
Avoiding Brownian motion by utilizing

consequential action selection in reinforcement

learning for robotics

Bachelor’s Project Thesis

Ivo Brink, s3981665, i.e.brink@student.rug.nl,

Supervisors: Prof. Dr. L. Schomaker & Sha Luo

Abstract: Robotics solutions often require high maintenance and possess low adaptability in
the workspace and are therefore not as widely adopted in the industry as envisioned. Reinforce-
ment learning is believed to be able to alleviate the disadvantages mentioned above. Regardless,
progress has been slow, and utilized performance benchmarks are simplified representations of
realistic working conditions. Furthermore, trajectories of seemingly random small state changes
are observed in exploration phases that seem redundant for learning. This research uses more
versatile benchmarks to test a different approach to action selection in reinforcement learning
for robotics. A heuristic is developed that selects more meaningful actions instead of the actions
that result in the so-called Brownian motion trajectories. These consequential actions are efforts
that are estimated to provide more significant state differences in the utility landscape, with
an anticipated increase in exploration and faster rewards. A state-of-the-art Soft Actor-Critic
algorithm has been developed to train an UR5e robot in three different tasks. Results provided
evidence of the existence of Brownian motion in the initial training phases over all three tasks.
Selecting consequential actions provided more effective exploration in the early phases and, as a
result, achieve an average increase in success rate of 10%. Consequential action selection proved
less effective in later stages of learning, causing model convergence to be 25% slower overall.

1 Introduction

The field of robotics has not yet taken as much
advantage of the latest advances in machine
learning as expected. The majority of small
and medium enterprises do not yet incorporate
the usage of robotics, although it would greatly
increase their efficiency and reduce labour costs
(Ballestar et al., 2021). The impediment for these
enterprises is the maintainability of a robotics
solution since they require costly reprogramming
for dynamically changing environments. (Pedersen
et al., 2016). Realistic industrial working con-
ditions require a high variation in the types of
movement that are required to successfully perform
a task, especially given the increasing demand
for customization of products (Pedersen et al.,
2016). Therefore, a cheap maintainable robotics
solution is an untapped market. This argument
is even stronger for home-based service robotics,

where task variability is even much larger. It is
hypothesized that machine learning can aid in
reprogramming a robot by allowing it to learn
from its environment using reinforcement learning
(RL), decreasing changeover times and allowing
for cheaper maintenance costs.

Traditional industrial robot behaviour is predom-
inantly hard coded, and the means of observing
the surroundings are limited. This makes indus-
trial robots sensitive to prior calibration in the
workspace. Their task is a fixed policy that does
not allow for any improvement or adaptation.
So, if an object within the production line strays
by only a fraction of a centimeter, the process
may need to be aborted. Corrective action and
even a manual recalibration by a human operator
are needed. This may be an acceptable solution
in a strictly fixed environment, e.g., specially

1

adapted conveyor belts. However, the industrial
production process may change, and objects’
dimensions, weight, and expected trajectories may
vary. Reprogramming a robot arm can be costly
and time-consuming, and testing new software
on the production line comes at high costs. Both
online and offline programming to change robot
behaviour are either time-consuming or cost ex-
pensive (Ajaykumar et al., 2021). Reinforcement
learning could offer the maintainable solution
necessary to offer great adaptability all around
(Kober et al., 2013). Note that even when a great
trainable RL solution is offered, fast training
times are essential in robotics. That is because
simulations are often sped up, and inaccurate
representations of the working environment and
real-life training require human supervision to
reset the environment as well as the robot,
not to mention that the robot will wear down,
causing it to perform differently each time it resets.

Service robots could also reap the benefits
from reinforcement learning. Consider a robot
that has to clean a surface that has to gently run
along with the shape of the surface in order to
clean it properly. Applying too much force will
damage the surface. Respectively, applying not
enough force will not clean the surface at all. This
robot requires a smooth and generalizable type of
movement to clean any surface. A robot that has
to squat a fly on a wall must be fast and quick
to succeed in its task. One might see the problem
that arises; the robotics task is not only about
moving an end-effector from point A to B. An
end-effector’s speed, path, and momentum need
to be considered to get results that will lead to a
generalizable learning problem.

