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Abstract 

 

Greenhouse gases accumulation constitutes one of the main problems of modern society. 

Forests, which are the main terrestrial carbon sinks, could represent a great help to reduce 

the carbon footprints on regional scale. To exploit all their potential, we need a correct 

understanding of carbon cycling. Recent studies show that animals play a bigger role than 

expected in carbon dynamics. Even so, they have rarely been included in models predicting 

carbon cycling. In addition, while the impacts of some animals such as ungulates are 

affected by human presence at local scale, these effects have not been considered in 

studies on local carbon stocks. To cover this lack of knowledge, we analysed the impact of 

ungulates on local carbon stocks (soil, litter, and understory aboveground vegetation) of the 

Veluwe forest (Gelderland, the Netherlands), considering the influence of humans on 

ungulate presence and behaviour. Using camera traps located in plots at different distances 

from human paths (20 and 100 metres), we related differences in presence and behaviour 

of ungulates with the carbon quantities of the above-mentioned carbon stocks measured in 

the same locations of the camera traps. Because previous works have shown that ungulates 

change their space-use and behaviour in presence of humans, we expected fewer visits of 

ungulates and higher level of vigilance close (20 m) than away (100 m) from human paths. 

As consequence, we expected to find a negative response in the carbon stocks in the pools: 

with higher concentration of carbon in the aboveground vegetation, litter, and soil carbon 

pools close (20 m) to human paths than in the same pools away (100 m) from the paths. We 

found consistently fewer visits per day of ungulates close (20 m) than away (100 m) from 

human paths, but their behaviour was not significantly different 20 or 100 metres from 

human paths. We also found that in the aboveground vegetation and litter pools close (20 

m) to human paths, there were higher concentrations of carbon than in the same pools away 

(100 m) from the paths. We did not find differences in carbon concentration in the soil carbon 

pools close and away from human paths, but we did find a strong positive relation between 

litter content and soil organic matter, which suggests an indirect effect of ungulates on soil 

carbon. In conclusion, our study suggests that ungulates do have an impact on the carbon 

stocks of the Veluwe forest and that this is affected by human presence. Therefore, when 

predicting carbon cycling, we should not only include effects of animals, but also consider 

the influence that humans can have on their habitat choice and behaviour.  
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 Introduction 

Climate change represents a main challenge of modern society (Naustdalslid, 2011). 
Scientists are focusing their attention on carbon cycling to find ways to store C more 
effectively and reduce global warming (Sedjo, 1989; Singh, 2013; Turner et al., 2009; Withey 
et al., 2019). According to the Kyoto protocol (UNFCCC, 1997), terrestrial carbon sinks can 
be used to mitigate the effect of green-house gases. Since forests represent one of the main 
terrestrial carbon sinks, a correct understanding of the C cycle in forest ecosystems has a 
key role in finding a solution to climate change. While most models predicting carbon cycling 
focus on the role of primary producers, recent studies show that animals have a bigger 
impact on carbon fluxes than expected (Schmitz et al., 2014, 2018; Tanentzap & Coomes, 
2012; Wilmers & Schmitz, 2016). The lack of studies on the influence of animals on the 
carbon stocks might cause incorrect predictions of the carbon fluxes on regional scale and 
lead to the wrong conclusions.  
 
Wild ungulates represent one of the main drivers of changes in vegetation structure and 

composition in forest ecosystems (Bardgett & Wardle, 2003; Bressette & Beck, 2013; Chollet 

et al., 2021; Gerhardt et al., 2013; Gill, 2001; Putman, 1996; Ramirez et al., 2021) affecting 

forest regeneration and succession (Bressette & Beck, 2013). According to Tanentzap and 

Coomes (2012), herbivores reduce the carbon storage of worldwide temperate forests of 

40,000 ± 60,000 tonnes of carbon per year, by directly and indirectly affecting above- and 

below-ground carbon stocks (Bressette & Beck, 2013; Chollet et al., 2021; Hirst, 2021). 

However, their effects on the carbon pools on small spatial scales are less known, even 

while they might be really significant (Andriuzzi & Wall, 2017; Bardgett & Wardle, 2003; 

Chollet et al., 2021; Hirst, 2021; Tanentzap & Coomes, 2012). For example, Wilmers and 

Schmitz (2016) show that selective browsing by moose (Alces alces) affects litter quality, 

thus reducing boreal forest productivity, whereas elk’s (Cervus canadensis) grazing is 

believed to increase Yellowstone’s grasslands productivity; in turn, both species affect the 

carbon retention ability of their respective ecosystems. While several studies demonstrate 

the existence of direct effects of herbivores on above-ground carbon storages, e.g. via 

grazing and browsing, less is known about their indirect impact on below-ground carbon 

stocks, e.g. via trampling and affecting litter, even though evidence suggest that it might be 

significant (Chollet et al., 2021; Hirst, 2021; Tanentzap & Coomes, 2012) and that above- 

and below- ground dynamics are strictly intertwined (Andriuzzi & Wall, 2017; Bardgett & 

Wardle, 2003). 

Ungulates like deer can directly affect below-ground carbon content by browsing, thus 

removing biomass, which influences litter quality and quantity that is the main source of 

carbon in the soil, in turn affecting soil fauna composition, and thus organic matter 

decomposition rates and carbon stabilization in the ground (Allombert et al., 2005; Bardgett 

& Wardle, 2003; García-Palacios et al., 2013; Hirst, 2021; Tanentzap & Coomes, 2012). 

Ungulates can also indirectly affect below-ground carbon content by trampling, which 

compacts the soil and changes its physical properties (Andriuzzi & Wall, 2017;  Chollet et 

al., 2021; García-Palacios et al., 2013;  Hirst, 2021; Mohr et al., 2005; Ramirez et al., 2021). 

