
University of Groningen

DenseTransformer: Direct 6D OPE using self-attention on dense
representations

MASTER’S THESIS
Artificial Intelligence

Author: Nachiket Desai

Primary supervisor: Prof. Lambert Schomaker
Secondary supervisor: Asst. Prof. Hamidreza Kasaei

November 17, 2022



I

Abstract
This paper proposes a framework for single shot object pose estimation which leverages the power
of transformers using joint RGB and point cloud features. Our key study is the use of transformers
on a joint embedding that is produced using a bidirectional encoder-decoder network. This way we
study the application of Transformers and self-attention on intermediary features produced by an
independent network. Also, our approach uses point-cloud networks (PCNs) to extract geometric
information and hence the model has lower complexity. Furthermore, it opens the path for future
research in using transformers(which are currently outperforming previous mechanisms in a variety
of image processing tasks) on unified representations learnt from different networks.
In our model architecture, we first use the aforementioned encoder-decoder pair to create a joint
representation, which also utilizes a mapping of 2D-3D features using KNN. The learnt representation
is then fed to a transformer module to infer the spatial relevance of features in the joint embedding.
This is followed by a set of simple convolutional modules to estimate class and pose. We evaluated
our model on the LineMod and YCB datasets using the average distance metric (ADD/ADD(s)). The
results show that the performance is competitive with existing state of the art.



II

Acknowledgments
This thesis would not come to fruition without the constant guidance and help of my professors and
colleagues. I would like to expressly thank Prof. Hamidreza Kasaei for sharing his immense knowl-
edge of existing work and methods in the field of computer vision, for helping me formulate the idea
into milestones, and providing constant technical and emotional support. I also want to thank Prof.
Lambert Schomaker for providing effective and practical ideas and feedback that helped formulate
the framework and analysis. This project would not be completed without their support.
I also want to thank the Center of Information Technology at the University of Groningen for pro-
viding me storage and computational capacity through the Peregrine cluster, without which efficient
training and analysis of the proposed idea would not have been possible. An additional thanks to the
support staff at both the Center of Information Technology and Student Administration at the Univer-
sity of Groningen for prompt assistance and support.
Lastly, a nod of gratitude to my fellow students and colleagues for sharing with me their thoughts on
my ideas and work.



CONTENTS III

Contents
Abstract I

Acknowledgements II
Page

List of Figures IV

1 Introduction 1

2 Background Literature 3
2.1 RGB Object Pose Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 RGB-D and Point Cloud Object Pose Estimation . . . . . . . . . . . . . . . . . . . 4
2.3 Joint Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4 Transformer Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Methods 6
3.1 Preparing Joint Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Transformer Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 Pose Parameter Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Experimental Setup 10
4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.1.1 LineMOD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2 YCB-Video . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.3 Model Variants and parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.4 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5 Results 14
5.1 Training and Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.2 Quantitative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.3 Qualitative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.4 Additional Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

6 Conclusion 19

7 Scientific Relevance for Artificial Intelligence 20

Bibliography 21

Appendices 26



IV

List of Figures
1.1 Abstract Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
3.1 Detailed Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.1 LineMOD: Samples of RGB images with corresponding label masks. (L-R: ape,

eggbox, lamp, benchvise, iron) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2 YCB-Video: Sample RGB image with corresponding depth image and label mask.

(L-R: large clamp, gelatin box, tuna fish can, wood block, cracker box) . . . . . . . 11
5.1 Class-wise testing accuracy over time . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.2 Mean Training Accuracy and Total Loss over time . . . . . . . . . . . . . . . . . . . 15
5.3 Class-wise testing accuracy over time . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.4 YCB: Training Accuracy and Total Loss over time. . . . . . . . . . . . . . . . . . . 15
5.5 LineMOD: Class-wise test accuracy comparison . . . . . . . . . . . . . . . . . . . . 16
5.6 YCB: Class-wise test accuracy comparison . . . . . . . . . . . . . . . . . . . . . . 17
5.7 LineMOD: Visualization of predicted points . . . . . . . . . . . . . . . . . . . . . . 17
5.8 YCB: Visualization of predicted points . . . . . . . . . . . . . . . . . . . . . . . . . 18



1

1 Introduction

Autonomous service robots heavily depend on localizing and manipulating objects in a real world
scenario. With the recent advances in CNNs and processing power, and a continuously rising col-
lection of training datasets, a lot of research is being done to create and improve service robots. An
important part of this process is that of estimating the relative pose of objects from a cluttered scene.
One can imagine a lot of tasks in everyday life where we require to move/collect/adjust an object in
the environment. For this reason, finding objects and their properties in 3D environments is a field
of research which is fast gaining momentum. Using neural networks, I intend to create a system that
can recognize objects from 3D point clouds and then estimate its 6D pose. A 6D pose refers to the
posture of an object defined by a translation vector and a rotation vector, and estimating it is a very
important task in a multitude of problems and applications such as driving, bin picking, recognition,
self localization and mapping etc.
A variety of explicit feature extraction methods, using templates to learn texture, color and geomet-
ric information, have been proposed to find the pose of an object in a scene ([1],[2],[3]). Yet, this
task is plagued with problems, apart from requiring verified templates, the results still suffer from
generic real world problems such as noisy data, occlusion from clutter and insufficient information
regarding the objects/scenes. CNNs ([4]) on the other hand, have shown robustness to these factors.
Due to their ability to learn intrinsic properties and relations given a large set of parameters and a
good dataset, many researchers have tried to solve object segmentation and 6D object pose estimation
using deep networks ([5],[6],[7],[8]). Additionally, depth sensitive cameras provide an easy supply of
training data, so there has been improvements in the use of point clouds for OPE tasks. [9], [10] also
introduce data-models to deal with point cloud data, which further prompts the use of RGB-D data.
This is good as RGB based techniques often suffer from a lack of geometric perspective, seeing as
hypothesis are made based on projections of RGB data. Some solutions use 3D-CNNs ([11],[12]) to
directly incorporate depth data into models similar to 2D architecture, however that greatly increases
complexity. Point-cloud based networks or PCNs ([13],[14]) reduce some of this strain, however both
these methods suffer from lack of texture information and sparsity of datapoints.
Using variations like affine regressors ([15]), regional bounding boxes ([16]), ShapeLoss ([17]), do-
main transformation ([18]) etc, multiple improvements have been suggested for end-to-end model
architectures for both CNNs and PCNs. [19], [20], [21] show that the use of information from both
RGB(texture) and RGB-D(rotation) data to generate features helps improve accuracy.
The introduction of attention ([22]) and transformers initially thoroughly outperformed existing meth-
ods in NLP and proved to be efficient to a variety of tasks there. Not only are these networks very
efficient at capturing spatial relations in input data, they are also easy to train even for very large sets
of parameters. Different kinds of attention based frameworks ([23], [24], [25]) have also been applied
to image data with successful results.

While the different architectures discussed above focus on different issues and use different
approaches, there appears to have been a general shift towards the use of deep learning to address
6D-OPE. Furthermore, attention based approaches have performed significantly better for image data
with recent improvements. Furthermore, they are mechanisms that find relation between input fea-
tures irrespective of dataset. This means that transformers can be used for a variety of datasets, and
also, aggregated features.
In our paper, we evaluate the performance of transformers for the problem of pose estimation. We
leverage the use of features with transformers, we go one step further, and devise a model that takes
both 2D and 3D data as input. These inputs are individually fed to a well performing CNN model,



2 Chapter 1 INTRODUCTION

however we share information after each step between the two networks, resulting in a joint embed-
ding that should contain information regarding 2D-3D correspondences. We then use this set of points
as input to a transformer, where the model will learn spatial (and if need be, temporal) relations within
the data. This is then fed to separate networks that will each focus on predicting segment, position and
orientation for recognized objects in the scene. Figure 1.1 shows the abstracted pipeline of our model.