Progress in reinforcement learning for robotics
is slower than anticipated. Especially the initial
phases of reinforcement learning are very simi-
lar to the physics process of Brownian motion,
where a particle is randomly disturbed from its
current position in space with tiny bumps only
(Karatzas & Shreve, 1998). This phenomenon is
similar to motor babbling, where random short
motor commands are used to explore and learn
an environment. Nonetheless, motor babbling can
be used to help learn the inverse kinematics of a
robot (Kase et al., 2021). Only after a lengthy RL

process the system might discover a fruitful uphill
direction in the utility landscape. This so-called
Brownian motion results in lengthy training times
and inconsistent reward landscapes. It should
be noted that the biological motor babbling in
the fetal stage and infants is not ’Brownian’ but
impulse-like, i.e., with large excursions of the end
effector.

This project proposes that a different approach
to selecting actions in reinforcement learning can
lead to a quicker and more natural way of learning
movements. The idea is to distinguish between ac-
tions with a small reward effect and consequential
actions, i.e., actions that lead to clear and reliable
upward jumps in the utility landscape.

In robotics reinforcement learning, small changes
in joint angles or torque around the joints of an
arm are usually presented as actions (at) in the RL
problem. Respectively, the joint angles of the arm
are the state (st). Given a task such as moving
an end-effector from point A to point B in the
task space, the system effectively should learn to
solve the inverse kinematics problem∗. However,
modern robots are already equipped with an
inverse kinematics solver such as MoveIT (Chitta,
2016), so the challenges for the RL problem shift
to higher-level aspects of the task. So, instead of
the usual motor babbling that allows RL to move
uphill in the utility landscape slowly, it is suggested
that higher-level elements can be used to steer RL
algorithms in the proper direction more effectively.
However, this change to higher-level aspects has
not been adopted yet. A more common approach
to escape from slow reinforcement learning is to
use imitation learning (Zhu et al., 2018), however,
this is a costly approach because the exact target
behaviour needs to be manually provided.

Other solutions include curriculum learning
and transfer learning. Nonetheless, these solutions
require a form of manual supervision as well, e.g.,
a human teacher. Ideally, the teacher is inherently
present in the algorithm, so learning becomes an
independent task. Therefore, a means to tackle
the problem of slow learning in RL is to shift to

∗The inverse kinematics problem is the problem of finding
a vector of joint variables which produce the desired end-
effector location in the 3D task space.

2

a different form of action selection, leaning more
towards higher-level aspects, such as choosing
parameters of trajectory planning methods instead
of joint angles. This does not require any form
of manual intervention that imitation, transfer,
and curriculum learning have. However, current
reinforcement learning in robotics still utilizes
actions that have a negligible effect on the state,
e.g., the torque of an electric motor or the change
of angles inside joints.

This often means the environment is not ade-
quately explored, which can cause long training
times. As a result, the aforementioned Brownian
motion can be observed. This study aims to
provide more analyses into the phenomenon of
Brownian motion in the current reinforcement
learning paradigm and if it can be prevented. In
the case that the prevention of this motion does not
lead to better performance, it might be suggested
that a shift towards the higher level actions is a
solution to slow reinforcement learning in robotics
and the seemingly unnecessary Brownian motion.

2 Related work

2.1 Human learning

The proposed research aims to determine the
effect of using consequential action selection
instead of the so-called Brownian movement in
a reinforcement learning robotics environment.
Instead of actions that provide limited exploration
due to a small (∆y,∆x,∆z) in the workspace, we
need additional analysis of the action and reward
space in order to sample more extensive excursions
which may increase the probability of a larger
effect on the reward. The idea is constituted by
the fact that human motion is rewarded on the
basis of large-effect actions. For example, catching
a ball not quickly enough depends on the whole
movement required to perform such a task. In
current reinforcement learning, rather small-effect
actions are rewarded (the first slight movement
that initiates the movement, for example), not
allowing a complete movement to be learned
naturally. Instead, many consecutive small-effect
actions are learned in a traditional reinforcement
learning problem. A human would experience

a reward for the complete movement, starting
from its initial state all the way to reaching the
goal. Whereas an RL algorithm rewards itself
using the Bellman equation, back-propagating
the reward through the sequence of small-effect
actions performed, starting from the first action
and using a discounted reward to identify the value
of subsequent actions. This mapping of planned
actions and motor commands in the brain is called
an inverse model (Wolpert & Kawato, 1998). It
is suggested that some representation of body
dynamics and environment must also exist to allow
the brain to coordinate behaviours that have not
yet been encountered (Mussa-Ivaldi, 1999). This
idea is similar to the problem of inverse kinematics,
where the actuators are effectively modelled for
ease of coordination, but also to reinforcement
learning, where representations of agent state
(body dynamics) are considered to construct a
policy to achieve a goal.

