rely heavily on a trial and error method can prove to be highly inefficient and
even hazardous. For instance, in industrial robots, model-free approaches might force the agents to
take actions that cause harm to objects in its vicinity and lead to mechanical wear and tear. These
challenges along with sim-real problem limit the application of DRL in robotics. Model-based (MB)
approaches, on the other hand, can prove to be highly sample efficient [39]. However, the limitation in
MB approaches lies in two areas - non-linearity of the environment to be learned and an efficient plan-
ning mechanism. MB depends largely on the capacity of learning the real environment. Initially, the
model-based approaches used simple function approximators such as Gaussians or linear models, to
capture the dynamics of the environment. However, such simple models approximated the true envi-
ronment dynamics to a point that hampered their utility. PILCO [40] improved on these simple model
approximations by capturing the model uncertainty and including this uncertainty in planning over
longer horizons. Many recent works with model-based approaches have shown success in using deep
neural networks in capturing the model dynamics [41][42] with comparatively good accuracy and
applicability to higher-dimensional tasks. Stochastic environments are further modelled on adding
Bayesian approximations or probabilistic uncertainties [43] to deep neural networks. In spite of the
attempts, pure model-based methods struggle in modelling the complexities of the environment and a
policy learned through these methods demonstrate model-bias [22]. Our work also models the world
dynamics using a deep neural network but tackles the model-bias through a shorter planning horizon
and iterative retraining of the model to match the policy search space distribution.

Model based and model free DRL approaches have predominantly been treated separately. One of
the earliest implementations of combining model-free methods with model-based planning was intro-
duced by Sutton [44] with the Dyna architecture. This architecture suggested using random samples
from a learned model of the environment in updating a value function through MF learning. Inter-
mittently, this framework also draws samples from the real environment to update the learned model
and the value function simultaneously. Dyna-Q [45] is a version of the Dyna framework wherein,
the MF learning process follows the Q-learning approach. This framework was one of the first works
to use MF methods in learning an efficient policy while using fewer real world samples and bene-
fiting largely from MB samples. This was a huge milestone and was adapted by many future works
[46][47]. Most of these works focused on making the planning more focused, i.e, instead of randomly
sampling actions with the planner, the action were selected based on certain constraints. For example,
[47] introduced Dyna-Queue, where the samples collected by planning in the model were put into
a prioritized queue and only the samples with high rewards were used in updating the value func-
tion. Focused planning was able to elevate the sample efficiency attained by the original framework
and lead to faster convergence. In this work, although we use a completely different framework of
combining model-based and model-free learning, our main contribution also pivots around a more
focused planning over the learned model.

Over the years, much focus has been laid on planning over a learned model, when combining model-
based and model-free architectures. Planning has two main function - selecting actions to be executed

Chapter 3 BACKGROUND LITERATURE 21

in the model and evaluating the quality of trajectories collected by executing the chosen actions. A
planner such as MPC uses the standard random action selection procedure but compares multiple
trajectories from a given state and chooses the action that leads to the best trajectory. Thus, MPC
improves on evaluation of the trajectories rather than action selection. On the other hand, using Cross
Entropy Method (CEM) as a planner, entails that every action is sampled from some distribution that
is periodically updated to capture regions of best actions based on past samples. With CEM, the dis-
tribution is generally modelled as a gaussian. Thus, CEM attempts to optimise the action selection
rather than trajectory evaluation. A prominent work in this field [32], compares naive planning with
CEM and MPC planners and demonstrates the performance on OpenAI’s cartpole task. The base
architecture of this work builds a model from samples drawn from the real-world and then plans over
this model, to generate samples that are used to learn a policy. It was found that their architecture gave
highest sample efficiency with CEM planner being used to select actions. However, as mentioned,
CEM models a gaussian distribution which has limited expressiveness. As tasks get complex, it may
not be practical to represent the region of good actions by a simple gaussian. In this work, we use a
policy learned through actor-critic RL to represent the best actions. Moreover, different states map to
different regions of best actions. With a CEM, it’s impractical to have a different gaussian distribution
for every state in high dimensional tasks. In our case, since the policy used in suggesting actions is
a neural network, it’s more adaptable to high-dimensional tasks. The policy in [32] is learned by a
neural network that is trained through gradient optimization, while using the the model-based samples.

Other works such as [14], instead of using a distribution to model region of best actions, they formu-
late a Bayesian regret bound that indicates regions of the learned model that have uncertainty. This
information allows planning with caution and avoiding model-bias. Similarly, the work by [48] also
employs the idea of capturing model uncertainty, but through a probabilistic ensemble of models as
opposed to mathematically formulated bounds. This uncertainty is not quantitatively added to the
planning, and presents itself as a form of randomness in the transition function. [48] also employs an
MPC planner with CEM providing the constraints on the regions of best actions.

In the previous discussed works, although model-based samples are used in updating a value function
through model-free methods, the policy is never used to collect better samples during the planning
stage. In truly integrating the policy learning and planning stages, [49] proposes a method where a
CEM planner and a policy network update each other. Their work, as in [32] also uses CEM in plan-
ning trajectories over the learned model and intermittently updates the learned model with real world
samples. The candidate gaussian distributions of a CEM planner is used in sampling actions with the
model used to predict the transitions and reward for each transition and thus, collecting trajectories
with their associated cumulative reward. A neural network is trained to learn a policy that maximises
the cumulative returns from a state through stochastic gradient descent (SGD). This updated neural
network or policy is used to plan trajectories from the next timestep. Thus, in this iteration, instead of
the of CEM planning the trajectories, the trajectories are planned by the policy and the CEM gaussian
distributions are updated to match the distribution of actions from these policy sampled trajectories.
This methodology was evaluated on the Half-cheetah and Pendulum environments of OpenAI. It was
found that the proposed architecture performed was able to converge to an optimum policy in 250
iterations lesser than it took using a simple CEM planner on the Pendulum environment. However,
on the half-cheetah environment, this architecture performed on par to using CEM. Our work takes
inspiration from this idea of learning a policy and using this learned policy in sampling better actions
during model-based planning. However, instead of using a neural network trained through SGD, we
use an actor-critic approach to model-free learning.

22 Chapter 3 BACKGROUND LITERATURE

Instead of using policy in selecting the action for focused planning, [50] used a policy in attempting
to reduce the computational power utilised by MPC. [50] successfully proposes to use an RL learned
policy in triggering the re-computation interval of MPC. However, keeping in mind the computational
expense of random shooting (RS) in MPC, we propose to truly combine model-based and model-free
approaches by directing the sampling of actions with a policy network learned through an iterative
process, using a model-free approach.

The work by Nagabandi [15] incorporates the model-based and model-free learning in achieving
sample efficiency with Mujoco locomotion task. Much like with many previous works [41][42],
Nagabandi also models the environent dynamics with a deep neural network. They use a naive MPC
in planning over short horizons on the learned model and collect the trajectories sampled from this
training into a dataset. However, instead of using a simple neural network to learn a policy from this
dataset, they use TRPO, an actor-critic model-free architecture in learning the policy. Previous works
show that learning a policy through only model-based samples shows sub-optimal performance with
high-dimenisonal tasks. In combating this issue, [15] proposes to use the dataset of model-samples to
only initialise a start policy for TRPO. This initialisation warms starts the TRPO training and beyond
this point, TRPO trains purely on the real world as any traditional model free approach. They refer
to this model-free training as fine-tuning as the initial policy is fine-tuned with respect to the real
world dynamics. This architecture is able to achieve a sample efficiency of 1e4 timesteps compared
to pure TRPO trianing on Half-Cheetah environment. Taking inspiration from this architecture, our
work implements a strategy to make MPC planning more focused. This strategy involves training a
policy network every few planning iterations and using the learned policy in directing the actions cho-
sen by MPC. With more focused planning, we are able to show our architecture gives better sample
efficiency than the inspiration on the Half-Cheetah environment.

Table 3 gives a summary of some of the prominent research in the field of model-based and combin-
ing model-based model-free reinforcement learning.