Figure 1.1: Abstract Network Architecture

We show that this can provide even better results than the individual CNN based methods and
previous dense representation based methods. Furthermore, this will show that the use of dense
representations of point clouds as input for Transformers results in very good inferences on the spatial
relations in the data.



Chapter 2 BACKGROUND LITERATURE 3

2 Background Literature

We will now discuss the different frameworks in the field of 6D-OPE and attention networks. Preva-
lent methods involve computing 2D projections of 3D images and evaluating keypoints, followed
by template matching. Since initial algorithms were inefficient in presence of occlusion and change
of lighting, various techniques were proposed to improve the 3D-to-2D correspondences, for ex-
ample, using template matching ([1],[26]) where the image data was compared to a set of tem-
plates and the closest matching template was selected as the resulting pose. A popular alternate
to this was to use sparse feature matching, where only selective features such as edges were matched
([16],[27],[28],[29]). While these were outperformed on multiple aspects by deep-CNNs over the last
decade due to their capacity to learn inherent features on its own, they provide the basis for some of
the CNN based architectures. The primary models which have gained traction use CNN based models
and can broadly be classified as keypoint based models and holistic regression based models. We will
now discuss some of these frameworks that lead to our idea.

2.1 RGB Object Pose Estimation

Holistic/direct-regression based approaches attempt to define and end-to-end framework that directly
produces output from input, and the feedback in propagated all the way back. This is also an attempt
to design a network that learns the data for different parameters together directly based on input and
output.
BB8 [7], for example, used CNNs to find the 2D projections of the 8 corners of the bounding box
detected in the image. In order to reduce errors from object symmetry, ti hey restricted the rotation
of objects in the training dataset. However it was unable to efficiently estimate poses of objects with
occluded parts. To deal with this problem a segmentation technique similar to older template matching
techniques was applied by Crivallero et al. [30] and Hu et al. [31], where the image is segmented
into multiple parts and each segment is assigned a local pose. The SSD framework [32], an improved
multi-box detecting network like YOLO, Faster-RCNN, tries to directly solve the BB finding task by
evaluating multiple convolutional patches, each resulting in a prediction of label. SSD6D [6], extends
the SSD by incorporating the task of 6D OPE with the SSD framework, providing a single-shot
RGB-based object detection and pose estimation system. An important addition made by the SSD6D
paper is the additional calculated probability and loss for known viewpoints and in-plane rotations,
which requires depth information. This kind of approach fails to improve after a point as some of the
geometric information is only assumed. This flaw is exacerbated in the presence of occlusion. [17]
also decouples the translation and rotation components, and while it is an end-to-end framework, it
first find BBs using traditional methods, then decouples the network to find pose parameters. [33],
[16] further reduces complexity of this method by using a pixel wise or regional voting schemes
within estimated keypoints. Kleeberger et al. [34] also proposed a single-shot network with focus
on object symmetry, clutter, occlusion, and multiple instances of the same object. They also use a
novel loss function to deal with symmetry and similar objects. This shows that the task of 6D OPE
can be solved directly by using appropriate frameworks, however all these models make hypothesis
regarding the geometric information and perform relatively poorly for estimating rotation of objects.
To this end we look at how point clouds based networks address the task of OPE.



4 Chapter 2 BACKGROUND LITERATURE

2.2 RGB-D and Point Cloud Object Pose Estimation

RGB-D based networks include depth data into the input matrix, this is usually done by either adding
pixel-wise depth information to complementary RGB data ([35], [36], [37], [38]), or by creating
point-clouds from given information ([14], [9], [39], [40], [13], [41]).
In the first category, initial attempts simply concatenated input features directly from RGB and depth
sensors respectively [35], this is then forwarded through a deep network usually ending up in a very
large set of parameters. Other approaches use both these features separately, i.e, the RGB information
is first used to extract features, which are then refined using depth information ([17], [42], [6], [33]).
SSD6D [6] implements the SSD [32] framework and then uses PnP to incorporate depth information
to give good results. PoseCNN [17] decouples the translation and rotation components, and also in-
troduces Shape-Loss for point matching. Methods like these, first performs the task of finding BB
center using RGB and estimating the distance from the camera, then use these BB to guess other
pose and label parameters. Wang et al. [43] proposed Geometric-guided Direct Regression network
(GDR-Net) which uses a new continuous 6D representation of the geometric space. The network first
uses an efficient multi-block object segmentation network like YOLO to find ROIs, then the GDR-Net
calculates dense correspondences for them using a 3D graph convolution network, and then applies
Patch-PnP (a proposed variant of PnP that works with regression models) to regress 6D pose for the
output.
The costly PnP algorithm is avoided by Point Cloud Networks which directly work on point-clouds
generated from RGB-D data. The PointNet framework [9] in particular has been modified by a num-
ber of papers to effectively deal with point clouds. Dong et al. [39] proposed an end-to-end framework
called the PPR-Net for 3D data where the technique is similar to the point-wise voting used in PVNet
[33]. The Point-wise Pose Regression Network (PPR-Net) regresses a 6D pose for the corresponding
object for each point in the point cloud. A clustering method is used to find segments in the point
cloud, followed by an aggregation of all the pose predictions for points in that segment. [13] introduce
RandLA-Net which effectively reduces the computational load by using effective sampling and local
feature aggregation to learn spatial relations for each point. These and many other 3D-CNN and PCN
based techniques suffer from sparse points and overhead from PnP refining. More importantly, they
evaluate 2D and 3D data in different networks due to their dimensions, and at a later stage attempt to
use the features from these modules to regress pose. However it would be beneficial if we could help
these separate networks share information.

2.3 Joint Representation

Ku et al. [19] first introduce AVOD which uses point clouds and RGB inputs, each of which generate
features which are fed to two sub-modules; a region proposal network(RPN) and a detector network.
They propose an efficient method for multimodal feature fusion in the RPN that aggregates RGB and
PCN features to generate proposals for objects in the scene. Xu et al. [44] propose an application
agnostic framework that uses a single fusion network to predict BBs. Liang et al. [20] propose an
end-to-end framework that uses a fusion of 2D and 3D features to directly detect multiple objects.
MoreFusion [45] propose a framework which only fuses features at at the end of individual networks
to predict BBs and pose. They use additional information from 3D-CNN features for pose regression,
and split the network for individual tasks at the end.
DenseFusion [46] first proposes a generic framework to use both features together. The RGB and
PCN module are allowed to process each data source individually, and uses a separate parallel mod-
ule that fuses RGB and point cloud information for each pixel. While it is the framework used by



Chapter 2 BACKGROUND LITERATURE 5

current SOTA architectures, it still does not try to learn contextual information in the neighbourhood
of the pixels. Zhou et al. [47] propose a method that first extracts information from RGB data and
then directly combine these features to the point cloud using a modified version of PointNet++ [10].
Several ’region-level’ filters are obtained in the form of point sets, and each makes a prediction for
pose. He et al. [21] use the DenseFusion architecture with RandLA-Net [13] to further reduce the
size and complexity of fused features.

