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Abstract

This study presents a framework to include nonlinearities to a linear model of trimmer dynamics. Non-
linear elements often contribute to the existence of limit cycles in control system. This is undesirable
since it intensifies the vibrations that the trimmer already experiences. The framework, to include
these nonlinearities, utilises the describing function method. This method relies quasi-linearization of
the nonlinear component, such that the stability of this system can be studied utilising linear control
theory, under strict conditions. Describing function is particular useful for finding limit cycling be-
haviour. Development and validation of the properties corresponding to the limit cycles are utilised
with Matlab simulations, and further validated with experiment.
Despite the describing function method insisted that limit cycling behaviour should exist for a certain
amount of play/backlash in the trimmer, experimental data did not support this with evidence.
A potential explanations is presented, stating that the Coulomb friction between some of the funda-
mental components of the trimmer alleviates the magnitude of the predicted limit cycle. Other play
models are introduced to the system to facilitate for a more generic justification that only stable limit
cycles can occur over a fixed range of frequencies. It showed that this range is bounded by the contours
of the describing function for the two limiting cases for friction-, and inertia-controlled backlash.

Keywords: describing function theory, nonlinear control theory, self-sustained oscillations
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Chapter 1

Introduction

Trimmer is an essential electronic gadget in everyday life of a human being. Therefore, it’s critical
that the user has a pleasant experience. Vibration is evident during the use of the trimmer. However,
increasing vibrations can lead to unpleasant experience for the user. Vibrations may originate from
a various sources, thus not all of them can be regulated or eliminated. This research is devoted to
investigate vibrations caused by nonlinear elements within trimmer dynamics.

Trimmers are devices that comprise many interconnecting elements, to realise the reciprocating move-
ment. Typically, the distinctive elements are made of a various materials. Some elements are made
of PU, while other elements are made from a steel alloy. Some of the interconnecting elements are
designed in such a way that there is a certain amount of play between the elements. Vibrations inside
the device may also be caused by play in addition to the oscillatory motion of the components of the
trimmer. It is therefore desirable to investigate the relations between the amount of play and the
induced extra vibration generated by it.

Currently, Philips Drachten is working towards a model-based system engineering approach. This
reduces the need for prototyping and enables designers to comprehend the effects of altering model
parameters since a virtual representation of the trimmer is created. In the world of engineering, this
virtual representation is also known as a ‘digital twin’. A digital twin, of any device, is its counterpart
in virtual representation, and can be used for product optimisation.

As of now, Philips Drachten does have a complex system (digital twin) for their linear trimmer model.
However, the nonlinear elements, such as play and friction, have yet to be added to this model. It is
anticipated that these nonlinearities may contribute to the additional vibrations.

This project’s objective is to incorporate these nonlinearities into the linear digital twin and investi-
gate how they affect the vibrations.

The problem statement for this research project is formulated as follows:

There is a gap of knowledge in understanding the vibrations caused by nonlinearities. Specifically, the
relationship between the amount of play and the induced additional vibrations is unknown.

1.1 System description

This section will give a brief description of the relevant elements/components within the trimmer. A
complete mathematical framework will be derived the chapter 2.
The basic operation of a trimmer is as follows: a saw-patterned blade moves on top of another saw-

12



CHAPTER 1. INTRODUCTION 13

patterned blade with high reciprocating motion, enabling hair to be cut.
As briefly stated before, this operation is accomplished by means of interconnecting elements. It is
beyond the scope to analyse all components, within trimmer, only the essential components are studied
here. The essential components are shown in Figure 1.1.

Figure 1.1: Schematic overview of the relevant components of the Philips trimmer. Image retrieved
from Philips Drachten

Figure 1.1 shows that an eccentric pin in mounted to the plastic cylindrical shell (yellow). The shell is
directly attached to an electrical motor, which allows the shell to rotate and cause the pin to oscillate.
Due to the eccentricity of the pin, it can convert the oscillating motion into a reciprocating motion,
shown by right-hand figure of Figure 1.1. The driving bridge is made of plastic element that has two
vertically raised edges on either side, in which the pin precisely fits. However, due to manufactur-
ing errors, it can happen that there is a certain amount of play between the pin and the driving bridge.

Figure 1.1 shows that the ‘cutter’, is rigidly connected to the driving bridge. The cutter is pressed to
the ‘guard’ by means of a spring. From that it is observed that the guard is connected to the guard
housing which is in turn connected to the plastic housing containing the electric motor.
So for this trimmer, there is only play between the pin and the driving bridge which may cause vibra-
tions. Frictional force between the cutter and guard is another nonlinear element that must be taken
into account when creating the overall nonlinear digital twin.

The outline of the research project is as follows. In Chapter 1, the research objective and rele-
vant research questions are presented. Then in Chapter 2 a mathematical framework is defined that
models the linear dynamic behaviour of the trimmer. Subsequently, a nonlinear framework that is able
to include the nonlinear elements is introduced, which is known as the describing function method.
The nonlinear model is then analysed by means of Simulink models. Especially, the time response
of these Simulink model is investigated by means of Fast Fourier Transform, check if the frequency
response indicates the existence of limit cycles in the nonlinear systems. Two configuration of control
system are analysed, namely the open-, and closed-loop configuration. Where to open-loop configu-
ration facilitates to validate the experimental results obtained in Chapter 3. While the closed-loop
configuration can better be used the check for the general condition for harmonic balance. In Chap-
ter 4 Matlab codes are presented and validate. Subsequently, the results generated by using some of
these codes are analysed in Chapter 5. Afterwards, the implication(s) of the major results will be
discussed in Chapter 6. In addition, some future research topics, regarding these major results, are
opted for. Finally, the main results are summarised in Chapter 7. Furthermore, in Chapter 7 the
research question, presented in the next sections, will be answered.
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Since this project was largely based on the computation of Matlab codes, for the readability of this
thesis, the codes are not included in the main body, but are presented in the Appendix A.

1.2 Research objective

The main objective of this research project is to obtain a better understanding of the vibrations
induced by play. This enables designers to quantify the implications caused by play and hence poten-
tially minimise this effect by changing model parameter(s). Specifically, there is a gap in knowledge
on the underlying effects of the nonlinear components, such as play, contributing to the existence of
limit cycle, and hence additional vibrations that occur due to these limit cycles. Future work has to
translate and quantify to predicted limit cycles to vibrations.

A solid approach to study these effects is to construct a digital twin, that is able to describe to
motion of the trimmer and that can predict the existence of limit cycles causing vibrations. This leads
to the following research objective:

Design a digital twin which describes the behaviour of nonlinear trimmer dynamics, and is able to
predict the existence of limit cycles due to the presence of play. So, a model that describes the

relationship between the induces vibrations caused by play is desirable.

1.3 Research question

The motivation and research objective is accurately presented, which can be summarised into mean
and sub research questions:

• What is the influence of the size of play to the induced limit cycles and hence to observed
vibrations?

– What is the effect of damping on the linear stability of the system?

– What is the influence the play element to the stability and performance of the system?

– What is the influence of the frictional components the stability and performance of the
system?

– What is the influence of the input amplitude, and backlash width, to the stability and
performance of the system?

– What is the influence of the input frequency to the stability and performance of the system?

– How does the predicted limit cycle, by the describing function method, manifest itself in
the output of the system?

Hypothesis
It is expected that for a certain amount of play, limit cycling existence are present, with a corresponding
amplitude an frequency. Additionally it is expected that increasing amount of play will lead to a limit
cycle with an increasing amplitude.



Chapter 2

Theory

The mathematical theory presented in this chapter, provides the reader with necessary information to
understand the developed method required to predict limit cycling behaviour in trimmer dynamics.
There will be a clear distinction between the linear (section 2.2) and nonlinear (section 2.3) models for
the trimmer dynamics. First the linear model is presented. Subsequently, the linear model is used as
a foundation for the nonlinear model, where play and friction are added. As briefly stated before, the
method used to incorporate the nonlinear elements in to the linear model is known as the describing
function method. This method will be presented in section 2.3.

2.1 Problem description

Depending on the amount of play, the trimmer might induce unpleasant vibrations. These vibrations
resulting from induced limit cycles. Currently, Philips Drachten has a digital twin that is able to
describe the linear model with a certain precision. However, as stated before, this model does not
include the nonlinear elements such as: play and friction. There are several techniques to include these
nonlinearities. In general a nonlinear system can be analysed via linearization around an operating
point. However, the resulting system can only be analysed around a single operating point. Even small
perturbations from that operating point might cause the model the malfunction. Another method to
analyse nonlinear systems is the describing function method. This method is a quasi-lineralization
method and is particularly useful for prediction of limit cycles associated with nonlinear system.

2.2 Linear trimmer dynamics

As shown see in the upcoming sections, the describing function method is a quasi-linearization ap-
proach based on a nonlinear system being subjected by a linear transfer function, in terms of a
closed-loop configuration. In other words, the linear part of the model has to be separated from the
nonlinear part of the model. To use the describing function method, there are a few restrictions on
the linear part of the model. It will be shown in section 2.3 that the main restriction is that the linear
part behaves as a ‘low-pass’ filter. A linear transfer function frequency response study is required to
verify this restriction. State-space representations result in the transfer function, which in turn are
easily obtained from the equations of motion.

2.2.1 Equations of motion trimmer dynamics

Classical mechanics ascribes several methods to obtain the equations of motion (EOM) . Euler-
Lagrange, Newtonian and Hamiltonian will all produce the same set of EOM. The popular Euler-
Lagrange method was chosen for this project since Euler-Lagrange facilitates the use of generalised

15
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coordinates. In other words, the direction of the coordinates, describing the motion, does not have
to be taken into account. This is a direct consequence of the Euler-Lagrange being ‘energy-based’,
whereas Newtonian and Hamiltonian mechanics are ‘force-based’ methods, and thus depend on a well-
defined coordinate base.
Based on a Free Body Diagram (FBD) of the trimmer’s essential components, the energy functions
associated with Euler-Lagrange mechanics can be derived. An illustration of the essential components
with the related FBD is shown in Figure 2.1.

(a) Schematic illustration (b) FBD: of essential components

Figure 2.1: Schematic illustration of the essential components, with the related FBD. Illustration
obtained from Philips Drachten

where mm = motor mass, mh= guard housing mass, mg= guard mass and mc= cutter mass , corre-
sponding to the illustration shown by Figure 1.1. The same scripts hold for the position and springs,
with the additional spring ks which is the coil spring stiffness. As explained before, the system de-
scribed by Figure 1.1 is driven by an electric motor. This motion is considered as in input xi in
Figure 2.1b. A pin is eccentrically mounted on top of a cylindrical shell. In advance, the pin is located
precisely between the edges of the driving bridge shown in Figure 2.1b, such that the rotating motion
of the pin is converted to reciprocating motion of the driving bridge and hence the cutter. This can
better be explained by considering the top view of the shaft with the eccentric pin Figure 2.2.

Figure 2.2: Top view: cylindrical shaft with eccentric pin mounted on top. Where A is the amplitude
of the displacement input, resulting from the eccentricity of the pin with respect to the middle of the
cylindrical shaft.
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The oscillating motion of the pin is obtained, since the pin has an eccentric position with respect to
the cylindrical shell. An oscillating motion can be mathematically expressed as follows:

xi(t) = A sin(2πft) (2.1)

where A is the amplitude (shown in Figure 2.2), or magnitude of the eccentric distance and f is the
rotating frequency, i.e. the rotational speed of the electric motor.
From Figure 2.1b, with the consideration that xi is denoted as Equation 2.1, the EOM are derived by
means of the Euler-Lagrange method, which depend on the ‘Lagrangian’. The Lagrangian states the
difference between the kinetic and potential energy of the system, and is denoted as Equation 2.2:

L(q, q̇) = T − U (2.2)

where q represent the position state vector, q̇ represent the velocity state vector, T represents the
kinetic energy and U represents the potential energy. Figure 2.1 shows that the model contains four
masses, all these masses contribute to the total kinetic energy of the system. The amount of kinetic
energy depends on the relative velocity of the corresponding masses. In general the total kinetic energy
of a system is denoted by:

T (q̇i) =

n∑
i=1

1

2
miq̇i

2 (2.3)

It follows that the total kinetic energy, for trimmer dynamics, is denoted as:

T (q̇1, q̇2, q̇3, q̇4) =
1

2
m1q̇

2
1 +

1

2
m2q̇

2
2 +

1

2
m3q̇

2
3 +

1

2
m4q̇

2
4 (2.4)

where m1 = mm, mc = m2, mh = m3 and mg = m4, same script applies to the springs and dampers.
The position and velocity terms of each mass are expressed in terms of qi and q̇i respectively, to leave
room for the state-variables introduced in the latter stage.

The potential energy function represented by U , requires more effort. A spring’s potential energy is
determined by its relative displacement. I.e. if a spring is fixed on one side and elongated on the other
side the potential energy in that particular spring is determined by the displacement of the elongated
side of the spring. If a spring is not fixed on one side, the potential energy in that particular spring is
determined by the relative displacement between the two ends of the spring. For the system, springs
of: kdb, ks and kg have potential energy based on the displacement of neighbouring masses. Based on
these assumptions, the potential energy of the system is defined as follows:

U(q1, q2, q3, q4) =
1

2
k1(q1)

2 +
1

2
k2(q2 − q1 − u)2 +

1

2
k3q

2
3 +

1

2
k4(q4 − q3)

2 +
1

2
k5(q2 − q3)

2 (2.5)

where qi represents the positional state vector and u represents the displacement function of the eccen-
tric pin. Now that the kinetic and potential energy function are defined the Lagrangian follows from
Equation 2.2. The Lagrangian is then used is the Euler-Lagrange equations, denoted by Equation 2.6:

d

dt

(
∂L
∂q̇i

)
− ∂L

∂qi
+

∂R

∂q̇i
= Qi (2.6)

where L is the Lagrangian , qi is the position state vector, q̇i is the velocity state vector Qi accounts
for the externally applied input to the system and R is the dissipation function. The latter function
accounts for the elements that dissipate energy out of the system. Dissipating elements are dampers
and frictional components. For the linear system friction will not be accounted for1. The dissipation
function is then denoted as:

R =
1

2
c1q̇1

2 +
1

2
c2(q̇2 − q̇1 − u̇)2 +

1

2
c3q̇3

2 +
1

2
c4(q̇4 − q̇3)

2 (2.7)

1For the nonlinear system, the Coulomb friction might be added to the EOM
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where u̇ is the input velocity differentiated from the input displacement function: u(t) = xi(t) =
A sin(2πft), such that:

u̇ =
du

dt
=

d

dt
(A sin(2πft))

u̇ = 2πf cos(2πft)
(2.8)

Plugging Equation 2.4, Equation 2.5 andEquation 2.7 into the Euler-Lagrange equation Equation 2.6,
yields the four EOM for the four each essential components illustrated in Figure 2.1b:

q̈1 =
1

m1
[−(c1 + c2)q̇1 + c2q̇2 − (k1 + k2)q1 + k2q2 − k2u− c2u̇]

q̈2 =
1

m2
[c2q̇1 − c2q̇2 + k2q1 − (k2 + k5)q2 + k5q3 + k2u+ c2u̇]

q̈3 =
1

m3
[−(c3 + c4)q̇3 + c4q̇4 + k5q2 − (k3 + k4 + k5)q3 + k4q4]

q̈4 =
1

m4
[c4q̇3 − c4q̇4 + k4q3 − k4q4]

(2.9)

An example derivation of q̈1 is shown in Appendix D. From the EOM defined by Equation 2.9, the
state-space representation directly follows. State-space representation is a mathematical model of a
physical system as a set of input, output and state variables related by first-order differential equations
instead of the above second-order differential equations. State-space representation can be easily used
to study the stability of linear systems. In addition, the transfer function used for the describing
function methods results from the state-space representation. In matrix form, the general form of the
state-state representation is:

q̇(t) = Aq(t) +Bu(t)

y(t) = Cq(t) +Du(t)
(2.10)

where q(t) is the state vector, y(t) is the output vector, u(t) is the input vector, A is the state matrix,
B is the input matrix, C is the output matrix and D is the feedforward matrix.

The state vector is defined as: x1 = q1, x2 = q2, x3 = q3, x4 = q4, x5 = q̇1, x6 = q̇2, x7 = q̇3 and
x8 = q̇4, that leads to:

ẋ1 = x5

ẋ2 = x6

ẋ3 = x7

ẋ4 = x8

ẋ5 =
1

m1
[−(c1 + c2)x5 + c2x6 − (k1 + k2)x1 + k2x2 − k2u− c2u̇]

ẋ6 =
1

m2
[c2x5 − c2x6 + k2x1 − (k2 + k5)x2 + k5x3 + k2u+ c2u̇]

ẋ7 =
1

m3
[−(c3 + c4)x7 + c4x8 + k5x2 − (k3 + k4 + k5)x3 + k4x4]

ẋ8 =
1

m4
[c4x7 − c4x8 + k4x3 − k4x4]

(2.11)
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From Equation 2.10, it follows that the A-matrix is:

A =



0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

−k1+k2
m1

k2
m1

0 0 − c1+c2
m1

c2
m1

0 0
k2
m2

−k2+k5
m2

k5
m2

0 c2
m2

− c2
m2

0 0

0 k5
m3

− (k3+k4+k5)
m3

k4
m3

0 0 − (c3+c4)
m3

c4
m3

0 0 k4
m4

− k4
m4

0 0 c4
m4

− c4
m4


(2.12)

where A ∈ R8×8. The B-matrix is:

B =



0 0

0 0

0 0

0 0

− k2
m1

− c2
m1

k2
m2

c2
m2

0 0

0 0


(2.13)

where B ∈ R8×2. From the dimensions of the B-matrix, it follows that the state-space representation
requires a dual input vector u(t). This is a direct consequence that the systems contains velocity
dependent (u̇(t)) components such as dampers. The output equation of Equation 2.10 depend on the
value of interest. The determination of limit cycles is further investigated by means of the relative
displacement between the cutter and the guard, which forces the output vector Equation 2.10 (y(t))
to be:

y⃗(t) =
(
0 1 0 −1 0 0 0 0

)
︸ ︷︷ ︸

C

q(t) (2.14)

leading to C ∈ R1×8. The linear model can be either be analysed by the EOM defined by Equation 2.9
or by Equation 2.10 and corresponding matrices. Stability of the system is easily determined by the
latter representation.
As stated before, the describing function method only applies for systems where the linear part of the
model behaves as a low-pass filter. By using the state-space representation derived in this section, the
frequency response of the linear system can be determined to quantify whether or not the linear part
of the system behaves like a low-pass filter.