Table 3: Summary of prominent Model-based RL papers

Article Main contribu-
tion

Policy
learning

Specifications Environment State /
Action
space

[40] PILCO - learning
probabilistic
model and using
uncertainty in
planning with RS

gradient
optimiza-
tion

Planning with RS in
discrete action space

Cartpole,
riding a
unicycle

12/2
(unicy-
cle)

[44] Dyna: Planning
with random ac-
tion selection

gradient
optimiza-
tion

Planning in discrete ac-
tion space

Maze navi-
gation

1/1

[45] Dyna-Q: Plan-
ning with random
action selection

Q-learning
(Off-
policy)

Planning in discrete ac-
tion space

Maze navi-
gation

1/1

Chapter 3 BACKGROUND LITERATURE 23

[47] Dyna-Queue:
Planning with
random action
selection and pri-
oritized sweeping
for training

Q-learning
(Off-
policy)

Planning in discrete ac-
tion space

Maze navi-
gation

1/1

[14] Planning with
MPC with a
defined regret
bound

- Planning with MPC
over discrete action
space

Pendulum,
Reacher,
Pusher,
Cartpole

23/7
(Pusher)

[32] Online Planning
Based Reinforce-
ment Learning
for Robotics
Manipulation

gradient
optimiza-
tion

Comparing planning
with MPC using
CEM,RS over discrete
action space

Cartpole 4/2
(Cart-
pole)

[49] Using in-loop
trained policy
and CEM planner
in updating each
other

gradient
optimiza-
tion

Planning with CEM
and policy over contin-
uous action space

Half-
Cheetah,
Pendulum

17/6
(Half-
Cheetah)

[50] Using in-loop
trained policy
in determining
planning horizon
for MPC

PPO (On-
Policy)

Planning with MPC
over continuous action
space

Pendulum 4/1

[48] Planning with
MPC using
CEM, modelling
uncertainty in
dynamics

- Planning over discrete
and continuous action
space

Cartpole,
Reacher,
Pusher,
Half-
cheetah

23/7
(Pusher)

[15] Model-Based
learning with
Fine-tuning

TRPO (On-
Policy)

Policy trained with
model-based roll-outs,
MPC as planner, and
used as warm start for
model-free learning

Swimmer,
Half-
Cheetah,
Ant, Hop-
per

26/8
(Ant)

24 Chapter 4 MATERIAL

4 Material
No external data was used for this project. However, the model-based segment required training data
as we explain here.

4.1 Data collection
For our architecture, the first task at hand was to learn a model that approximates the real environment
dynamics, which in our case is the Mujoco simulation. This meant that we required to collect many
trajectories from the real environment. The trajectories were collected based on roll-outs from a
random stochastic policy. The initial roll-outs were collected and stored in a file, to avoid repeated
collection for every experiment. New data was only collected when the defined rewards were changed
in the real environment. It is to be noted that the roll-outs collected in the model’s initial training
wasn’t included in the count of total samples required to train our full architecture. This was owing to
the re-usability of the data and the learned model, i.e, a model once learned could be used in multiple
experiments unless the real environment itself is modified.

4.2 Data pre-processing
Traditionally, a learned dynamics model predicts the next state and reward given current state and
action. However, very often, the current state and next state tend to be very similar. This made
it difficult for our neural network to differentiate between the two. In order to work around this,
as suggested by [15], we modified our data such that the output vectors would be the difference
between current and next state, which we refer to as delta, rather that just the next state. Further we
used standard scaling to scale the data. In particular, we maintained a separate mean and standard
deviation for the state and actions from the collected data. The input states and actions were then
scaled by subtracting their mean and dividing by the their standard deviation. The scalars for the
deltas were calculated separately and they too were scaled in the same manner.

Chapter 5 METHODS 25

5 Methods
This section describes the proposed architecture and the roll of various contributing sub components.

5.1 Architecture
The proposed architecture is diagrammatically represented in figure 6. Before diving into the working
of our architecture, we discuss the various components that constitute the proposed approach:

• Model: The first component of the architecture is the model (a). The term model is
used here in sense of the term ”model” in model-based RL. Specifically, our architecture
maintains a sample model (a deterministic model). Therefore, the model mimics the real
environment by encapsulating the environment’s transition function and reward func-
tion. In other words, the model takes a state-action pair (st ,at) and predicts the reward
and next-state pair (rt ,st+1). The model is essentially a feed-forward neural network.

• Planner: The second component of our architecture is the planner (b). The planner al-
ways accompanies a model in model-based RL. While the role of a planner remains the
same as discussed in section 2.1.2, the constitution of the planner is different. Instead of
using MPC, the planner combines MPC with PPO. Given a state st , a naive MPC planner
would generate m trajectories by planning over the model, using actions randomly sam-
pled. However, in our architecture, these actions are not sampled randomly and instead
are generated by the PPO policy network.

• Dataset: The dataset (c) is used to store experiences collected by the agent. The agent
only performs actions in the real environment. Therefore, all experiences stored in the
dataset are real and not those simulated by the model.

Figure 6: Proposed hybrid Model-based Model-free framework with model-free tuning

26 Chapter 5 METHODS

Following the orange line in figure 6, the first step with our architecture is to build and train the model.
To acquire the dataset required to train the model, the agent follows a random policy in the real envi-
ronment and collects multiple experiences (st ,at ,rt ,st+1). These experiences are stored in the dataset
(c) as they are collected. Once the required number of experiences have been collected, the agent and
the environment are reset. The model uses the dataset to learn the transition and reward function of
the environment through supervised learning. Once a model of the environment is created, we are
ready to plan over this learned model.

The policy training process is shown with the green arrows in figure 6. Taking the agent’s current state
st ′ as the start state, the planner must roll-out m trajectories from st ′ of length h. Here, t ′ represents the
timestep in the model while we reserve t to represent timestep in the real environment. For a better
understanding of the interaction between the planner and the model, we refer to figure 7. At every
model timestep t ′, the PPO policy network suggests an action ak

t ′ , where 0 < t ′ < h and 0 < k < m,
for every state sk

t ′ . This generates m state-action pairs, (s0
t ′,a

0
t ′),(s

1
t ′,a

1
t ′), ...(s

m−1
t ′ ,am−1

t ′). For t ′ = 0,
all states sk

t ′ = st , for k ε [0,m− 1] and st is the agent’s current state in the real environment. These
state-action pairs are then fed to the model, which in turn predicts the reward and next-state for each
of the pairs. This generates a quadruple defined as (sk

t ′,a
k
t ′,r

k
t ′ ,s

k
t ′+1) for each state-action pair (sk

t ′,a
k
t ′).

This process of the policy sampling actions for m states and the model predicting the reward and next
state for each of the m state-action pairs generates m trajectories of length 1. In order to generate
a trajectory of length h this process must be iterated h times with t ′ being incremented with every
iteration. For each iteration, the next-states predicted by the model in the model’s previous timestep,
is fed as the current state to the policy, for each of the m trajectories.

Figure 7: Detailed visualisation for the interaction between the planner and model

Once the m trajectories of length h are generated, the elite action at is extracted as described in section
2.1.3. Only this elite action is executed by the agent in the real environment. Action at transitions
the agent from st to st+1 along with a reward rt . This real transition (st ,at ,st+1,rt) is added to the
dataset (c). The real transitions are also stored in PPO’s training buffer. One iteration of planning m
trajectories and executing the elite action in the real environment, moves the agent by one timestep in
the real environment. With st+1 as the agent’s current state, our architecture once again plans over the

Chapter 5 METHODS 27

model in generating m trajectories and selecting the elite action at+1. This loop of planning, updating
agent’s state and saving the real transitions is continued for n iterations. Every n iterations, the PPO
policy is updated using the real transitions stored in its training buffer. Thus, every n iterations, the
policy improves and the actions sampled by our planner get better.

As PPO is an on-policy algorithm, after every update, PPO clears its training buffer. As the policy
improves, the distribution of states shifts and maybe unknown to the learned model. Under such a
circumstance, our model is retrained every g iterations with the trajectories stored in the dataset (c).
This is as shown with the the red line path in figure 6. Through this iterative process, we train our
PPO policy till it attains a sub-optimal performance. Due to model-errors and consequential error in
planning, the learned policy would not be optimal, thus requiring fine-tuning. This partially trained
policy is used to warm start pure PPO training. In other words, PPO’s policy network weights are now
initialized to that of the sub-optimal policy. From this stage, pure model-free training is conducted on
the real environment, fine-tuning the policy.

We hope that with prior planning our policy encounters and learns from better trajectories. With good
trajectories to train on, we suppose that our policy is able to learn an optimal mapping from states to
actions taking fewer samples from the real environment.

The architecture is inspired by the amalgamation of model-based and model-free approaches pre-
sented by [15]. However, our architecture differs in three core aspects:

1. In the planning stage (b), we incorporate the model-free algorithm (PPO) with MPC
while the inspiration uses only a naive MPC (with random shooting). The intuition
behind our modification is the possibility that using a policy to select actions would lead
to better trajectories than randomly selecting actions at every timestep.

2. We propose to use PPO instead of TRPO as the model-free learner. This choice was
made due to the computational superiority of PPO as compared to TRPO.

3. The inspiration defines the reward function and calculates the reward for each transition
using this defined function. However, we learn the reward function along with the tran-
sition function, using a feed-forward neural network. Thus, the reward is predicted for
every model-based transition instead of calculating it.

5.2 Model-Based training
A complete environment has two components - the dynamics and the transition rewards. We build a
feed forward neural network to learn both these functions. We require our network to take a state-
action pair as input and predict a next-state-reward pair. However, since state and next-state are often
very similar for 1 step transitions, the neural network struggles in learning the next-state predictions.
Thus, instead of trying to predict the next-state, we plan our network to predict the delta (D) (differ-
ence between current state and next state). Thus, the network must take as input a vector of the 18
dimensional current state and 6 dimensional action. The 18 dimensional state includes the 17 default
values and the x position of the body’s centre of mass. The network must produce an 18 dimensional
delta along with a scalar reward as output. In getting the next state prediction, we add the delta to the
current state value.