2.4 Transformer Networks
Since the introduction of Transformer networks [22], which use attention, and their success in various
NLP tasks. While attention was already replacing other memory based networks for image processing
([23], [24], [25]), the transformer module has recently been with excellent results ([48], [49], [50],
[51], [52]).
Providing pixel-wise Parmar et al. [53] applied attention to images only to select pixels in a local
neighborhood. Further research showed that such local multi-head attention can perform as well
as CNNs ([54], [55], [56]). Hu et al. [25] add focus on the relation between channels by adding
a channel attention module that studies the relationships between channels. Separate ’SE’-blocks
then explicitly model channel inter-dependency. Sparse-Transformers [57] use global self attention
by creating scalable regional approximations on the transformer matrix. DANet [58] propose a dual
attention module method that integrate local features with global dependencies, making similar fea-
tures related to each other irrespective of distance. These networks still use CNN modules to extract
features before applying attention. DETR [59] uses RGB feature maps and transformers with sparse
sampling for multi-object detection with a much faster convergence rate. [60] refute the need for any
convolutional modules while using transformer modules, by simply representing the image as a series
of smaller patches. Since transformers are known to perform well with sentences. They show that this
is true and present significant results for smaller patch sizes. [61] propose the use of spatial attention
in 6D OPE with RGB images and got successful results on various datasets. [62] propose the use of
color and geometry information alongside attention modules and achieve competitive results. They
utilize a schema similar to AVOD [19], however this can be improved upon by incorporating more
recent fusion techniques.
The rising use and success of attention networks for image processing DNNs prompts the use of trans-
formers with the fused features architecture discussed above. To this end we will design a network
that extracts features based on the framework suggested by DenseFusion and FFB6D ([46],[21]), and
then test these features with an attention network to capture contextual information, before regressing
pose parameters.



6 Chapter 3 METHODS

3 Methods
The goal is to create an end-to-end framework that outputs object class and pose for the recognized
objects in the scene. Given an RGB image and it’s corresponding point cloud, we want to output label
and 6D pose, i.e, translation matrix T ∈R3 and rotation matrix R ∈ SO(3) w.r.t camera/POV. We wish
to leverage both image and point cloud information for complete texture and rotation data, use the
features extracted by such a network to test its compatibility with transformer networks, and we want
the different modules to learn from each other directly without external refining or transformations.
An overview of the model is presented in Fig 3.1. Image and point-cloud inputs are fed into in-
dividual neural networks. The upper layers of encoder-decoder pair represent the CNN, while the
lower represent the PCN. However instead of directly passing output of a layer to the next, it is first
shared and transformed by a fusion layer(the set of layers in between). At the end of the networks,
the resulting fused features are passed to a transformer module to incorporate spatial attention to get
relative information on a local and global scale. The resulting representations which are output by the
Transformer are used as inputs to a set of MLPs, each focusing on one task. Since the features learnt
at the end of the transformer module are expected to contain information relevant to multiple tasks,
this is a multi-task learning network that will also be using different losses for some of the tasks. We
will now discuss the details of each section of our architecture.

Figure 3.1: Detailed Network Architecture

3.1 Preparing Joint Representation
The network attempts to create a jointly learnt representation ([63], [21]) as opposed to a mere con-
catenation of individually learnt representations ([64], [65], [33]). The task again is to create a fused-
features representation using both image and point cloud data. However instead of trusting the aggre-
gated features at the end of an individual network, we will let the networks interact with each other as
they progress. As proposed by [21], we will add an additional layer whose sole purpose is to collate
information from one network and prepare it for the other, so as to share information between CNN
and PCN at each step of convolution. The input image(3x640x480) and point-cloud(9x12800) are fed
into individual CNN and PCN networks respectively, after each step of the respective process, the set
of resulting CNN features and PCN features are first transformed by the corresponding nodes in the
fusion layer.
In the fusion layer, we want to map the color information from the image to the point cloud, and
similarly, geometric information from point cloud to RGB. Instead of evaluating a global feature for
both sets of features individually, or using sparse regional features, we will follow the pixel-wise in-
formation gathering methods discussed in [8], where only the pixels in the region of the point cloud
will be considered. Since the input data is aligned geometrically, we can use the point cloud to map



Chapter 3 METHODS 7

the corresponding pixels and vice versa [21]. We can use this information to collect relevant infor-
mation for each point/pixel. This will also avoid noise from pooling over areas where the image is
mostly background between two different objects. We will need two different pipelines to deal with
the different kind of data for Pixel-to-Point and Point-to-Pixel information mapping.
During Pixel-to-Point mapping, we want to incorporate texture data from pixels to corresponding
points. We use the camera intrinsic matrix, to add perspective adding depth for each pixel to get an
XYZ map aligned to the RGB channels. Since the point cloud is generated from RGBD data in simi-
lar fashion, so further steps are needed to align the map. Then a KNN search is used to find k nearest
corresponding points between the point cloud and XYZ map [21]. The CNN data from the RGB
channels is then aggregated using max pooling, following [10]. This aggregated feature is then added
to the point cloud data. An MLP is used to adjust the dimensions back to the required dimension of
the next layer of PCN 1. During Point-to-pixel mapping, we follow the same procedure, however this
time, feature data is aggregated for k nearest points in point cloud corresponding to XYZ mapping for
each pixel in CNN feature. The result is passed through an MLP to prepare it for the complementary
network 2. This way additional geometric information is shared with the CNN layers.

Fr2p = MLP(maxk
i=1Fri) (1)

Fp2r = MLP(maxk
i=1Fpi) (2)

After the information from the other network is prepared, a concatenation operation is used, fol-
lowed by another small MLP to fit the shape of next layer(3, 4).

Ff used pcn = MLP(concat(Fp2r +Fr2p)) (3)

Ff used cnn = MLP(concat(Fr2p +Fp2r)) (4)

After three encoding and decoding steps in this fashion, the final output is concatenated based on
the mapping used during fusing. The resulting features should contain information on both texture
and geometry. We will use this set of enhanced features as input for a transformer module, so we do
not need more layers in encoder-decoder pair.

3.2 Transformer Module
We want to test the performance of the fused features with transformer modules, and let the entire
network learn together. Attention should also help refine features from noise due to occlusion of
shared pixels. We leverage the results found by [60], where an image is treated as a set of patches
with positional encoding. It is then treated like words tokens in a sentence and fed to a standard
transformer encoder. [60] does this by splitting the image into mxn patches and gives each patch a
positional encoding. While a point cloud lies in a different geometric space, the fused parameters,
and the transformers inherent ability to learn relations between positions irrespective of distance can