2.2.2 Frequency response

The frequency response is a quantitative measurement between the ratio of input and output signal.
These measurements provide information about the magnitude and phase shift between an input and
output signal. A widely used, method to analyse these properties, is the Bode plot. The Bode plot
method is a graphical representation of frequency response. Generally, the Bode plot of a single-input,
single-output systems consist of two plots stacked on top of each other. The top plot is providing
the magnitude shift, while the bottom plot provides information about the phase shift of the output
signal corresponding to the input signal.
The transfer function Equation 2.21 is used to find the magnitude and phase shift to a periodic input
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signal u(t) and output signal y(t). A block diagram, of the transfer function G(s), in frequency
domain is shown in Figure 2.3. Substituting s = jω into the Laplace transform of the linear system,

G(s)
U(s) Y (s)

Figure 2.3: Block diagram of a linear system, described by the transfer function G(s)

Equation 2.21, yields the magnitude: ∣∣∣∣Ay

Au

∣∣∣∣ = |G(jω)| (2.15)

and the phase shift of between the input and output signal:

∠G(jω) = ϕ(jω) = ϕ (2.16)

To obtain the transfer function G(s) shown by Figure 2.3, the Laplace transform of the input and
output signal has to be taken, u(t) → U(s) and y(t) → Y (s) respectively. Laplace transforming a
function is converting a continuous-time signal into the frequency domain of that system, s-space.
From Figure 2.3 it follows that the output signal in s-space is produced by multiplying the input
signal U(s) with the transfer function G(s), resulting in:

Y (s) = G(s)U(s) (2.17)

Inferring from the general definition of the Laplace transform for one-sided functions beginning at
t = 0, the output signal y(t) → Y (s) is obtained using the Equation 2.18 [4].

Y (s) = L{y(t)} =

∫ ∞

0
y(t)e−st (2.18)

2 and for the input signal u(t) → U(s):

U(s) = L{u(t)} =

∫ ∞

0
u(t)e−st (2.19)

Rewriting Equation 2.17 shows that the transfer function is obtained by taking the ratio between
U(s) and Y (s). The transfer function G(s) can be obtained by measuring the output frequency for a
specific input frequency for a range of frequencies. However, as this requires a lot of time, a faster,
more efficient method is developed which is related to the state-space representation presented above
by Equation 2.10. Take the Laplace transform on both sides of the state-space representation yields:

sQ(s) = AQ(s) +BU(s)

Y (s) = CQ(s) +DU(s)
(2.20)

where sQ(s) results form the Laplace transform of a derivative function, namely q̇(t). Equation 2.20
shows a system with 2 equations and 2 unknowns, which can then be used to solve for the ratio
between Y (s) and U(s), leading to the transfer function:

G(s) =
Y (s)

U(s)
= C(sI −A)−1B +D (2.21)

the full derivation of the transfer function is shown in Appendix D. The state-space representation’s
matrices A, B, C, and D are now the only variables that affect the transfer function G(s), denoted
by Equation 2.21.

2The ‘L’, from the Laplace transform is different than the ‘L’ resulting from the Lagrangian
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2.2.3 Linear Stability Analysis

There are numerous methods for evaluating the stability of the linear component of the model. Here
is a description of two of these methods each serving their one purpose.
The first method to determine the stability of the open-loop linear system is examined by the observa-
tion of the eigenvalue’s ‘location’, corresponding to the A-matrix defined in state-space representation.
Given the state-space representation Equation 2.10, the eigenvalue problem of this matrix results in:

det(A− λI) = 0 (2.22)

The eigenvalues, resulting from the solutions of Equation 2.22, might be complex-valued numbers
(λk ∈ C) but the open-loop stability is only determined by checking if the eigenvalues of the A-matrix
all have negative real-part.

Corollary 2.2.0.1 If the Re(λk) ≤ 0 for each k, then |eAt| ≤ Ke−γt for some γ ≥ 0

The imaginary-part of the complex-valued eigenvalues correspond the resonance frequencies of the
system. The implications of these resonance frequencies will be analysed in subsection 5.1.2.
Another methods to determine the stability of a linear time invariant system is the so-called Nyquist
stability criterion. The Nyquist stability criterion is a graphical technique for determining the stability
of a dynamical system [5].
It relates the open-loop frequency response and pole location to the stability of the closed-loop system.
The foundations of the Nyquist criterion are based on Cauchy’s argument principle, which is a graphing
technique, resulting from the contour of the transfer function on the complex plane.
The contour of the transfer function is obtained by plotting: G(s) → G(jω), from s = −j∞ to
s = +j∞. The direction of increasing frequencies has to be draw on this contour. In terms of Nyquist
stability criterion encirclements are points, corresponding to poles are zeros, in the complex plane
that are encircled by the contour. Keep in mind the the encirclements can be either enclosed by the
contour in clockwise are counterclockwise direction. From the number of encirclements the principal
argument is defined. Zeros and poles, in the right hand plane (RHP) of the complex plane, are defined
as Z and P respectively. Assuming that the Nyquist plot of the transfer function encircles the origin
N times, the principal argument then states:

N = Z − P (2.23)

where the sign of N determines whether the encirclements are clockwise are counterclockwise.
The closed-loop stability arises from the open-loop stability criterion described above. An extension
of the closed-loop stability criterion is used when the nonlinear component(s) are introduced to the
system in terms of the describing function. The description function might be viewed as another
transfer function for the time being, denoted by N(s) 3. Adding N(s) to Figure 2.3 and converting
the open-loop configuration to the closed-loop configuration lead to the feedback system shown in
Figure 2.4. For this closed-loop configuration, the transfer function bet between input U(s) and
output Y (s) is defined as:

M(s) =
G(s)

1 +G(s)N(s)
(2.24)

From the closed-loop system the following observations are made:

1. Closed-loop system is stable if and only if M(s) has zero RHP poles.

2. Poles of M(s) equal the zeros of 1 +G(s)N(s).

3The describing function will be thoroughly analysed in the upcoming sections
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G(s)

N(s)

U(s) Y (s)

−

Figure 2.4: General feedback system

3. If Nyquist plot 1 + G(s)N(s) encircles origin, then G(s)N(s) will encircle (−1, j0) in complex
plane.

Combining the arguments leas to the following statement[6]:

Closed-loop system is stable if the number of RHP poles in G(s)N(s) equals the number of
counter-clockwise encirclements of the point (1, j0) by the Nyquist plot of G(s)N(s)

When assessing the stability of the potential limit cycles anticipated by the describing function, the
extension of this Nyquist stability criterion is taken into consideration.

2.3 Nonlinear trimmer dynamics

There are several methods to incorporate the nonlinear elements to the linear model described above.
For this study, the describing function method, abbreviated with DF is chosen since this method is
prescribed when determining the existence of limit cycles caused by the nonlinear component(s) in
trimmer dynamics, which are: play and friction. In advance, the predicted limit cycles contribute to
the additional vibrations, which are unpleasant. A limit cycle is a closed trajectory such that at least
one other trajectory spirals into it. Stability of limit cycles follows directly from the Nyquist stability
criterion defined in the previous section.

2.3.1 Introduction to the Describing Function Method

As derived in the previous section, for the linear dynamics, the frequency response method, in terms of
the transfer function, is a powerful tool for analysing linear systems. Since transfer functions cannot
be applied to nonlinear systems, this approach is constrained when nonlinear components are taken
into account.
During the second half of the 20th century, a lot of research was done on an extension of the frequency
response method onto nonlinear systems. One of the solutions they can up with is the DF method.
This method approximates the nonlinear component by a quasi-linear element, and can therefore be
treated in the light of the extension of the Nyquist stability criterion defined by Equation 2.24. In
other words, the nonlinear component is replaced by a quasi-linear component whose gain is a function
of input amplitude [7].
Nonlinearities can be classified into continuous and discontinuous nonlinear systems. The DF method
is particularly useful for so-called: hard-nonlinearities. Hard-nonlinearities are discontinuous nonlin-
earities at some point over the entire domain of that nonlinearity. I.e., the nonlinearity is locally not
differentiable at that particular discontinuity and hence the nonlinearity cannot be approximated by
linear functions. However, hard-nonlinearities are in some sense almost linear (quasi-linear). Almost
linear since hard-nonlinearities are either on or off, for example an Coulomb friction. In other words,
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if the input velocity, subjected to the nonlinear Coulomb friction, has reached a certain velocity the
output will instantaneously switch to a linear regime. Other hard-nonlinearities are: saturation, dead-
zone and backlash. Fundamentally, the idea of the DF method can best be introduces by assuming a
limit cycling exists in a closed-loop configuration [8]. Consider that this limit cycle is present in the
closed-loop configuration shown by Figure 2.5 with a fixed amplitude and frequency. In this config-
uration the nonlinear block is denoted by N(A,ω), whereas the linear block is denoted by G(jω)[1].
This closed-loop configuration looks similar to the previously defined closed-loop configuration de-

N(A,ω) G(jω)
r(t) = 0 y(t)

−

Figure 2.5: Block diagram of linear model with nonlinear input and r(t) = 0

noted with Figure 2.4, where N(s) → N(A,ω). The goal here is to find this quasi-linear frequency
response function in terms of input amplitude and frequency [2]. This function is known as the DF
corresponding to a particular nonlinearity. To derive the DF itself, it must first be noted that the
‘condition for harmonic balance’ follows directly from the loop transfer function from Figure 2.4, which
is denoted as: 1 +G(s)N(s) = 0. Similarly, the loop transfer function of the configuration shown by
Figure 2.5 can be derived by assuming that a self-sustained oscillation exist with a fixed amplitude A
and frequency ω, leading to:

N(A,ω)G(jω) + 1 = 0 (2.25)

Equation 2.25 is the general form of the ’condition for harmonic balance’.

2.3.2 Applications and Assumptions for the Describing Function Method

Applications
Using the DF approach to analyse nonlinear systems is not always possible. To utilise this approach,
some formal restrictions must be defined. It is necessary for the nonlinearities to be almost linear,
otherwise the frequency response cannot be determined for that element. [9]. In addition, the fact of
the limit cycle could by approximated by a sinusoid. The well-known Van der Pol equation, however,
shows that elliptic shape limit cycles can occur for fixed amplitudes and frequencies if α ≥ 0 [10].

Predicting limit cycles is important since limit cycles occur in most nonlinear system. Usually, the
occurrence of limit cycles undesirable since they:

1. Contribute to poor control accuracy

2. Contribute to increasing wear or even mechanical failure

3. Contribute to unpleasant additional vibrations and noise

Therefore, it is crucial to understand the effect of the occurrence the limit cycle(s) in the trimmer
dynamics since they contribute to unpleasant additional vibrations and noise. It is usually sufficient to
know that limit cycles exist, with corresponding amplitudes and frequencies, within a system, without
knowing their exact waveform.

Assumptions
Limit cycle(s) of the system shown in Figure 2.5 can be found with the DF method. However, the
system has to satisfy the following four conditions[2]:
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1. There is only a single nonlinear component.
This assumption indirectly implies that if there are more than 1 nonlinearties, the set of nonlin-
earities has to be lumped together.

2. The nonlinear component is time-invariant.
This assumptions is made because the Nyquist criterion, on which the stability of the DF method
is based, applies only for linear time-invariant systems.

3. Corresponding to a sinusoidal input u(t) = sin(ωt), only the fundamental component u1(t) must
be considered.
This is a crucial assumption for the DF method since the DF method is an approximate method.
This assumption implies that the higher frequency harmonics, in the output signal form the
nonlinearity u(t), can be neglected. Therefore the linear part of the system must behave as a
low-pass filter, i.e.:

|G(jω)| ≫ |G(jnω)|, for n = 2, 3, ... (2.26)

Previously mentioned low-pass filtering condition must applicable for the linear part of Fig-
ure 2.5, hence higher harmonics of periodic signal, caused by the nonlinear component, will be
attenuated. Only fundamental harmonic will pass through the linear part of the system. There-
fore it is appropriate to assume that the signal, passing through the entire system, is basically
a sinusoid corresponding to the self-sustained oscillation.

4. The nonlinearity is odd, i.e. f(−y) = −f(y) for all y so that no rectification occurs.

These assumptions will come back throughout this research, especially the third assumption is critical.
This assumption is also known as the ‘filtering hypothesis’.

2.3.3 Definitions Describing Function Method

The DF can be derived with the limitations defined in the preceding section. For now only consider
the nonlinear component of Figure 2.5 defined by N(A,ω) shown in Figure 2.6.

N(A,ω)
A sin(ωt) M sin(ωt+ ϕ)

Figure 2.6: Describing Function representation nonlinear element

On the assumption that a self-sustained oscillation, with a sinusoidal shape, is present within the
system shown by Figure 2.5, at some time it has to pass trough the nonlinear element N(A,ω). The
limit cycle can be defined as:

u(t) = A sin(ωt) = Aejωt (2.27)

where A is the amplitude and ω the frequency of the limit cycle. If the input signal of a nonlinear
element is periodic, then the output signal will also be periodic, but shifted in amplitude and phase.
Despite the shift in amplitude and frequency, the output signal can be approximated with a Fourier
series. Approximating the output signal y(t) with a Fourier series:

y(t) =
a0
2

+

∞∑
n=1

(an cos(nωt) + bn sin(nωt)) (2.28)
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where the Fourier coefficients ai and bi can be determined with:

a0 =
1

π

∫ π

−π
y(t)d(ωt)

an =
1

π

∫ π

−π
y(t) cos(nωt)d(ωt)

bn =
1

π

∫ π

−π
y(t) sin(nωt)d(ωt)

(2.29)

The standard caveat is that the transfer function should behave as a low-pass filter, third assumption
above, such that higher harmonics will be attenuated. In addition the fourth assumptions yields:
a0 = 0. With these assumptions in mind, only the base Fourier coefficients a1 and b1 remain:

a1 =
1

π

∫ π

−π
y(t) cos(ωt)d(ωt)

b1 =
1

π

∫ π

−π
y(t) sin(ωt)d(ωt)

(2.30)

With the assumptions applied to the Fourier series, the output signal denoted by Equation 2.28 reduces
to:

y(t) ≈ a1 cos(ωt) + b1 sin(ωt) = M sin(ωt+ ϕ) (2.31)

it follows that:

M(A,ω) =
√
a21 + b21 (2.32)

and
ϕ(A,ω) = tan−1(

a1
b1

) (2.33)

Using basic definitions of frequency domain analysis, shows that the DF block can represented by the
ratio between the output (Equation 2.31) and input (Equation 2.27) signals:

N(A,ω) =
y(t)

u(t)
=

M sin(ωt+ ϕ)

A sin(ωt)
(2.34)

in complex notation the above reduces to:

N(A,ω) =
Mej(ωt+ϕ)

Aejωt)
=

M

A
ejϕ =

1

A
(b1 + ja1) (2.35)

Finally, an expression for the nonlinear element used in Figure 2.5 is produced, that depends on the
Fourier coefficients a1 and b1. Keep in mind that the input signal’s frequency and amplitude both af-
fect the general DF. For the nonlinear elements in trimmer dynamics, backlash and Coulomb friction,
the DF only depends on input amplitude, i.e. N(A,ω) → N(A), as shown in the upcoming sections.

Now that the assumptions and definitions of the DF are defined, the Fourier coefficients affecting
the DF must be derived. It is necessary to compute the integrals Equation 2.30 to acquire these
coefficients. Numerical integration technique is usually used to find these coefficients, where the
input-output relationship of a particular nonlinearity is well-defined over a periodic domain.

2.3.4 Computation of Backlash DF in Trimmer Dynamics

Play/backlash nonlinearities mainly exist in transmission systems. It is common to leave small gaps
between interconnected elements to avoid that the interconnected elements break when moving. In
addition to the fact that mechanical systems are designed that way, manufacturing errors can cause
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backlash as well.
Deriving the DF for backlash will be made easier by visualising the idea of backlash. Consider the
motor shown in Figure 2.7 which is in oscillating motion. For now the mass of the load is consid-
ered weightless M = 0. In literature this is called friction-controlled backlash since the load has no
inertia since it was assumed that it had no weight. This is the most common form of backlash. If

Figure 2.7: Oscillating motor driving a viscous friction plus inertia load through a linkage with
backlash b. Image retrieved from book of Gelb [1].

the amplitude of the oscillating motion of the motor is less than A < b, the edges of the load are
never in contact with the motor. Therefore the load is not in motion, corresponding to segment OA
in Figure 2.8. When increasing the amplitude of the motor to values A ≥ b, the load and motor will
establish contact and the load will follow the motion of the motor in linear fashion4, corresponding to
segment AB in Figure 2.8.
This virtual representation can be translated to trimmer dynamics, by considering the motor as the
eccentric pin and the load as the driving bridge, where backlash exists between the two.
The oscillating motion of the pin ensures that the pin reverses direction at some point in time. When
this happens, the pin and the driving bridge are separated, and since the assumption states the the
driving bridge has no inertia, the driving bridge does not move 5. Once the pin has overcome the
backlash width of 2b, contact is reestablished with the driving bridge, shown by segment BC in Fig-
ure 2.8: This repeating pattern, caused by periodic motion, forms a closed path EBCD shown in the
graph Figure 2.8. The shape of the path, or height of B, C, D and E depends on the input amplitude
corresponding to the eccentric pin. Additionally, from the closed path it can be seen that backlash
is a multi-valued element by nature. This means that there for a given input, two output values are
possible. The nonlinear element has in some sense a certain ’memory’. Multi-valued nonlinearities
lead to energy storage in the system. Energy storage is a frequent cause of instability or self-sustained
oscillation [2].
In dealing with backlash, the following two limiting cases are considered. The first case considers that
the frictional forces on the load are dominant or M = 0, this corresponds to the analyse of the i/o-
relations above. Secondly, inertia forces are dominant (D = 0 in Figure 2.7 or M ̸= 0), this is called:
inertia-controlled backlash. Combining the two limiting cases lead to so-called: viscous-controlled
backlash [1], where M ̸= 0 and D ̸= 0. The latter case reflects to more realistic backlash scenario

4This is applicable for friction-controlled backlash
5Only applies to to friction-controlled backlash as seen in the following sections
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Figure 2.8: Backlash nonlinearity input/output relation. Image retrieved from book of Slotine [2].

since driving bridge has some inertia and there is also some friction between the cutter and guard. In
fact, the frictional forces are dominant for trimmer dynamics, as we’ll see in the upcoming sections.