28 Chapter 5 METHODS

To build the model, we must train the neural network through supervised learning. Before training the
model, we collect experiences by running a random policy in the real environment. Each experience
is of the form (st ,at ,rt ,st+1). Since we require our model to map (st ,at) to (Dt ,rt), we modify all
experience tuples to (st ,at ,rt ,st+1−st), where st+1−st is Dt . The mean and standard deviation for all
states, actions, delta and reward values are individually calculated. To scale all values in the dataset,
for each state, action, delta and reward, we subtract from it the mean of the respective quantity and
divide the result by the quantity’s standard deviation. This is called standard scaling and crunches
all values to between 0 and 1. The data is then fed to the neural network which learns the mapping
through gradient descent. With gradient descent, the weights of the network are adjusted with the aim
to reduce the objective function. The objective function in our case is defined as:

MSE = mse(Dt+1 −D′
t+1,rt − r′t) (17)

Here mse() is a function which calculates the mean square error, D′
t+1 and r′t represents the delta and

reward predicted by the model and MSE represents the objective function to be minimised. Thus a
single feed forward network is used to model the transition and reward function of the environment.
Further, during predictions, the action values were clipped to between -1 and +1, which is the permis-
sible range for action values in the Half-Cheetah environment.

5.3 Planning with MPC and PPO
The novelty of our research lies in combining MPC and PPO for model-based planning. As already
described in section 2.1.3, a naive MPC planner takes random actions at every timestep in planning
trajectories, i.e, it samples from a uniform distribution U(−1,+1) for all states. In our architecture,
the actions at every timestep is planned by our PPO policy. Since our policy is stochastic, all m ac-
tions directed by the policy from a particular state would be different. However, a policy samples
the actions chosen for a state s, from a Gaussian distribution N (µs, σ2

s). As described in 5.1, the
policy is trained every n iterations, which results in the mean and standard deviation being updated
to encompass the best actions for each state based on observed historical trajectories. Thus, with a
policy, we map every state to a probabilistic distribution of best actions. In view of control theory, this
policy forms the constraints for MPC planning [51]. Consequently, a policy increases the probability
of choosing actions which are optimum as compared to naive MPC.

Further, keeping in mind that the model is only an approximation and not an exact replica of the
real environment, the planning horizon over the learned model is kept short. Since error in model
prediction accumulates at every timestep, with short horizon planning, we ensure that our planned
trajectories are very much in line with the real world dynamics. It is also to be noted that although we
plan in the learned environment, our policy is trained only on the real trajectories.

5.4 Task Description
Solving the Half-Cheetah environment is achieved by making the half-cheetah walk or run for 1000
timesteps. However, this is the basic necessity. Higher rewards are obtained as the agent learns to
walker faster. Further, the agent must also attain a standard and symmetric gait.

In order to test our architecture and how various factors impact the outcomes, we run a few experi-
ments, as described here.

Chapter 5 METHODS 29

5.4.1 Experiment 1 - Deciding on planning horizon length

As with any DRL approach, hyper-parameter tuning can make all the difference. While for our MF
counterpart, these hyper-parameter values were adapted from [11], MB required some experimenta-
tion in determining the apt hyper-parameter values. In particular, when dealing with planning in MB
approaches, one must determine the horizon length over which our planner can safely plan. The longer
the planning horizon, the more model error our architecture is encountering. The planning horizon
should be set such that, we are able to extract the advantages of planning into future while ensuring
that the model errors in the planning are small enough to be overshadowed by these gained perfor-
mance benefits. Our first set of experiments is thus run to determine the ideal number of timesteps for
planning into the future, over the learned model.

5.4.2 Experiment 2 - Comparing planning with MPC to planning with MPC and PPO

The novelty of our research lies in the proposal of using a PPO policy to direct the actions chosen
by MPC. For all result discussion and plots, we refer to our architecture as PPO-MPC. If the planner
block (block a in figure 6) is replaced by a naive MPC, we refer to the architecture as MPC and when
using a pure model-free algorithm such as PPO, we refer to it by the name of the algorithm. To eval-
uate our method’s effectiveness, we compare the performance of our architecture, PPO-MPC against
the performance of MPC. We also compare our architecture against pure model-free learning, which
is PPO in this case, to thoroughly analyse its performance. These comparisons are made based on the
returns attained by each architecture.

5.4.3 Experiment 3 - Robustness to rewards

The next set of experiments were conducted to analyse the impact of different reward functions on
our architecture. The reward function used in experiment 2 was the default set for the environment
by Mujoco. Considering the popularity of the Half-Cheetah environment in DRL evaluation and the
high success rate of solving it, it is safe to assume that the reward has been set based on careful exper-
imentation. Thus, it is worth analysing the sensitivity of our architecture to the quality of the reward
functions. To evaluate the robustness of our architecture to the defined reward functions, we further
test it with three different reward functions for solving the Half-Cheetah environment. The custom
rewards are based on our observations during training and focus on adding a penalty for unwanted
behaviour.

We experiment with three reward functions, including the default Mujoco reward (equation 16). For
all the three rewards, we retain the first component of equation 16, that rewards the forward movement
of the centre of mass along the x direction. As the primary task is to have the half-cheetah move
forward, this reward is essential. The second term of equation 16, is modified to experiment with
different penalties. Thus, our rewards share the common structure:

rt =
(Xt −Xt−1)

dt
− penaltyt , (18)

where Rt , Xt and dt hold the same meaning as for equation 16. penaltyt is the penalty terms that
varies with each reward function. The default reward function penalises actions as described in sec-
tion 2.1.5. The second reward function, HeadPen defines a penalty for the half-cheetah’s head falling

30 Chapter 5 METHODS

too low along the y direction. Based on observations, if the y co-ordinate of the head (heady) falls
lower than -0.2, the half-cheetah tips over. The third reward, ShinPen penalises the half-cheetah
moving the front leg too far back. Based on observations, the half-cheetah tips over when the posi-
tions for front thigh, front shin or front foot are larger than 0.2, 0 and 0 respectively. Thus, ShinPen
penalty is the sum of the penalties for front thigh, front shin and front foot. The different penalties are
summarised in table 4. In analysing the performance of our architecture with HeadPen and ShinPen
reward functions, we plot the performance of PPO-MPC against MPC and PPO in each case. It is
to be noted that when experimenting with the differet reward functions, we only redefine the reward
function in the real environment. The model must re-learn the transition and reward functions from
data collected by a random policy run in the modified real environment.

We also compare the gaits achieved with each reward function in determining their quality. The gait
is studied using plots that show the vertical and horizontal displacement of the half-cheetah’s centre
of mass over time, the power consumption per body joint and screenshots of the simulation on the
agent following the trained policy. We study these plots and figure and analyse what they entail for
our architecture.

Reward title penalty term
Default 0.1∗∑

d
i=0(a

2
i))

HeadPen 0.1 i f heady <−0.2

ShinPen
0.1 i f f ront thigh > 0.2 +

0.1 i f f ront shin > 0 +
0.1 i f f ront f oot > 0

Table 4: Rewards used in experimentation

5.4.4 Experiment 4 - Applicability to other model-free algorithms

Our architecture uses PPO at its core. The choice of this algorithm was made based on the application
and the inherent sample inefficiency in PPO. However, with booming research in DRL, new and
improved algorithms are always at the next turn. Further, while PPO has seen to perform better in
most continuous control tasks, certain task specificity requires the application of other model-free
techniques. With these considerations, we test our architecture when PPO is switched with a different
model-free algorithm. Here we choose, soft actor critic (SAC) [52] algorithm for two reasons:

1. For our architecture’s purpose, the chosen MF algorithm must be applicable to contin-
uous action space and must have a stochastic policy network. Both these criteria are
satisfied by SAC.

2. Since PPO is an on-line policy optimization method, we test our architectures effective-
ness for off-policy algorithms with SAC.

When running our architecture with SAC, we replace the PPO component of of the planner block
(block a in figure 6) with SAC. We refer to this modified architecture as SAC-MPC and compare it’s
performance against using just SAC in training the half-cheetah.

Chapter 6 EXPERIMENTAL SETUP 31

6 Experimental Setup
This section describes the implementation details, hyper-parameter turnings and hardware as well as
software specifications. Having taken care of the details mentioned in this section, it is possible to
achieve similar results as described in this paper.

6.1 Tools and Technologies
All code is written in Python 3.7. Tensorflow 2.2 is used in building the DRL framework. The PPO
and SAC algorithms used were adapted from OpenAI Baselines [33]. However, both algorithms have
been modified to amalgamate with the model-based components. Further, the code is GPU optimised.

The architecture was evaluated on the Half-Cheetah v3 environment, which is a part of the Mujoco
environments [1]. Mujoco is a physics engine that provides environments with multi-joint dynamics
and contacts. Maintained by OpenAI as part of their gym environments, Mujoco tasks have become
a standard in DRL evaluation. Further, OpenAI Baselines provide easy integration with the Mujoco
environments and provide various functionalities through simple function calls.