Other forest ungulates like wild boar (Sus scrofa) can also have a great impact on soil 

mechanisms, aboveground vegetation growth and litter quantity (Genov et al., 2017; Liu et 

al., 2020; Mohr et al., 2005; Risch et al., 2010). Bioturbation activities like trampling and 

grubbing by wild boar can significantly affect soil properties, such as soil bulk density and 

moisture, altering soil fauna composition and potentially leading to an increase in soil CO2 
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emissions (Cuevas et al., 2012; Liu et al., 2020; Risch et al., 2010). Soil fauna plays a key 

role in soil C dynamics and ungulates can affect it directly by consumption of soil plants and 

animals (Cuevas et al., 2012; Mohr et al., 2005; Risch et al., 2010). Mohr et al. (2001) show 

how the disturbance of the soil by wild boar and red deer significantly decreased the number 

of soil arthropods in German oak forests, and the same effect has been noticed in Hawaiian 

forests by wild pigs (Risch et al., 2010). Thus, although evidence suggests that ungulates 

such as deer and wild boar drastically affect soil C cycling, only a few studies have been 

focusing on their impact on soil C dynamics (Don et al., 2019; Liu et al., 2020). 

Recent studies show that ungulates behaviour is strongly influenced by human presence, 

which can increase their vigilant behaviour, altering ungulates food intake and habitat choice 

(Bonnot et al., 2013; Ciuti et al., 2012; Mols et al., 2021, 2022; Möst et al., 2015; Ramirez, 

Jansen, et al., 2021). On top of that, different studies show that the behaviourally mediated 

trophic cascade triggered by humans might even overrule the one induced by predators 

(Ciuti et al., 2012; Mols et al., 2021; Proffitt et al., 2009), reinforcing the idea that human 

effects cannot be overlooked. Mols et al. (2021) already showed how recreation and hunting 

activities by humans affect deer space-use and vegetation growth at the Veluwe forest, the 

Netherlands, but if and how these effects also cascade onto the carbon content of this forest 

ecosystem have not been studied yet. 

In this study we aim to understand the impact of humans on the small-scale effect of 

ungulates on the carbon content of the Veluwe forest (Gelderland, the Netherlands).  We 

expect to find a negative relation between abundance of ungulates and proximity to human 

paths. In locations closer to human paths, we expect to find fewer but more vigilant ungulates 

along with higher concentration of carbon in the aboveground vegetation, litter, and soil 

carbon pools, whereas in plots farther from human paths, we expect to find more but less 

vigilant ungulates together with lower concentration of carbon in the studied pools. This 

research will increase our understanding of the dynamics of carbon stocks, analysing factors 

which are usually not taken into consideration when predicting the carbon content of an 

ecosystem and it might even help in developing conservation strategies to prevent further 

carbon losses on regional scales. 
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 Methods 

Study area and study design 
 

Our study system, the Veluwe area (Gelderland, the Netherlands, Fig.1), is one of the largest 

connected forest area of the Netherlands. We focused our study on the northern part of the 

forest, and the main human settlements in the surrounding of the study area are the 

following: Appeldorn (52.2112° N, 5.9699° E) in the south-eastern side, Nunspeet (52.3748° 

N, 5.7699° E) in the northern side and Ermelo (26.5124° S, 29.9856° E) in the western side. 

The climate of the region is temperate maritime, with mean annual temperatures of 10.5°C 

± 0.12 SE and mean annual precipitation of 850 mm ± 255 SE (29 years average, 1990-

2019, De Bilt, Royal Netherlands Meteorological Inst.). The area is open to the public 

between sunrise and sunset and several trails allow people to walk or bike around the forest. 

Walking off-trails is prohibited, and only the managers of the area are allowed to use 

motorized vehicles on the trails.  

The vegetation in the Veluwe area is dominated by deciduous and coniferous forest 

alternate with heather (Calluna vulgaris) heathlands. Our study plots were located 

exclusively in pine-bilberry forests, where Scots pine trees (Pinus sylvestris) and bilberry 

bushes (Vaccinium myrtillus) represents the main component of the flora. Kuiters and Slim 

(2002) reported an average of 14 ungulates per km-1 in the Veluwe area, and since then the 

number have kept raising (Ramirez et al., 2021). In this study we focused on three deer 

species, red deer (Cervus elaphus), fallow deer (Dama dama) and roe deer (Capreolus 

capreolus) and on wild boar (Sus scrofa), which represent the largest and most common 

ungulates of the area (Ramirez et al., 2021).   

 

 

Fig.1: QGIS map of plots locations (Gelderland, the Netherlands). The pictures show the paired plot set-up of the study: uneven numbers 

represent plots 20 metres away from human paths, while even numbers those 100 metres away. In the legend are specified the different 

managements in the two locations of this study in the Veluwe forest.  

 

 We analysed a total of 22 plots (11 pairs), located in two different areas of the Veluwe forest 

(Fig. 1), managed by two different organizations: 12 plots were in Boswachterij Nunspeet 
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(2388 ha managed by Staatsbosbeheer), and the other 10 in Leuvenumse Bos (837 ha 

managed by Natuurmonumenten). Each pair of plots was located on a transect parallel to 

human paths, one 20 metres from the path and the other 100 metres away (Fig. 2). Previous 

studies have already showed that ungulates respond differently to these distances (Mols et 

al., 2021, 2022). Vegetation type (Scots pine trees and bilberry bushes) and distance to 

human paths (20 and 100 metres) were the main features used to select the plots.  

 

 

Fig. 2: paired plots set-up. The light brown stripe represents a human path, and the dark green square the paired plots 20 and 100 metres 

distant from the path. Each plot is divided into four subplots, see Appendix 1 for plot details.  

 

 

For the purpose of this study, we assessed carbon stocks at different pools’ level (understory 

aboveground vegetation, understory litter, and soil), in plots close (20 m) and away (100 m) 

from human frequented trails, which allowed us to study areas with different levels of animal 

presence. Using camera traps in the same locations where we assessed the carbon stocks, 

we related the carbon content to the presence and the behaviour of ungulates. 

Camera traps 
 

We collected data about presence and behaviour of ungulate using 22 camera traps 

previously located in the same locations where we assessed the carbon stocks. The 

recording took place from May 2020 until September 2021. Each camera trap was attached 

at a height of 100-120 cm on a tree, pointing on the opposite direction of the human paths. 

The following two types of camera traps were used: Bushnell Trophy Cam HD Agressor 

2017 No Glow and Bushnell Trophy Cam HD 2013 (Appendix 2, table 1). Camera traps 

recorded videos of 15 seconds every time they detected a movement, both during day- and 

night- time. When no movements were detected, the registrations stopped. By analysing the 

videos with the software Boris version 8.7, we assessed the number and the species of 

animals visiting the plots, with a particular focus on ungulate: wild boar, red deer, roe deer 

and fallow deer. For all the species of deer we assessed their behaviour following an 

ethogram, which can be seen in Appendix 3 (table 2). We divided all the behaviours as 

“vigilant” or “non-vigilant” and we registered their duration to calculate the total vigilant level.  