Friction-controlled backlash
In the first case, it is assumed that the load only moves whenever contact between motor and load is
established. Whenever the motor is reversing direction, the load is not moving since it was assumed
that the load had zero inertia M = 0.
I/o-relation for fiction-controlled backlash with sinusoidal input, is shown in Figure 2.9. When the
pin and driving bridge are in contact, there is a linear relationship between their motion, therefore the
slope is k = 1. The total backlash gap the pin has to overcome to reestablish contact with the driving
bridge is denoted by 2b. Based on the input wave and the graphical representation of backlash, the
‘backlashed output’ signal from Figure 2.9 can be obtained in piece-wise manner. Then this piece-wise
signal for y(t) is used to derive the Fourier coefficients, which in turn are used to achieve the DF for
the backlash nonlinearity. Assume that A ≥ b and observe that indeed the output signal y(t) can be
split into four distinct regions over one period, shown by the backlashed output signal in Figure 2.9.
For simplicity the period starts at ωt = π

2 and ends ate ωt = 5π
2 . The output signal initially (value

≥ π
2 ), has a constant value of −(A − b). Once contact is reestablished at angle ωt = π − γ, the

output signal will follow the input signal but is shifted by the amount of backlash b. When the input
reverses direction, and separates with the driving bridge, the output signal remains constant with
value: (A− b). Once contact has been reestablished again, the output signal follows the input signal,
but is shifted by −b. This leads to a piece-wise function for the backlashed output signal y(t), denoted
by Equation 2.36.

y(t) =


−(A− b) if π

2 < ωt ≤ π − γ

(A sin(ωt) + b) if π − γ < ωt ≤ 3π
2

(A− b) if 3π
2 < ωt ≤ 2π − γ

(A sin(ωt)− b) if 2π − γ < ωt ≤ 5π
2

(2.36)



28 CHAPTER 2. THEORY

Figure 2.9: Input-output relation backlash operator. Top left: shows backlash i/o-relation. Bottom:
shows sinusoidal input to backlash element. Top right: shows the output obtained by tracing the
corresponding lines between input and backlash element. Image retrieved from book of Slotine [2].

where γ = sin−1(1 − 2b/A). According to the piece-wise output values, the Fourier coefficients of
Equation 2.30 are calculated. For the a1, the Fourier integral becomes:

a1 =
1

π

∫ π−γ

π/2
−(A− b) cos(ωt)d(ωt)︸ ︷︷ ︸

=
2b(b−A)

A

+
1

π

∫ 3π/2

π−γ
(A sin(ωt) + b) cos(ωt)d(ωt)︸ ︷︷ ︸

=0

+
1

π

∫ 2π−γ

3π/2
(A− b) cos(ωt)d(ωt)︸ ︷︷ ︸

=
2b(b−A)

A

+
1

π

∫ 5π
2

2π−γ
(A sin(ωt)− b) cos(ωt)d(ωt)︸ ︷︷ ︸

=0

(2.37)

leading to:

a1 =
1

π

[
2b(b−A)

A
+ 0 +

2b(b−A)

A
+ 0

]
a1 =

4b

π

(
b

A
− 1

) (2.38)
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To obtain the Fourier coefficient of b1, the same piece-wise values of y(t) are used, leading to:

b1 =
1

π

∫ π−γ

π/2
(A− b) sin(ωt)d(ωt)︸ ︷︷ ︸
=2(A−b)

√
b(A−b)

A2

+
1

π

∫ 3π/2

π−γ
(A sin(ωt) + b) sin(ωt)d(ωt)︸ ︷︷ ︸

= 1
4
A

(
−4

√
b(A−b)

A2 +2 sin−1(1− 2b
A )+π

)

+
1

π

∫ 2π−γ

3π/2
−(A− b) sin(ωt)d(ωt)︸ ︷︷ ︸
=2(A−b)

√
b(A−b)

A2

+
1

π

∫ 5π
2

2π−γ
(A sin(ωt)− b) sin(ωt)d(ωt)︸ ︷︷ ︸

= 1
4
A

(
−4

√
b(A−b)

A2 +2 sin−1(1− 2b
A )+π

)

(2.39)

so b1 is:

b1 =
A

π

π

2
− sin−1

(
2b

A
− 1

)
−
(
2b

A
− 1

)√
1−

(
2b

A
− 1

)2
 (2.40)

From these coefficients, the DF for friction-controlled backlash is achieved, according to N(A) =
1
A(b1 + ja1):

a1 =
4b

π

(
b

A
− 1

)

b1 =
A

π

π

2
− sin−1

(
2b

A
− 1

)
−
(
2b

A
− 1

)√
1−

(
2b

A
− 1

)2
 (2.41)

This result is used to solve for the condition of harmonic balance Equation 2.25. The limitations of
this condition will be discussed in subsection 2.3.6. It is worth noting that,

• the DF for friction-controlled backlash is frequency independent since neither a1 or b1 is frequency
dependent

• the DF has imaginary part since a1 ̸= 0 leading to to a complex-valued DF

Inertia-controlled backlash
In the above, the total backlash width was considered to be of value 2b, here the total width is
considered to be of value b. In contrary to the previous derivation for backlash, where it was assumed
that the driving bridge had no inertia M = 0, it is now assumed that the driving bridge does have
inertia, but is not subjected to frictional forces hence D = 0. I/o-relation for this specific backlash, is
characterised by Figure 2.10. From the i/o wave characteristics, it can be shown that the output signal
reaches maximum velocity at ϕ = nπ, where n = 0, 1, 2, .... At these values motor imparts to the load
with corresponding value. The motor oscillates according to: u(t) = A sin(ωt), so for integer values of
π, the output signal takes the u′(nπ) = Aω cos(ωnπ) = Aω. After that, motor-load separation occurs,
and the driving bridge will travel with constant velocity until contact between the pin and driving
bridge is reestablished. Here, it is assumed that there is no ‘bouncing’ between the pin and driving
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Figure 2.10: Inertia controlled backlash. (a) Waveforms for inertia controlled backlash. (b) Equiv-
alent backlash characteristic. Image retrieved from book of Gelb [1].

bridge during impart. The piece-wise backlashed output signal y(t) for inertia-controlled backlash is
derived similarly to friction-controlled backlash. Consider the output wave denoted in Figure 2.10.
For the first interval 0 < t ≤ ϕ, output signal has linear motion with a value corresponding to the
maximum velocity of the input wave since the driving bridge does not feel any frictional resistance,
hence y(t) = ωAt − b

2 . Once the eccentric pin has overcome the backlash width, the output signal
moves linearly with the input wave until the input wave has reached its maximum velocity, which
is achieved at t = T/2. So the backlashed output wave has a value of: y(t) = u(t) + b

2 , during
ϕ < t ≤ T/2. For the adjacent interval driving bridge will travel with negative maximum constant
velocity again. Finally, driving bridge and motor will collide again and output signal traces input
signal again. The piece wise values of the output signal are listed in Equation 2.42:

y(t) =


ωAt− b

2 if 0 ≤ t < ϕ

u(t) + b
2 if ϕ ≤ t < T

2

ωA cos(ω T
2 )(t−

T
2 ) if T

2 ≤ t < T
2 + ϕ

u(t)− b
2 if T

2 + ϕ ≤ t < T

(2.42)

The angle ϕ = ωt, at which the motor and driving bridge reestablish contact, can be derived by the
equating to piece-wise signal just before this angle with the piece-wise function after this angle, such
that:

ωAt− b

2
= u(t) +

b

2
= A sin(ϕ) +

b

2
Aϕ−A sin(ϕ)− b = 0

ϕ− sin(ϕ)− b

A
= 0

Unfortunately, there is no exact solution for this equation, therefore numerical solutions have to be
computed for the ratio of b/A. Similar to friction-controlled backlash the Fourier coefficients are a
direct consequence of the piece-wise function for the backlashed output signal of y(t), resulting in the
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inertia-controlled backlash DF, denoted by:

N(A) =
1

π
(π + 2 sin(ϕ1)− ϕ1 − sin(ϕ1) cos(ϕ1))− j

1

π
(1− cos(ϕ1))

2) (2.43)

where ϕ1 = sin(ϕ1) +
b
A . Here it is worth noting that the imaginary part has negative sign, whereas

it has positive sign for friction-controlled backlash.

Viscous-controlled backlash
In the previous two cases, either friction or inertia was assumed to be zero. When friction and
inertia coexist, the backlash component is more realistic, this is known as viscous-controlled backlash.
Figure 2.11 shows the i/o wave characteristics for viscous-controlled backlash. In Figure 2.11, the

Figure 2.11: Viscous-controlled backlash waveform. Image retrieved from book of Gelb [1].

angle ϕs denotes the motor load separation point and ϕc denotes the angle at which the motor and
load reestablish contact. The velocity of motor and load, pin and driving bridge respectively, are
identical up till an angle of ϕs. This fact makes it possible to conclude that [1]:

ϕs = tan−1

(
1

γ

)
(2.44)

where γ is the ratio of the inertia over the friction multiplied with the input frequency. In other words:

γ =
M

D
ω (2.45)

Since γ depends on the frequency, the DF itself will be a frequency dependent DF. The contact angle
can be obtained according to:√

1− γ2 − b

A
= sin(ϕc) +

γ2e(1/γ)(tan
−1 1/γ−ϕc)√

1 + γ2
(2.46)

From the i/o wave characteristics shown by Figure 2.11, the viscous-controlled DF is derived. Deriva-
tion of this complex DF is done in the book of A. Gelb [1]. Resulting in a complex, frequency dependent
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DF, such that: N(A,ω). In complex gain notation, the DF is defined as:

N(A,ω) = np(A,ω) + jnp(A,ω) (2.47)

where np(A,ω) and nq(A,ω) are listed in Appendix B.2.

The take away from this section is that backlash nonlinearity, can be modelled according to friction-,
inertia- or viscous-controlled backlash DF. Whereas the former two are two limiting cases. The results
from these limiting cases will be presented in chapter 5.

2.3.5 Coulomb friction DF in Trimmer Dynamics

Besides the backlash nonlinearity, the trimmer consists of an additional nonlinearity which is friction.
This results from friction between the cutter and guard. That comes as a result of the spring, shown
in Figure 2.1a, pressing the cutter to the guard necessary to accurately trim hair that is in between.
As a consequence, the relatively high normal force N induces a frictional force since Fc = µN .
A widely used model for friction is the model of Coulomb friction [11]. This model has the advantage
that is is well-suited for DF theory, since it can be considered as a quasi-linear nonlinearity. In
other words, the fictional value switches between two limiting cases. Classic Coulomb friction, with a
discontinuity, is represented by [12]:

F (ẋ) = Fcsign(ẋ) (2.48)

Here, Fc is the Coulomb friction coefficient multiplied by a sign operator. It follows that Coulomb
friction can be decomposed piece-wisely, according to:

F (ẋ) =


Fc if ẋ > 0

0 if ẋ = 0

−Fc if ẋ < 0

(2.49)

Equation 2.49 can also be considered as an ideal relay with instantaneous switching upon change of
the input velocity. Based on the input of trimmer dynamics the input velocity is constantly changing
due to periodic motion. This makes it possible to apply the ideal relay-based sinusoidal DF approach
for Coulomb friction.
An ideal relay can be considered as an on-off nonlinearity, shown in Coulomb friction plot by Fig-
ure 2.12. Assuming a sinusoidal input is subjected to the Coulomb friction nonlinearity, can lead to
the Coulomb friction DF. Unlike backlash, the nonlinearity here is actually velocity dependent instead
of displacement. But since the it was assumed that the input displacement was an oscillating func-
tion, the derivative of that function is also a sinusoidal function. For computational reasons, the same
sinusoidal input function is used to compute the DF for Coulomb friction 6.
Starting by deriving the first Fourier coefficients for a1 and b1 defined by Equation 2.30, with the
potential output forces defined by Equation 2.49. So, if the input has positive velocity, the output
will be a constant value of +Fc. On the other hand, if the input velocity is negative the output has
constant value of −Fc. Because the pin is in oscillating motion, it will encounter both positive and
negative Coulomb friction values over a period of 1 oscillation. Leading to the Fourier coefficient a1:

a1 =
1

π

∫ π

0
Fc cos(ωt)d(ωt)︸ ︷︷ ︸

=0

+
1

π

∫ 2π

π
−Fc cos(ωt)d(ωt)︸ ︷︷ ︸

=0

a1 = 0

(2.50)

6All sinusoidal function lead to the same DF, when scaling is applied
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Figure 2.12: Example of Coulomb friction, based on an ideal relay

this immediately tells that the DF for Coulomb friction is purely real since N(A,ω) = 1
A(b1 + ja1).

In contrast, the real part of the DF, b1, is not equal to zero since:

b1 =
1

π

∫ π

0
Fc sin(ωt)d(ωt) +

1

π

∫ 2π

π
−Fc sin(ωt)d(ωt)

b1 =
2

π

∫ π

0
Fc sin(ωt)d(ωt) =

2Fc

π
[− cos(π)− cos(0)]

b1 =
4Fc

π

(2.51)

According to Equation 2.35, this results in the Coulomb DF as:

N(A) =
4Fc

Aπ
(2.52)

In the upcoming section, it will be shown that intersections between the transfer function G(jω) and
the negative inverse of the DF −1/N(A) lead to the prediction of limit cycles. Therefore it should
be noted that the the negative inverse of the Coulomb DF is strictly real and negative. Indicating
that the transfer function must intersect with the negative real axis to predict limit cycling behaviour
based on Coulomb friction.

2.3.6 Describing Function Analysis of Nonlinear Systems

The preceding sections introduced the concept of DF’s for the nonlinear elements for trimmer dynam-
ics. In essence that means that the nonlinear element can be approximated by a frequency response
function based on the Fourier expansion. This quasi-linearised technique can be applied to linear
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control theory to predict the existence of limit cycles.

Limit cycle prediction
The quasi-linearised block diagram shown in Figure 2.5 indicates that the loop transfer function results
in the condition for harmonic balance, as shown before. That is:

N(A,ω)G(jω) + 1 = 0

Any solution(s) of this condition predicts a limit cycle with amplitude A and frequency ω. Solutions
of the condition can be obtained algebraically or graphically. Algebraically, the condition has to be
rewritten in terms of real and imaginary parts. Rewriting the above in real and imaginary parts,
where N(A,ω) = Re(N(A,ω)) + jIm(N(A,ω)) and G(jω) = Re(G(j, ω)) + jIm(G(j, ω)), lead to:

Real : ReN(A,ω))Re(G(j, ω))− Im(N(A,ω))Im(G(j, ω)) = −1 (2.53)

Imag : Im(N(A,ω))Im(G(j, ω)) + Im(N(A,ω))Re(G(j, ω)) = 0 (2.54)

The set of consists of two equations with two unknowns, that will solve for the limit cycle amplitude
Alc and frequency of the limit cycle ωlc, where the Real set solves for the amplitude and the imaginary
set solves for the frequency. In general it is very difficult to solve these equations analytically, espe-
cially for high-order system like trimmer dynamics. Therefore the analytic solutions are performed by
Matlab.
Another, more widely used and feasible approach, a graphical approach. The idea results from rewrit-
ing the condition for harmonic balance, such that:

G(jω) = − 1

N(A,ω)
(2.55)

Plotting the right-hand side of together with the left-hand side of Equation 2.55 on the complex and
observe if intersections between the two occur. If the two curves intersect, limit cycling behaviour is
predicted.
For friction-, inertia-controlled backlash, and for Coulomb friction the DF is a frequency-independent
function: N(A,ω) → N(A) hence:

G(jω) = − 1

N(A)
(2.56)

Plotting G(jω) for varying ω and plotting N(A) for varying amplitude A, leads two the two curves
on the complex plane. It is necessary to identify the increasing direction of A and ω of the two curves
while analysing the stability of the anticipated limit cycle, as derived shortly. As an example consider
the plot shown byFigure 2.13. For this particular example the DF is frequency independent. A limit
cycle exists at point K, with an amplitude that is found by solving −1/N(A) at that point. Whereas
the frequency of that limit cycle is found by solving G(jω) for ω at K.

Stability of limit cycles
If a limit cycle is predicted, either algebraically or graphically, the next step is to determine if the
predicted limit cycle is (un)stable
From the Nyquist stability criterion, it is known that in order for the open-loop system to be stable,
the closed-loop system is must be stable. This provides the critical point (−1, 0) to lie to the left of the
Nyquist locus. All the intersecting points between −1/N(A) and G(jω), can be thought of as critical
points. With that in mind, consider the following example, shown in Figure 2.14. This plot shows that
for this particular system 2 intersections between the curves exist, indicating that there are 2 limit
cycles present in this system. The first limit cycle occurs at point L1 with amplitude A1 and frequency
ω1, while the second limit cycle occurs at point L2 with amplitude A2 and frequency ω2. As mentioned
previously, the increasing direction of A, corresponding to −1/N(A,ω), has to be taken into account.
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Figure 2.13: Graphical representation of the condition of harmonic balance: G(jω) = − 1
N(A) . Image

retrieved from book of Gelb [1].

Figure 2.14: Graphical determination of the stability of a limit cycle. Image retrieved from book of
Gelb [1].

In doing so, it is clear that the value of A1 ≤ A2. A small perturbation in the positive direction of
A1, shift to corresponding operation point L1 → L′

1. Because this slightly perturbed operating point
is now encircled by the curve of G(jω), the perturbed operating point is considered to be unstable
base on the extension of the Nyquist stability criterion. The perturbed operating point corresponding
to L1 will then grow in amplitude by absorbing energy, and thus continues to move along the curve
of −1/N(A) until the operating point merges to the operating point corresponding to the other limit
cycle denoted by L2. On the other hand, a small perturbation in the negative direction of A shift
the operating point L1 → L′′

1, which lies outside the encircle curve of G(jω), which is considered the
stable region and thus the system tries to attenuate/shrinking the amplitude by dissipating energy
corresponding to the new operating point L′′

1. Therefore the limit cycle corresponding to L1 is unsta-
ble. Similar analyse shows that the limit cycle corresponding to L2 is stable.
Some of the results presented and analysed in chapter 5, in fact show the coexistence of two limit
cycles based on similar graphical approach, but indeed the output of the overall model results in the
observation of only the stable limit cycle, corresponding to L2 in this example.



36 CHAPTER 2. THEORY

2.4 Treatment of multiple nonlinearities

So far, only single nonlinearities in a closed loop configuration have been considered. However, for
complex system such as trimmers, there are usually multiple nonlinearities in the system, as shown in
the preceding sections. The work of A. Gelb [1], showed that an extension of the DF can be applied the
systems containing multiple nonlinearities. Since backlash and Coulomb friction are ever present in
trimmer dynamics, there are at least two nonlinearities for trimmer dynamics. A generalised cascaded
model was proposed. However, the cascaded model only applies to systems where both nonlinearities
are either positional dependent or velocity dependent [13]. Unfortunately, this does not apply to back-
lash and Coulomb friction, which depend on position or velocity, respectively. Hence this proposed
cascaded model does not apply to trimmer dynamics. An alternative method has to be derived.

Equivalent nonlinearity
A so-called ‘equivalent nonlinearity’ is proposed [3]. This method stated the for a combination of the
nonlinearities, with either position and velocity dependency parallel configuration can be obtained.
Therefore a parallel configuration between backlash and Coulomb friction is required, where the latter
is adjusted with an integrator such that both nonlinearities have equivalent dependencies, namely:
position. The nonlinearity, that is expected to cause limit cycling behaviour, is known as the ‘inten-
tional’ nonlinearity denoted by Nr(A). Whereas the Coulomb friction between the cutter and guard,
is known as the inherent nonlinearity, denoted by Nf (A). An example of this parallel configuration is
shown in Figure 2.15.

Figure 2.15: Example of parallel configuration, obtained from the study of Chen [3].
(a) displays the basic setup with inherent nonlinearity (Coulomb friction) in feedback wit the linear
transfer function Gm(s), subjected to an intentional nonlinearity (backlash). (b) displays the equiva-
lent configuration from which the DF is derived.