All experiments were run on Ubuntu 18.04 operating systems. The system included an Intel-i7 8 core
processor with 16GB memory and an NVIDIA GTX 1060 GPU.

6.2 Performance Criteria
In this section, we describe the criteria and metrics used in evaluation of various sections of our
architecture.

6.2.1 Cumulative Rewards

When evaluating a policy in RL, the most prominent criteria for judgement is the discounted cumu-
lative rewards or the returns. As already discussed, a policy is trained to optimize the sum of rewards
it can receive over specified timesteps or episodes. An increase in the returns obtained indicates an
improvement in policy. It is natural however, to see some peaks and falls in the returns as a side effect
of exploration and exploitation.

6.2.2 Mean Square Error

The model-based segment of our architecture follows the framework of traditional supervised learn-
ing. Thus, the quality of our model is measured in terms of the mean squared error (mse) between the
predictions and the actual values. mean square error is calculated as:

mse =
∑

N
i=0(fi − f̂i)

2

N
, (19)

where N is the length of output vector (state dimensions), fi is the real vector and f̂i is the predicted
vector. In our case the output vector is an 18 dimensional delta vector concatenated with a scalar
reward value. Thus, our model learns a mapping from the current state and action to the delta for the

32 Chapter 6 EXPERIMENTAL SETUP

next state and a reward. From this prediction, next-state is calculated by adding delta to the input state
vector.

Lower the mse, better the predictions. Traditionally mse is calculated for one step predictions. In
our case however, we plan multiple steps over the model. To account for this behaviour and analyse
the expected error in our planning, we also calculate the mse over multiple steps. We further use the
multi-step mse to determine how long of planning horizons remains useful without being overshad-
owed by the model error.

6.2.3 Gait analysis

In this thesis, we also test the behaviour of our architecture to various rewards. In our case, these
rewards are written to achieve the half cheetah running task. To understand the behaviour of our
architecture and how it relates to the quality of our rewards, we analyse the best gaits obtained with
each reward. In gait analyses, we note the following:

1. Average power consumed by each joint for achieving a certain gait. The average power
is calculated as:

Pi =
(τ

j
i ∗ω

j
i)

N
(20)

where Pi is the power consumed by joint i, averaged over N tiemsteps. τ is the torque
and ω is the angular velocity.

2. Stability of gait based on the vertical displacement of the centre of mass during a gait.
More the vertical displacement, lower the stability.

3. How far the agent moves along the x direction in a certain number of timesteps. This is
depicted with a plot showing the horizontal displacement of the half-cheetah’s centre of
mass

6.3 Hyper-parameters
In this section we describe the hyper-parameters relevant to our algorithms and the values chosen
for each. We divide the hyper-parameters into three sections - those pertinent to feed forward neural
networks, those to model-free and finally those to model-based.

6.3.1 Feed forward neural network hyper-parameters

The actor, critic model along with the learned model in the MB section of our architecture, are all
essentially feed forward neural network. In constructing a neural network, the following hyper-
parameters are considered:

Input layer: This is the first layer of the neural network through which the input is fed to the network.

Output layer: This is the final layer of the neural network. The values that come out of this layer are
the predictions of the neural network.

Chapter 6 EXPERIMENTAL SETUP 33

Hidden layers: These are layers of neurons that lie between the input and output layer. A hidden layer
takes the input from the previous layer, multiples it with a weight matrix and passes it through a func-
tion to get the output, that is fed to the next layer. Each additional hidden layer allows the network
to realise more non-linear relationships in the data. However, more the layers, larger the network and
more data required in training. Thus, having a large number of hidden layers can result in underfitting.

Hidden Neurons: These are the neurons that make up the hidden layer. Each layer is allowed to have
different number of neurons. Hence, the number of hidden neurons is specified as a vector, where
each value of the vector corresponds to one hidden layer. Hidden layers with more neurons can also
help the network learn complex relationships at the cost of more training.

Activation function: The activation function is applied to the output of a layer before passing it to
the next layer. The function of the activation function is to determine which neurons of the layer will
be active by bounding the values of the output vector within a range. There are various activation
functions that have different bounding ranges. Some of the common activation functions are sigmoid,
tanh, linear and ReLu.

Optimiser: These are algorithms that determine the change in the networks trainable parameters, in
order to minimise the error in the network’s predictions. Traditionally, the direction of change in
parameters to reduce loss is determined by gradient descent or stochastic gradient descent. Other
popular optimisers such as Adam also are based on these traditional methods, with slight improve-
ments.

The actor and critic neural networks are designed as shown in table 5.

Hyper-parameter Value
Actor and Critic hidden layers 2
Actor and Critic hidden units [64 64]
Actor and Critic hidden layer

activation
ReLu

Actor output layer activation tanh
Critic output layer activation linear
Actor and Critic optimiser Adam

Table 5: Actor and Critic network configuration

6.3.2 Model-free Hyper-parameters

Epochs: This value indicates the number of passes made through the training buffer before updating
the network weights. Larger this value, more the network learns from the samples in the training
buffer. However, too large a value could lead to the network over-fitting to the current set of samples.

Minibatch size: This value indicates the number of timesteps or transitions used in one epoch. Larger
minibatch sizes allow the network to get a more general view of the data thus leading to stable up-
dates. However, minibatch sizes must be a number divisible by the buffer size such that all samples

34 Chapter 6 EXPERIMENTAL SETUP

get an equal opportunity in contributing to the weight updates.

Clip value: The clip value which is usually between 0.1 and 0.3 is specific to PPO. This value adds a
lower and upper bound to the possible divergence between the new and old policy when computing
the loss function. The clip value ensures that PPO has stable policy updates.

Entropy coefficient: The entropy coefficient plays the role of a network regularizer. A well tuned
entropy coefficient prevents premature convergence of a policy.

Value function coefficient: The value function coefficient determines the weightage of the value net-
work loss as opposed to the policy network loss, when computing the global loss function.

Gamma: Gamma is the discount factor that indicates the weight our network assigns to future re-
wards. The smaller the value of gamma, the more our policy is optimized for immediate rewards.

Lambda: This parameter is a smoothing factor that ensures stable training by reducing the variance
in each network update.

Learning Rate: Learning rate value indicates by how much the weights are updated with each itera-
tion. Higher learning rates lead to faster learning but at the risk of converging to a local minima.

All hyper-parameter values for PPO are adapted from the official implementation of PPO [11], on the
Half-Cheetah environment. The values set for all these hyper-parameters are set as shown in table 6.
Further, The actor and critic networks are configured as shown in table 5.

Hyper-parameter Value
PPO Horizon 2048

Minibatch size 32
Epochs 4

Clip Value 0.2
Entropy Coefficient 0.0001

Gamma 0.99
Lambda 0.95

Learning Rate 0.0003
Value function Coefficient 0.5

Table 6: PPO Hyper-parameters configuration

6.3.3 Model-based Hyper-parameters

Horizon : The number of timesteps over which we plan using the learned model. A very short horizon
would make our planning myopic while a long horizon could lead to accumulation of model predic-
tion error.

Chapter 6 EXPERIMENTAL SETUP 35

Number of trajectories: This value indicates the number of trajectories simultaneously planned from
a given state. More the number of trajectories, more optimal the chosen elite action. However, plan-
ning multiple trajectories at a time adds a computational overhead and thus must be maintained at a
nominal value balancing the computation expense and the planner’s performance.

Iters per aggregation: As the policy learns, the distribution of the data sampled shifts. Thus, our
learned dynamic model must be refit every few iterations of policy updation. Iters per aggregation
determines how many updated of the policy we must wait before refitting our learned model.

Apart from these hyper-parameters, as in every neural network, we also tune the number of layers,
hidden units per layer, activation function, optimiser, batch size and epochs for training. All values
for the hyper parameters for the model-based architecture are as shown in table 7.

Hyper-parameter Value
MPC Horizon 10

Number of trajectories 15
Hidden layer 2
Hidden Units 500
learning rate 0.0001

Hidden layer activation Relu
Output layer activation Linear

Batch size 512
Epochs 200

Regularisation Early stopping
Iters per aggregation 50

Table 7: MB hyper-parameters configuration

36 Chapter 7 RESULTS AND DISCUSSION

7 Results and Discussion

In this section, we document the results for various experiments and discuss and interpret the out-
comes.

7.1 Results

7.1.1 Experiment 1

With regard to our architecture, an important hyper-parameter to be tuned was the horizon length (h)
over which we plan in the learned model. We ran our architecture thrice for horizon length of 5,10
and 25. Each experiment was run for 4e5 timesteps or 200 iterations. All other hyper-parameters
were kept constant throughout the 3 experiments. For each value of h, we ran our experiment for 3
different seed values and averaged the returns, in order to generalise the results. Figure 8 shows the
average returns achieved for each candidate value of h. It is also to be noted, this experiment is run as
a preliminary in confirming the best horizon length and does not lead to the agent walking.