We recorded the behaviour of only one individual per video, in those videos with more than 

one animal we chose the animal that firstly appeared in the sight of the camera. In those 

videos where animals were already present, we recorded the behaviour of the animal in the 

centre of the video. Vigilant level has been calculated only for deer species since it was too 

difficult to determine the behaviour of wild boar, and it is presented as a percentage of the 

total registered activity of the animals. 
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Carbon sampling  
 

The carbon sampling took place between the 16th of March and the 17th of April 2022. We 

analysed a total of 22 plots, placed 1 m in front of the tree where the camera traps were 

previously located, so that we could measure the carbon stocks in the same areas recorded 

by the camera traps. All the plots were squares of 4 m x 4 m, divided in 4 subplots 2 m x 2 

m (Appendix 1, Fig. 1 and 2), and characterized by the same vegetation type (Pine-bilberry 

forest). For each plot we recorded the number, the length and the width of dead trees, dead 

branches and seedlings present within the 4 m X 4 m square. To evaluate the soil structure 

at a plot level, we took a sample from the centre of the plot with an Edelman auger, and we 

measured the depth until we reached the sandy soil. For each of the 4 subplots, we took 

measurements of the aboveground vegetation, of the litter and of the soil. On the corner of 

each subplot, we placed a square 0.5 m x 0.5 m, and on this square, we cut and collected 

all the aboveground vegetation and the litter. For each subplot we also took a 25 cm deep 

sample of soil using an Edelman auger. Overall, for each plot we collected a total of 12 

samples: 4 samples of aboveground vegetation, 4 of litter and 4 of soil, for a total of 264 

samples. All the samples were stored into a fridge (4°C) and then analysed in the laboratory.  

  Laboratory analysis 
 

Soil Organic Matter (Loss of Ignition Method) 

We dried all the soil samples from each subplot at 105°C for 24 h in an electric oven. Once 

all the samples were dried, we took a well-mixed subsample of 8-12 g from each sample, 

and we measured the dry weight. All the subsamples were then placed in a muffle furnace 

at 420°C for 8 hours: 4 hours to reach the temperature and 4 hours at 420°C. After 8 hours 

in the muffle furnace all the subsamples were weighed again. The weight lost after the 

ignition is representative for the OM (organic matter) content of the subsample (Abella & 

Zimmer, 2007; Heiri et al., 2001; Hoogsteen et al., 2015), that we calculated as a percentage 

of the weight of the subsample before the ignition. Finally, the total SOM % (soil organic 

matter) of each plot was calculated as the average SOM % of each subplot. We used SOM 

as a proxy for the carbon content in the soil, basing on the assumption that ca. 58% of OM 

is carbon content (Manns et al., 2016; Navarro et al., 1993; Rutherford et al., 1992).    

Litter and Aboveground Vegetation 

We clipped all the litter and aboveground vegetation samples and placed in a 70°C oven 

inside half-open paper bags for 48-72 h until they were completely dried. Once dried, we 

measured the biomass of all the samples. Since different studies shows that aboveground 

vegetation and litter contain large amounts of carbon (Chapungu et al., 2020; Frank et al., 

2004; Johnson et al., 2017; Sierra et al., 2007; J. E. Smith et al., 2013), we used their 

biomass as a proxy of the carbon content of these carbon pools.  

  

  Statistical Analysis 

Data analysis was done with R4.1.2 (R Core Team, 2021), and the following packages were 

used: tidyverse (Wickham et al., 2019), dplyr (Wickham et al. 2022), ggplot2 (Wickham, 

2016), cowplot (Wilke C. O., 2020), readxl (Wickham and Bryan, 2022), GGally (Schloerke 

B. et al., 2021), brms (Bürkner P.C., 2017), Rstan (Stan Development Team, 2022), 
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bayestestR (Makowski et al., 2019), tidybayes (Matthew Kay, 2022), ggpubr (Alboukadel 

Kassambara, 2020),viridis (Garnier et al., 2021), and car (Fox and Weisberg, 2019). (See 

Appendix 4, table 3, for variables’ description).   

Due to the relatively small sample size of this study and to avoid Error Type I by modelling 

different linear mixed models, the different response variables of this model have been 

analysed together with a Bayesian Multivariate Mixed Model, with a normal distribution, 

which use the Markov Chain Monte Carlo approach, and it allows for interactions between 

response variables. It can be mathematically described by the following model:  

 

[
 
 
 
 
𝐴𝑏
𝐿𝑖
𝑂𝑀
𝑉𝑖𝑠
𝑉𝑖𝑔]

 
 
 
 

~𝑀𝑉𝑁𝑂𝑅𝑀

(

 
 

[
 
 
 
 
𝜇𝐴𝑏

𝜇𝐿𝑖

𝜇𝑂𝑀

𝜇𝑉𝑖𝑠

𝜇𝑉𝑖𝑔]
 
 
 
 

, 𝛴

)

 
 

 

 

This model can be seen as a construct of the following five equations: 

𝜇𝐴𝑏 = 𝛼𝐴𝑏 + 𝑈 + 𝛽𝐷𝑃 + 𝜀𝐴𝑏 

𝜇𝐿𝑖 = 𝛼𝐿𝑖  + 𝑈 + 𝛽𝐷𝑃 + 𝜀𝐿𝑖 

𝜇𝑂𝑀 = 𝛼𝑂𝑀  + 𝑈 + 𝛽𝐷𝑃 + 𝜀𝑂𝑀 

𝜇𝑉𝑖𝑠 = 𝛼𝑉𝑖𝑠  + 𝑈 + 𝛽𝐷𝑃 + 𝜀𝑉𝑖𝑠 

𝜇𝑉𝑖𝑔 = 𝛼𝑉𝑖𝑔  + 𝑈 + 𝛽𝐷𝑃 + 𝜀𝑉𝑖𝑔 

 

 
Box 1: definition of the variables used in the previous equations 

 

 

 

 

 

 

 

 

 

 

To compare the results of the Bayesian analysis with a more common frequentist model we 

also run a linear mixed model for each of the five response variables: "Aboveground 

Vegetation”, “Understory Litter”, “Soil Organic Matter”, “Visits per Day” and “Vigilant Level”. 