In Figure 2.15, Gg(s) denotes the intentional low-pass digital filter cascaded with the linear transfer
function for trimmer dynamics, denoted by Gm(s), to increase the order of the model so as to ensure
the availability of DF method. That is, when the system moves sinusoidally, the amplitude of a
limit cycle after filtered, denoted as A, can be derived as the product of the amplitude of velocity
sinusoidal response amplitude Av and the norm of the frequency response function of the low-pass
filter |Gg(jω)|, and the relationship among them is A = Av|Gg(jω)|. If a self-sustained oscillations
exist, in the parallel configuration shown by Figure 2.15(b), the condition for harmonic balance for
this equivalent system is satisfies the following relation:

Neq(A,ω)Geq(jω) + 1 = 0 (2.57)
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Figure 2.15(b) shows that the equivalent linearity of the transfer function is the product denoted as
Geq(s) = Gm(s)Gg(s) and the equivalent nonlinearity Neq(A,ω) is the sum of intentional nonlinearity
for backlash Nr(A) and the inherent nonlinearity for Coulomb friction Nf (A), where the latter is
adjusted by 1/Gg(s). Thus, the DF for the equivalent nonlinearity can be expressed as:

Neq(A,ω) = Nr(A) +
1

Gg(jω)
Nf (A) (2.58)

For the sake of simplicity it is assumed that the intentional nonlinearity Nr(A) is dominated by fiction-
controlled backlash, instead of inertia-, or viscous-controlled backlash. The results for this DF are
derived in subsection 2.3.4 as:

Nr(A) =
1

A

π

2
− sin−1

(
2b

A
− 1

)
−
(
2b

A
− 1

)√
1−

(
2b

A
− 1

)2

+j
4b

π

(
b

A
− 1

) (2.59)

and for the inherent nonlinearity corresponding to Coulomb friction, the DF was derived in subsec-
tion 2.3.5 as:

Nf (A) =
4Fc

Aπ
(2.60)

Plugging Equation 2.59 and Equation 2.60 into the expression for Equation 2.58 yields the equivalent
nonlinearity. It must be noted that the equivalent DF, containing friction-controlled backlash and
Coulomb friction, is amplitude A and frequency ω dependent, whereas the constituent nonlinearities
are only amplitude dependent. In addition, it was assumed the intentional nonlinearity is friction-
controlled backlash rather than inertia-, or viscous-controlled backlash since the spring force pressing
the cutter to the guard is considered to be relatively high. In other words, the driving bridge is only
in motion if and only if the oscillating eccentric pin is in contact with the driving bridge. Moreover,
the DF for the equivalent nonlinearity is already fairly complex for friction-controlled backlash, and
the inclusion of inertia makes it even more complex.



Chapter 3

Experimental setup and simulation
modelling setup

This chapter gives a brief description of the experimental setup performed in cooperation with Philips
Drachten. In advance the data obtained from these experiments, is compared to data obtained from
identical simulink models. Simulink is a block diagram environment for multi domain simulation and
Model-Based Design. Such that the model can be created according to physical blocks derived for the
DF method.

3.1 Experimental setup

First, a description of the experimental setup is provided to acquire trimmer data for the purpose
of validating the output from the simulink models. In particular the relative motion between the
cutter and guard is measured by means of a high-speed camera since the output map in state-space
representation is defined as: y = x4 − x2. Two experiments are performed, one with and one without
backlash between the driving bridge and the eccentric pin.
The motion between the cutter and guard is captured by a high-speed camera in terms of frames. The
frames per second (fps) rate is the number of frames captured in a given amount of time. There is a
certain trade-off here because increasing the fps rate also increases the amount of data and hence the
computing time. The high-speed camera utilised for these studies has a maximum rate of 1 million fps.
A sampling rate of Fs = 20[kHz] is chosen for this experiment. This translated to N = 2000 frames
when measured over a 0.1-second time span. The accuracy of the experiment may be determined
from the sampling rate and the number of frames by using the experiment’s frequency resolution [14],
denoted by Equation 3.1.

∆f =
Fs

N
(3.1)

Consequently, this experiment’s frequency resolution is: 20000
2000 = 10[Hz]. As a result, it is anticipated

that the FFT’s peaks will have a specific width due to the measurement’s inherent inaccuracy, which
results from the frequency resolution of ∆f = 10[Hz]. The driving frequency should be represented
by at least one peak on the FFT, and it may also display any harmonics that are related to that
frequency. Since DF predicts a limit cycle in the second experiment with backlash, it is expected that
the FFT will also contain an extra peak that does not match to a harmonic.1.
Appendix C shows all relevant information regarding the experiment performed in cooperation with
Philips Drachten. Some of the results are confidential and therefore it is not allowed to distribute the
information listed in the Appendix C.
The general setup used for this experiment is shown in Appendix C.2 by Figure C.1. Two light

1limit cycle only exist if backlash a reached a certain width
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sources are used to illuminate the fixed trimmer. Precisely in the middle of the two light sources
is where the high-speed camera is positioned. The position of the cutter and cutter guard for each
frame is determined utilising the related software: Photron FASTCAM viewer. To determine the
relative motion between the cutter and guard, this program needs careful calibration. The calibration
is achieved by placing a ruler directly behind the trimmer, where the length scale of the ruler is
obviously known, shown in Figure C.2. The user must then specify two reference locations for tracking.
One point is chosen on the cutter knife and one on the guard knife, indicated by the green boxes in
Figure C.2. After that, the program will automatically transform the cutter’s and guard’s positions
in relation to their reference point to data. Matlab may then be used to analyse this data.

3.2 Results from experiment

In the previous chapter, the experimental setup for analysing the motion of trimmer dynamics was
given. Now the results form these experiments are analysed. As mentioned, two experiments are
performed, one without and another with a small backlash gap. Three trials are included in each
experiment to reduce to effect of errors.

Experiment 1, without backlash
The results for the experiment with b = 0[m], are shown in Figure 3.1.

Figure 3.1: Results for 3 measurements for first experiment. Top: motion of cutter, middle: motion
of guard and bottom: difference between cutter and guard

When comparing the motion of the cutter with the motion of the guard, it can be seen that the
cutter’s motion is more apparent; this is evident from the motion ‘difference’ depicted by the bottom
plot. However, it can be seen that the signal has higher harmonics based on the movement of the
guard. A FFT is performed on the x4 − x2 signal, shown by bottom plot of Figure 3.1. Intuitively,
the fundamental frequency peaks at f ≈ 109[Hz] similar to the driving frequency.
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The results of the FFT for the three measurements are displayed in Figure 3.2. The FFT shows that

Figure 3.2: FFT of experiment 1, with no backlash gap (b = 0[m])

there are three dominant peaks in the FFT. Where the first peak corresponds to the expected driving
frequency of f1= 109.945 [Hz]. Further study has shown that the second and third peaks are harmonics
of the driving frequency since they are integer value of f1 = 109.845[Hz], shown in Table 3.1. It should
be noted that peaks have a certain width that corresponds to the frequency resolution, calculated with
Equation 3.1, that is: ∆f = 10[Hz]. Since Coulomb friction is the only nonlinearity in this experiment

Table 3.1: FFT harmonics measurement 1

Harmonic Frequency [Hz] Difference fi+2 − fi [Hz]

f1 109.945 -

f3 329.835 219.890

f5 559.725 219.890

and since there were no additional peaks in the FFT, it is argued that limit cycles are not produced
by Coulomb friction.

Experiment 2, with backlash
For this experiment backlash is added between the driving bridge and the cutter. The backlash width is
set to b = 200e−6[m].Similar to the previous experiment, a FFT is generated from the motion between
the cutter and guard. However, because this experiment includes backlash, a possible limit cycle is
anticipated to be present. The properties of this limit cycles resulting from the backlash are presented
in Appendix C.3. This graphical approach will be described in more detail in chapter 5. Figure C.3
shows that a limit cycle with frequency of f = 488[Hz] is expected for this experiment. Therefore it
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is expected that the FFT corresponding to this experiment shows a peak around this frequency. The
FFT for this experiment is again obtained from the bottom graph of Figure 3.3. Taking the FFT of the

Figure 3.3: Results for 3 measurements with backlash. Top: motion of cutter, middle: motion of
guard and bottom: difference between cutter and guard

bottom graph leads to the plot shown by Figure 3.4. The FFT consists of harmonics corresponding to
the driving frequency, similar to previous experiment. However, more harmonics are dominant for this
experiment. By ignoring the fundamental harmonic, additional information about the harmonics is
revealed, shown in Figure 3.5. Note that the frequency difference between the harmonics is not always
equal to the frequency of the fundamental harmonic f = 109.945. This may be explained by the
experiment’s frequency resolution of f = ∆10[Hz], and is thus regarded as a computational mistake.
Moreover, the track points shown in the graph above, corresponds to only 1 of the 3 measurements.
Measurement 2 and 3, M2 and M3 respectively, have slightly different ’peak’ points for the harmonics.
The fundamental harmonic, with the corresponding harmonics are shown in the Table 3.2:

Table 3.2: FFT harmonics measurement 2, for three separate measurements

Harmonic Frequency M1 [Hz] Frequency M2 [Hz] Frequency M3 [Hz]

f1 109.945 109.450 109.450

f2 219.890 229.885 229.885

f3 339.830 339.830 339.830

f4 439.780 449.775 439.780

f5 559.720 549.725 549.725

No additional frequencies were found in both experiment’s FFT, indicating that no limit cycles were
present for these experiments. For the first experiment this was straight forward since there was no
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Figure 3.4: FFT of experiment 2, with backlash gap b = 200µm

backlash added to the system. On the other hand, the second experiment with backlash and based on
DF method a limit cycle was expected to have a limit cycle.

3.3 Results general nonlinear Simulink model

This section is used to compare the experiment’s findings with relevant Simulink models. Two Simulink
models are constructed, one with external driving input in an open-loop configuration, and one without
external input in closed-loop configuration, but with initial conditions applied to the system. Because
of the latter’s closed-loop design, it is anticipated that if a self-sustaining oscillation exists, it will loop
through the system. Both configurations are included in Appendix C.5. Both configurations consist
of two blocks. One block denotes the backlash nonlinearity, whereas the second block comprises the
EOM related to the trimmer. The EOM were derived in chapter 2, however Coulomb friction is now
added to these equations. Modelling Coulomb friction as an ideal relay yields to following expression
for Coulomb friction: F = Fcsign(q̇2 − q̇1)[15], where the Coulomb friction value is assumed to be
below 1.0[N]. The modified EOM are now shown in Equation 3.2.

q̈1 =
1

m1
[−(c1 + c2)q̇1 + c2q̇2 − (k1 + k2)q1 + k2q2 − k2u− c2u̇− Fcsign(q̇2 − q̇1)]

q̈2 =
1

m2
[c2q̇1 − c2q̇2 + k2q1 − (k2 + k5)q2 + k5q3 + k2u+ c2u̇+ Fcsign(q̇2 − q̇1)]

q̈3 =
1

m3
[−(c3 + c4)q̇3 + c4q̇4 + k5q2 − (k3 + k4 + k5)q3 + k4q4]

q̈4 =
1

m4
[c4q̇3 − c4q̇4 + k4q3 − k4q4]

(3.2)
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Figure 3.5: FFT with limitation on frequency range: 200 ≤ f ≤ 1000[Hz], and with b = 200µm

where the model parameters are listed in Appendix C Table C.1. Both open-, and closed-loop configu-
rations are simulated for three values of backlash (b = [200e−6, 200e−5, 200e−4][m]), all comprising
3 values for Coulomb friction. First, a simulation of the model b = 200e − 6[m] that represents the
experiment with backlash is performed. The model configuration is listed Figure C.5 with the EOM
defined by Equation 3.2. In addition, the time response and the associated FFT for all model config-
urations are also included in Appendix C.
First the models, resulting from the open-loop configuration shown in Appendix C.6.1, are analysed.
The time response and FFT of the model with three options for Coulomb friction is shown in Fig-
ure 3.6. This model’s time response exhibits the same behaviour as the experiment’s time response
plot. Filtering out the driving frequency (f ≈ 109[Hz]) of the FFT lead to the plot shown by Fig-
ure 3.6b. The FFT demonstrates that, in addition to the fundamental driving frequency (which was
filtered out for visual purposes), the open-loop configuration is dominant for the third and fifth har-
monics, just as the experimental study proved. Additionally, the open-loop configuration’s FFT did
not reveal any additional harmonics, leading to the conclusion that the model and experiment are in
agreement.
Since the experimental data and the general model coincide to some extent, the backlash size from
the general model is gradually increased. Observing that the generic model does exhibit limit cycle
behaviour for some larger values of b is the aim of this exercise.
Increasing the backlash width to b = 200e− 4[m] generates the time response shown in Figure 3.7.
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(a) Time response (b) FFT limiting f range

Figure 3.6: Time response open-loop configuration, for b = 200e− 6[m] and Fc = [0.25, 0.50, 0.75]

(a) General (b) Zoomed

Figure 3.7: Time response open-loop configuration, for b = 200e− 4[m] and Fc = [0.25, 0.50, 0.75]

Figure 3.7b shows the zoomed time response of Figure 3.7a on top of a base harmonic. It is observed
that there is an additional oscillation on top of top base oscillation, in fact it is observed that there
are 2 additional oscillations. This suggests that the system may contain a limit cycle. In addition,
it is observed that the amplitude of the new oscillations is suppressed by increased Coulomb friction,
but the frequency of the oscillations is unaffected. Physically, this is explained by the fact that
when Coulomb friction is applied, the self-sustained oscillations between the cutter and guard would
encounter horizontal resistance, resulting in a decrease in amplitude but not in frequency. A FFT
operation is used to the time response signal to calculate the frequency of the extra oscillation(s),
shown by Figure 3.8.
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(a) General (b) Zoomed

Figure 3.8: FFT: open-loop configuration, for b = 200e− 4[m] and Fc = [0.25, 0.50, 0.75]

Figure 3.8a shows the general FFT of the open-loop configuration. Besides the harmonics corre-
sponding to the driving frequency, the open-loop configuration contains additional peaks in the FFT.
Filtering out the fundamental driving frequency leads to the plot shown by Figure 3.8b.

This plot shows 2 additional peaks in the FFT, with frequency f = 365.999[Hz] and f = 549.999 [Hz],
where the latter corresponding to the fifth subharmonic of the driving frequency of f5 = 549.999[Hz].
However, the former does not correspond to a subharmonic. A limit cycle could be the cause of this
frequency. The closed-loop configuration is simulated without using an external driving frequency to
confirm that this is the case. The FFT for two limiting cases of b are shown in Figure 3.9, another
case for an intermediate value of b, and the related time response, is shown in Appendix C.6.2. From

(a) b = 200e− 6 (b) b = 200e− 4

Figure 3.9: FFT: closed-loop configuration with Fc = [0.0025, 0.020, 0.25]

the Figure 3.9, it is observed that a peak corresponding to f ≈ 350[Hz] is observed no matter what
the value of backlash is. The peak from the open-loop configuration agrees with this frequency. As
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a result, it may be concluded that this peak belongs to a limit cycle. In addition, it is shown that
when Coulomb friction value increases, the amplitude of the limit cycle is suppressed. Furthermore,
the FFT’s shown by Figure 3.9 demonstrate that when the backlash gap is increased, more Coulomb
friction is needed to alleviate/suppress that peak [16]. As a result, the following conjecture is put forth:
when Coulomb friction is introduced to the system, the amplitude of the limit cycle, that results from
the backlash nonlinearity, is suppressed.



Chapter 4

Including nonlinearities in the
simulation model

The trimmer’s digital twin is created using Simulink models and Matlab code. Given that the DF
approach depends on two distinct blocks, one linear and one nonlinear, the codes are likewise divided
in this way. Furthermore, the DF method can only be used if the linear part behaves as a low-pass
filter.

4.1 The linear model

The Matlab code that constructs the state-space representation, associated to the linear part of the
model, is briefly explained and listed in Appendix A.2. Additionally, this code is used to determine
whether the filtering hypothesis is true for the linear component of the model. For the remainder of
this research the model parameters used in this project are listed in Appendix C Table C.2. Please
take note that these model parameters differ from the experiment’s model parameters. The filtering
hypothesis is examined using the Bode plot, which is generated from the transfer function obtained
from the state-space representation.

4.2 The nonlinear model

Utilising the linear transfer function, that results from the state-space representation, one can check is
the condition for harmonic balance applies to the overall nonlinear system. A brief description of the
code is listed in Appendix A.10. As mentioned there, the code can be applied for several nonlinearities
which are defined as external function and are called within the general code. These functions itself,
are also listed in Appendix A for the associated nonlinearities discussed in this research. Some of
the self-defined code can be validated by comparing the i/o wave characteristics from the self-defined
code with the results from built-in functions. However, Matlab does not have built-in function for
all nonlinearities discussed in this report. In fact, Matlab only has built-in functions for friction-
controlled backlash and Coulomb friction. Once the self-defined code for friction-controlled backlash
is validate according to the built-in code, this code can serve as the foundation for the codes of inertia-,
viscous-controlled backlash, and as a foundation for the code of the equivalent nonlinearity.

4.2.1 Friction-controlled backlash

First the self-defined code for friction-controlled backlash is constructed. The entire function, for
the DF of friction-controlled backlash, is listed and briefly described in Appendix A.4. However,
when computing the simulink time response of the system, the input-output wave characteristics in
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time domain have to be defined as Equation 2.36. The code corresponding to the time domain is
listed in Appendix A.8. Where the code in time domain validates that the built-in friction-controlled
backlash yields equivalent i/o-behaviour as the self-defined code for the friction-controlled backlash
when subjected to a sinusoidal function, shown in Figure 4.1.

Figure 4.1: Output of built-in and self-defined block, where b = 0.0004[m]

4.2.2 Inertia-controlled backlash

Also for inertia-controlled backlash the DF (Appendix A.11) and the i/o wave characteristic in time
domain are known (Appendix A.9). The DF is used to check if the condition for harmonic balance is
satisfied, whereas the code corresponding to the i/o wave characteristic is used in the simulink model.
Again the code and a brief description is listed in Appendix A.9. If an external sinusoidal function is
applied to the code describing the i/o wave characteristic in time domain, then it produces the output
shown in Figure 4.2.
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Figure 4.2: Input wave compared to output wave

Investigation of the signal prove that output signal shows similar behaviour as Figure 2.10. Addition-
ally, the same code is used to analyse the i/o-relation for varying backlash widths b. The graph is
shown in Figure 4.3. Amplitude of input wave is fixed at a value of A = 0.0015[m]. From Figure 4.3, it
is observed that if b = 0 the output of the inertia-controlled nonlinearity shows similar characteristics
as the sinusoidal input wave, as expected.

4.2.3 Viscous-controlled backlash

For friction-, and inertia-controlled backlash both the corresponding DF’s and the i/o wave character-
istics were known. For viscous-controlled backlash the i/o wave characteristics (shown by Figure 2.11)
is not derived, however the DF is. Therefore it is still possible to check whether or not the condition
for harmonic balance is satisfied for viscous-controlled backlash. As described in theory, the waveform
depends on the ratio M

D , where D can be thought of the amount of inertia involved in the backlash,
while M can be thought of the amount of friction. If D = 0 the nonlinearity is considered as a inertia-
controlled backlash nonlinearity, when M = 0 the nonlinearity is consider as a friction-controlled
nonlinearity. To construct the DF related to the viscous-controlled backlash, this ratio of M

D has to
be known. In general this ratio is however unknown, and therefore some arbitrary values are used in
the DF code for viscous-controlled backlash, listed in Appendix A.6. Here the complex code generates
the DF denoted by Equation 2.47. For an arbitrary ratio of M

D = 1
99 and for an input frequency corre-

sponding to the driving frequency f = 100[Hz], the separation angle on which the viscous-controlled
backlash DF is based can be calculated according to:

γ =

(
M

D

)
ω

γ =

(
1

99

)
(2π100)

γ = 634.6652[Hz]
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Figure 4.3: Inertia-controlled wave characteristics for inertia-controlled backlash for a variety of
backlash widths b

According to Equation 2.44 the separation angle between motor and driving bridge is then defined as:

ϕs = tan−1

(
1

γ

)
ϕs = tan−1

(
1

634.6652

)
ϕs = 0.0016[s]



Chapter 5

Simulation and results

In Chapter 3 and Chapter 4, experimentally obtained data was compared to data obtained from
Simulink models. In this chapter the results of the developed Matlab models, especially the models
that compute the condition for harmonic balance, are described and analysed. Before confirming that
this condition is satisfied, the filtering hypothesis has to be checked on the linear part of the system.
If the linear part of the system behaves as a low-pass filter, the condition can be checked, resulting in
amplitude and frequency of potential limit cycles 1. For friction-, inertia-controlled backlash, Coulomb
friction and for the equivalent nonlinearity these predictions are then further verified by means of a
FFT, that result from the time response of an associated simulink model.