8 Chapter 3 METHODS

be leveraged to use the same architecture for point clouds.
While attention based methods have previously been effective with image tasks relating segmentation
and captioning, Transformer based methods have recently attained state of the art results. We believe
this is in part due the nature of self-attention as compared to attention. While attention is based on
an encoder-decoder mechanism that learns relation between an output and input sequence, self atten-
tion focuses more on learning representations based on the query itself. This is particularly useful
for images and point clouds in context to pose estimation, and even more so with a keypoint based
approach like ours. This is because of two reasons, the first being that the orientation and texture
of neighbouring pixels play an important role in both pose estimation and overall image processing.
Secondly, the task requires to learn a dependable representation, thereby making a task specific de-
coder part of traditional attention unnecessary. The improved performance of Transformers is mainly
due to the ’multi-headed self attention’ that is applies. To understand why self-attention is relevant to
image processing, let us first understand key, query and value as formulated by [22].
Traditionally the terms key, query, and value (Q,K,V) in attention refer to the query-response kind of
applications that they was initially introduced for. Then in translation tasks, while the terms are not
explicitly used, the implementation of storing information regarding neighbours usually involved an
encoder-decoder pair. Essentially the encoder creates a key for a set of values, and when the decoder
receives a query, it outputs the corresponding set of values. Whereas with self-attention ([22]) in
Transformers, all three, key, query and value come from the same place, which is simply the previ-
ous layer of the encoder. In this manner, each position in a Transformer layer attends to every other
position of the previous layer. Additionally, Transformers implement multi-head attention (5) where
attention is applied to h linear projections of the input containing Q,K,V in parallel. The resulting out-
puts are then concatenated and passed forward. This allows the model to jointly learn from different
representation subspace at different points [22].

MultiHead(Q,K,V ) = MLP(Concat(head1, ...,headh)) (5)

where headi refers to the attention output of the ith projection.
Furthermore the paper introduces Scaled Dot-Product Attention which deals with larger dimensions
by scaling the dot-products by a factor of the dimension (6). This is also compatible with our model
which has high dimensional dense features.

Attn = so f tmax(
QKT
√

dk
)V (6)

3.3 Pose Parameter Regression

Now that we have is features that contain texture and geometric information, and local and global
spatial awareness. We will use these features with simple FFNs and squeeze dimensions to our output
dimensions. While some models ([7]) directly regress object labels, centers and poses using a single
MLP, research has shown that regression of rotation parameters is more effective if handled separately
([66],[67]). Additionally, we want to design the network so that the design represents the task. So we
will use 3 separate sets of FFNs to find label, centers and keypoints respectively.
As discussed before, we implement different losses for different tasks. However up to the transformer



Chapter 3 METHODS 9

module, our network is learning a multi-task representation, in this case for segmentation and key-
point reduction. However the representation learnt by the transformer module is then used as input to
different parallel MLPs, each of which is task specific, so as to increase efficiency for each task.
For the segmentation task, we use Focal Loss, a weighted loss function that increases weight adapta-
tion when encountering cases with lower prediction confidence (7).

Focal Loss = α(−(1− p)γlog(p)) (7)

For the task of regressing center and keypoints(two separate MLPs in model), we use L1 Loss or mean
absolute error(MAE)(8). The reason for this is, that while segmentation/labelling, the regression is on
a set of categorical points, whereas for center and keypoints regression, the output space is continuous.

L1 Loss =
1
N
(

N

∑
n=1

|xn − x∗n|) (8)

As the L1-loss for keypoints will involve a set of points instead of a single point. So for a set of
N object instances, each containing a set of K keypoints, the L1-Loss equation will be as shown in
(9), where * denotes ground truth values. To estimate relative position from object center, the object
coordinates are instead replaced by offset from the corresponding predicted center.

L1kpts =
1
N
(

N

∑
n=1

K

∑
k=1

|xk
n − xk∗

n |) (9)

The net loss is a weighted loss as shown in (10), where λ1, λ2, λ3 are weight parameters.

Net Loss = λ1Lclass +λ2Lctr +λ3Lkpts (10)

Instead of directly regressing pitch, yaw and roll, we instead opt to use the keypoint voting module
introduced in PVN3D [63]. The two sets of MLP finding center and keypoint estimates will fetch us an
estimated center and set of keypoints. We will then use this information to compare with ground truth
center and keypoints, in order to estimate pose. Not only is this more compatible with point clouds,
it is also more efficient than bounding boxes as all output points lie on the object body. This method
is more coherent for objects with disproportionate dimensions, and also provides a more precise
estimate of object boundaries. Given a center and set of keypoints on the ground truth model, and an
estimated center and set of keypoints in the output parameters, we calculate the pose parameters. This
is calculated by minimizing the least squared fitting loss as shown in (11) [21].

Lls f =
N

∑
i=1

||p∗i − (R · pi +T )||2 (11)

Here R and T denote the rotational and translational estimates respectively. pi is the estimated
keypoints corresponding to ground truth p∗i .



10 Chapter 4 EXPERIMENTAL SETUP

4 Experimental Setup
We evaluate the performance of our model(s) on two benchmark datasets, the LineMod and YCB
Video datasets. We use a fixed model of CNN and PCN across all models to keep comparisons
accurate. We do not focus on testing different CNNs or PCNs, the focus of these experiments is
to ascertain if transformer modules enhance the learnt representations and improve performance on
the 6D pose estimation. To this effect, we will test the hypothesis using different datasets and small
variants in our basic model.

4.1 Dataset
We evaluate our models on two benchmark datasets.

4.1.1 LineMOD

The LineMod dataset is widely used for various image processing algorithms including those dealing
with 6D pose estimation on objects. The original dataset consists of 18 object models and over 15000
RGBD images annotated with ground truth 6D poses. The images contain objects in a cluttered scene
from a variety of viewpoints and in different lighting. However a cleaner more widely used version
of the dataset contains the same images with robust ground truths for only 13 of these object classes.
We use this version of the dataset which is publicly available at https://bop.felk.cvut.cz/datasets/. Ad-
ditionally, the raster triangle repository is used to create synthetic training data in a range of new
backgrounds and object poses. Masks are added over object boundaries to prepare labels for both net-
works. Figure 4.1 shows samples of RGB and corresponding label images from the dataset. However
the resulting dataset only contained label masks for one object class per image, for this reason, we
also decided to test out model on the YCB-Video Dataset for multi-object detection.

Figure 4.1: LineMOD: Samples of RGB images with corresponding label masks. (L-R: ape, eggbox,
lamp, benchvise, iron)

4.2 YCB-Video
In order to test the model’s performance for multi-object pose estimation, we use the YCB-Video
dataset. It is a commonly used dataset in the field of 6D object pose estimation, having information
regarding 21 object classes. The dataset consists of 92 video sequences, each of a random subset of



Chapter 4 EXPERIMENTAL SETUP 11

object classes, saved as a set of RGBD images. The objects in the images are annotated with 6D
pose parameters and semantic segmentation masks. Again the different images are include different
settings of lighting, occlusion and perspectives. Figure 4.2 shows a sample from the YCB-Video
dataset, showing RGB image, depth image and class label mask for the sample.

Figure 4.2: YCB-Video: Sample RGB image with corresponding depth image and label mask. (L-R:
large clamp, gelatin box, tuna fish can, wood block, cracker box)

While the datasets contains RGBD images and ground truths, we require point clouds for our model
architecture. This is done by projecting the points using depth information and camera intrinsic ma-
trix, following which, a threshold is applied to remove background points from the point cloud.

The data processing, and model creation and training were handled using Python3.7. The model
architecture and training pipeline are implemented in PyTorch.1.10 and Nvidia apex support. Addi-
tionally, the Peregrine cluster provided by University of Groningen was used to train the models.

4.3 Model Variants and parameters
As discussed before, our model consists of three distinct segments:

1. Fusion module: consisting of a CNN and a PCN architecture and above-mentioned fusion layers

2. Transformer module: consisting of part of the Transformer architecure introduced in [68], or a
variant.

3. Task specific MLPs: consisting of three sets of MLPs, respectively dealing with estimating
segment, center and keypoint per object.