For each linear mixed model, we use “Distance to Path” (20 and 100 metres) as the only 

explanatory variable and “Location” (“Natuurmonumenten” and “Statsbosbeheer”) as 

random effect. This method, however, does not consider correlations between response 

variables and provides less information than the Bayesian Multivariate Mixed Model (see 

Appendix 9, table 4, for frequentist models results.). 

Before working on the frequentist and the Bayesian models we made the following 

transformations, based on the raw distribution of the variables (Appendix 5, fig. 3). 

Ab = Aboveground Vegetation                           Li = Litter 

OM = Soil Organic Matter                                  Vig = Vigilant Level 

Vis = Visits per Day of animals                          MVNORM = Multivariate Normal Model 

DP = Distance to Path                                        Σ = variance 

U = Random Intercept = Location                      μ = mean                                                                  

β = Intercept                                                       α = Slope 

ε = Residuals 

(See Table 1 for values) 
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“Aboveground Vegetation” and “Visits per Day” raw data distribution were both right skewed, 

but after log-transforming them, we considerably improved their distribution (Appendix 5, fig. 

4). “Soil Organic Matter” and “Vigilant level” data were reported in percentages, and they 

presented an unregular distribution (Appendix 5, fig. 3), so we did an arcsine squared root 

transformation which homogenized the variance (Appendix 5, fig. 4). “Litter” data were not 

transformed. Since we were assuming a Gaussian distribution and the different variables 

had different scales, we standardized all the continuous parameters of the model after the 

transformations.  

For each response variable (“Visits per Day”, “Vigilant Level”, “Aboveground Vegetation”, 

“Litter”, and “OM”) we set up a linear mixed model with a Gaussian distribution using 

“Distance to Path” as explanatory variable and “Location” as random intercept. Even if 

“Location” has only two levels (Appendix 4, table 3), we still decided to treat it as a random 

effect since we were not interested in its particular values as a fixed effect, but we were just 

interested in checking for its impact. According to Gomes (2021), the presence of random 

effects with less than five levels does not influence fixed effects estimations, so we felt 

confident that we would have not altered the analysis by using “Location” as random effect.  

After setting the five linear mixed models, we set weakly informative priors for each response 

variable. Differently from frequentist analyses, Bayesian models need to include prior 

information, which represent the expected probabilities of different values before collecting 

and analysing the data, and which can be non-, weakly- or fully- informative. According to 

Lemoine (2019) ecologists should consider weakly informative priors as “default” in 

Bayesian analysis. After setting the priors distribution, we combined the five models together 

in a multivariate mixed model, using the brm() function of the brms package, that allowed us 

to investigate the correlations between the response variables. Afterwards, we checked for 

the fitness of the model parameters by using the pp_check() function of the bayesplot 

package, which gives a graph that compares the posteriors distribution with the observed 

data distribution (Appendix 6, fig. 5). The posterior distribution updates the prior distribution 

using the observed data applying the Bayes’ theorem (see equation below). If the observed 

data distribution is within the range of the posterior distribution, such as in Appendix 6 (figure 

5), then the model gives a valid prediction of the reality.  
 

𝑃(𝐴|𝐵) =  
𝑃(𝐵|𝐴) ⋅ 𝑃(𝐴)

𝑃(𝐵)
 

 

      Box 2: definition of the variables used in the previous equation. 

 

 

 

 

 

 

 

P (A | B) = probability of A occurring when B is true;  

P (A) = probability of A occurring independently from B;  

P (B) = probability of B occurring independently from A.   
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By investigating the Rhat, the Bulk_ESS and the Tail_ESS values, we also checked for the 

convergence of the different chains. Eventually, we calculated predictions for each response 

variable and, after de-standardizing the predictions, we plotted them against the actual 

value, confirming again the goodness of fit of the model (Fig. 3).  

The Probability of Direction (pd) value of the response variables was given in the posterior 

table obtained by the describe_posterior() function of the bayestestR package. 

Describe_posterior() function gives the pd value only for the response variables and to 

obtain these values also for the residual correlations we used the hypothesis() function.  R2 

values were calculated with bayes_R2() function of brms.  

In the result section, we will refer to values with CI (Credibility Interval) not overlapping with 

zero and with pd value (Probability of Direction) higher than 95% as significant. Values with 

the CI only slightly overlapping with 0 and with pd value close to 95% or in general higher 

than 90% will be considered as almost significant, while all the other values are considered 

as not significant (Makowski et al., 2019). However, low pd values only gives uncertainty 

about the direction of a relation but does not tell for certain that there are no relationships 

(Makowski et al., 2019).  
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     Results 

All the main results of this analysis can be seen in Table 1, while the graphs below (Fig.3) 

show the fitted against the predicted values for all the five response variables and gives 

more information about the fitness of the model. See Appendix 7 (Fig. 6) for the graphic 

output of the Markov Chain Monte Carlo approach. The results of the frequentist analysis 

are in accordance with the Bayesian results and show significantly more visits per day of 

ungulates together with significant higher values of C concentration in the aboveground 

vegetation and litter carbon pools in plots 20 metres away from human path than in those 

100 m away. The table with the frequentist results can be seen in Appendix 9 (Table 4). 

 

 

 

Fig. 3: Predicted vs Actual values for all five response variables. The green points represent the actual values while the black points the 
estimate of possible data predicted by R Studio based on the actual values. The black line shows the range of the predicted values. If the 
actual values are within the predicted range the model is considered to have a good fit.  
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Table 1: the table shows the value of the Estimates, Credibility Interval (CI), Probability of Direction (pd) and R2 for fixed 

effects, residual correlations, and random effects. The estimates of distance to path 20m are equal to the difference 

between distance path 20 – distance path 100. The intercept represents distance to path 100 m. (*Statsbosbeheer) 

Response Fixed Estimate 95% CI pd R2 

      

Aboveground Intercept -0.31   [-1.73, 1.16] 69% 72% 

          = Distance to path 20 m 0.57   [0.10, 1.04] 99%          = 

      

Litter Intercept -0.35   [-1.40, 0.68] 79% 16% 

          = Distance to path 20 m 0.68   [-0.10, 1.46] 96%          = 

      