From figure 8, there’s an evident lag in the performance of our architecture with h = 25. Among
runs with h = 5 and h = 10, we see a superior performance with a planning horizon of 5 timesteps,
in the initial stages of training. However, around 1e5 timesteps, this trend begins to reverse with
h = 10 gaining higher returns. Until around 2e5 timesteps, the horizon lengths don’t signify a large
difference in performance, although having averaged over multiple seeds, we can be certain that the
little difference is a reliable trend estimate of how the planning horizon effects our architecture per-
formance. Beyond 2e5 timesteps, we notice a stagnation in the performance improvement with h = 5
and h = 25, while h = 5 performs slightly better in comparison to h = 25. On the other hand, the
experiment run with h = 10 continues to improve steadily and achieves a maximum average return of
1908.

To visually analyse the effect the horizon lengths have on our learned model’s predictions, we show a
comparison between our model’s predictions of the dynamics and the real world dynamics in figure 9.
We present the predictions for x position of the the half cheetah’s centre of mass for h = 5,10,25. The
model also predicts the rewards associated with a transition. Figure 10 shows the reward predictions
against the real world rewards for h = 5,10,25. While these images give a qualitative idea of the
model predictions, table 8 gives the average mse in prediction for each of the horizon lengths for a
quantitative comparison. Similarly, table 9 reports the mse in prediction of the rewards by the model.
Based on our analysis, we set the horizon length to 10 and move on with the remaining experiments.

Horizon length (h) Mean Square Error
5 2.359
10 2.489
25 3.0342

Table 8: Mean square error in the model’s prediction of the x-position of half-cheetah centre of mass,
for h = 5,10,25

Chapter 7 RESULTS AND DISCUSSION 37

Figure 8: Preliminary analysis: Comparing return on running the architecture with planning horizon
lengths (h) of 5,10 and 25. Plot shows highest returns when h = 10

Horizon length (h) Mean Square Error
5 0.3856
10 0.50635
25 0.6238

Table 9: Mean square error in the model’s prediction of rewards for h = 5,10,25

7.1.2 Experiment 2

Figure 11a shows the returns attained for vanilla PPO, MPC and PPO-MPC over 200 updates or
around 4e5 timesteps. The solid coloured lines represents the average return over last 10 episodes.
The shaded region shows the range of minimum and maximum returns over the past 10 episodes.
In the initial stages of training, MPC and PPO-MPC both show better returns than PPO. The short
horizon planning has an evident advantage over PPO. However, around 2e5 timesteps, MPC perfor-
mance stagnates with the average returns fluctuation between 100 to 600. The performance of PPO
and PPO-MPC is seen to improve as the return increase over timesteps. Further, the plot also shows
PPO-MPC hitting the highest return achieved by PPO, almost 1e5 timesteps earlier than PPO itself.
This point at which PPO achieves maximum score is marked by the black non-continuous line in
the plot and is here on referred to as ”PPO-maximum”. Table 10 notes the exact timesteps at which
each of the architectures hit the PPO-maximum return. As the MPC architecture never achieves the
PPO-maximum return during training, its value is not tabulated. Beyond 3.5e5 timesteps, we also
notice a slower rate of increase in performance with PPO-MPC. Although our architecture plans on
policy, the short horizon planning may not benefit the policy in long run. However, at 200 updates,
PPO-MPC still achieves a score higher than PPO by 1000 points. At this point, we use the policy
trained so far in warm starting pure MF training. Thus, taking advantage of a better optimised policy,

38 Chapter 7 RESULTS AND DISCUSSION

we proceed to fine-tune it with PPO alone in the real environment.

Figure 11b compares the score of PPO and PPO-MPC after fine-tuning. We stopped the combined
MB and MF training at 200 updates, while the policy still shows steady improvement and continue
training the policy with PPO in the real environment. We notice that the leverage our architecture
provides in the first 200 updates is carried on. While PPO attains a score of around 3000 after 1e6
timesteps, PPO-MPC attains the same score around 7e5 timesteps. Thus, in the specific experiment
settings, our architecture provides a sample efficiency of 5e5 samples (or timesteps).

Architecture Score Timesteps
PPO 1247 393216
MPC - -

PPO-MPC 1265 274432

Table 10: Values describing Figure 11a PPO-maximum

(a) x position predictions for h=5 (b) x position predictions for h=10

(c) x position predictions for h=25

Figure 9: Comparing the predictions for x position for various planning horizons. Blue shows the real
states while orange shows the model predictions.

Chapter 7 RESULTS AND DISCUSSION 39

7.1.3 Experiment 3

For further analysis, we run experiments to test the sensitivity of our architecture to different rewards.
From figure 12a, we notice that with the HeadPen reward function, in the initial stages of training,
PPO shows the lowest performance followed by MPC and PPO-MPC. Just as in our experiments with
the default reward function, we also notice a stagnation in performance around 1.5e5 timesteps with
HeadPen reward function. However, with this reward function, we note a slower rate of improvement
with PPO-MPC around 1.5e5 timesteps. In fact, around 2e5, PPO’s performance overtakes that of
PPO-MPC. Plot 12b shows the returns from PPO and PPO-MPC policy after fine-tuning. We see
that PPO-MPC policy achieves lower returns than PPO, even after the former is fine-tuned. There is
also a significant drop in the returns achieved with PPO-MPC around 3.25e5 timesteps. Once again,
as MPC architecture performance stagnates early on, we do not continue training MPC beyond 4e5
timesteps.

With the ShinPen reward function, in figure 13a we notice our architecture once again falling short
of PPO. However, unlike in case of the HeadPen reward function, PPO-MPC scores do no stagnate

(a) Reward predictions for h=5 (b) Reward predictions for h=10

(c) Reward predictions for h=25

Figure 10: Comparing the predictions for rewards for various planning horizons. Blue shows the real
rewards while orange shows the model predicted rewards.

40 Chapter 7 RESULTS AND DISCUSSION

as early on. It is still found to improve beyond 4e5 timesteps. As with previous reward functions,
the MPC architecture’s performance stagnates once again, but around 2e5 timesteps. Considering at
each step, PPO still performs better than PPO-MPC for this reward function, we do not train it any
further. On fine-tuning the PPO-MPC policy with PPO, as seen in figure 13b, our architecture shows
worse performance than PPO with lower returns. These results throw light on the high sensitivity of
our architecture to the reward function.

Further, considering our architecture’s sensitivity to the reward function, we also study the quality of
these functions. While an increasing return indicates a policy being learned, it tells very little about
the quality of the policy in relation to the task we wish to achieve. In order to study the gait with
minimal bias of any architectural details, we compare the policy obtained from our architecture for
all three rewards, keeping all hyper-parameters constant. In our case, the RL task is solved when
the half-cheetah is able to run in the environment. All three rewards were successful in developing a
gait enabling the half cheetah to move forward. However, with changing penalty terms, the gait itself
differed. Figure 14 shows the power consumed by each joint for each of the rewards. Although the
default reward penalises the torques applied, the ShinPen reward produces most energy efficient gait.
In general, for all the gaits, we notice that the maximum power is consumed by the back thigh joint
while the minimum is consumed by the back shin joint.

A constant factor of all three rewards is the bonus on the forward velocity achieved. However, we
analyse if the gait developed in moving forward is biologically relevant to a cheetah’s gait in nature.
A stable gait would have the least vertical movement of centre of mass (COM) of the body. Thus,
we plot the vertical position of the body’s COM or the centre of torso in our case, over 60 timesteps,
shown in figure 15. The HeadPen reward clearly has the most COM vertical displacement as is seen
from a highly unstable gait in the visualisation. Although the half-cheetah manages to move for-

(a) Comparing returns of PPO, MPC and PPO-MPC
architectures for 4e5 timesteps. The solid lines depict
the average returns over past 10 episodes. The shaded
region depicts the range between minimum and max-
imum returns over the past 10 episodes.

(b) Comparing returns of PPO and PPO-MPC archi-
tectures. The red line shows the returns achieved dur-
ing training with model-based planning. After 4e5
timesteps, the blue line depicts PPO-MPC returns as
the policy is fine-tuned with PPO

Figure 11: Plots to analyse the returns from PPO-MPC architecture in comparison to PPO and MPC.
Half-Cheetah environment reward function is set to Default

Chapter 7 RESULTS AND DISCUSSION 41

(a) Comparing returns of PPO, MPC and PPO-MPC
architectures for 4e5 timesteps. The solid lines depict
the average returns over past 10 episodes. The shaded
region depicts the range between minimum and max-
imum returns over the past 10 episodes.

(b) Comparing returns of PPO and PPO-MPC archi-
tectures. The red line shows the returns achieved dur-
ing training with model-based planning. After 4e5
timesteps, the blue line depicts PPO-MPC returns as
the policy is fine-tuned with PPO

Figure 12: Plots to analyse the returns from PPO-MPC architecture in comparison to PPO and MPC.
Half-Cheetah environment reward function is set to HeadPen

(a) Comparing returns of PPO, MPC and PPO-MPC
architectures for 4e5 timesteps. The solid lines depict
the average returns over past 10 episodes. The shaded
region depicts the range between minimum and max-
imum returns over the past 10 episodes.