5.1 Results linear trimmer model

The results from the Matlab model presented in section 4.1 will now be analysed. The results follow
directly from the code listed in Appendix A.2.

5.1.1 General model definition

In chapter 2 it was derived that the output matrix C-matrix, resulting from the state-space represen-
tation Equation 2.10, only includes the relative position between m2 and m4. This makes the linear
model a single-input single-output (SISO) model. The associated code for the linear part of the model
is briefly described and listed in Appendix A.2.

Time response is usually the first thing to analyse when dealing with linear systems. this can be
simulated according to the built-in function: lsim(sys,u,t,init) 2, where sys denotes linear dy-
namical system defined by Equation 2.10, u is the external driving input, t is the period over which
the system has to be simulated and init posses the initial condition of the system. It is assumed that
the system experiences nominal initial conditions. System parameters are not altered or disturbed in
nominal initial conditions [18]. From the command: lsim(sys,u,t,init), subjected to a external
input u(t) = 0.0015sin(2π100t), it follows that the time response of the system precisely oscillates
according to the external to this external input u(t), shown in Figure 5.1:

1If the condition is not satisfied, there is no limit cycle and hence no associated amplitude and limit cycle
2Other methods such as: ode15s| can also be used to compute the time response, but state-space model

has to be derived anyway, since transfer function is based on that

51



52 CHAPTER 5. SIMULATION AND RESULTS

Figure 5.1: Time response of linear system, subjected to u(t) = 0.0015sin(2π100t)

The output amplitude oscillates similarly to the input amplitude A =0.0015[m]. Despite the absence
of Coulomb friction in this linear model, the general model’s time response is consistent with the
results of experiment 1 in section 3.2.

5.1.2 Frequency response linear model

Since G(s) = C(sI −A)−1B +D, the transfer function directly follows from the state-space represen-
tation derived in the preceding section, resulting in the following transfer function:

G(s) =
17s6 + 1.23310s5 + 5.93914s4 + 1.65517s3 + 4.07921s2 + 3.7123s+ 5.7927

s8 + 1378s7 + 7.0767s6 + 3.87810s5 + 1.06915s4 + 2.67617s3 + 4.88921s2 + 4.59523s+ 5.97127
(5.1)

As previously indicated, the filtering hypothesis can be tested using this transfer function. Recall that
filtering hypothesis is satisfied if: |G(jω)| ≫ |G(jnω)|, for n = 2, 3, ...., such that the linear part of
the model filters out any harmonic generated by the nonlinearity. It is observed that the model order
of the Equation 5.1 is equal to the order of the denominator polynomial, therefore the model order is
equal to 8. The transfer function is then utilised to obtain the Bode plot, shown in Figure 5.2. At the
same time, Matlab determined the cutoff frequency of the transfer function ωc = 4.6329e+03[rad/sec].
Ideally, a low-pass filter attenuates all frequencies above this frequency, but from the Figure 5.2 it
is observed that some frequencies are still passed through. This is characterised by the rate of the
roll-off frequency. For a low-pass filter of first-order, the roll-off frequency is −20[dB] per decade of
frequency. The roll-off rate is significantly higher with higher-order low-pass filters. According to the
trimmer dynamics, the low-pass filter’s is approximately 1, since it can be observed from Figure 5.2
that the roll-off rate is roughly -20[dB] per decade. This implies that harmonics of the second order
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Figure 5.2: Bode plot for SISO linear system

will be attenuated with this transfer function and thus the first-order DF method can be applied to
the overall system.

In addition the peaks in the Bode plot Figure 5.2, represent resonance frequencies. Resonance fre-
quencies imply that the system contains poles, that may result in errors when using the DF technique
approach [2].
DF method utilises the intersections of the linear transfer function and −1/N(A,ω), on the complex
plane by means of the Nyquist locus corresponding to the transfer function Equation 5.1. The Nyquist
locus of the transfer function is shown in Figure 5.3. The direction of increasing frequency is indicated
by the arrows on the aforementioned Nyquist locus. Further analysis of the Nyquist locus indicates
that it does not encircle the point (−1, 0j). From Nyquist stability theorem it can then be concluded
that the open-loop system is stable, i.e. N = 0 [6].

5.1.3 Linear stability analysis

To quantify the resonance frequencies, corresponding to the peaks in Figure 5.2, the stability of the
linear part has to be analysed. It is possible that the some of the resonance frequencies are not visible
in Figure 5.2 since they are not dominant for the output of y = x2 − x4. From the figure 2 peaks are
clearly visible, but further investigation has shown that there is are two additional small (in terms
of magnitude) resonant frequencies. These resonance frequencies correspond to the imaginary parts
of the eigenvalues of the A-matrix from state-space representation or poles of the transfer function
defined by Equation 5.13.

3Figure 5.2 also shows ’valleys’ in the Bode plot, these correspond to the complex zeros of the transfer function
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Figure 5.3: Nyquist locus of the transfer function G(jω) from Equation 5.1

Computing the eigenvalues, associated to this system, with the eigenvalue problem: det(A− λI) = 0.
For this 4DOF , the eigenvalue problem results in 8 complex eigenvalues:

λ1,2 = −541.6448± 7159.6999i

λ3,4 = −80.5896± 3453.172i

λ5,6 = −41.8148± 2229.5063i

λ7,8 = −24.9984± 1397.0567i

(5.2)

Observe that all eigenvalues have negative real component and therefore the linear system is con-
sidered to be stable according to corollary 2.2.0.1. Furthermore observation shows that all eigenval-
ues come as duplicates with positive and negative imaginary part, indicating either a pole or zeros
with associated frequency of that imaginary component. For example λ1,2 should show a peak at
ω = 7159.6999[rad/sec], but this is not visible since this pole/zeros might not be dominant for the
output y = x2 − x4.

Effect of damping
To visualise the frequencies that are not dominant for the output, the effect of damping is analysed
by deliberately changing the output matrix to track the position of x1, x2, x3 and x4:

⃗y(t) =
(
1 1 1 1 0 0 0 0

)
︸ ︷︷ ︸

C

⃗x(t) (5.3)

Then the existence of these poles/zeros validated by considering a damping effect on the linear system.
This is done by changing the damping coefficients (c1,c2,c3 and c4) to very small values. Based on this
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slightly changed model the resonance frequencies of the system, that were initially not visible, show
up in Figure 5.4.
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Figure 5.4: Bode plot for the system without damping

Figure 5.4 shows 4 distinct resonance frequencies corresponding to the imaginary parts of the eigen-
values of Equation 5.2.

However, the relevance of the resonance and anti-resonance frequencies for this is system is negligible
since the operating frequency of system f ≈ 100[Hz], is far below the first (anti)resonance frequency of
f ≈ 1397.0567

2π = 222.35[Hz]. It is necessary to look at the resonance frequency that corresponds to the
peak that is farthest to the right in Figure 5.4 since theory of the DF requires that filtering hypothesis
is achieved. This is not entirely achieved if this peak is not suppressed. In other words, the resonant
frequency of corresponding to that peak will not be attenuate if damping was not included. So it can
be concluded that the damping ensures that (anti)resonance frequencies are suppressed in absolute
magnitude. In addition, damping does not change the resonance frequencies since the (anti)resonance
frequencies of Figure 5.4 directly correlate to the (anti)resonance frequencies shown in Figure 5.2. The
significance of these observations must be considered since the operating frequencies is far below the
first resonant frequency. And it is very unlikely that the induces limit cycle has a frequencies that
precisely corresponds to the farthest to the right resonant frequency has has no attenuate of the higher
Fourier coefficients is achieved.

5.2 Results nonlinear model

In the previous section it was shown that the filtering hypothesis was satisfied for the linear part of
the system, so the third assumption listed in subsection 2.3.2 is validated. Anterior to the application
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of the DF method itself, the other three assumptions must be satisfied. These three assumptions are
related to the nonlinear part of the system.

• First assumption states that the system contains only 1 nonlinear component. For friction-,
inertia-, viscous-controlled and Coulomb friction this assumption is obviously accomplished. For
the equivalent nonlinear system this assumption does not apply, however as the name suggest,
an equivalent nonlinearity can be derived based upon the two constituent nonlinear components,
therefore this assumption is also accomplished for the equivalent nonlinearity.

• Second assumption states that the nonlinear component is time-invariant, i.e:

y(t) = f(x(t), t) = f(x(t))

this assumptions applies to all models.

• The fourth assumption, states that the nonlinear component is odd, i.e., f(−y) = −f(y). This is
easily validated when observing the input-output considered for backlash and Coulomb friction
functions. Both curves show rotational symmetry around the origin and hence are odd functions.
This implies that the static term in Fourier expansion (a0) vanishes.

Therefore it can be concluded that the 4 assumptions are accomplished for all nonlinearities and hence
the DF method can be applied to the system.

The results where the nonlinear component is included in the system are analysed according to the
following order: Starting by analysing the results for the friction-controlled backlash nonlinearity.
Subsequently, the inertia- and viscous-controlled backlash nonlinearities will be analysed in similar
manner. After that, the Coulomb friction nonlinearity model will be analysed. Finally, the equiva-
lent nonlinearity model results naturally from the preceding results since the equivalent nonlinearity
is a combination between two nonlinearities. For all models the condition for harmonic balance is
checked. If this is achieved, the predicted properties resulting from that condition, might be validated
by means of a corresponding FFT generated from associated Simulink model, as done in experiment.
In addition, the models for friction-, and inertia-controlled backlash will be analysed with and without
external reference forcing function.

5.2.1 Results : friction-controlled backlash

In general, it is assumed that the backlash in the trimmer dynamics behaves like a friction-controlled
backlash, since the spring coil (shown on Figure 2.1a) that presses the cutter on the guard is relatively
high. Resulting in high normal force between cutter and guard and thus the frictional force is relatively
high since FN = µN . Computing the condition for harmonic balance for friction-controlled backlash,
the code listed and described by Appendix A.10 is used, where the external Coulomb friction function
is replaced with the function for friction-controlled backlash denoted in Appendix A.3.

From theory it is known that −1/N(A) tends to grow to the point (−1, 0j) with increasing amplitude
A, whereas the increasing direction b tends to grow away from zero to (−∞,−∞j) on the complex-
plane. Graphically, the condition for harmonic balance is checked if the two curves of G(jω) and
−1/N(A) intersection on the complex plane. Since the Nyquist locus associated to the transfer func-
tion G(jω) is already shown on Figure 5.3, only the locus associated to −1/N(A) must be computed.

The verification of the friction-controlled backlash nonlinearity in terms of i/o wave characteristics,
has been proven in subsection 4.2.1. However, the code for friction-controlled backlash DF, which
checks the condition for harmonic balance is yet to be verified. Comparing the results from friction-
controlled backlash DF code with results generated by Python programming language is one way to
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validate the code. Since Python consists of a library for common DF’s. One of the DF’s, is the DF for
friction-controlled backlash. Graphically, it is observed that the code written in Matlab produces an
equivalent curve as the DF for friction-controlled backlash obtained from Python, shown in Figure 5.5.
The curve for Matlab’s self-defined DF shows an equivalent trend to the curve for Python’s built-in
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Figure 5.5: Transfer function with −1/N(A), for friction-controlled backlash DF, where b = 1e−4[m].
Comparison Matlab with Python

DF. From this it can be concluded that the Matlab code is correctly coded. Using Python’s built-in
code has several advantages. One of them is that the code automatically generates the amplitude and
frequency of the limit cycles associated with the intersection between the transfer function and the
DF, shown in Figure 5.5b. A disadvantage is that the built-in library does not contain many DF, only
the friction-controlled backlash DF, used in this section, is available.

Without external input
In section 3.1 the open-loop configuration was mostly used since this served to validate that the time
response of these models matched the experimental data. However, DF theory is based on closed-loop
configuration without external driving function (r = 0), shown in Figure 2.5. This configuration is
more accessible since it only shows a peak in the FFT corresponding to the limit cycle.
Energy is applied to the system with an impulse input. It is expected that the output of the model
only show one oscillations with a frequency corresponding to the frequency of the limit cycle. It is
also possible that the system does not show any limit cycles since the backlash width has not reached
a certain value, such that it never intersects with the curve of the transfer function. Logically this
leads to the question: what is the maximum width of b so that the DF theory does not predict limit
cycles? Or in other words: at what value of b does the first intersection between −1/N(A) and G(jω)
occur? By trial and error, this value is approximately b ≈ 2e− 8[m], shown in Figure 5.6.

From Figure 5.6, it is observed that for a value of: b = 1e − 8[m] no intersection occur thus no limit
cycle predicted, b = 2e − 8[m] the two curves just ‘touch’ each other so no limit cycle predicted.
Incorporating these higher harmonics will be discussed in section 6.4. A value of b = 3e− 8[m] shows
a clear intersection between the two curves, and based on DF theory a limit cycle is predicted.
Summarising, the results obtained from the condition for harmonic balance corresponding to Fig-
ure 5.6. For a value of b = 1e − 8[m], no limit cycle is predicted, b = 2e − 8[m] on the edge of the
existence of a self-sustained limit cycle, whereas the value of b = 3e − 8[m] clearly predicts a limit
cycle. From these values, Simulink is able to compute the related time responses. Resulting in the
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Figure 5.6: First row: b = 1e− 8[m], second row: b = 2e− 8[m] and last row: b = 3e− 8[m]

time responses shown in Figure 5.7. Simulink models shows that indeed no limit cycling behaviour
is observed for b = 1e − 8[m]. For a value of b = 2e − 8[m] very small self-sustained oscillations
are observed, and for a value of b = 3e − 8[m] self-sustained oscillations are observed. Therefore it
can be concluded that the predictions, based on the condition for harmonic balance indicated with
Figure 5.6, are in agreement with the results obtained from the time response from Simulink indicated
by Figure 5.7.

The value of b is now increased to b = 4e − 6[m]. Similar to Figure 5.6, a graphical representa-
tion between G(jω) and −1/N(A) is generated, shown in Figure 5.8. From Figure 5.8 it is observed
that there is a single intersection, occurring near the origin, with amplitude: Alch = 3.3138e− 05[m]
and frequency ωlch = 4.6077e + 03 [rad/sec], that is flch = 4.6077e+03

2π = 733.3[Hz]4 . Subsequently,
the corresponding Simulink model, is simulated with an impulse input, resulting in the output shown
by Figure 5.9: It is observed that a self-sustained exists, since the time response of the system does
not die out if: t → ∞, in other words the system keeps oscillating. This oscillation, corresponding to
the limit cycle, is indicated in Figure 5.9a. The amplitude5. of that limit cycle is measured from that
graph, leading to an amplitude of:

Alcs =
3.303e− 5−−3.2961e− 5

2
[m]

Alcs = 3.2995e− 05[m]

Comparing this value for the amplitude of the limit cycle to the value for the amplitude generated

4script from: Alch stands for limit cycle amplitude predicted by the condition for harmonic balance
5script from: Alcs stands for limit cycle amplitude predicted by Simulink model
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Figure 5.7: Simulink output for top: b = 1e− 8[m], middle:b = 2e− 8[m] and bottom: b = 3e− 8[m]

based on the condition for harmonic balance Alch, leads to a percent error in the amplitude of:

δ =

∣∣∣∣Alch −Alcs

Alcs

∣∣∣∣ · 100%
δ =

∣∣∣∣3.3138e− 05− 3.2995e− 05

3.2995e− 05

∣∣∣∣ · 100%
δ = 0.4334%

Therefore it is concluded that the Simulink model works considerably well for simulating the results
when dealing with friction-controlled backlash nonlinearities.
In addition to the time response, the FFT indicated by Figure 5.9b, for this system is analysed. It
shows a single peak with a frequency of flcs = 734.00[Hz]. Again a comparison between the frequency
obtained from the condition for harmonic balance flch, is compared to the frequency obtained fomr
Simulink flcs, leading to a percent error in the frequency of:

δ =

∣∣∣∣flch − flcs
flcs

∣∣∣∣ · 100%
δ =

∣∣∣∣733.34− 734.00

734.00

∣∣∣∣ · 100%
δ = 0.046%

The condition for harmonic balance, graphically indicated by Figure 5.8, therefore predicts the ampli-
tude and frequency considerably well for friction-controlled backlash. It must be noted, that the peak
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Figure 5.8: Transfer function with −1/N(A), for friction-controlled backlash DF, where b = 4e−6[m].
Plot generated by Matlab.

in Figure 5.9b has a certain bandwidth, which results from the frequency resolution of the sampled
data. The sampling frequency for this model was set to Fs = 10002300[Hz], while the number of
samples was N = 1000231, based on a sampling interval of 0 ≤ t ≤ 0.1[s]. According to Equation 3.1,
the frequency resolution for the sampled model is:

∆f =
10002300

1000231
= 10[Hz]

A fundamental limitation of the frequency resolution is that it can only be increased if the sampling
interval is increased.
The time response of Figure 5.9a showed that the limit cycle did no blow up as: t → ∞ but stabilised, so
based on that it can be concluded that the predicted limit cycle is stable. Stability in the framework of
the condition for harmonic balance requires a neater explanation. The governing theory is described in
subsection 2.3.6. In essence, this stability theory dictates that, to determine the stability of a predicted
limit cycle, the operating point related to that limit cycle has to be perturbed in increasing direction of
amplitude, and visualise where the perturbed operating point is located w.r.t. the transfer function. If
the perturbed operating point is encircle by the transfer function, the limit cycle is unstable. Whereas
it is stable if the perturbed operating point is shifted outside the transfer function. For the limit cycle
shown in Figure 5.8, the operating point is perturbed outside the contour of the transfer function and
hence the related limit cycle is stable.
Realistically, the width of the backlash is unknown and therefore varying values of b should be in-
vestigate. Increasing the backlash width even more leads to the creation of a second limit cycle. In
addition, the width might increase over time due to wear and fatigue.
It must be noted that the DF, for friction-controlled backlash, is undefined if the amplitude is smaller
than the backlash width A ≤ b since the eccentric pin does not touch the edges of the driving bridge.
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(a) Time response (b) FFT

Figure 5.9: Zoomed in plot of Simulink friction-controlled backlash model, with b = 4e − 6[m],
FFT for friction-controlled Simulink model with b = 4e − 6[m], and a sampling frequency of: Fs =
10002300[Hz]

Mathematically, this is defined as:

N(A) =

{
undefined if A ≤ b
1
A(b1 + ja1) if A > b

(5.4)

where the corresponding Fourier coefficients are derived in subsection 2.3.4. Taking these coefficient
in consideration shows that: N(A) ∝ b

A , then the negative inverse of this DF:

− 1

N(A)
∝ −A

b
(5.5)

Equation 5.5 proves that for greater values of b, the inverse DF becomes more and more negative.
Eventually the curve for −1/N(A), will intersection a second time with the contour of the transfer
function. To visualise this, the backlash width is increased by a factor of ten, resulting in b = 4e−5[m].
For this value of backlash width, the transfer function with the −1/N(A) is shown in Figure 5.10a,
with the compute values for the amplitude and frequency related to this second limit cycle. That is
Alch

2 = 2.1089e − 5[m] and f lch
2 = 533.22[Hz] respectively 6. While the amplitude of the first limit

cycle, analysed from Figure 5.8 previously, is scaled by factor of ten according to the increase of b by
factor of ten, resulting an Alch

1 = 3.3138e− 4[m]. The frequency of that limit cycle remains constant
since N(A) is frequency independent, so f lch

1 = 733.3[Hz]. In Table 5.1, the characteristics of the two
limit cycles that correspond to Figure 5.10a are enumerated.