Organic Matter Intercept -0.11   [-1.52, 1.30] 57% 51% 

         = Distance to path 20 m 0.13   [-0.47, 0.71] 67%          = 

      

Visit per Day Intercept 0.51   [-0.67, 1.71] 85% 36% 

         = Distance to path 20 m -1.01  [-1.69,-0.30] 100%          = 

      

Vigilant Level Intercept -0.11   [-1.28, 1.05] 59% 10% 

         = Distance to path 20 m 0.21   [-0.65, 1.03] 69%          = 

      

             Residual correlations Estimate 95% CI pd  
                        Aboveground * Litter -0.19   [-0.51, 0.14] 83%  
                        Aboveground * Organic Matter -0.14   [-0.47, 0.21] 76%  
                        Litter * Organic Matter 0.56   [0.27, 0.77] 100%  
                        Aboveground * Visit per Day -0.26   [-0.57, 0.08] 90%  
                        Litter * Visit per Day 0.32   [-0.01, 0.61] 94%  
                        Organic Matter * Visit per Day 0.09   [-0.26, 0.41] 66%  
                        Aboveground * Vigilant Level 0.32   [-0.02, 0.61] 94%  
                        Litter * Vigilant Level -0.01   [-0.34, 0.32] 52%  
                        Organic Matter * Vigilant Level 0.01   [-0.33, 0.34] 52%  
                        Visit per Day * Vigilant Level -0.19   [-0.51, 0.15] 83%  

      

Response Random Effects Estimate 95% CI   

sd (Aboveground) Location: SBB* 1.86   [0.55, 5.22]   

sd (Litter) Location: SBB 0.82   [0.02, 3.44]   

sd (Organic Matter) Location: SBB 1.73   [0.47, 4.82]   

sd (Visit per Day) Location: SBB 1.07   [0.05, 3.84]   

sd (Vigilant Level) Location: SBB 0.96   [0.04, 3.65]   

 

Presence and behaviour of ungulates 

Plots closer to human paths (20 m) have a lower visits per day of ungulates (1.81 ± 0.30 

SE) than plots 100 m away (5.46 ± 1.32) (Fig. 4). We can confirm this difference by looking 

at the Credibility Interval, which does not overlap with 0, and at the pd value of 100% (Table 

1), which is the strongest result of the model. However, by looking at the R2 value (Table 1), 

it seems that distance to path only partially explains the variance in visits per day between 

different distances.  
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Fig.4: The boxplots show the average visit per day of deer and wild boars (left) and the different vigilant level of deer (right) of the 

collected data at different distances from human paths (right).  

 

Results of the vigilant level appear to be weaker and not significantly different between plots 

20 metres and 100 metres from human paths (Fig. 4).  Ungulates are estimated to be more 

vigilant 20 metres (27.81 ± 2.70 SE % vigilant level) than 100 metres away (24.18 ± 4.60 % 

vigilant level) from human paths, but this difference is weakly confirmed by a pd of 69% 

(Table 1). Also, the R2 is low (Table 1), suggesting that there must be other factors explaining 

the variance in the vigilant level between different distances. 

Carbon Stocks 

The carbon content of the aboveground vegetation and litter carbon pools were 

significantly higher at plots 20 metres away from human paths than in those plots 100 

metres away. While the difference in the carbon content of the soil carbon pool at different 

distance from human paths was not significant (Table 1).  

Aboveground Vegetation 

Plots 20 m from human paths have higher concentration of aboveground vegetation content 

(279.90 ± 68.04 SE g per sample unit, - s.u. = 0.25 m2 -) than plots 100 m away (165.14 ± 

32.55 g per s.u.) (Fig. 5). This result is confirmed by the smaller Credibility Interval of the 

model (Appendix 7, Fig. 6), which does not overlap with 0, and by a pd value of 99% (Table 

1). Based on the relatively high R2 value (76 %; Table 1), distance to path explains variability 

in Aboveground Vegetation content better than it explains variance of any other variables of 

the model.  
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Fig. 5: the boxplots show the average Aboveground Vegetation (top-left), Understory Litter (top-right) and Soil Organic Carbon (down) of 

the collected data at different distances from human paths. The values of Aboveground Vegetation and Understory Litter are expressed 

in grams per sample unit (s.u.=0.25 m2), while the values of Soil Organic Matter is expressed in percentages per sample unit (s.u.= 240.53 

cm 3) 

 

Understory Litter 

Plots 20 m away from human paths have higher litter content (339.49 ± 36.35 SE g per 

sample unit, - s.u.= 0.25 m2 -) than plots 100 m away (258.50 ± 23.40 g per s.u.). The 

Probability of Direction confirm this difference with a value of 96%, which we can define 

significant, however the Credibility Interval slightly overlap with zero (Appendix 7, Fig. 6) and 

the R2 value is weak (Table1). 

Soil Organic Matter 

Plots 20 m away from human paths show higher concentration of SOM (5.79 ± 1.01 SE % 

per s.u., - s.u. = 240.53 cm3 -) than plots 100 m away from human paths (5.34 ± 0.96 % per 

s.u.). The pd value is only equal to 67% and the CI overlap with 0 with a wide range 

(Appendix 7, Fig. 6), hence we cannot statistically confirm the difference. Moreover, the R2 

value (51%; Table 1) suggests that only half of the variation in soil organic matter content is 

explained by the distance from human paths. 

 

Relation between carbon stocks, behaviour and abundance of ungulate 

Figure 6 shows the significant correlations between the raw data of our response variables, 

while the graphic visualization of the non-significant correlation between the other response 
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variables can be seen in the Appendix 8 (Fig. 7).  With a positive estimate of 0.54, the one 

between Litter and SOM is the strongest relation between the response variables of the 

model (Table 1). This result is strongly supported by a pd value of 100% and a narrow 

Credibility Interval which does not overlap with 0 (Table 1). Litter is also positively correlated 

with the number of visits per day of ungulates (Table 1). The CI of this correlation only slightly 

overlap with 0 and the pd value is almost significant (Table 1). All the other residual 

correlations of litter are not significant.  

 

 

Fig. 6: significant correlations between the raw data of the analysed response variables, see Appendix 6.6 (fig. 8) for the correlations of 

the other response variables. 