The combination of both ideas requires a
higher-level approach to learning movements
in reinforcement learning. A method that considers
actions with a high effect. This noticeably shifts the
problem from a standard reaching task to learning
different types of movements using larger effect
actions. That is also why different benchmarks will
be used in this research instead of a traditional
reaching task. The so-called Brownian motion is
hypothesised to actively prevent larger excursions
which lead to the way of learning movement that
is present in infants. Note that the presence of
Brownian motion might also be a consequence of
a dysfunctional method of action-selection as a
whole, requiring a complete remodelling of the way
actions are currently represented. Nonetheless,
for this research, the focus is on encouraging
larger-effect actions within the current paradigm.

2.2 Reinforcement learning

2.2.1 Preliminaries

Reinforcement learning problems are considered
as Markov decision processes (MDPs) (Sutton &
Barto, 2018). An MDP is defined as the tuple
(S,A, p, r), where:

• S represents all possible states, so st ∈ S is the
state the agent is in.

3

• A represents all possible actions, so at ∈ S is
the action the agent performs.

• p : S × S × A → [0,∞) is the state transition
probability, which means the probability of the
next state given st and at.

• r : S ×A is the reward on each transition.

Reinforcement learning is a method to accommo-
date a learnable solution that aims to solve the
MDP effectively. An RL algorithm learns to achieve
an optimal policy, referred to as π. A policy is a
method in which actions are chosen given the cur-
rent state. A perfect policy always chooses the ac-
tions leading to the biggest sum of rewards. Note
that in a robotics environment, the state and ac-
tion space are often continuous, meaning there are
infinite state transitions.

2.2.2 Robotics

Robotics environments are ultimately challenging
reinforcement learning problems. Sparse reward
landscapes make it hard to use policy gradient so-
lutions (Nachum et al., 2016), and value functions
have issues with the continuous action space. The
actions, the angles of the joints or the torque pre-
sented by an electric motor consist of continuous
values just as the states can be presented in joint
angle space or Cartesian coordinates. This results
in endless variations of action state combinations.
Depending on the task at hand, rewards are of-
ten sparse, meaning that a reward is only obtained
when a specific sequence of actions has occurred
and led to a desirable outcome. Ideally, a reinforce-
ment learning algorithm wishes to predict the re-
ward gained by taking any action from any state.
This becomes extraordinarily hard in continuous
state and action spaces. Especially when rewards
are very rarely obtained using random initial ex-
ploration.

2.2.3 Type of algorithms

There exist two types of reinforcement learning
algorithms. On one side, there are on-policy
algorithms such as TRPO and PPO (Schulman
et al., 2017, 2015). On-policy algorithms require a
high number of samples to discover the gradient
of a policy which requires longer training times.

This is because they only use the experiences
generated by the current policy to update it.
Nevertheless, they are stable (relatively insensitive
to hyperparameter tuning). The Proximal Policy
Optimization (PPO) algorithm is widely used in
robotics environments and works quite effectively.
On the other side, there are off-policy algorithms
such as DDPG-HER and TD3 (Andrychowicz
et al., 2017; Dankwa & Zheng, 2019). However,
these algorithms are very unstable (sensitive to
hyper-parameter tuning), yet they have better
sample efficiency as they learn from all past
experiences. However, there is a best of both
worlds algorithm called Soft Actor-Critic (SAC).
It is a model-free off-policy entropy-regularized
reinforcement learning algorithm that achieves
the best performance for most continuous state
and actions spaces (Haarnoja et al., 2018). The
off-policy characteristic allows the algorithm to
learn from past experiences not generated by the
current policy, increasing sample efficiency.