(b) Comparing returns of PPO and PPO-MPC archi-
tectures. The red line shows the returns achieved dur-
ing training with model-based planning. After 4e5
timesteps, the blue line depicts PPO-MPC returns as
the policy is fine-tuned with PPO

Figure 13: Plots to analyse the returns from PPO-MPC architecture in comparison to PPO and MPC.
Half-Cheetah environment reward function is set to ShinPen

ward, it tends to fall very low and even flip to its back with the Hedpen reward. It also has the most
non-uniform gait as is observed from its highly asymmetric gait signals. While both the default and
ShinPen rewards show a fairly constant gait with similar vertical displacements in every gait cycle,
the ShinPen reward has lower overall vertical COM displacement. Figure 16 shows the variation in
the x coordinate of the half-cheetah’s COM. Both figures 15 and 16, plot the respective COM coor-

42 Chapter 7 RESULTS AND DISCUSSION

Figure 14: Comparing the power consumed by each joint for different reward functions

dinates for the same timesteps. This horizontal displacements indicates the forward movement of the
half-cheetah. We notice that the half-cheetah moves much slower with the HeadPen reward function
than with the other two. In 60 timsteps, the half-cheetah moves furthest with the ShinPen reward
function.

7.1.4 Experiment 4

Finally, we test the applicability of our architecture when replacing PPO for a different model-free
algorithm. In our case, we choose to replace PPO with SAC for the reason explained in section 5.4.4
and refer to this modified architecture as SAC-MPC. As seen in figure 17, our architecture enables
the policy to achieve higher scores in fewer samples. With SAC-MPC, our policy achieves the SAC’s
maximum score in only 1.25e5 timesteps. SAC achieves the same score in 2e5 timesteps, giving
SAC-MPC an upper hand with sample efficiency of 75e3 samples.

7.2 Discussion

7.2.1 Experiment 1

Based on our analyses of plot 8, training our architecture with a planning horizon length of 10 re-
sulted in highest rewards. As already discussed, the goal of DRL is to optimise long horizon rewards
rather than immediate ones. Had our learned model been an exact mimic of the real environment, we
could have had a very long planning horizon. In fact, in such a situation, a simple planner would be
sufficient to learn the policy. However, as we discussed, our model is only an approximation of the
environment. Thus, with every step planned ahead in the learned model, the model error builds up in
the collected trajectories. We observe this model error build up with longer horizon lengths, in the
predictions for x position of the half-cheetah’s centre of mass in plots 9. This leads to incorrect plan-
ning and consequently causes harm to our overall architecture performance. In our case, a horizon
length of 25 seems to have this effect. Not only is our architecture’s performance poor, as seen in plot
8, the model predictions for a planning horizon length of 25 is also unreliable, as seen in figure 9c.

Chapter 7 RESULTS AND DISCUSSION 43

Figure 15: Comparing the gait stability for different reward functions

Figure 16: Comparing the reward functions based on the half-cheetah’s motion of the centre of mass
along the x axis

44 Chapter 7 RESULTS AND DISCUSSION

Figure 17: Architecture with SAC

The model prediction of the environment dynamics for h = 25, has a mean square error of 3.0342.
Naturally, as we increase the horizon length, the mse for the model predictions of the environment
dynamics increases. However, on increasing the planning horizon length from 5 to 10, we only no-
tice an mse increase of 0.13. On the other hand, there is a noticeable increase in mse of 0.55 when
increasing the horizon length from 10 to 25. Based on these observations, we conclude that 25 is too
long a planning horizon for our model.

On the contrary, a horizon length of 5 is too short. During initial stages of training, planning with
h = 5 shows a superior performance to using h = 10,25. This indicates that when we set h = 5, the
planning over our model is able to recognise good actions which when executed in the real environ-
ment, results in the agent encountering good experiences. These experiences are in turn used to train
the policy. Better the trajectories, better our policy is trained. As our policy is completely random in
the starting stage, even a short horizon optimisation helps it improve. However as the policy trains,
the focus shifts to long term rewards rather than instant rewards. This entails that, our planner (MPC
and PPO together) optimises actions over short trajectories of length 5, whereas our policy requires
trajectories with better actions taken further into the future to improve. Thus, a planning horizon as
short as 5 timesteps fails to be beneficial beyond around 1e5 timesteps. This is the point where we
notice the performance of the architecture with h = 10 overtake. With our model, a horizon length of
10 finds the right balance between circumventing model-error due to very long planning horizons and
the myopic behaviour in planning with short horizons.

7.2.2 Experiment 2

As we see in figure 11a, while the short horizon planning with MPC is beneficial in the early stages
of training, the randomness of actions picked by MPC coupled with a short horizon planning fails to
provide PPO with useful trajectories. Moreover, considering PPO clips large updates, actions chosen
off-policy leads to further destabilisation of the PPO policy. With PPO-MPC, the chosen actions are
directed on-policy and hence is keeping in line with PPO’s principles. Thus, PPO-MPC shows better
performance than MPC. It also gives higher scores than PPO at every timestep as while PPO sees

Chapter 7 RESULTS AND DISCUSSION 45

one among 15 possible actions on-policy, PPO-MPC sees the best among these 15 possible actions.
From the large fluctuations in policy score for PPO-MPC beyond 3.5e5 timesteps, we acknowledge
that although our architecture plans on policy, the short horizon planning may not benefit the policy
in long run. It is to be noted that the policy optimises over an entire episode return and not just a short
horizon of 10 timesteps. Thus the short horizon planning can only help the initial training stages.
However, at 200 updates, PPO-MPC still achieves a return higher than PPO by 1000 points. Thus,
instead of relying completely on model-based learning, we exploit the superior performance obtained
over 4e5 timesteps by using the policy to warm start a pure model-free learning.

Figure 18 shows screenshots of the half-cheetah’s gait, when following the policy trained using the
PPO-MPC architecture. The screenshots here show the Cheetah ending the previous gait cycle and
starting a new one. We see the cheetah starts from ground level, takes a leap using its hind leg and
lands on its front leg. The leap results in the half-cheetah’s body being propelled in the vertical
direction too.

(a) timesteps of snapshots from left to right are 2.50s, 2.60s, 2.75s

(b) timesteps of snapshots from left to right are 2.90s, 3.10s, 3.30s

Figure 18: Screenshots of the half-cheetah following policy trained with PPO-MPC and the Default
reward function

7.2.3 Experiment 3

As was observed in figure 12a and 13a, our architecture PPO-MPC, shows high sensitivity to the
defined reward functions. In order to understand how these rewards effect the policy learning, we
plotted the log of standard deviation for the policy networks attained when training with PPO-MPC
architecture, for all the three defined reward functions. The plot is as shown in figure 19. The standard
deviation is indicative of the uncertainty or stochastic nature of the policy. Higher the uncertainty,

46 Chapter 7 RESULTS AND DISCUSSION

more if the variation in predicting the actions. From figure 19, it’s evident that the Default reward
function shows very low uncertainty when compared to our experimental rewards. Intuitively this
implies, if we sample 10 actions for a state using the policies trained with each of the reward functions,
the actions sampled by the Default reward policy would be very similar to each other, while those
samples by the HeadPen policy would differ the most from each other. Since the policy trained with
ShinPen reward function shows high standard deviation than that trained with the default reward
function, the actions would still differ amon each other to some extent. Since the stochasticity is
high, the planner has a larger search space even when choosing actions on policy. Thus, the two
experimental reward would require to be trained for far more timesteps to show good performance.
It is also noteworthy that HeadPen reward has higher stochasticity than ShinPen. This ties up with
our reasoning for our architecture achieving returns closer to that achieved with vanilla PPO training,
when trained with ShinPen reward as compared to training with HeadPen reward function.

Figure 19: Plot showing how the log standard deviation for the policy networks varies during training
with PPO-MPC architecture. The results are plotted for training with all three rewards functions

Figure 20 and figure 21 show screenshots for a the half-cheetah’s gait cycles, when following a policy
trained with our architecture using the HeadPen and ShinPen reward functions respectively. When
comparing the screenshots in both cases, we notice that with the HeadPen reward, the half-cheetah
jumps higher into the air. This is also supported by the larger vertical displacement of COM shown
in figure 15 when compared to the other two rewards. Moreover, the high jump in this case results
in an unstable landing position which sometimes even results in the half-cheetah tipping over. In
most cases however, the half-cheetah drags its head for a few timesteps before re-stabilising itself
and taking the next leap. Such an unstable gait makes it hard for the agent to move forward as we
see in the horizontal displacement of its COM in figure 16. The ShinPen reward function attains a
gait wherein, rather low leaps are taken during the gait. However, as we see from the screenshots in
21, these leaps are longer, resulting in lower displacement along the vertical and more displacement
along the horizontal directions. These gait analysis are once gain supported by the plots for COM

Chapter 7 RESULTS AND DISCUSSION 47

(15, 16) displacement along y and x direction. Further, as seen from all experimental screenshots, the
half-cheetah is propelled by the hind leg in making the leap. This requires a large force in the hind
leg, supporting our observation in plot 14 showing highest power consumption by the back thigh.