 

Aboveground Vegetation is positively correlated with Vigilant Level (Fig.6), with an estimate 

of 0.34 (Table 1). Even if the CI marginally overlap with 0, we can confirm the positive 

direction of this correlation by looking at the pd value (94 %; Table 1). Aboveground 

Vegetation is also negative correlated with number of visits per day, but with a pd value of 

90 % and the CI slightly overlapping with zero (Table 1), we can refer to this relation only as 

almost significant.  

Ultimately, the residuals of Soil Organic Matter are significantly related only with Litter 

content (see above). The second and third strongest correlations of OM are respectively the 

negative relation with aboveground vegetation and the positive with visits per day (Appendix 

8, Fig. 7), but the pd values and the CI do not confirm the directions (Table 1).  
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Location 

Location has been treated separately as a random effect and the results show that plots in 

Staatsbosbeheer (Fig. 1) have significant higher values for all the response variables 

analysed in the model (Table 1). However, even if the CI never overlap with 0, the range is 

very wide for all the parameters of the model, and so we cannot really consider the estimates 

of the model as very precise. Generally, it is possible to say that there is a significant 

difference in number of animals, in their vigilant behaviour and in the C stocks between the 

two Locations.   
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     Discussion 

Overall, this study suggests that ungulates and humans impact carbon stocks at local spatial 

scales. We found fewer ungulates visits close than further away from human paths and they 

tended to be more vigilant closer to human roads. In line with this difference in presence 

and behaviour, carbon stocks differed significantly between different distances from human 

paths, with greater quantities of carbon content closer to the paths where less animals are 

present. This effect was stronger for the aboveground vegetation carbon pool, followed by 

the understory litter and soil carbon pools, which was the only carbon pool without significant 

differences at different distances from human paths. Moreover, we found a strong positive 

relation between litter and OM, which suggests that ungulates indirectly affect soil organic 

matter with their impact on litter quantity.  

We found that fewer ungulates frequent areas closer to human trails, and this is in 

accordance with the results of Mols et al. (2021) in the Veluwe forest and with other studies 

around the globe (Bonnot et al., 2013; Proffitt et al., 2009). These findings have been 

extended also to large carnivores, such as mountain lion (Puma concolor) (Suraci et al., 

2019), and meso-carnivores such as badgers (Meles meles) (Clinchy et al., 2016), which 

also show changes in behaviour and space use in presence of humans. These results 

suggest that humans impact the space use of ungulates and that ungulates tend to avoid 

areas closer to humans. On the other hand, ungulates behaviour was not significantly 

affected by the presence of humans in the Veluwe forest. These results are in contrast with 

the findings of other studies which show a vigilant response of ungulates to the presence of 

humans, yet this response was mainly related to humans walking off-trails (Miller et al., 2006; 

Stankowich, 2008; Taylor & Knight, 2003), which in the Veluwe forest is strictly forbidden. 

Stankovich (2008) also suggested that ungulates response to humans is related to the 

natural history of the territory and to the level of accustomization of the local population 

towards human presence. Furthermore, Ciuti et al. (2012) found that elk (Cervus 

canadensis) reduce foraging time in presence of humans, and the same was found for large 

carnivores (Smith et al., 2017). Defining the behaviour of an animal can be done analytically 

but still it is open to interpretations, and perhaps, for this kind of research, it would be more 

effective recording the foraging time at different distances from human paths rather than 

classifying vigilant and non-vigilant behaviours. 

Aboveground vegetation is the carbon pool with the greatest differences in carbon content 

at different distances from human paths in the Veluwe forest. We found higher concentration 

of carbon in plots closer to human paths which are also the plots less visited by ungulates. 

These results make the aboveground vegetation carbon pool the one mainly affected by 

ungulates in our study area. These findings are backed up by different studies in different 

ecosystems which also show a negative impact of ungulates on aboveground vegetation 

content and sapling performance (Gill, 2001; Haffey & Gorchov, 2019; Mols et al., 2021; 

Putman, 1996; Tanentzap & Coomes, 2012). The effect of ungulates on aboveground 

vegetation content can be related to the direct impact that browsing has on the vegetation 

(Gill, 2001). The positive relation between aboveground vegetation content and vigilant level 

points out the indirect role played by humans in the vegetation structure on local scale. 

Indeed, if animals are more vigilant, they will spend less time foraging and the vegetation 

will grow higher.    
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The understory litter carbon pool also presents greater quantities of carbon close to human 

paths than away, suggesting an impact of ungulate also on this carbon pool in the Veluwe 

forest. Other studies show how deer exclusion increases litter biomass (Bressette et al., 

2012; Haffey & Gorchov, 2019; Ramirez et al., 2021). According to Bressete (2012), 

trampling activities increase litter decomposition rate and Johnson (1995) shows that when 

the foraging is scarce, deer consume leaf matter. Grubbing by wild boars also is likely to 

reduce litter biomass and the reduction of aboveground vegetation biomass, due to the 

impact of browsing, is likely to have the same effect. However, we did not find a positive 

relation between aboveground vegetation and litter biomass, maybe due to the fact that we 

only calculate the biomass of understory aboveground vegetation excluding canopy cover. 

Moreover, several studies demonstrate an impact of ungulates’ browsing on litter quality 

(Bardgett e Wardle, 2003; Chollet et al., 2021; Harrison & Bardgett, 2003; Hirst, 2021; 

Tanentzap & Coomes, 2012), which in turn can negatively affect the nutrient cycling with 

possible negative outcome for the soil carbon stock, but we did not test for this effect in our 

research.  

We did not find a significant difference in soil carbon content at different distances (20 and 

100 m) from human paths, which make the soil carbon pool the one less affected by 

ungulates in our study. However, we found a strong positive relation between litter content 

and SOM, suggesting an indirect effect of ungulates on the soil carbon stock by affecting 

litter content. This positive relation supports the idea that litter biomass mediates the 

cascading effects between above- and below- ground (Bressette et al., 2012), accordingly 

to the theory that above- and below- ground dynamics are strictly intertwined (Andriuzzi & 

Wall, 2017; Bardgett & Wardle, 2003). Most of the studies relate the indirect effects of 

ungulates on soil carbon stock to their negative impact on litter quality and quantity which 

reduce the amount of nutrients reaching the soil and thus the soil carbon content  (Bardgett 

e Wardle - 2003; Chollet et al., 2021; Harrison & Bardgett, 2003; Hirst, 2021; Tanentzap & 

Coomes, 2012). Ungulates can also indirectly affect SOM by reducing the amount of soil 

fauna (Allombert et al., 2005; Andriuzzi & Wall, 2017; Cuevas et al., 2012; Mohr et al., 2005; 

Ramirez et al., 2021; Risch et al., 2010) which has a key role in soil carbon dynamics. 