Table 5.1: Properties of the limit cycles predicted by a backlash size of b = 4e− 5[m]

Limit cycle Alch[m] flch [Hz]

1 3.3138e-4 733.33

2 2.1089e-5 533.22

6Now script denotes second limit cycle, while superscript denotes limit cycle predicted by the condition for harmonic
balance
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(a) Transfer function with −1/N(A) (b) Time response simulink

Figure 5.10: Graphical determination of the condition for harmonic balance with the related time
response of Simulink for: b = 4e− 5[m]

For stability reason, it should already be noted that: Alch
2 ≤ Alch

1 . But before evaluating the stability
of the second limit cycle, the time response of the overall system is observed in Figure 5.10b resulting
from the related Simulink model. The time response shows that a self-sustained oscillation exists, with
an amplitude of: Alcs = 3.2995e − 04[m], which is in agreement with the amplitude of the first limit
cycle summarised in Table 5.1. In addition it has similar frequency of the first limit cycle, namely
flcs = 733.33[Hz]. Furthermore, no additional peaks are observed in the related FFT, compared to:
Figure 5.9b. This leads to the conclusion that the ’newly’ established limit cycle is not visible in
the system’s time response. The stability of the limit cycles can be used to explain this intriguing
observation. The initial limit cycle has already been determined to be stable. Similar to the first
limit cycle, the second limit cycle’s stability is examined by perturbing the corresponding operating
point into increasing direction of A. As a result, the perturbed operating point is now encircled by the
contour of the transfer function and hence in the unstable regime. There it will absorb energy, and
move along the curve of −1/N(A) until it settles in the operating point corresponding to the stable
limit cycle. So, although the second limit cycle is unstable, it will shift it’s operation point to the
stable operating point. Therefore, only the amplitude and frequency corresponding to the first stable
limit cycle are displayed in the results of Figure 5.10b. The aforementioned analysis is carried out for
a range of backlash widths b, proving that a frequency independent stable limit cycle exist, related to
the first operating point. A summary of the results is shown in Table 5.2. From Table 5.2 is is evident
that there is a proportional relation between the size of b and the amplitude of the limit cycle Alc since
b = 1e − 4[m] predicts limit cycle with Alc = 0.00083[m] and b = 1e − 3[m] predicts limit cycle with
Alc = 0.0083[m]. So increasing backlash by a factor of ten, results in an increase of the limit cycle by
a factor of ten. An directly associated Simulink model has further validated these observation, shown
in Appendix E. Further observation of Table 5.2, show that the predicted limit cycles are frequency
independent, as expected according to the friction-controlled DF theory described in subsection 2.3.4.

With external input
In the above analyses, the system with a single nonlinear element and zero external input was analysed.
Here the results when replacing zero external input reference signal r(t) = 0, with a sinusoidal external
input, will be analysed. The external function results from the fact the real system is driving by a
rotating motor. Given that the eccentricity of the pin has an amplitude of: Amotor = 0.0015[m], that
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Table 5.2: Amplitude and frequency of predicted limit cycle for varying backlash widths

b[m] Alc[m] ωlc [rad/sec] flc [Hz]

1e− 4 0.00083 4.6e3 733

2e− 4 0.0017 4.6e3 733

3e− 4 0.0025 4.6e3 733

4e− 4 0.0033 4.6e3 733

5e− 4 0.0041 4.6e3 733

6e− 4 0.0050 4.6e3 733

7e− 4 0.0058 4.6e3 733

8e− 4 0.0066 4.6e3 733

9e− 4 0.0075 4.6e3 733

1e− 3 0.0083 4.6e3 733

is rotating with a frequency of: fmotor = 100[Hz]7, this can be mathematically modelled as:

r(t) = 0.0015sin(2π100t) (5.6)

It is expected that an equivalent limit cycle shows up in the time response of the system since friction-
controlled DF is frequency independent. Similar to the closed-loop analyse above, a value of b =
4e− 5[m] is chosen. Resulting in an equivalent graphical representation of the condition for harmonic
balance shown in Figure 5.10a. These results are then compared to the results obtained from a related
Simulink model with an open-loop configuration, similar to open-loop experiment The configuration
is shown in Appendix C.5 by Figure C.5. Resulting in the time response shown by Figure 5.11,
where the blue line indicates the output directly observed after the linear block, while the yellow line
indicates backlashed output, similar to the backlashed output shown in Figure 2.9. From the time
response it is observed that a base harmonic oscillates approximately between [−0.001,+0.001][m],
corresponding to the input amplitude of the driving function. In addition, the signal consist of sub
oscillations. Obtaining the frequency of the additional harmonic, that might correspond to the limit
cycle, is easily found by performing an FFT on this output signal (blue signal). A comparison is drawn
between the closed-loop FFT and the open-loop FFT related to the blue signal in Figure 5.11. The
comparison is presented in Figure 5.12 The open-loop FFT, shows that an additional peak is observed,
with a frequency of f ≈ 100[Hz]. The other peak in the FFT has similar frequency as the frequency
corresponding to the limit cycle thus it can be concluded that a limit cycle, generated by backlash, can
be either evaluated with the closed-, or open-loop configuration since they produce equivalent results
in the FFT.
Another analysis can be performed on the open-loop configuration by changing the input amplitude A,
while keeping the backlash size fixed. Resulting in the open-loop results shown in Appendix E. From
the results it is concluded that the amplitude of the limit cycle scales is not altered by the driving
amplitude, shown in Figure E.2.

5.2.2 Results : inertia-controlled backlash

Friction-controlled backlash assumes that the load (driving bridge) had no inertia since: M = 0.
Equivalently, it can be said that the system experiences infinite friction. In contrary to friction-
controlled backlash, inertia-controlled backlash assumes that the load has inertia thus M ̸= 0, or

7From experiment it was observed that the frequency was actually higher namely: f = 109.845[Hz], but model was
constructed before experiment
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Figure 5.11: Time response with external driving function, for backlash width: b = 4e− 5[m]

D = 0. In the absence of friction, the load keeps on moving after motor and load separate. From the-
ory, inertia-controlled backlash DF has been derived, corresponding to the code listed in Listing A.10.
Additionally, it was shown that contact angle ϕ was dependent upon the ratio of b/A. To make the
code easier to implement, this ratio is defined as: β = b/A which make the DF N(A) → N(β). It
should be noted that this ratio is is only defined on the range: 0 < β ≤ 2 since the total backlash gap
has a length of 2b 8, therefore values β ≥ 2 would make the DF obsolete.
A similar analyse as for friction-controlled backlash, is performed for inertia-controlled backlash.
Meaning that the graphical representation of the condition for harmonic balance is compared to a
related Simulink model. Since the DF is changed according to β the condition for harmonic balance
(Equation 2.25), changes to:

N(β)G(jω) + 1 = 0 (5.7)

graphically computing Equation 5.7 solves, for the ratio β and frequency ω. The graphical represen-
tation of Equation 5.7 is shown in Figure 5.13. From Figure 5.13 it is observed that one intersection
appears, corresponding to a frequency of ω ≈ 5120[rad/s], that is flch ≈ 5120

2π = [814.9][Hz]9. The
stability of this limit cycle is again determined by perturbing the operating point in the increasing
direction of A. However, the DF itself is a function of β = b/A, and therefore the this direction has
to be taken with care. Further investigating −1/N(β) shows that the increasing direction of β tends
to move away from (−1, 0j)-point and, thus the increasing direction of A has the tendency to move
towards (−1, 0j)-point, similar to the increasing direction of A for friction-controlled backlash DF.
Since the operating point, corresponding to the limit cycle, shift outside the contour of the transfer
function, this limit cycle is said to be stable. Similar to the analyses for friction-controlled backlash, a
related Simulink model generates the time response and corresponding FFT. Here the nonlinear block,
representing inertia-controlled backlash, is a self-defined Matlab function listed in Appendix A.11. For
the open-loop configuration this results in the time response and FFT shown by Figure 5.16. Similar
to the results obtain from Figure 5.11 for friction-controlled backlash, the open-loop configuration
for inertia-controlled backlash shows additional oscillations, in the time response Figure 5.14a, as
well. The frequencies of the additional oscillations are generated with a FFT shown in Figure 5.14b.
This shows that, besides the harmonics corresponding to the driving frequency of f = 100[Hz], one

8For the inertia-controlled backlash derivation, a backlash gap of 2b was used, whereas the derivation of friction-
controlled backlash assumed that the total width was b

9script from: flch stands for ‘limit cycle based on condition for harmonics balance’
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(a) Closed-loop without driving function, b = 4e−6[m] (b) Open-loop with driving function, b = 4e− 5[m]

Figure 5.12: Comparison between closed-, and open-loop FFT

additional harmonic is observed with frequency: flcs ≈ 659[Hz]. Which corresponds to a limit cycle
generated from the backlash nonlinearity. However, it is observed that the predicted limit cycle, based
on the condition for harmonic balance, has a substantial higher frequency than the observed limit
cycle based on the FFT from Simulink. The accuracy of the the results can be quantified according
to:

δ =

∣∣∣∣flch − flcs
flcs

∣∣∣∣ · 100% =

∣∣∣∣814.9− 660

660

∣∣∣∣ · 100% = 23.47%

Or in other words, the predicted limit cycle based on the condition for harmonic balance is 23.47%
higher than the limit cycle observed in the Simulink model. A possible explanation for this is that the
low-pass filtering hypotheses is only partially accomplished. Therefore the accuracy of the magnitude
of the frequency of the predicted limit cycle based on the condition for harmonic balance, might be
very different than the actual value. To illustrate this, if higher harmonics were included in the Fourier
expansion leading the to coefficient for the DF, the contour of the DF would transform to a 2D ‘line’. In
doing so, it creates a certain ‘ball’ around the 1D DF, with a certain radius, resulting in a similar plot
shown by Figure 5.15. From Figure 5.15 it can be observed that there is a certain range of frequencies
corresponding to stable limit cycles if these higher harmonics were included10 since intersections with
the transfer function can now occur for frequencies: 4.6e3[rad/sec] ≲ ωlc ≲ 5.38e3[rad/sec], translating
this to f yields a bandwidth of frequencies, all corresponding to stable limit cycles:

732[Hz] ≲ flc ≲ 856[Hz] (5.8)

5.2.3 Results : viscous-controlled backlash

The results when both friction and inertia act simultaneously on the driving bridge will now be anal-
ysed. Indicating a viscous-controlled backlash DF, for which the theory is derived in subsection 2.3.4,
leading to M ̸= 0 and D ̸= 0. In contrary to the previous DF, this DF is frequency dependent,

10Figure 5.15 is an example and does not correspond to the actual higher harmonics DF for inertia-controlled backlash
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Figure 5.13: Inertia-controlled backlash DF with transfer function loci

resulting form from the separation angle between motor and load according to:

ϕs = tan−1

(
1

γ

)
ϕs = tan−1

(
D

Mω

) (5.9)

So for fixed values of M and D, increasing the driving frequency leads to relatively smaller separation
angle, on which the derivation of the input-output wave characteristic, shown in Figure 2.11, is derived.
As a consequence the from the that input-output wave characteristic. Generally, the ratio between
M and D hard to obtain since the the backlash nonlinearity is a very complex component. Similar to
inertia-controlled backlash, the contour for the DF is generated for the ratio of β = b/A instead of A.
In addition to β, the viscous-controlled DF is based on the frequencies ω, that is scaled according to
the ratio for M/D since to γ = M

D ω. Hence the DF becomes: N(β, γ). Where the values for 0 < β ≤ 2
and the values for γ > 0. Figure 5.16a shows the transfer function with plotted with −1/N(β, γ), for
some random values of β. The increasing direction is A is again determined by the observation the
the loci for increasing values of β have the tendency to move to the RHS of Figure 5.16a, hence the
increasing direction of A is the opposite of β, in the direction towards the point of (−1, j0), similar the
inertia-controlled backlash. Further investigation of Figure 5.16a shows that if γ → ∞, the loci has
the tendency to shift to the contour for inertia-controlled backlash, whereas γ → 0, the contour has
the tendency to shift to the curve for friction-controlled backlash. This observation proves that the
contour for viscous-controlled backlash is bounded by the contours of friction-, and inertia-controlled
backlash. Due to the complexity of the DF for viscous-controlled backlash, the associated code is
expensive and thus has a high computational time. Therefore the range of γ is limited by randomly
selected values, such that:

1 < γ <
3

2
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(a) Time response (b) FFT

Figure 5.14: Results from Simulink model for inertia-controlled backlash in open-loop configuration

Since the contours for friction-, and inertia-controlled backlash are presented in the preceding sections,
it is now possible to plot these contour to the same graph as the contour for viscous-controlled backlash,
shown in Figure 5.16b. The thick red lines denote the contours for friction-, and inertia-controlled
backlash, whereas the thinner lines correspond to contours for viscous-controlled backlash.
From Figure 5.16b it is observed that the contour of viscous-controlled backlash - no matter the model
parameters used for viscous-controlled backlash - potentially only intersection with the inner circle of
the transfer function. However, this intersection is entirely enclosed by the outer circle of the transfer
function and Nyquist stability it is then concluded that all these potential limit cycles resulting from
these intersections are considered to be unstable. Taking the increasing direction of A into account,
similar to the analyses related to Figure 5.10b, leads to the conclusion that these unstable limit cycle
eventually merge to the set of stable limit cycle near (−1, j0)-point. Thus for this system there will
only be stable limit cycles, shown in the time response, with frequencies that are bounded by the
frequencies of the limit cycle predicted by either friction- and inertia-controlled backlash. In some
sense there is a certain ‘bandwidth’ of frequencies, corresponding to a stable limit cycle, for limit
cycles. This is illustrated in Figure 5.17. Whether limit cycles exist in the first place, still depends
on the backlash width. But if limit cycles are observed in the frequency response, the corresponding
frequencies of that limit cycle should be in the range of:

733[Hz] ≲ flc ≲ 815[Hz] (5.10)

corresponding to the bandwidth of stable limit cycles, denoted by the arrow in Figure 5.17. So
although, viscous-controlled backlash is dependent upon the ratio of M and D (which is fundamentally
unknown) and dependent upon the driving frequency ω it is possible to say something about the
potential limit cycles. Namely, that the frequencies of these limit cycles should be in the range of
Equation 5.10. Designing an experiment is one method for figuring out how friction affects the limit
cycles that backlash predicts. A certain degree of backlash is intentionally added to the driving bridge
in this experiment. Subsequently, the time response of this experiment is analysed with a FFT. For
example, it showed that a limit cycle with: flc = 760[Hz]→ ω = 4775[rad/sec] and a corresponding
amplitude A occurred. Given the b and the driving frequency the condition for harmonic balance
can be numerically solved for the ratio M/D to determined how friction is affecting the backlash
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Figure 5.15: Example of inertia-controlled backlash including higher harmonics

nonlinearity. In other words, the condition for harmonic balance denoted by Equation 5.11:

N

(
b

A
,
M

D
ω

)
G(jω) + 1 = 0 (5.11)

can be numerically solved for this experiment. The hypothesis that backlash in the trimmer behaves
more like friction-controlled backlash than like inertia-controlled backlash can be validated by this
experiment.

5.2.4 Results : Coulomb friction backlash

In subsection 2.3.5 the DF for Coulomb code was derived. Remember that the DF for Coulomb friction
was purely real,

N(A) =
4Fc

πA

therefore the negative inverse of the DF traces a line on the real-axis in the complex-plane. Which in
turn indicates that, on order to find limit cycling behaviour, the linear transfer function has to ‘cross’
the negative real-axis at some point. From the Nyquist plots of the transfer function, it was already
observed that this is not the case for the transfer function associated to the trimmer. Therefore, it
is possible to generalise a statement of potential limit cycling behaviour: the negative inverse DF
does not intersect with the linear transfer function for trimmer dynamics, hence no limit cycle is
predicted. This has to be verified with experiment. Once again the transfer function is plotted with
the contour of −1/N(A), resulting in Figure 5.18: From the graphical representation of the condition
for harmonic balance, shown by Figure 5.18, no limit cycle is predicted. This is in agreement with the
results from the first experiment of section 3.2, where no additional harmonics were found apart from
the harmonics corresponding to the fundamental harmonic.
Similar to the results for backlash, a Simulink model is created in feedback configuration to validate
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(a) Viscous-controlled loci (b) Friction-, inertia-, and viscous-controlled loci

Figure 5.16: Transfer function with contour for viscous-controlled backlash: −1/N(β, γ)

that no limit cycles are induced by Coulomb friction. Appendix C.5, shows an equivalent closed-loop
configuration to generate the time response for the Coulomb friction nonlinearity. An ideal relay
is used as the nonlinearity related to Coulomb friction. The time response with associated FFT is
shown in Figure 5.19. In contrast to the hypothesis that Coulomb friction DF, does not induce limit
cycling behaviour since the DF does not have imaginary part and therefore does not intersect with
this transfer function, the time response shows an additional oscillation in Figure 5.19a. A potential
explanation is that, follows from the observation that the contour of −1/N(A) asymptotically merges
with the contour of the transfer function near the origin, shown in Figure 5.18. Previously, it has been
shown that the introduction of higher harmonics graphically transformed the 1D line segment of the
DF to a thicker 2D line segment on the complex plane. Taking that into consideration, the transfer
function might intersect with −1/N(A), near the origin since the thickness considerably small. In
addition, for increasing frequency the transfer function spirals into

lim
ω→+∞

G(jω) → (0, 0j)− point (5.12)

High frequency limit cycles are therefore anticipated, which are precisely observed in Figure 5.19b. This
observation is further evaluated by changing the ideal relay nonlinearity with the built-in component
‘Coulomb & Viscous’ friction. Furthermore, the Coulomb friction coefficient is increased to Fc = 1.5[-]
and a viscous friction component of Ff = 0.1[Ns/m] , resulting in a shorter path length over the
negative real-axis for the contour of the DF, since:

− 1

N(A)
= −Aπ

4Fc
(5.13)

In addition, instead of the open-loop configuration a closed-loop configuration is simulated with an
impulse response, resulting in Figure 5.20.
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Figure 5.17: Bandwidth for range of stable limit cycles

Figure 5.20: Closed-loop FFT for impulse response of the ‘Coulomb & Viscous’ built-in nonlinearity,
with Fc = 1.5[-] and Ff = 0.1[Ns/m]

From the figure Figure 5.20 it is concluded that the impulse response show similar results as for the
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Figure 5.18: Transfer function with negative inverse of the Coulomb DF on the complex plane,
where Fc = 0.015[-]

FFT obtained from the closed-loop configuration. Further investigation of the system subjected to
impulse response, shows that the amplitude of the predicted limit cycle scales in linear fashion with
Fc. For example increasing Fc by factor 10 results an increase of the amplitude by factor 10 as well.
A realistic value of the Coulomb friction, which is assumed to be below 1.0[N], show high frequency
limit cycles but with extremely small amplitude and therefore Coulomb friction nonlinearity might be
neglected when predicting limit cycles.