We were particularly impressed by the framework introduced by DenseFusion [46] which allows us
to use our choice of CNN and PCN to extract features. This architecture was further improved on by
FFB6D [21], we borrow this fusion architecture, albeit with lesser layers of convolution, as we will be
achieving even better spatial knowledge from the transformer module. The objective of this module is
to create a representation that contains both texture and geometric information without compromising
detail through projections. We want to use RandLA-Net [13] as PCN for its reduced complexity and
parameters, alongside ResNet(encoder)-PSPNet(decoder) for RGB input, as these networks have per-
formed well on most well-known dataset and has publicly available pre-trained models. This pair has
shown to work well with our dataset in previous papers ([63], [21]) and we will use this configuration
for our tests. To reduce complexity and redundancy, the number of layers between fusion have been
reduced by computing two convolutions before merging for the peripheral layers.



12 Chapter 4 EXPERIMENTAL SETUP

We will then use the obtained fused features with a self-attention network [60] to learn spatial re-
lations. The points are given a positional embedding and used as input for the Transformer. We only
leverage the encoder part of the network as the goal is to create an embedding that has learnt repre-
sentations useful for multiple tasks. This representation will then be used as input to the task specific
MLPs, which are simply 1D FFNs.
Each set of task specific MLP is a simple set of 4 1D convolutional layers that regress to the required
parameters. The losses implemented for each task are as discussed in Section 3. The object labels are
learnt from the semantic segmentation MLPs. The predicted label, along with the predicted center for
each object found are used to distinguish between different objects. These point-wise offsets of each
point from center are learnt by the center prediction MLPs. The points then vote for to select keypoints
using a MeanShift [69] clustering algorithm. In the keypoint voting module specifically, for each ob-
ject segment, we follow the point voting mechanism introduced in [63]. The ground truth keypoint
selection is carried out using the SIFT-FPS as introduced in [21]. The algorithm leverages the addi-
tional texture information which has been added to the point clouds. As the name suggests, a SIFT
algorithm is applied to find points with distinctive texture components. These points are projected
to 3D space using depth information. Then amongst these points, a furthest point sampling(FPS)
algorithm is implemented to pick a subset of points that span across the object model. The number
of keypoints used in our models is 8. The predicted keypoints are compared to the ground truth using
the least squares fitting algorithm [63]. Then the distance between corresponding keypoints is used to
calculate the rotation parameters using the 3D rotation group notation (SO(n)).
For all models and datasets, the input image dimensions for the CNN architecture are 480x640x3
(height, width, channels), and the PCN input dimensions are 12800x9 (no. of points, dimension per
point). The 12800 points are sampled randomly using the depth image, the position, color and nor-
mal data is stored having 3 dimensions each. During the fusion stage the network uses max-pooling
between neighbors to aggregate data for point-to-pixel and vice versa. For either operation, 16 neigh-
bours are used to calculate the aggregated information for the corresponding pixel/point.
The model was trained for 15 epochs, while 10 was enough for the LineMOD dataset, the YCB dataset
model was retrained for 5 more epochs. This is reasonable as each sample alone provides feedback
collected from multiple object. Twice every epoch, the model is evaluated with test data to study the
prediction accuracy over time. Additionally a small batch size of 3 was used for every configuration.
The model uses dynamic learning gradient with ADAM optimizer with the initial learning rate being
set at 1e−5 with the minimum threshold being 1e−5 and the maximum threshold is set at 1e−3. The
weight parameters are all randomly initialized and no pretrained models are used. They are updated
using the net loss, which is a weighted sum of losses from the respective ends of MLPs. The segmen-
tation module uses Focal Loss (7) with the balance parameter α being decided based on the balance
of the dataset. Since we use synthetic data to balance out the number of training samples, this is set to
1 for all classes. The focus parameter γ is set to 2 in order to reduce weight adjustments for examples
where the prediction confidence is high. The center and keypoint regression modules are optimized
using L1 loss, however since they are both regressing for a set of points, we balance the effect on
weight by setting λ1,λ2,λ3 in (10) as 2,1,1 respectively. Additionally, while a full Transformer en-
coder would be more effective, we believe that a miniature model with lesser blocks would suffice
to verify the effectiveness of the module. Furthermore this reduces the complexity of the model by a
lot as the self-attention mechanism as implemented in [22] is computationally expensive. With this
in mind, we reduce the size of the Transformer by only using two attention-heads and two layers of
depth. The input dimensions for the Transformer module are 64x12800 and we find that increasing
the depth of the Transformer quickly increases model size.



Chapter 4 EXPERIMENTAL SETUP 13

To study the effect of the Transformer module better, we train an additional model that uses the
concatenation of representations learnt by each prior module as input for the task specific MLPs.
That is to say, the fused representation, which is the input for the Transformer, is used as additional
input for the final layer (resupply model). We will compare the results and behaviour of the networks
in the next section.

4.4 Evaluation Metrics
To evaluate our performance on the datasets, we use the average distance metrics, ADD for non-
symmetric objects and ADD-S for symmetric objects. The ADD metric calculates the average dis-
tance between ground truth and predicted values for sets of points. This could be object centers or a
set of keypoint sets. The ADD metric is denoted as shown in (12),

ADD =
1
m
(∑

v∈O
||(Rv+T )− (R∗v2 +T ∗)||) (12)

here, v represents a vertex ∈ object O. R,T are the predicted rotation and translation vectors, and
R∗,T ∗ are the ground truth vectors.
The ADD-s metric is shown in (13), with the same denotions, and v1, v2 representing two different
points from the same object model.

ADD =
1
m
(∑

v∈O
min
v2∈O

||(Rv1 +T )− (R∗v2 +T ∗)||) (13)

This is a commonly used pair of evaluation metrics and we compare our results with previous note-
worthy models (Fig. 5.5, Fig. 5.6).



14 Chapter 5 RESULTS

5 Results

In this section, we report and discuss the evaluated results of our models on the LineMOD and YCB-
Video datasets. We present the training accuracy and loss, and test accuracy for different models
from data saved during training and evaluation. We also compare our quantitative results, arrived at
by using ADD/ADD-s metrics with the results of previous architecture, including the state of the art
algorithms for object 6D pose estimation [21].
Additionally, we will project the predicted keypoints on the test image, so as to perform a qualitative
analysis of the results obtained by our models.

5.1 Training and Validation

We will first study the training results for the LineMOD dataset for both the base model and Resupply
model. Fig. 5.1 shows the prediction accuracy over time for each of the models. The model is tested
twice or more every epoch using a test set. We see that for this dataset, where there is only one labelled
object per test image, the model has learnt considerably in just a few epochs for both models. Due to
the small batch-size, some classes like lamp and cam have some drops in prediction accuracy where
the model needs to adjust more significantly even at later epochs. However this is not as prevalent for
the resupply model, implying that the fused representation helped reduce confusion during training.
This trend is also seen in the training accuracy and loss observed during the training process (Fig.
5.2). With the YCB dataset, we observe relatively lower testing accuracy of 93% during the training

(a) Base Model (b) Resupply Model

Figure 5.1: Class-wise testing accuracy over time

phase. However to test the model through different hyper-parameters, only a portion of the training
data is used. We can see the prediction accuracy of the model over time in Fig. 5.3. We observe that
the resupplied representations from the fusion module do not cause much improvement this time, may
be this is because it does not help significantly when dealing with multiple ROIs at the same time.
We also observe that the model has not really stabilized and while it has reached decent performance
levels, it still has a lot of room for training and adjustment. This can be confirmed in Fig. 5.4 where
we can see that the model is still adjusting at every iteration, we can also see that the loss is adjusting
at a higher rate, showing that the model has the capacity to do even better.