Moreover, bioturbation activities such as trampling and grubbing can significantly affect soil 

properties, such as soil bulk density and moisture, potentially leading to an increase in soil 

CO2 emissions (Cuevas et al., 2012; Liu et al., 2020; Risch et al., 2010).  This has been 

demonstrated by Risch et al. (2010), who show that wild boar grubbing significantly 

increases soil carbon emission rates in Swiss hardwood forests. According to Tanentzap 

and Coomes (2012), when given enough time, natural systems can offset the negative 

impact of herbivory on the carbon stocks, and this might explain why we did not find 

differences in carbon content in the soil carbon pool at different distances from human paths. 

According to the ecology of fear theory, in presence of a threat, herbivores will change the 

space-use of their ecosystem and reduce the feeding efforts in favour of a more vigilant 

behaviour, and this can trigger a cascading effect which can lead to dramatic changes in the 

vegetation structure and composition (Bonnot et al., 2013; Laundre et al., 2010; Ripple & 

Beschta, 2004; Strickland et al., 2013; Zanette & Clinchy, 2019). This theory is usually 

related to wild predators, however, recent study show that ungulates behaviour is strongly 

influenced by the presence of humans (Ciuti et al., 2012; Mols et al., 2021; Möst et al., 2015), 

and the behaviourally mediated trophic cascade triggered by humans might even overrule 

the one induced by predators (Ciuti et al., 2012; Mols et al., 2021; Proffitt et al., 2009). For 
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example, Profitt et al. (2009) show that some ungulates such as elk (Cervus canadensis) 

respond to human disturbance even more than to predator disturbance, backing the idea 

that humans are seen as apex predators by most of the animals. Our results support the 

hypothesis that the fear of human can trigger a trophic cascade. Indeed, in those plots closer 

to human paths, ungulates are fewer and more vigilant. They spend less time browsing and 

trampling and, according to the mechanisms explained before, they reduce their impact on 

the different carbon stocks, in turn enhancing the carbon stored in the carbon pools close to 

human trails. Thus, we found that the behaviourally mediated trophic cascade triggered by 

humans in the Veluwe forest does not stop at the vegetation structure and composition, but 

it goes deeper influencing the carbon stocks. Therefore, animals’ impact on the carbon 

stocks of an ecosystem should not be overlooked, and human influence should be 

considered when studying ecology of fear and the following cascading effects on the local 

scale. 

As it is shown in the study of Schmitz (2018), different animals can have different impact on 

the carbon cycling of their respective ecosystems, both aquatic and terrestrial. For example, 

on the western coast of North America conservation efforts recovered sea otters (Enhydra 

lutris) population, enhancing kelp forest carbon uptake by 1100%, by top-down regulation 

on sea urchins (Estes et al., 1998; Schmitz et al., 2018; Wilmers et al., 2012). However, in 

some areas of the Alaskan coastline, sea urchins’ population re-flourished to the detriment 

of kelp forest biomass, due to a diet shift of killer whales (Orcinus orca) on sea otters (Estes 

et al., 1998). Likewise, in North America, elk (Cervus canadensis) grazing increased 

grassland productivity, whereas moose (Alces alces) reduced boreal forest productivity by 

browsing on deciduous trees, and the reintroduction of wolves (Canis lupus) in the two 

different ecosystems mitigated both effects (Wilmers & Schmitz, 2016).  These results 

suggest that the impact of animals on the carbon stocks can have a great variation, both 

positive and negative. Plus, the cascading effect of a predator can be easily reversed by 

another predator and even the same predator can have opposite effects on different 

ecosystem types.  Thus, when predicting the C cycling, it is not enough to generalise the 

results of a study on different ecosystems, but each case should be analysed separately, 

also considering the different response of herbivores to predation risk (Atkins et al., 2019).  

Taking this into account, we believe that future studying should extend this research toward 

different areas of the world, to see how the carbon stocks of different ecosystems are 

influenced by different animals and different level of human influence.                                                                                                                                                            

Additionally, future research should not only expand the areal of the study comparing 

differences and similarities, but they should also increase the number of protagonists 

involved. For example, we know that soil fauna plays a major role in soil dynamics, such as 

OM decomposition and carbon stabilization (Fahey et al., 2013; Filser et al., 2016; Fox et 

al., 2006; García-Palacios et al., 2013; Vetter et al., 2004), and we also know that ungulates 

can directly and indirectly affect the  amount of soil fauna  (Allombert et al., 2005; Andriuzzi 

& Wall, 2017; Cuevas et al., 2012; Mohr et al., 2005; Ramirez et al., 2021; Risch et al., 2010) 

and their decomposing ability (Chollet et al., 2021), in turn possibly affecting soil carbon 

dynamics. Soil fauna can directly impact soil organic matter by regulating litter and soil 

decomposition rates and by bioturbation and humification activity, and indirectly by 

stimulating microbial activity (Filser et al., 2016; Fox et al., 2006). According to Filser et al. 

(2016), carbon cycling models which do not consider the activity of soil fauna lose most of 

their potential predictive power. Therefore, it would be interesting to see whether soil fauna 
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abundance change between different distances from human paths, and how these 

differences are related to the carbon stocks.  Moreover, since a few years wolves are back 

in the Veluwe forest, and even if their impact on the ecosystem might not be still as great as 

the one of humans, it would be interesting to analyse the landscape of fear that they are 

creating and the behaviourally mediated trophic cascade which could rapidly be re-

established (Atkins et al., 2019). This kind of research would allow us to study whether 

human-induced fear also affects predators’ behaviour triggering a further trophic cascade 

(Smith et al., 2017; Suraci et al., 2019; Zanette & Clinchy, 2019), and see how ungulates 

are adapting their habitat choices between humans and wolves and how this is influencing 

the ecosystem and eventually the carbon stocks. Also, if it is true that, when given enough 

time, natural system can offset the negative impact of herbivory on the C stocks (Tanentzap 

and Coomes, 2012), it would be interesting to study how long it would take for the C stocks 

of the Veluwe forest to recover after the exclusions of ungulates.  