5.2.5 Results : equivalent nonlinearity backlash

Finally, the results for the equivalent nonlinearity between friction-controlled backlash and Coulomb
friction are analysed, that result from the theory described in section 2.4.
It was assumed that the backlash component in the trimmer is friction-controlled since the frictional
forces between the cutter and guard are relatively high. As briefly mentioned, Simulink DF is derived
on the input-output wave characteristic of the relevant nonlinearity. Unfortunately, this has not been
achieved for the equivalent nonlinearity, however the DF in terms of frequency response can still be
derived. Equation 2.58 shows that the inherent nonlinearity, which is Coulomb friction, has to be
adjusted by 1/Gg(s) to account for the fact that Coulomb friction is velocity dependent, whereas
backlash is positional dependent. This results to the following modified inherent nonlinearity for
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(a) Time response (b) FFT

Figure 5.19: Open-loop Simulink output for Coulomb friction, with Fc = 0.015[-]

Coulomb friction as:

1

Gg(jω)
Nf (A) =

1

Gg(jω)

4Fc

Aπ

1

Gg(jω)

4Fc

Aπ
=

1

jω

4Fc

Aπ

= −j
4Fc

ωAπ

Combing this to the intentional nonlinearity Nr(A), for friction-controlled backlash, leads to the
following - frequency dependent DF - equivalent nonlinear DF:

Neq(A,ω) =
1

A

π

2
− sin−1

(
2b

A
− 1

)
−
(
2b

A
− 1

)√
1−

(
2b

A
− 1

)2

+j

(
4b

π

(
b

A
− 1

)
− 4Fc

ωAπ

) (5.14)

Since this DF is frequencies dependent, a variety of contours with changing frequencies is generated,
similar to the results for viscous-controlled backlash. A large variety of potential contours for the
equivalent nonlinearity is possible since ω, Fc and b can all change. Some of the results are summarised
in Figure 5.21.
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(a) Change in ω, with Fc = 0.15 and b = 200e− 5 (b) Change in Fc, with ω = 2 · π100 and b = 200e− 5

(c) Change in b, with Fc = 0.15 and ω = 2 · π100

Figure 5.21: Contour of the equivalent nonlinearity, for change model parameters

From Figure 5.21a it is observed that increasing ω leads to a similar contour for the DF as for friction-
controlled backlash since the additional imaginary term in Equation 5.14, vanishes:

lim
ω→∞

(
4Fc

ωAπ

)
= 0

therefore the DF for the equivalent nonlinearities reduces to the DF for friction-controlled backlash.
Taking the limit for Fc to infinity, shows that the imaginary term, resulting from friction-controlled
backlash, becomes marginal compared to the Coulomb friction term.
Figure 5.21b and Figure 5.21c show the resulting contour for the equivalent nonlinearity when changing
the Fc and b respectively. Note that these changes show similar behaviour as for viscous-controlled
backlash DF described in subsection 5.2.3. In addition, for some model parameters it is possible to
observe multiple intersections (limit cycles) between the transfer function and the negative inverse of
the DF, however the associated operating point tend to move to (−1, 0j)-point, if the operating point
is perturbed. Resulting in a bandwidth of stable intersection, similar to Figure 5.17.
In subsection 5.2.1, it was shown that for friction-controlled backlash, with b = 4e−6[m], a limit cycle
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occurred with Alch = 3.313e−5[m] and frequency flch = 733.3[Hz]. These observation are now further
compared to the results from the equivalent nonlinearity. Since the equivalent nonlinearity reduces to
the friction-controlled backlash as Fc = 0, it is expected that for these model parameter equivalent
limit cycling behaviour is predicted. The result is shown on Figure 5.8.

Figure 5.22: b = 4e− 6[m], Fc = 0[-]

Although the contour for −1/N(A,ω) has a shorter path length, it traces the exact curve for the
friction-controlled backlash DF. Hence it intersects with the transfer function at the same location,
and therefore it predicts a limit cycle with equivalent properties as the friction-controlled DF did.
However, from Figure 5.21b it is observed that the contour of the DF changes rapidly, when Coulomb
friction is introduced to the system. It was assumed that realistic value of Coulomb friction is below
1.0[N]. Applying Fc = 0.6 and ω = 200π, the to DF results in the contour, with the associated FFT
obtained from the related closed-loop Simulink model, are shown in Figure 5.23

Figure 5.23a shows that 1 intersection occurs, therefore 1 limit cycle is predicted, with frequency
flcs = 737.514[Hz]. The frequency of this limit cycle is thus:

δ =

∣∣∣∣737.514− 733.33

733.33

∣∣∣∣ · 100%
δ = 0.5705%

higher than the frequency of the limit cycle predicted for friction-controlled backlash. Resulting from
the fact the contour corresponding to the equivalent nonlinearity with Fc = 0.6, intersects with the
transfer function at a slightly higher frequencies, shown in Figure 5.24.
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(a) C. equivalent nonlinearity (b) FFT

Figure 5.23: Closed-loop Simulink for equivalent nonlinearity, with b = 4e− 6[m] and Fc = 0.6[-]

Figure 5.24: Comparison for contours obtained for equivalent nonlinearity, with b = 4e− 6

However, the amplitude of limit cycle has changed significantly since the the DF has changed signif-
icantly as well. A closed-loop configuration in Simulink, is used here to obtain the FFT shown by
Figure 5.23b. The FFT shows that a peak occurs at flcs = 736.993[Hz], which corresponds to the
frequency of the limit cycle. Besides that frequency, two more peaks are observed in the FFT, with
frequency f1 = 221.989[Hz] and f2 = 369.996[Hz], where the latter is a harmonic generated by the

frequency of the limit cycle since 736.993[Hz]
369.996[Hz] ≈ 2.



Chapter 6

Discussion & Recommendations

Considering the distinct cases for DF analysis led to the observation that for all cases, one or under
strict conditions 2 limit cycles were predicted. Friction-controlled backlash showed that a stable limit
cycle was predicted with a frequency of f ≈ 733[Hz]. Inertia-controlled predicted a slightly higher
frequency limit cycle f ≈ 815[Hz], while the DF’s for the viscous-controlled backlash illustrated that
the range of frequencies for which stable limit cycles can occur, are in fact bounded by the contours of
the DF’s for friction- and inertia-controlled backlash. It is then discussed that, even though unstable
limit cycles might exist, that the time response associated to that model only showed stable limit cycle
in the vicinity backlash. This results from the observation that the potential unstable limit cycles all
have the tendency to shift towards to ‘band’ of stable limit cycles, by perturbing the amplitude of the
operating point. This results from the inherent property that these intersections are all encircled by
the outer radius of the transfer function and hence all these intersection are considered to be unstable
based on the Nyquist stability criterion.
Another restriction, such that limit cycles were not present in the Simulink model for backlash, is
that the width of the backlash component should: b ≲ 2e − 8[m]. Values greater than this value
already should undesired limit cycles. However, from experiment it was observed that for values
of b = 200e − 6, which is a lot larger than previously mentioned value of b, no limit cycles were
observed in the system. Indicating that the friction between the cutter and guard attenuates the
magnitude of the predicted limit cycle. Since the backlash component is complex by nature, it is
impractical to predict the precisely value for which limit cycles exist in the first place. In the results
of viscous-controlled backlash, an experimental study is proposed to evaluate how friction is affecting
the backlash component and hence the predicted limit cycle.
Another consideration that has to be taken into account is that the experimental results were manually
calibrated. Potentially resulting in inaccuracy in terms of absolute magnitude of the oscillating motion
between the cutter and guard. But does not result in inaccuracy in terms of the frequency of that
oscillating motion. In other words, the peaks in experiment’s FFT are not subjected to inaccuracy in
terms of frequency, but are inaccurate in terms of absolute magnitude. This is a desired observation
since the frequency of the possible limit cycles is important rather than their amplitude.
Given the fact the DF method is a approximate study, there is more to say about the inaccuracy. A
vital consideration of approximate studies is the consideration of error bounds [19]. However, literature
has shown that is is almost impractical to derive error bound equations for the DF.

6.1 Limitations of applicability - odd nonlinearities

The fundamental assumption for the derivation of the DF method, was that a self-sustained oscillation
exists in the first place. For which the shape of the oscillation is governed by a perfect sinusoid.
Unfortunately, this does not always apply to limit cycle, as the Van der Pol oscillator has shown.
In addition, the derivation of the DF only applies to hard-nonlinearities. Indicating that non all
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nonlinear components can be approximated with a DF. Hard-nonlinearities can be considered as on-off
nonlinearities. In other words, the have the property that they are piece-wise linear. Friction-controlled
backlash is a good illustration of an on-off nonlinearity, but inertia-controlled backlash already shows
that input-output relation is not perfectly linear when eccentric pin and driving bridge are in contact
hence for this type of backlash the DF less applicable than for friction-controlled backlash. Similar
analyse applies to viscous-controlled backlash. For Coulomb friction, the derivation of the DF relied on
the assumption that Coulomb friction could be modelled as an ideal relay, and hence the nonlinearity
as an on-off nonlinearity. Realistically, the friction between the cutter ans guard have a nonlinear
viscous term as well an thus the input-output relation is not perfectly linear.
Finally, the derivation of the DF only applies to odd-nonlinearities, such that the static term of the
Fourier expansion vanishes a0 = 0, leading to the Fourier expansion that only contain a1 and b1 term.

6.2 Limitations of performance - filtering hypothesis

Odd-nonlinearities indicate that the static term in the Fourier expansion vanishes, indicating that
only a1 and b1 are left behind. Unfortunately, this is not the whole story. As mentioned throughout
this research, the filtering hypothesis must be also be accomplished such that the higher terms of the
Fourier expansion are completely attenuate, such that an = 0 and b2 = 0 for n = 2, 3, ... Only than the
condition for harmonic balance is accurate. Even for very small higher-ordered terms, inaccuracy arises
and the predicted limit cycles, based on this condition, are inaccurate. Resulting in the conclusion
that more accurate results are achieved the more the transfer function behaves like a low-pass filter.
From the Bode plot, related to the frequency response of the linear transfer function of the trimmer,
it has been determined that the ‘filtering order’ is approximately 1. This indicates that this transfer
function is on the edge of filtering out the higher harmonics. Moreover, the model parameters on
from which the transfer function is derived, have an inherent inaccuracy and therefore it is possible
to that the filtering hypothesis might not completely be achieved. A consequence if the filtering
hypothesis is not entirely achieved, was illustrated in subsection 5.2.2. It showed that inclusion of the
higher harmonics could potential make the line of the negative inverse of the DF thicker, and hence
intersection(s) between the transfer function and the negative inverse of the DF to occur somewhere
else. Hence the properties of that limit cycle might deviate from the observed limit cycle. Based on
this, the following conclusion are made with the consideration that higher harmonics were excluded
in the derivation of the DF:

1. The amplitude and frequency of the predicted limit cycle are not accurate

2. A predicted limit cycle does not actually exist

3. An existing limit cycle is not predicted

Another restriction for the applicability of the DF has to considered, related to the filtering hypothesis.
In literature it has been shown that the DF method erroneously predict limit cycles if the plots of
the contours of the transfer function and the negative inverse of the DF nearly tangent [20]. This has
be taken into account when modeling trimmer dynamics, and can be easily verified by plotting of the
associated backlash DF and transfer function.

6.3 Validity of assumptions

During this research it was assumed that backlash in the trimmer, can best be modelled as friction-
controlled backlash. No empirical evidence is found to validate this assumption. However, with great
possible certainty it is said to be true since the spring force pressing the cutter to the guard is high.
If not, there is a chance that hair may be crushed between the cutter and guard rather than being
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actually trimmed.
Furthermore, it was assumed that the trimmer only included two nonlinearities for backlash and
Coulomb friction. Consider the illustration of Figure 2.1b, from that it can be said that for a realistic
model an additional backlash component is present between the guard housing and plastic housing
where the motor is located. This backlash component results from the fact that the essential compo-
nent are not rigidly mounted to the motor housing so that these components can be cleaned. However,
it is assumed that the size of this backlash component was negligible.

6.4 Future Work

• The general Simulink model, used to validate experiment, did not show any limit cycles for
b = 100e − 6 backlash. Keep in mind that this general differs from the DF theory, since the
‘linear’ part of the transfer function here includes Coulomb friction nonlinearity. The results from
this Simulink model agreed with measurement and hence not limit cycles predicted. It does not
mean that DF theory is insufficient. Probably the Coulomb friction alleviates the potential limit
cycles. Feed forward friction compensation should show that, based on DF theory, indeed limit
cycles are there but friction alleviates the potential limit cycles.

• As seen in the previously, the sinusoidal input DF, represent an approximate mathematical
framework for analysing nonlinear systems. However, the method only includes the first har-
monics of the Fourier expansion. The overall system might ’show’ limit cycling behaviour in
higher harmonics. Therefore it is necessary to investigate the procedure of including the higher
harmonics of Fourier expansion into the DF method. Ultimately resulting in a more complex con-
dition for harmonic balance. Full credit go to ’P.W.J.M. Nuij, O.H. Bosgra, M. Steinbuch’ with
their article on Higher-order sinusoidal input describing functions for the analysis of non-linear
systems with harmonic responses [17].

• Including cascaded DF’s in a closed-loop configuration, such that the additional backlash non-
linearity can be included for the DF method. Again the overall frequency response is obtained
by closing the loop. Previously, it was stated that the the higher harmonics should be filtered
out to utilise the condition for harmonic balance. This means that both G1(jω) and G1(jω)
should act as a low-pass filter, where G1(jω) and G1(jω), resulting from clever decomposition
of G(jω)

• This study showed that, according to DF theory, only a certain bandwidth of stable limit cycles
can occur. The range of the bandwidth showed to be very limited, since the contour of the
transfer function comes very close to (−1, j0)-point, from which the DF’s for backlash originates.
As a consequence the bandwidth of potential limit cycles is very limited. In contrast to what
has been done in this study, one might consider the effects of altering the model parameters that
correspond to the transfer function on the forecasting of limit cycles. A Monte Carlo simulation
can be employed for this.

• The theory and results for the viscous-controlled backlash prescribed that only stable limit cycles
can be found for this system with a certain range of frequencies. By conducting an experiment,
one can determine how friction is affecting the backlash nonlinearity for the trimmer. In doing so,
it is essential that the FFT shows that a limit cycle is found for a given amount of backlash. Then
the condition for harmonics balance, for viscous-controlled backlash indicated by: Equation 5.11,
can be numerically solved for the ratio of M/D. In advance this ratio tells, how friction is
affecting the backlash.

• A quantitative model that is able to transform the predicted properties of a limit cycle to
unpleasant vibrations. In other words, how ‘unpleasant’ are the induced limit cycles in the eyes
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of a user of the trimmer.



Chapter 7

Conclusion

To analyse the existence of limit cycles in nonlinear systems, the DF theory was employed. This
theory is based on the Fourier series with the assumption that limit cycles have sinusoidal shape. DF
theory was applied to the trimmer, for which the linear and nonlinear components could be visually
separated. The applicability of the DF, requires the transfer function of the trimmer to have low-pass
filtering behaviour. It has been shown that the transfer function for this particular met this require-
ment, but omitting damping is not recommended since this should that a resonant frequency appear
in the Bode plot and hence the filtering hypothesis is not entirely achieved.
For trimmer dynamics, two nonlinear elements were considered: backlash and Coulomb friction. How-
ever, it was shown that the backlash nonlinearity had multiple forms: friction-controlled, inertia-
controlled and viscous-controlled form. More realistically, combinations of the three forms of backlash
with Coulomb friction, showed to be applicable to trimmer dynamics. For this realistic scenario an
equivalent nonlinear DF was derived. All models showed the existence of a stable limit cycle with
approximately equivalent frequency. It is therefore recommended to use the widely known friction-
controlled backlash DF since this DF is fairly easy to implement in contrast to the DF for inertia-,
viscous-controlled backlash, and the equivalent nonlinear.
An extension of the Nyquist stability theorem states that intersection between the contour of the
transfer function and the contour of negative inverse of the DF, suggest limit cycling behaviour. In
literature this statement is known as the ‘condition for harmonic balance’, and if this condition is met
limit cycling behaviour is predicted. For this research project 2 transfer functions, corresponding the
two distinct trimmers, were examined in the presence of backlash. Firstly, a transfer function related
to experiment’s trimmer was evaluated. General results of the research relied on a different transfer
function however. Based on the condition for harmonic balance, this transfer function predicts a limit
cycle for backlash values that are greater than b ≈ 2e − 8[m]. In advance the stability of these pre-
dicted limit cycles was examined. Resulting in only stable limit cycles. Stability of limit cycles can
be determined graphically when perturbing the amplitude in positive direction.
Keep in mind that DF method, which is based on a Fourier series, is an approximate method. Only
fundamental harmonics are included in this theory. This might lead to inaccuracy of the method, as
discussed previously.
Applying the DF method to trimmer dynamics, shows promising results but further research is opted
for. Especially, an additional experiment the serves to quantify how friction is affecting backlash for
trimmers should be validated. In other words, the ratio of M/D for the realistic viscous-controlled
backlash DF should experimentally be determined. In addition, the inclusion of additional backlash
component might be necessary to obtain a generic model.
As stated before, this study aimed to investigate the relation between backlash and the existence of
limit cycles in trimmer dynamics. The method to conduct this research was to utilise the DF method.
subsection 5.2.1 showed the amplitude of the predicted limit cycles was proportional to the size of
backlash, providing sufficient sufficient knowledge to answer the main research question:
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What is the influence of the size of play to the induced limit cycles and hence to observed vibrations?

The related sub research questions will be answered here:

• What is the effect of damping on the linear stability of the system?
Linear stability analysis showed that the inclusion of damping resulted in an increase of the
magnitude of the resonance frequencies. However, the (anti)resonant frequencies did not change
and remained for below the operating frequency of the system. Moreover, it is very unlikely that
the induced limit cycle has precisely a frequency corresponding to the (anti)resonant frequency
and hence no attenuation for the higher order Fourier coefficients is achieved.

• What is the influence the play element to the stability and performance of the system?
Despite unstable limit cycles are predicted for certain backlash size, the overall stability of the
system is not altered. Especially, the analyses of the results presented in subsection 5.2.3 showed
that all operating points corresponding to the unstable limit cycles all had the tendency to shift
towards the stable limit cycle regime.
The inclusion of backlash does affect the performance of the system, since it contributions to
the existence of limit cycles and hence additional oscillations. There is a proportional relations
between the size of backlash b and the amplitude of the limit cycle.

• What is the influence of the frictional components the stability and performance of the system?
Similar to the answer on the previous question, the stability is not altered with the inclusion of
Coulomb friction, however the performance does change. With the help of experiment’s findings,
described in section 3.3, it was shown that the induced limit cycles resulting from backlash were
suppressed when Coulomb friction was introduced to the system. Coulomb friction between the
cutter and guard is therefore actually a desired element.

• What is the influence of the input amplitude, and backlash width, to the stability and perfor-
mance of the system?
The open-loop configuration with external driving input, showed that the input amplitude had
not effect on the properties of the limit cycle. It has to be noted that there is a distinction
between the input amplitude and the amplitude of the limit cycles.