Chapter 5 RESULTS 15

Figure 5.2: Mean Training Accuracy and Total Loss over time

(a) Base Model (b) Resupply Model

Figure 5.3: Class-wise testing accuracy over time

Figure 5.4: YCB: Training Accuracy and Total Loss over time.



16 Chapter 5 RESULTS

5.2 Quantitative Analysis
Below, we can see the comparison of our model’s performance to previous works in the field of 6D
OPE. The tables in figures 5.5, 5.6 show the prediction accuracy as observed using the ADD/ADD(s)
metric for non-symmetric and symmetric objects respectively (12, 13). We can see that for the
LineMOD dataset, our model outperforms most models, and has a higher average performance across
all classes than all previous works (Fig. 5.5). However for the YCB dataset (Fig. 5.6) the test results

Figure 5.5: LineMOD: Class-wise test accuracy comparison

from the best saved model did not reflect the results seen during training. This is because only 30% of
the training data was used for training, and 10% of the test data was used for the calculating the test
scores during training. When tested on the entire test dataset, we see a drop in prediction accuracy
of roughly 10%. This is not so bad and shows that the model can still improve if trained over the
entire dataset and for a longer time, preferably with a larger batch-size. Also, we see that our models
do not perform as well for the multi-object dataset with more classes, perhaps a deeper Transformer
module can address this problem by allowing more evaluations from sub-space representations dur-
ing multi-headed self-attention. We still see approximately 84% accuracy on both models, with room
for improvement as the model hasn’t properly converged. We see that our model shows competitive
performance for single object pose estimation on the LineMOD dataset and also shows promise with
multi-object pose estimation on the YCB dataset.

5.3 Qualitative Analysis
Following [63], we have used keypoints to estimate pose parameter, our model estimates a class label
for each point, and when we use this to visualize the predictions of our models, we get a more accurate
view than one would with bounding boxes. In Fig. 5.5 and Fig. 5.8 we see a subset of points from
the object model projected onto the original image. The projected points are color coded by class,
and we can observe that the resulting projections are quite accurate, implying our model successfully
predicts the pose for the single object and multi-object cases in the presence of occlusion and noise.
As discussed before, there is still room for training and improvement for the multi-object scenario.

5.4 Additional Points
While we see that the use of dense representations with self-attention can help directly solve pose
estimation problems using deep learning, we also see that it improves the result over existing config-
urations for single object pose estimation. We also see that using the resupply model can improve the
stability of the model and provide a small boost in performance.



Chapter 5 RESULTS 17

Figure 5.6: YCB: Class-wise test accuracy comparison

Figure 5.7: LineMOD: Visualization of predicted points

Seeing as we only use a small set of convolutions to regress pose after the Transformer module, we
can say that the Transformer learns reliable representations for the training data. Additionally, using
a more gradually paced MLP at the end of transformer may help reduce some of the training noise,



18 Chapter 5 RESULTS

Figure 5.8: YCB: Visualization of predicted points

as this would provide an additional layer of joint multi-task learning before the model splits into task
specific parts.
We observe that larger objects have lesser accuracy, this is also true for objects with textureless parts.
In the case of extra large clamp in the YCB dataset for example, we see a drastically weaker perfor-
mance as compared to other classes (Fig. 5.6). This could also possibly be because a similar model
exists called large clamp which is very similar. Since the model is supposed to account for perspec-
tive, this is probably what caused the large dip in performance.
We see from our results that the Transformer layer improves the representation learnt by the model,
and helps achieve higher accuracy. This is true even for shallow Transformers. Due the the limited
computational capacity, we were unable to test the model for more depth or batch size, both these
factors could in our opinion, greatly improve the representations learnt.



Chapter 6 CONCLUSION 19

6 Conclusion
In this work, we present a new model for direct 6D pose estimation of objects from RGBD data in
cluttered scenes. The model focuses on creating highly informative features using fusion architecture
coupled with a transformer. We are the first to attempt the use of fused features with multi-headed
self attention for direct pose regression. Our innovation includes the use of well augmented features
that learn multi-task oriented representations with help of self-attention Transformers with a small
amount of self-attention blocks.
We show that the use of small transformers successfully performs the task of 6D pose estimation
and also improves direct pose regression from RGBD data, as we achieve higher average results than
most leading architecture. Our results show that using Transformers further improves the stability of
learnt weights in case of single object pose estimation. However when the confusion increases due to
multiple objects, the resupply model fails to show the same stability. It is possible that with further
training, the additional information will once again help improve stability. Also, the Transformer
module does not have to be as large as proposed in the initial paper, however for multi-object estima-
tion and datasets with more class labels, it would be better to use a larger model. Also, only a few
simple convolutions are required for each of the tasks, showing that the attention module does im-
prove the quality of learnt representations. While the model learns to recognize all the object classes,
it does struggle relatively more with large and shiny objects.
The current model can still be reduced in size and complexity by using smaller input images, as the
size we use are slightly larger than standard. Furthermore, the layers of the fusion network can fur-
ther be reduced, and replaced with attention layers instead. However we retain this module to a good
extent to ensure interpolation of texture and geometric data for each point. While the current model
is not usable in real-time applications, we believe that it can be achieved by reducing the layers and
size of input, without sacrificing significant performance.



20 Chapter 7 SCIENTIFIC RELEVANCE FOR ARTIFICIAL INTELLIGENCE

7 Scientific Relevance for Artificial Intelligence
As deep networks are good at learning intrinsic properties in data, they have shown to be more robust,
and various architectures have been proposed to deal with data so as to be more true to the task
definition. Making end-to-end frameworks more efficient by using task-oriented designs can help
improve the efficiency of these systems. In this paper, we evaluate the legitimacy of transformers
with the use of dense representations. From the results, we have shown that the use of Transformer
modules with dense representations for point clouds can improve results even with a few layers of
encoding. The representations learnt did not require a lot of additional processing to regress task
parameters. Furthermore, the entire pose estimation process does not require external input. While
point clouds are not an ordered set, the Transformer’s inherent capacity to learn spatial relations
across large distances allows it to learn representations that can be used with simple convolution to
regress pose parameters. This may be useful for testing with 3D datasets with more versatile object
models (human organs, ), those with subtle differences between states/classes (3D-fMRI, study of
bee-hives). This approach may also be useful for learning geometrical structure based graph models,
such as intra-molecular geometry prediction where data has high dependence on spatial relations and
geometry.
Furthermore, recent papers ([70, 51]) have attempted to reduce the complexity of self-attention and
Transformer related networks. This improvement could help improve our model to more practical
parameter size, tackling some of the problems we faced with the computational load.

I believe this model can also improve performance for multi-object pose estimation if trained with
more layers. There is further space evaluate the possibility of using of Transformers for pose refining,
and investigate more efficient ways to represent point clouds to transformers.