Based on the power consumption, stability in gait and distance moved forward, we conclude that the
ShinPen reward produces the most efficient gait among the three that we compare, closely followed
by the default reward. However, we notice that the returns achieved with ShinPen is lower than that
attained with default reward. This only implies a stronger penalisation with ShinPen reward when
compared to the Default. In spite of not penalising the torque applied, ShinPen reward is able to
achieve a gait with minimal power consumed by the joints.

7.2.4 Experiment 4

As shown in figure 17, SAC-MPC can prove beneficial when training an offline policy. In fact, the
lower uncertainty bound of our SAC-MPC policy is higher than the upper-bound of SAC, for most of
the training. Traditionally, SAC uses a transition multiple times in updating the policy. With SAC-
MPC, at each step we generate better transitions than we would with SAC and the benefit of each
transition is exploited multiple times over training. We suppose, this could be a reason for SAC to
benefit more from our architecture. This further goes to show that focused sampling of trajectories
benefits learning as opposed to random sampling. Thus, even with model-free architectures that rely
on many experiences to learn, the architecture, which is actor-critic, benefits from better quality of
trajectories as opposed to larger quantity of trajectories.

(a) timesteps of snapshots from left to right are 2.50s, 2.65s, 2.80s

(b) timesteps of snapshots from left to right are 3.00s, 3.40s, 3.65s

Figure 20: Screenshots of the half-cheetah following policy trained with PPO-MPC and the HeadPen
reward function

48 Chapter 7 RESULTS AND DISCUSSION

(a) timesteps of snapshots from left to right are 2.50s, 2.60s, 2.70s

(b) timesteps of snapshots from left to right are 3.20s, 3.55s, 3.60s

Figure 21: Screenshots of the half-cheetah following policy trained with PPO-MPC and the ShinPen
reward function

Chapter 8 CONCLUSION 49

8 Conclusion
The problem of sample complexity is one that has challenged the application of DRL in robotics.
This paper introduces a novel architecture combining model-based and model-free learning. With
this architecture we aim to combine the sample efficiency of model-based methods with the perfor-
mance superiority of model-free. With model-based approaches, MPC planners are popularly used in
planning ahead. With our architecture, we propose to use a policy that directs the actions selected by
an MPC as opposed to using a naive MPC with random action selection. Our architecture is evaluated
on the Half-Cheetha environment. We further test its sensitivity to custom designed rewards and also
test the quality of these rewards. Finally, we test the applicability of our architecture when replacing
PPO with an off-policy algorithm such as SAC, as an attempt to generalise the architecture to other
MF algorithms.

Based on the observations and analysis of our experiments, we conclude the following with respect
to our research questions:

• As seen in Experiment 2, our MBMF architecture shows promise in solving RL tasks
while being sample efficient when compared to its model-free counterpart. Our architec-
ture achieves a sample efficiency of 1e5 timesteps compared to vanilla PPO on solving
the Half-Cheetah environment. This is an improvement over the 1e4 timesteps of sam-
ple efficiency achieved by [15], that we take inspiration from. However, with further
experimentation we notice that this success is dependent on the quality of the reward
and highly sensitive to hyper-parameter tuning. Specifically, we found that the planning
horizon length had a prominent impact on our architectures performance as explained in
section 7.1.1.

• We find that the policy directed action selection (PPO+MPC or SAC+MPC) always
works better than using a naive MPC planner. Thus, our intuition of using an in-loop
trained policy to constraint the action space proves to be advantageous.

• Although our architecture can achieve sample efficiency, it is highly sensitive to the
rewards. On analysing the rewards experimented with, we also noticed that our archi-
tecture benefits specifically when the policy network stochasticity is considerably lower.
However, we suspect that increasing the number of trajectories computed by our planner
at each timestep could improve our architecture’s performance. Further, we studied the
quality of these rewards based on the stability of the gait and power utilised. Based on
our analysis metrics, the reward defined based on the leg movement (ShinPen) achieved
the most stable gait with minimum vertical displacement of COM and minimum power
utilisation in joints.

• In order to generalize our architecture to other MF algorithms, we also tested our archi-
tecture with SAC replacing the PPO component. We found that planning with MPC and
an in-loop training policy can achieve sample efficiency even with off-policy training
algorithms. Specifically, on replacing PPO with SAC, we found that our architecture
achieves a sample efficiency of 75e3 samples on solving the Half-Cheetah environment.

In conclusion, our intuition of combining model-free algorithm with MPC in planning over a learned
model shows superiority over planning with a naive MPC. However, the overall performance of our
architecture is highly sensitive to horizon length, number of planned trajectories and quality of reward.

50 Chapter 8 CONCLUSION

8.1 Limitations and Future Work
This research focuses on introducing the idea of using a policy trained in-loop to direct actions with
an MPC planner. While, the proposed idea does show promise, it doesn’t always guarantee the sample
efficiency we hope for. The most prominent drawback that we found was the sensitivity of our archi-
tecture to the quality of the reward. Further, we implemented a 2 layer feed-forward neural network
in capturing the dynamics of the environment. The loss function off this network only optimizes over
one step predictions. Thus, there is a gap in what our neural network optimizes and what we apply
the neural network to. Model-based approaches often tend to fail in complex environments with high
non-linearity. In an attempt to evaluate this architecture on a musculoskeletal model with 17 muscles
and 2 actuators, we faced the challenge of modelling the dynamics first hand.

For future works, we propose dynamically changing the model-based hyper-parameters. The sensi-
tivity of our architecture to reward functions could be a result of requiring more exploration at certain
stage of training. Dynamically changing the number of trajectories to be computed at a time based on
the learned policy’s uncertainty could potentially combat this obstacle. Further, although we are able
to prove the relevance of planning with MPC and PPO rather than MPC alone, the short horizon plan-
ning doesn’t achieve results of pure model-free learning. To promote long horizon planning, we must
build a model that is able to learn the environment dynamics more accurately. In future works, we
aim to use an ensemble of probabilistic models as in [48] in capturing the environment’s aleatoric and
epistemic uncertainties, allowing one to plan for longer horizons. Further, the uncertainty in model
prediction could be included in dynamically setting the planning horizon length. Specifically, given
that our learned dynamic model can output a prediction for the next state and a value indicating its
certainty of the predictions, the planner only plans upto a horizon where the uncertainty in predic-
tion is tolerable. In conclusion, the proposed architecture does show promise but is highly sensitive.
In order to make it more robust and generalized, the hyper-parameter tuning must be strategically
conducted.

BIBLIOGRAPHY 51

Bibliography
[1] O.-L. Ouabi, P. Pomarede, N. Declercq, N. Zeghidour, M. Geist, C. Pradalier, N. F. Declercq,

and C. Edric Pradalier, “Learning the Propagation Properties of Plate-like Structures for Lamb
Wave-based Mapping Learn-ing the Propagation Properties of Plate-like Structures for Lamb
Wave-based Mapping Learning the Propagation Properties of Plate-like Structures for Lamb
Wave-b,” Ultrasonics, vol. ..., no. ..., p. 106705, 2022.

[2] A. Chella, L. Iocchi, I. Macaluso, and D. Nardi, “Artificial Intelligence and Robotics.,” Intelli-
genza Artificiale, vol. 3, pp. 87–93, jan 2006.

[3] O. Kilinc and G. Montana, “Reinforcement learning for robotic manipulation using simulated
locomotion demonstrations,” Machine Learning, vol. 111, no. 2, pp. 465–486, 2022.

[4] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis, V. Koltun, and M. Hutter, “Learn-
ing agile and dynamic motor skills for legged robots,” CoRR, vol. abs/1901.08652, 2019.

[5] M. Taylor, S. Bashkirov, J. F. Rico, I. Toriyama, N. Miyada, H. Yanagisawa, and K. Ishizuka,
“Learning bipedal robot locomotion from human movement,” 2021.

[6] C. Yu and A. Rosendo, “Multi-modal legged locomotion framework with automated residual
reinforcement learning,” 2022.

[7] R. A. Garza Bayardo, “Dynamic locomotion for humanoid robots via deep reinforcement learn-
ing,” 2022.

[8] Z. Ding and H. Dong, “Challenges of Reinforcement Learning,” pp. 249–272, jun 2020.

[9] P. Trentsios, M. Wolf, and D. Gerhard, “Overcoming the Sim-to-Real Gap in Autonomous
Robots,” Procedia CIRP, vol. 109, pp. 287–292, 2022.

[10] W. Zhao, J. Peña Queralta, Q. L., and T. Westerlund, “Towards closing the sim-to-real gap in
collaborative multi-robot deep reinforcement learning,” 11 2020.