In conclusion, the results of this research suggest that, when studying carbon cycling, we 

should include the impact of animals on the carbon content, considering that human 

recreation activities can trigger a trophic cascade which impacts the carbon stocks. 

Additionally, in the case of the Veluwe forest, managers should be aware of the negative 

impact that ungulates can have on the carbon stocks and operate a population control in 

accordance with that. Alongside with the already existing practice of culling, population 

control could be implemented by favouring the reproduction success of the wolves already 

present in the area. Also, wolves’ territory could be extended in those parts of the Veluwe 

forest where they are still not present, such as the two locations of this case study. Reducing 

the number of ungulates in the Veluwe forest could help increase the amount of carbon 

stored above and below ground, maximizing the carbon retention ability of the forest and 

mitigating the green-house gases on the regional scale as it is proposed in the Kyoto 

protocol (UNFCCC, 1997).  
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Appendix 

 

1. Plot set-up 

 

 

Fig.1: plot set up. Each plot (4x4m) was divided in 4 subplots (2x2m). For each subplot I took samples of Aboveground Vegetation, 

Understory Litter and Soil Organic Matter. The data of each plot represents the mean of the measurements of each subplot.  
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Fig.2:  picture of a 4x4 m plot. On the bottom right there are some of the collected samples.  
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2. Camera traps set-up 

Table 1: set-up of the two types camera traps used in the Veluwe forest.  

Camera types Bushnell Trophy  
Cam Aggressor HD 2017 

Bushnell Trophy Cam  
HD 2013 

Mode Hybrid Day 

Image size HD HD 

Image format Full screen Full screen 

LED control High High 

Video size 1280x720 1280x720 

Interval 0.6s 1s 

Sensor level High High 

NV Shutter Auto Auto 

Camera mode 24 hrs 24 hrs 

Video length 15s 15s 

Field scan Off Off 

Video sound On On 
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3. Ethogram 

Table 2: Ethogram description of vigilant and non-vigilant behaviours.  

Behavior Description 

Non-vigilant behaviours  

unknown behaviour Behaviour which does not fit in any category or is unclear 

presence If an animal is present which we do not study behaviour on   

social interaction Interaction between animals   

scratching Animal is scratching  

other non-vigilant Everything not fitting in another non-vigilant category  

rutting Rutting animal  

lying Lying on the ground  

walking 
 

foraging Searching for food. Also, if the animal is walking during foraging  

Vigilant behaviours 

sudden rush due to camera Sees camera trap and runs away 

running 
 

visual vigilant Head above shoulders, looking around and chewing 

looking into camera 
 

unknown vigilant Everything not fitting in another vigilant category  

sudden rush Running away, not seeing camera trap  

auditory vigilant  Head above shoulders, looking around and not chewing 

other vigilant Behaviour which does not fit in any category or is unclear 

vigilant while walking 
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4. Variables of the study 

Table 3: description of all the variables used in the model.  

 

Variables                    
 

Description 
 

Plot 
 

Plot numbers 
 

DistPath 
 

Distance from human paths (20 and 100 m) 
 

Location 
 

NM = Natuurmonumenten, SBB=Statsbosbeheer 
 

DryW 
 

Total dry weight of earth samples to measure Soil Organic 
Matter (g) 

 

OM 
 

Total weight of Soil Organic Matter (g) 
 

OM_perc 
 

Percentage of OM in the total dry weight of earth (%) 
 

Litter 
 

Understory Litter measured in each plot 
 

 

Aboveground 
 

Aboveground Vegetation measured in each plot 
 

SampleDepth 
 

Depth of the ground until sandy soil 
 

Litter_cm 
 

Depth of the litter layer in the soil 
 

OM_cm 
 

Depth of organic matter layer in the soil 
 

Sandsoil (cm) 
 

Depth in the ground where sandy soil start 
 

visitXday 
 

Average of ungulates visiting each plot per day 
 

Vig_perc 
 

Percentage of vigilant level of all the recorded activities of 
ungulates 

 

Nvig_perc 
Percentage of non-vigilant level of all the recorded activities 
of ungulates 

 

Log_visit 
 

Log transformation of visitXday 
 

Vig_perc2 
 

Arcsine squared root transformation of Vig_perc 

 

Om_perc2 
 

Arcsine squared root transformation of OM_perc 

 

Log_AB 
 

Log transformation of Aboveground 

 

AB_z 
 

Standardized log_AB 
 

LI_z 
 

Standardized Litter 

 

OM_z 
 

Standardized OM_perc2 

 
Log_vXd_z 

 

Standardized Log_visit 

 

VP2_z 
  

Standardized Vig_perc2 
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5. Distribution raw data before and after the transformation 

 

Fig. 3: Distribution of raw data and correlations. Look table 2 for variables name. 
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Fig. 4: Distribution and correlations of data after transformations. Look table 2 for variables name. 
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6. Posterior Check 

 

 

Fig. 5: Posterior distribution. Y = actual values, Yrep = posterior values. The actual values fit within the posterior values, so the model has 

a good fit. 
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7. Markov Chain Monte Carlo (MCMC) approach 

 

 

Fig. 6: graphic visualization of the MCMC approach. All the analysed parameters of the model and their interactions are on the y axis. 

Horizontal lines represent the Credibility Interval of the parameter, the point represent the estimates. When the horizontal lines do not 

overlap with 0 (vertical line) the results are considered significant. Look table 2 for variables name. 
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8. Correlation between response variables 

 

 

Fig.7: the graphs show the relations between collected data of the response variables with non-significant residuals correlations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



41 
 

9. Frequentist model results 

 

Table 4: The table shows the results of five linear mixed model: y ~ Distance to path + (1|Location), where y represents the different 

response variables. The results of these frequentist models are in accordance with the results of the Bayesian model.  

Response Variables Estimate ± SE p-value 

Visit per day -1.1303 ± 0.3377 0.00339 ** 

Vigilance level  0.3139 ± 0.4313 0.475 

Aboveground Vegetation  0.6256 ± 0.2176 0.00968 ** 

Litter   0.7550 ± 0.4030 0.0757 . 

Organic Matter  0.1847 ± 0.2960 0.540 

 

 

 