• What is the influence of the input frequency to the stability and performance of the system?
For friction-, and inertia-controlled backlash the performance of the of the system does not
change since the related DF are frequency independent. Resulting in the ‘normal’ condition for
harmonic balance from which the amplitude of the predicted limit cycle is determined from the
DF part, while the frequencies is solely resulting from the transfer function part. For viscous-
controlled backlash and for the equivalent nonlinearity, the DF depends on the input frequency.
In subsection 5.2.5 it was shown that the equivalent nonlinear DF, results to a DF contour
similar to the contour of friction-controlled DF, whereas decreasing frequency the DF contour
results in a contour similar to the contour of inertia-controlled DF. Despite this observations, the
system’s performance barely alters since there is a limited range of frequency for which stable
limit cycle can exist at all.

• How does the predicted limit cycle, by the describing function method, manifest itself in the
output of the system?
As seen throughout this research, the generated limit cycle manifest itself as sub oscillations
on top of base oscillations, corresponding to the driving function, for the realistic open-loop
configuration. For closed-loop, without external input, the limit cycles are the only oscillations
in the time response of the output of the system. It has been shown that the closed-loop
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configuration is a practical way to determine the properties of the limit cycles since the open-
loop configuration also should subharmonics corresponding to the driving input and hence it
was sometimes impractical to visually validate which peak in the FFT corresponded to a limit
cycle and which peak corresponded to a subharmonic.
Open-loop configuration is however helpful to validate data to Simulink model, since the data is
obtained from a open-loop configuration with external input.
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Appendix A

Matlab codes

A.1 Transfer function derivation

sQ(s)−AQ(s) = BU(s)

(sI −A)Q(s) = BU(s)

Q(s) = (sI −A)−1BU(s)

(A.1)

putting this into the output equation of Equation 2.20;

Y (s) = C[(sI −A)−1BU(s)] +DU(s)

Y (s) = (C(sI −A)−1B +D)U(s)
(A.2)
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A.2 General code form computing properties of linear model

The code for the construction of the linear part of the system is shown in Listing A.1. From the EOM
(Equation 2.9), the state-space representation is obtained by line: sys = ss(A,B,C,D), with associ-
ating A-, B-, C- and D-matrices. Code is then able to compute the transfer function corresponding to
the state-space representation by the line: G = tf(sys). Note that the obtained transfer function, for
this model, is a double input/single output transfer function, since the system is a dissipating system
and hence the B-matrix, in state-space representation, has 2 columns, i.e. B-matrix ∈ R8×2. Where
the first column is associated with the relative displacement and the second column is associated with
the relative velocity of the trimmer. However, the required output matrix (C-matrix), tracks the rela-
tive displacement of the trimmer and hence only the first transfer function of the double input/single
output transfer function is used.

Listing A.1: Code properties linear model

1 %% This section states the state−space model, and from the model the bodeplot is ...
obtained

2 clear all; clc; close all;
3

4 m1 = 0.035;
5 m2 = 0.003;
6 m3 = 0.005;
7 m4 = 0.030;
8

9 k1 = 200e3;
10 k2 = 30e3;
11 k3 = 150e3;
12 k4 = 100e3;
13 k5 = 1e3;
14

15 c1 = 3.5;
16 c2 = 0.4;
17 c3 = 1.0;
18 c4 = 4.0;
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19

20 %State variables, do NOT uncomment variables x1,...,x8 below!
21 % x1 = q1
22 % x2 = q2
23 % x3 = q3
24 % x4 = q4
25 % x5 = dq1
26 % x6 = dq2
27 % x7 = dq3
28 % x8 = dq4
29

30 A = [0 0 0 0 1 0 0 0;
31 0 0 0 0 0 1 0 0;
32 0 0 0 0 0 0 1 0;
33 0 0 0 0 0 0 0 1;
34 −(k1+k2)/m1 k2/m1 0 0 −(c1+c2)/m1 c2/m1 0 0;
35 k2/m2 −(k2+k5)/m2 k5/m2 0 c2/m2 −c2/m2 0 0;
36 0 k5/m3 −(k3+k4+k5)/m3 k4/m3 0 0 −(c3+c4)/m3 c4/m3;
37 0 0 k4/m4 −k4/m4 0 0 c4/m4 −c4/m4];
38

39 B = [0 0;
40 0 0;
41 0 0;
42 0 0;
43 −k2/m1 −c2/m1;
44 k2/m2 c2/m2;
45 0 0;
46 0 0];
47 % two antiresonance frequencies
48

49 % Desired output
50 C = [0 1 0 −1 0 0 0 0]; % ...

Output relative position of cutter (x2) and guard (x4)
51 D = 0;
52

53 % Construct SS−model
54 sys = ss(A,B,C,D);
55

56 % Construct transfer function based on SS−model
57 G = tf(sys);
58 G = G(1);

A.3 Code DF friction-controlled backlash

Listing A.2: Code DF friction-controlled backlash

1 function N = backlash describing func 2(A, b)
2 %A = amplitude range
3 %b = Size of backlash
4

5 N = zeros(size(A));
6 N(A < b) = 0;
7 CgtrD = A(A ≥ b);
8

9 N re = (0.5 + 1/pi*(1 − (b./A)).*sqrt(1 − (1 − b./A).ˆ2) + 1/pi * asin(1 − ...
(b./A)));

10 N im = −((1)./(pi)).*(1 − (1 − b./A).ˆ2);
11
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12 N = N re + 1i*N im;
13 end
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A.4 Code friction-controlled backlash DF

Code listed in Listing A.3 takes three input arguments: the input wave e(t), the deadband width
Dsize and the previous output from the block uprev. The latter is needed to make the if-else statement
work. The code is based on the potential values of the friction-controlled backlash DF of Equation 2.36

Listing A.3: Code DF friction-controlled backlash

1 function N = backlash describing func 2(A, b)
2 %A = amplitude range
3 %b = Size of backlash
4

5 N = zeros(size(A));
6 N(A < b) = 0;
7 CgtrD = A(A ≥ b);
8

9 N re = (0.5 + 1/pi*(1 − (b./A)).*sqrt(1 − (1 − b./A).ˆ2) + 1/pi * asin(1 − ...
(b./A)));

10 N im = −((1)./(pi)).*(1 − (1 − b./A).ˆ2);
11

12 N = N re + 1i*N im;
13 end
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A.5 Code inertia-controlled backlash

Listing A.4: Code DF inertia-controlled backlash

1 function [N] = backlash DF inertia 0910(Beta, w)
2 x = sym('x');
3 eqnLeft = sin(w*x); % phi is scaled by w
4 eqnRight = w.*x − Beta;
5 sym phi = vpasolve(eqnLeft == eqnRight, x);
6 phi = sym2poly(sym phi); % This phi has to go into the ...

nested function
7 N = myN(Beta,phi);
8 function N = myN(Beta,phi)
9 N re = (1/pi)*(pi + 2*sin(sin(phi) +Beta) − phi − sin(sin(phi) ...

+Beta).*cos(sin(phi) +Beta));
10 N im = −(1/pi)*(1 − cos(sin(phi) +Beta)).ˆ2;
11

12 N = N re + 1i*N im;
13 end
14 end
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A.6 Code viscous-controlled backlash

Listing A.5: Code DF viscous-controlled backlash

1 function [N] = viscous DF(Beta,phi)
2

3 phi s = atan(1./phi);
4

5 x = sym('x');
6 eqnLeft = sqrt(1 − phi.ˆ2) − Beta;
7 eqnRight = sin(x) + ((phi.ˆ2).*exp((1./phi).*(atan(1./phi) − x)))./(sqrt(1 + phi.ˆ2));
8 sym phi = vpasolve(eqnLeft == eqnRight, x);
9 phi c = sym2poly(sym phi);

10

11 np = ((2*phi.ˆ2)./(pi.*(1 + phi.ˆ2))).*[((1 + phi.ˆ2)./(2.*phi.ˆ2)).*(phi s − ...
phi c + pi + sin(phi c).*cos(phi c)) + 1./(2*phi) + ...

12 (1./phi).*(Beta − sqrt(1 + phi.ˆ2)).*((1./phi).*cos(phi c) − sin(phi c)) − ...
13 (1./phi).*sin(phi c).ˆ2 − sin(phi c).*cos(phi c)];
14

15 nq = ((−2*phi.ˆ2)./(pi.*(1 + phi.ˆ2))).*[1 + 1./(2.*phi.ˆ2) + ((1 − ...
phi.ˆ2)./(2.*phi.ˆ2)).*sin(phi c).ˆ2 + ...

16 (1./phi).*(Beta − sqrt(1+phi.ˆ2)).*((1./phi).*sin(phi c) + cos(phi c)) + ...
17 (1./phi).*(sin(phi c).*cos(phi c))];
18

19 N = np + 1i*nq;
20 end
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A.7 Code equivalent nonlinearity

Listing A.6: Code DF viscous-controlled backlash

1 function N = equivalent nonlin(A,D,w,Fc)
2 %UNTITLED2 Summary of this function goes here
3 % Detailed explanation goes here
4 %A = amplitude input wave
5 %D = Size of backlash
6

7 Nr = zeros(size(A));
8 Nr(A < D) = 0;
9 CgtrD = A(A ≥ D);

10 N re = (0.5 + 1/pi*(1 − (D./A)).*sqrt(1 − (1 − D./A).ˆ2) + 1/pi * asin(1 − ...
(D./A)));

11 N im = −((1)./(pi)).*(1 − (1 − D./A).ˆ2);
12 Nr = N re + 1i*N im;
13 a 1 =0;
14 b 1 = (4*Fc)/pi;
15 Nf = (1./A)*(b 1 + 1i*a 1);
16

17

18 N = Nr − (1i/w)*Nf
19 end
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A.8 Code friction-controlled backlash based on time domain

Listing A.7: Code DF friction-controlled backlash time domain

1 function u = fcn(e, D size, u prev)
2 if e − u prev > D size/2
3 u = e − D size/2;
4 else
5 if e − u prev < −D size/2
6 u = e + D size/2;
7 else
8 u = u prev;
9 end

10 end
11 end
12 end

A.9 Code inertia-controlled backlash based on time domain

The code only takes two input arguments, namely: the input wave u(t) = A sin(ωt) and t which is
time. Code produces required output stated by Equation 2.42. The code is able to reproduce results
over multiple period by replacing t by mod(t,T). mod(t,T) returns the remainder after division of
t by T . Validation of the function block is done by observing that the output wave, when applying
an input wave, matches the trend shown by Figure 2.10. Again A = 0.0015[m] b = 0.0004[m] and
f = 109.845[Hz]

Listing A.8: Code DF inertia-controlled backlash

1 function y = fcn(u,t)
2 b = 0.0004; %Backlash size
3 A = 0.0015; %Input amplitude
4 w = 200*pi;
5 freq = 100;
6 w = 2*pi*freq;
7 T = 2*pi/w;
8 phi = 0.00190662; %Numerical computed connection point
9

10 y = (w*A*mod(t,T) − b/2) .*(mod(t,T)≥0 & mod(t,T)<phi)...
11 + (u + b/2) .*(mod(t,T)>phi & mod(t,T)<T/2)...
12 + (−w*A*mod(t,T) + 0.0049) .*(mod(t,T)≥T/2 & mod(t,T)<T/2+phi)...
13 + (u − b/2) .*(mod(t,T)>T/2+phi & mod(t,T)<T);
14

15

16 end
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A.10 General nonlinear code Coulomb Friction DF

The code listed in Listing A.9 is able to check if the condition for harmonic balance is satisfied
between the linear transfer function and the nonlinear friction-controlled backlash DF. Where the
friction-controlled DF, line 8, can be replaced by the external functions for the other nonlinearities
as well. First, the size of backlash is defined (line 5), subsequently an external function associated
to the nonlinearity of is called (line 8). Then the negative inverse of that nonlinearity is plotted on
the complex plane together with the linear transfer function (line 13 and 14). Intersections of the
two curves are performed by the fsolve-command (line 22). The function return the amplitude and
frequency corresponding to the predicted limit cycle. Intersections are then plotted on the same graph.
After that simulink is used again to validate the predictions, based on DF theory. Zero external input
model is then compared to similar model, subjected to model with driving input frequency, by means
of the FFT.

Listing A.9: General code for computing intersection between friction-controlled backlash and trans-
fer function

1 %% Nonlinear part
2 clc; close all;
3

4 % Define deadband width
5 b = 0.00004;
6

7 % Call external DF
8 N = @(A) backlash describing func 2(A, b)
9 cc = linspace(b/2+0.000001,0.0025,10000);

10

11 % Plot Nyquist of linear TF with 1/N DF
12 figure(1);
13 nyquist(G(1)); hold on;
14 plot(real(−1./N(cc)), imag(−1./N(cc)), 'r', 'LineWidth', 1)
15

16

17 % Define TF obtain from linear model
18 G 1 = @(s)(1e07*sˆ6 + 1.233e10*sˆ5 + 5.939e14*sˆ4 + 1.65e17*sˆ3 + 4.065e21*sˆ2 + ...

3.667e23*s + 5.714e27)/ (sˆ8 + 1378*sˆ7 + 7.076e07*sˆ6 + 3.878e10*sˆ5 + ...
1.069e15*sˆ4 + 2.676e17*sˆ3 + 4.889e21*sˆ2 + 4.595e23*s + 5.971e27)

19

20

21 % Compute intersection point between TF and 1/N
22 [xopt, res] = fsolve(@(x) [real(N(x(1)))*real(G 1(1i*x(2))) − ...

imag(N(x(1)))*imag(G 1(1i*x(2))) + 1;
23 real(N(x(1)))*imag(G 1(1i*x(2))) + ...

imag(N(x(1)))*real(G 1(1i*x(2))) ], x0);
24

25 % Initial guesses to compute fsolve
26 A0 = 0.0003;
27 w0 =3500;
28 x0 = [A0, w0];
29

30 A opt(1) = xopt(1)
31 w opt(1) = xopt(2)
32 f opt = w opt(1)/(2*pi)
33 T period = 1/f opt
34 plot(real(G 1(1i*w opt(1))), imag(G 1(1i*w opt(1))), 'ko')
35 xlim([−8 0])
36 ylim([−20 2])
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A.11 Code inertia-controlled DF for backlash

Listing A.10: Code DF inertia-controlled backlash

1 function [N] = backlash DF inertia 0910(Beta, w)
2 x = sym('x');
3 eqnLeft = sin(w*x); % phi is scaled by w
4 eqnRight = w.*x − Beta;
5 sym phi = vpasolve(eqnLeft == eqnRight, x);
6 phi = sym2poly(sym phi); % This phi has to go into the ...

nested function
7 N = myN(Beta,phi);
8 function N = myN(Beta,phi)
9 N re = (1/pi)*(pi + 2*sin(sin(phi) +Beta) − phi − sin(sin(phi) ...

+Beta).*cos(sin(phi) +Beta));
10 N im = −(1/pi)*(1 − cos(sin(phi) +Beta)).ˆ2;
11

12 N = N re + 1i*N im;
13 end
14 end



Appendix B

Derivation Fourier coefficients

B.1 Derivation Fourier coefficients backlash operator

a1 =
1

π

∫ π−γ

π/2
(A− b) cos(ωt)d(ωt)︸ ︷︷ ︸

=
2b(b−A)

A

+
1

π

∫ 3π/2

π−γ
(A sin(ωt) + b) cos(ωt)d(ωt)︸ ︷︷ ︸

=0

+
1

π

∫ 2π−γ

3π/2
−(A− b) cos(ωt)d(ωt)︸ ︷︷ ︸

=
2b(b−A)

A

+
1

π

∫ 5π
2

2π−γ
(A sin(ωt)− b) cos(ωt)d(ωt)︸ ︷︷ ︸

=0

(B.1)

so the Fourier coefficient for a1 is:

a1 =
1

π

[
2b(b−A)

A
+ 0 +

2b(b−A)

A
+ 0

]
a1 =

4b

π

(
b

A
− 1

) (B.2)

B.2 Viscous DF coefficients

np(A,ω) =
2γ2

π(1 + γ2)

(
1 + γ2

2γ2
(ϕs − ϕc + π + sin(ϕc) cos(ϕc)) +

1

2γ

+
1

γ

(
b

A
−
√

1 + γ2
)(

1

γ
cos(ϕc)− sin(ϕc)

)
−1

γ
sin2(ϕc)− sin(ϕc) cos(ϕc))

(B.3)

97



98 APPENDIX B. DERIVATION FOURIER COEFFICIENTS

nq(A,ω) =
−2γ2

π(1 + γ2)

(
1 +

1

2γ2
+

(
1− γ2

2γ2

)
sin2(ϕc)

+
1

γ

(
b

A
−
√
1 + γ2

)(
1

γ
sin(ϕc) + cos(ϕc)

)
+
1

γ
sin(ϕc) cos(ϕc)

(B.4)



Appendix D

Derivation EOM based on
Euler-Lagrange

For q1 the EOM are derived as follows. Consider:

d

dt

(
∂L
∂q̇i

)
− ∂L

∂qi
+

∂R

∂q̇i
= Qi

where

L = T − V

L =
1

2
m1q̇

2
1 +

1

2
m2q̇

2
2 +

1

2
m3q̇

2
3 +

1

2
m4q̇

2
4−(

1

2
k1(q1)

2 +
1

2
k2(q2 − q1 − u)2 +

1

2
k3q

2
3 +

1

2
k4(q4 − q3)

2 +
1

2
k5(q2 − q3)

2

)
and

R =
1

2
c1q̇1

2 +
1

2
c2(q̇2 − q̇1 − u̇)2 +

1

2
c3q̇3

2 +
1

2
c4(q̇4 − q̇3)

2

then

d

dt

(
∂L
∂q̇1

)
=

d

dt
(m1q̇1) = m1q̈1

∂L
∂q1

= k1q1 − k2q2 + k2q1 + k2u

∂R

∂q̇1
= c1q̇1 − c2q̇2 + c2q̇1 + c2u̇

such that:

q̈1 =
1

m1
[−(c1 + c2)q̇1 + c2q̇2 − (k1 + k2)q1 + k2q2 − k2u− c2u̇]

The transform function related to the state-space representation is derived as:

sQ(s) = AQ(s) +BU(s)

Y (s) = CQ(s) +DU(s)
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Summary varying backlash widths and
input amplitude

Associated simulink models are computed, to validate that the limit cycles have varying amplitudes
but equal frequencies related to Table 5.2. This is shown in Figure E.1: Further investigating the

Figure E.1: Backlash model with varying backlash size widths with zero external input. Backlash
varies from top to bottom: 3e− 4[m], 4e− 4[m], 5e− 4[m] and 6e− 4[m]

scope of simulink indeed shows that the amplitudes are in agreement with the predicted amplitudes
from ??, and all have similar frequency.

Results for of the open-loop system for varying input amplitude.
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Figure E.2: Yellow curve corresponds to input wave, blue curve corresponds to output.
Top left: input wave amplitude is 1.5e − 6[m], top right:input wave amplitude is 1.5e − 2[m], middle
left: input wave amplitude is 1.5e−4[m], middle right: input wave amplitude is 1.5e−1[m] and bottom
left: input wave amplitude is 1.5e− 3[m], for b = 4e− 5