[11] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal Policy Optimization
Algorithms,” pp. 1–12, 2017.

[12] J. Schulman, S. Levine, P. Moritz, M. Jordan, and P. Abbeel, “Trust region policy optimization,”
32nd International Conference on Machine Learning, ICML 2015, vol. 3, pp. 1889–1897, 2015.

[13] V. Feinberg, A. Wan, I. Stoica, M. I. Jordan, J. E. Gonzalez, and S. Levine, “Model-Based Value
Estimation for Efficient Model-Free Reinforcement Learning,” 2018.

[14] Y. Fan and Y. Ming, “Efficient Exploration for Model-based Reinforcement Learning with Con-
tinuous States and Actions,” nov 2020.

[15] A. Nagabandi, G. Kahn, R. S. Fearing, and S. Levine, “Neural Network Dynamics for Model-
Based Deep Reinforcement Learning with Model-Free Fine-Tuning,” in Proceedings - IEEE
International Conference on Robotics and Automation, pp. 7579–7586, aug 2018.

[16] A. Plaat, W. Kosters, and M. Preuss, “Deep Model-Based Reinforcement Learning for High-
Dimensional Problems, a Survey,” aug 2020.

52 BIBLIOGRAPHY

[17] E. Todorov, T. Erez, and Y. Tassa, “MuJoCo: A physics engine for model-based control,” IEEE
International Conference on Intelligent Robots and Systems, pp. 5026–5033, 2012.

[18] M. Schwenzer, M. Ay, T. Bergs, and D. Abel, “Review on model predictive control: an engi-
neering perspective,” International Journal of Advanced Manufacturing Technology, vol. 117,
no. 5-6, pp. 1327–1349, 2021.

[19] T. Wang, X. Bao, I. Clavera, J. Hoang, Y. Wen, E. Langlois, S. Zhang, G. Zhang, P. Abbeel, and
J. Ba, “Benchmarking Model-Based Reinforcement Learning,” pp. 1–25, 2019.

[20] M. Janner, J. Fu, M. Zhang, and S. Levine, “When to trust your model: Model-based policy
optimization,” Advances in Neural Information Processing Systems, vol. 32, no. NeurIPS, 2019.

[21] E. F. Morales and J. H. Zaragoza, “An introduction to reinforcement learning,” Decision Theory
Models for Applications in Artificial Intelligence: Concepts and Solutions, pp. 63–80, 2011.

[22] A. Toyama, K. Katahira, and H. Ohira, “Biases in estimating the balance between model-free
and model-based learning systems due to model misspecification,” Journal of Mathematical
Psychology, vol. 91, pp. 88–102, 2019.

[23] L. Baird and A. Moore, “Gradient Descent for General Reinforcement Learning,” in Advances
in Neural Information Processing Systems (M. Kearns, S. Solla, and D. Cohn, eds.), vol. 11,
MIT Press, 1998.

[24] V. Konda and J. Tsitsiklis, “Actor-critic algorithms,” Society for Industrial and Applied Mathe-
matics, vol. 42, 04 2001.

[25] S. Ruder, “An overview of gradient descent optimization algorithms,” pp. 1–14, 2016.

[26] C. Baroglio, A. Giordana, M. Kaiser, M. Nuttin, and R. Piola, “Learning controllers for indus-
trial robots,” Machine Learning, vol. 23, no. 2, pp. 221–249, 1996.

[27] K. S. Fu, Learning Control Systems, pp. 251–292. Boston, MA: Springer US, 1969.

[28] T. Wang and J. Ba, “Exploring Model-based Planning with Policy Networks,” jun 2019.

[29] G. Williams, N. Wagener, B. Goldfain, P. Drews, J. M. Rehg, B. Boots, and E. A. Theodorou,
“Information theoretic MPC for model-based reinforcement learning,” Proceedings - IEEE In-
ternational Conference on Robotics and Automation, pp. 1714–1721, 2017.

[30] P. Bakaráč and M. Kvasnica, “Fast nonlinear model predictive control of a chemical reactor: a
random shooting approach,” Acta Chimica Slovaca, vol. 11, no. 2, pp. 175–181, 2018.

[31] K. Fedorová, P. Bakaráč, and M. Kvasnica, “Agile manoeuvres using model predictive control,”
Acta Chimica Slovaca, vol. 12, no. 1, pp. 136–141, 2019.

[32] I. Kivi, “Online Planning Based Reinforcement Learning for Robotics Manipulation,” 2019.

[33] OpenAI, “Openai baselines.”

[34] W. Fedus, P. Ramachandran, R. Agarwal, Y. Bengio, H. Larochelle, M. Rowland, and W. Dab-
ney, “Revisiting fundamentals of experience replay,” 37th International Conference on Machine
Learning, ICML 2020, vol. PartF16814, pp. 3042–3052, 2020.

BIBLIOGRAPHY 53

[35] Robotic Grasping Training Using Deep Reinforcement Learning With Policy Guidance Mech-
anism, vol. Volume 2: of International Manufacturing Science and Engineering Conference,
2021.

[36] M. Kasaei, M. Abreu, N. Lau, A. Pereira, and L. P. Reis, “Robust biped locomotion using deep
reinforcement learning on top of an analytical control approach,” Robotics and Autonomous
Systems, vol. 146, p. 103900, 2021.

[37] S. Delp, F. Anderson, A. Arnold, P. Loan, A. Habib, C. John, E. Guendelman, and D. Thelen,
“OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement,”
Biomedical Engineering, IEEE Transactions on, vol. 54, pp. 1940–1950, 2007.

[38] G. Chen, L. Pan, Y. Chen, P. Xu, Z. Wang, P. Wu, J. Ji, and X. Chen, “Robot Navigation with
Map-Based Deep Reinforcement Learning,” pp. 1–6, 2020.

[39] M. P. Deisenroth, “A Survey on Policy Search for Robotics,” Foundations and Trends in
Robotics, vol. 2, no. 1-2, pp. 1–142, 2011.

[40] M. P. Deisenroth and C. E. Rasmussen, “PILCO: A model-based and data-efficient approach to
policy search,” Proceedings of the 28th International Conference on Machine Learning, ICML
2011, pp. 465–472, 2011.

[41] K. J. Hunt, D. Sbarbaro, R. Zbikowski, and P. J. Gawthrop, “Neural networks for control
systems-A survey,” Automatica, vol. 28, no. 6, pp. 1083–1112, 1992.

[42] M. Watter, J. T. Springenberg, J. Boedecker, and M. Riedmiller, “Embed to control: A locally
linear latent dynamics model for control from raw images,” 2015.

[43] Y. Gal and Z. Ghahramani, “Dropout as a Bayesian approximation: Representing model un-
certainty in deep learning,” 33rd International Conference on Machine Learning, ICML 2016,
vol. 3, pp. 1651–1660, 2016.

[44] R. S. Sutton, “Integrated Modeling and Control Based on Reinforcement Learning and Dy-
namic Programming,” in Advances in Neural Information Processing Systems (R. P. Lippmann,
J. Moody, and D. Touretzky, eds.), vol. 3, Morgan-Kaufmann, 1990.

[45] R. S. Sutton, “Integrated Architectures for Learning, Planning, and Reacting Based on Ap-
proximating Dynamic Programming,” in Machine Learning Proceedings 1990 (B. Porter and
R. Mooney, eds.), pp. 216–224, San Francisco (CA): Morgan Kaufmann, 1990.

[46] W. Lee and F. A. Oliehoek, “Analog circuit design with dyna-style reinforcement learning,”
2020.

[47] J. Peng and R. Williams, “Efficient Learning and Planning Within the Dyna Framework,” Adap-
tive Behavior, vol. 1, 1998.

[48] K. Chua, R. Calandra, R. McAllister, and S. Levine, “Deep Reinforcement Learning in a Handful
of Trials using Probabilistic Dynamics Models,” in Advances in Neural Information Processing
Systems, vol. 2018-Decem, pp. 4754–4765, 2018.

[49] H. Bharadhwaj, K. C. Xie, and F. Shkurti, “Model-Predictive Control via Cross-Entropy and
Gradient-Based Optimization,” no. 2016, pp. 1–11.

54 BIBLIOGRAPHY

[50] E. Bøhn, S. Gros, S. Moe, and T. A. Johansen, “Optimization of the Model Predictive Con-
trol Update Interval Using Reinforcement Learning**This work was financed by grants from
the Research Council of Norway (PhD Scholarships at SINTEF grant no. 272402, and NTNU
AMOS grant No. 223254).,” IFAC-PapersOnLine, vol. 54, no. 14, pp. 257–262, 2021.

[51] M. Schwenzer, M. Ay, T. Bergs, and D. Abel, “Review on model predictive control: an engineer-
ing perspective,” The International Journal of Advanced Manufacturing Technology, vol. 117,
no. 5, pp. 1327–1349, 2021.

[52] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor,” 35th International Conference on Machine
Learning, ICML 2018, vol. 5, pp. 2976–2989, 2018.