BIBLIOGRAPHY 21

Bibliography
[1] S. Hinterstoisser, C. Cagniart, S. Ilic, P. Sturm, N. Navab, P. Fua, and V. Lepetit, “Gradient re-

sponse maps for real-time detection of textureless objects,” IEEE transactions on pattern anal-
ysis and machine intelligence, vol. 34, no. 5, pp. 876–888, 2011.

[2] E. Brachmann, A. Krull, F. Michel, S. Gumhold, J. Shotton, and C. Rother, “Learning 6d ob-
ject pose estimation using 3d object coordinates,” in European conference on computer vision,
pp. 536–551, Springer, 2014.

[3] J. Liebelt, C. Schmid, and K. Schertler, “independent object class detection using 3d feature
maps,” in 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8, IEEE,
2008.

[4] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document
recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[5] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time
object detection,” in Proceedings of the IEEE conference on computer vision and pattern recog-
nition, pp. 779–788, 2016.

[6] W. Kehl, F. Manhardt, F. Tombari, S. Ilic, and N. Navab, “Ssd-6d: Making rgb-based 3d detec-
tion and 6d pose estimation great again,” in Proceedings of the IEEE international conference
on computer vision, pp. 1521–1529, 2017.

[7] M. Rad and V. Lepetit, “Bb8: A scalable, accurate, robust to partial occlusion method for pre-
dicting the 3d poses of challenging objects without using depth,” in Proceedings of the IEEE
International Conference on Computer Vision, pp. 3828–3836, 2017.

[8] Y. Hu, J. Hugonot, P. Fua, and M. Salzmann, “Segmentation-driven 6d object pose estima-
tion,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 3385–3394, 2019.

[9] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on point sets for 3d clas-
sification and segmentation,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 652–660, 2017.

[10] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical feature learning on
point sets in a metric space,” Advances in neural information processing systems, vol. 30, 2017.

[11] S. S. J. Xiao, “Sliding shapes for 3d object detection in depth images,”

[12] S. Song and J. Xiao, “Deep sliding shapes for amodal 3d object detection in rgb-d images,” in
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 808–816,
2016.

[13] Q. Hu, B. Yang, L. Xie, S. Rosa, Y. Guo, Z. Wang, N. Trigoni, and A. Markham, “Randla-net:
Efficient semantic segmentation of large-scale point clouds,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 11108–11117, 2020.



22 BIBLIOGRAPHY

[14] Y. Zhou and O. Tuzel, “Voxelnet: End-to-end learning for point cloud based 3d object detection,”
in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4490–
4499, 2018.

[15] A. Kendall, M. Grimes, and R. Cipolla, “Posenet: A convolutional network for real-time 6-dof
camera relocalization,” in Proceedings of the IEEE international conference on computer vision,
pp. 2938–2946, 2015.

[16] T.-T. Do, M. Cai, T. Pham, and I. Reid, “Deep-6dpose: Recovering 6d object pose from a single
rgb image,” arXiv preprint arXiv:1802.10367, 2018.

[17] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox, “Posecnn: A convolutional neural network for
6d object pose estimation in cluttered scenes,” arXiv preprint arXiv:1711.00199, 2017.

[18] G. Gao, M. Lauri, Y. Wang, X. Hu, J. Zhang, and S. Frintrop, “6d object pose regression via
supervised learning on point clouds,” in 2020 IEEE International Conference on Robotics and
Automation (ICRA), pp. 3643–3649, IEEE, 2020.

[19] J. Ku, M. Mozifian, J. Lee, A. Harakeh, and S. L. Waslander, “Joint 3d proposal generation
and object detection from view aggregation,” in 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 1–8, IEEE, 2018.

[20] M. Liang, B. Yang, S. Wang, and R. Urtasun, “Deep continuous fusion for multi-sensor 3d object
detection,” in Proceedings of the European conference on computer vision (ECCV), pp. 641–
656, 2018.

[21] Y. He, H. Huang, H. Fan, Q. Chen, and J. Sun, “Ffb6d: A full flow bidirectional fusion network
for 6d pose estimation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 3003–3013, 2021.

[22] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polo-
sukhin, “Attention is all you need,” Advances in neural information processing systems, vol. 30,
2017.

[23] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel, and Y. Bengio, “Show,
attend and tell: Neural image caption generation with visual attention,” in International confer-
ence on machine learning, pp. 2048–2057, PMLR, 2015.

[24] F. Wang, M. Jiang, C. Qian, S. Yang, C. Li, H. Zhang, X. Wang, and X. Tang, “Residual attention
network for image classification,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 3156–3164, 2017.

[25] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 7132–7141, 2018.

[26] S. Hinterstoisser, V. Lepetit, S. Ilic, S. Holzer, G. Bradski, K. Konolige, and N. Navab, “Model
based training, detection and pose estimation of texture-less 3d objects in heavily cluttered
scenes,” in Asian conference on computer vision, pp. 548–562, Springer, 2012.

[27] D. Li, H. Wang, Y. Yin, and X. Wang, “Deformable registration using edge-preserving scale
space for adaptive image-guided radiation therapy,” Journal of applied clinical medical physics,
vol. 12, no. 4, pp. 105–123, 2011.



BIBLIOGRAPHY 23

[28] D. G. Lowe et al., “Fitting parameterized three-dimensional models to images,” IEEE transac-
tions on pattern analysis and machine intelligence, vol. 13, no. 5, pp. 441–450, 1991.

[29] M. Rad and V. Lepetit, “Bb8: A scalable, accurate, robust to partial occlusion method for pre-
dicting the 3d poses of challenging objects without using depth,” in Proceedings of the IEEE
International Conference on Computer Vision, pp. 3828–3836, 2017.

[30] A. Crivellaro, M. Rad, Y. Verdie, K. Moo Yi, P. Fua, and V. Lepetit, “A novel representation of
parts for accurate 3d object detection and tracking in monocular images,” in Proceedings of the
IEEE international conference on computer vision, pp. 4391–4399, 2015.

[31] Y. Hu, J. Hugonot, P. Fua, and M. Salzmann, “Segmentation-driven 6d object pose estima-
tion,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 3385–3394, 2019.

[32] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg, “Ssd: Single
shot multibox detector,” in European conference on computer vision, pp. 21–37, Springer, 2016.

[33] S. Peng, Y. Liu, Q. Huang, X. Zhou, and H. Bao, “Pvnet: Pixel-wise voting network for 6dof
pose estimation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 4561–4570, 2019.

[34] K. Kleeberger and M. F. Huber, “Single shot 6d object pose estimation,” in 2020 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pp. 6239–6245, IEEE, 2020.

[35] M. Schwarz, H. Schulz, and S. Behnke, “Rgb-d object recognition and pose estimation based on
pre-trained convolutional neural network features,” in 2015 IEEE international conference on
robotics and automation (ICRA), pp. 1329–1335, IEEE, 2015.

[36] W. Kehl, F. Milletari, F. Tombari, S. Ilic, and N. Navab, “Deep learning of local rgb-d patches
for 3d object detection and 6d pose estimation,” in European conference on computer vision,
pp. 205–220, Springer, 2016.

[37] C. Choi and H. I. Christensen, “Rgb-d object pose estimation in unstructured environments,”
Robotics and Autonomous Systems, vol. 75, pp. 595–613, 2016.

[38] T. Do, T. Pham, M. Cai, and I. Reid, “Real-time monocular object instance 6d pose estimation,”
2019.

[39] Z. Dong, S. Liu, T. Zhou, H. Cheng, L. Zeng, X. Yu, and H. Liu, “Ppr-net: point-wise pose re-
gression network for instance segmentation and 6d pose estimation in bin-picking scenarios,” in
2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1773–
1780, IEEE, 2019.

[40] C. R. Qi, O. Litany, K. He, and L. J. Guibas, “Deep hough voting for 3d object detection in
point clouds,” in proceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 9277–9286, 2019.

[41] K. Park, T. Patten, and M. Vincze, “Pix2pose: Pixel-wise coordinate regression of objects for
6d pose estimation,” in Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 7668–7677, 2019.



24 BIBLIOGRAPHY

[42] B. Tekin, S. N. Sinha, and P. Fua, “Real-time seamless single shot 6d object pose prediction,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 292–301,
2018.

[43] G. Wang, F. Manhardt, F. Tombari, and X. Ji, “Gdr-net: Geometry-guided direct regression
network for monocular 6d object pose estimation,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 16611–16621, 2021.

[44] D. Xu, D. Anguelov, and A. Jain, “Pointfusion: Deep sensor fusion for 3d bounding box es-
timation,” in Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 244–253, 2018.

[45] K. Wada, E. Sucar, S. James, D. Lenton, and A. J. Davison, “Morefusion: Multi-object reasoning
for 6d pose estimation from volumetric fusion,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 14540–14549, 2020.

[46] C. Wang, D. Xu, Y. Zhu, R. Martı́n-Martı́n, C. Lu, L. Fei-Fei, and S. Savarese, “Densefusion: 6d
object pose estimation by iterative dense fusion,” in Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 3343–3352, 2019.

[47] G. Zhou, Y. Yan, D. Wang, and Q. Chen, “A novel depth and color feature fusion framework for
6d object pose estimation,” IEEE Transactions on Multimedia, vol. 23, pp. 1630–1639, 2020.

[48] S. Jégou, M. Drozdzal, D. Vazquez, A. Romero, and Y. Bengio, “The one hundred layers
tiramisu: Fully convolutional densenets for semantic segmentation,” in Proceedings of the IEEE
conference on computer vision and pattern recognition workshops, pp. 11–19, 2017.

[49] L. Chen, H. Zhang, J. Xiao, L. Nie, J. Shao, W. Liu, and T.-S. Chua, “Sca-cnn: Spatial and
channel-wise attention in convolutional networks for image captioning,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 5659–5667, 2017.

[50] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani,
M. Minderer, G. Heigold, S. Gelly, et al., “An image is worth 16x16 words: Transformers for
image recognition at scale,” arXiv preprint arXiv:2010.11929, 2020.

[51] H. Touvron, M. Cord, A. Sablayrolles, G. Synnaeve, and H. Jégou, “Going deeper with image
transformers,” in Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 32–42, 2021.

[52] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and H. Jégou, “Training data-
efficient image transformers & distillation through attention,” in International Conference on
Machine Learning, pp. 10347–10357, PMLR, 2021.

[53] N. Parmar, A. Vaswani, J. Uszkoreit, L. Kaiser, N. Shazeer, A. Ku, and D. Tran, “Image trans-
former,” in International conference on machine learning, pp. 4055–4064, PMLR, 2018.

[54] H. Hu, Z. Zhang, Z. Xie, and S. Lin, “Local relation networks for image recognition,” in Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3464–3473, 2019.

[55] P. Ramachandran, N. Parmar, A. Vaswani, I. Bello, A. Levskaya, and J. Shlens, “Stand-alone
self-attention in vision models,” Advances in Neural Information Processing Systems, vol. 32,
2019.



BIBLIOGRAPHY 25

[56] H. Zhao, J. Jia, and V. Koltun, “Exploring self-attention for image recognition,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10076–10085,
2020.

[57] R. Child, S. Gray, A. Radford, and I. Sutskever, “Generating long sequences with sparse trans-
formers,” arXiv preprint arXiv:1904.10509, 2019.

[58] J. Fu, J. Liu, H. Tian, Y. Li, Y. Bao, Z. Fang, and H. Lu, “Dual attention network for scene
segmentation,” in Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 3146–3154, 2019.

[59] X. Zhu, W. Su, L. Lu, B. Li, X. Wang, and J. Dai, “Deformable detr: Deformable transformers
for end-to-end object detection,” arXiv preprint arXiv:2010.04159, 2020.

[60] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani,
M. Minderer, G. Heigold, S. Gelly, et al., “An image is worth 16x16 words: Transformers for
image recognition at scale,” arXiv preprint arXiv:2010.11929, 2020.

[61] S. Stevšič and O. Hilliges, “Spatial attention improves iterative 6d object pose estimation,” in
2020 International Conference on 3D Vision (3DV), pp. 1070–1078, IEEE, 2020.

[62] H. Yuan and R. C. Veltkamp, “6d object pose estimation with color/geometry attention fusion,”
in 2020 16th International Conference on Control, Automation, Robotics and Vision (ICARCV),
pp. 529–535, IEEE, 2020.

[63] Y. He, W. Sun, H. Huang, J. Liu, H. Fan, and J. Sun, “Pvn3d: A deep point-wise 3d keypoints
voting network for 6dof pose estimation,” in Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), June 2020.

[64] S. Zakharov, I. Shugurov, and S. Ilic, “Dpod: 6d pose object detector and refiner,” in Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 1941–1950, 2019.

[65] J. Zhou, M. Hao, D. Zhang, P. Zou, and W. Zhang, “Fusion pspnet image segmentation based
method for multi-focus image fusion,” IEEE Photonics Journal, vol. 11, no. 6, pp. 1–12, 2019.

[66] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox, “Posecnn: A convolutional neural network for
6d object pose estimation in cluttered scenes,” arXiv preprint arXiv:1711.00199, 2017.

[67] W. Chen, X. Jia, H. J. Chang, J. Duan, L. Shen, and A. Leonardis, “Fs-net: Fast shape-based
network for category-level 6d object pose estimation with decoupled rotation mechanism,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 1581–1590, June 2021.

[68] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional
transformers for language understanding,” arXiv preprint arXiv:1810.04805, 2018.

[69] D. Comaniciu and P. Meer, “Mean shift: A robust approach toward feature space analysis,” IEEE
Transactions on pattern analysis and machine intelligence, vol. 24, no. 5, pp. 603–619, 2002.

[70] D. Zhou, B. Kang, X. Jin, L. Yang, X. Lian, Z. Jiang, Q. Hou, and J. Feng, “Deepvit: Towards
deeper vision transformer,” arXiv preprint arXiv:2103.11886, 2021.



26 APPENDICES

Appendices


	Abstract
	Acknowledgements
	List of Figures
	Introduction
	Background Literature
	RGB Object Pose Estimation
	RGB-D and Point Cloud Object Pose Estimation
	Joint Representation
	Transformer Networks

	Methods
	Preparing Joint Representation
	Transformer Module
	Pose Parameter Regression

	Experimental Setup
	Dataset
	LineMOD

	YCB-Video
	Model Variants and parameters
	Evaluation Metrics

	Results
	Training and Validation
	Quantitative Analysis
	Qualitative Analysis
	Additional Points

	Conclusion
	Scientific Relevance for Artificial Intelligence
	Bibliography
	Appendices