Nonetheless, SAC is far more stable than the
other off-policy alternatives. The regularized
entropy enables the algorithm to behave stochas-
tically, encouraging exploration so that the
algorithm is not likely to get stuck in local optima.
The algorithm is considered state-of-the-art in
current reinforcement learning and will be used
throughout this study to solve different robotics
tasks.

2.2.4 Soft Actor-Critic

The term ”Soft” in Soft Actor-Critic means the
entropy is regularized. The algorithm favours
maximal entropy due to a regularization term
in the loss function. A traditional reinforcement
learning algorithm recognizes the best policy (π∗)
from obtaining the largest sum of the reward
(r(st, at)) over all time steps (t), see equation 2.1.
The difference with SAC is that an entropy term
is also maximized in the policy, as depicted in
equation 2.2. In contrast, traditional Actor-Critic
algorithms use entropy as an external exploration
method (Mnih et al., 2016). The α is a hyper-
parameter that allows us to regulate the entropy
term as desired.

4

Equation 2.1 Traditional reinforcement learning
policy equation.

π∗ = argmaxπ

T∑
t=0

E(st,at)∼ρπ
[r(st, at)] (2.1)

Equation 2.2 SAC stochastic policy equation.

π∗ = argmaxπ

T∑
t=0

E(st,at)∼ρπ
[r(st, at)+αH(π(·|st))]

(2.2)

The entropy term H(π(·|st))] is described in
equation 2.3. Here the negative logarithm of the
probability of an action being chosen given the cur-
rent state in the current policy is used to facilitate
stochastic behaviour by including it in the policy
equation. This means that a high probability of an
action being chosen by the current policy is disad-
vantageous to the update, e.g., the loss function en-
courages stochastic (non-deterministic) behaviour.

Equation 2.3 Definition of entropy term used in
SAC.

H(π(·|st) = Ea∼π(·|s))[− log(π(a|s))] (2.3)

The actor-critic architecture uses two neural
networks to get the best policy as follows. The
first neural network, called the critic estimates
a Q-value (Q(st, at)) for each state and action
combination (in reality, it consists of two networks
approximating two Q-values to mitigate positive
bias by taking the minimum every time (Haarnoja
et al., 2018)). The network parameters of the critic
are learned by minimizing equation 2.4, often
referred to as the temporal difference error. Note
that θ refers to the network parameters of the
critic. Equation 2.4 shows a relatively standard loss
function inside reinforcement learning. However,
the Vθ(st+1) is different than normal, as it includes
the entropy term −α log(πγ(a|st+1) (equation 2.5)

Equation 2.4 Critic loss to be minimized.

JQ(θ) = E[(Qθ(st, at)− (r(st, at) + γVθ(st+1)))
2]

(2.4)

Equation 2.5 Value of next state for critic update.

Vθ(st+1) = E[Qθ(st+1, a)− α log(πϕ(a|st+1))]
(2.5)

The second network, called the actor, approxi-
mates the policy as depicted in equation 2.6. Note
that the parameters of the actor-network are re-
ferred to as ϕ. This ϕ is mostly used in the entropy
term to refer to the policy of which the probability
of an action being taken given the state is used to
punish deterministic behaviour. Equation 2.6 is to
be minimized, so a high Q-value and low probabil-
ity of actions being selected are desirable for the
policy in SAC.

Equation 2.6 Actor loss to be minimized.

Jπ(ϕ) = Es∼D[Ea∼πϕ(·|s)[α log πϕ(a|s)−Qθ(s, a)]]
(2.6)

3 Methodology

3.1 Environment

The environment is introduced first as a means to
better understand the study described. A Universal
Robot model 5e (UR5e) was set up using Gazebo
and ROS (Quigley et al., 2009; Qian et al., 2014),
as a means to analyse the current problems with
RL in robotics and to test different methods of
solving them. An openAI gym-like environment
was provided by Sha Luo from her Self-Imitation
Learning by Planning research (Luo et al., 2020).
This code base offered the necessary controls to
use a reinforcement learning algorithm to steer
the arm using the proper drivers as provided by
the robot manufacturer (Universal Robots). The
arm is then controlled using Python scripts based
on kinematics, ROS, and neural network libraries.
The robot arm consists of six joints, of which three

5

(base, shoulder, and elbow) will be used to control
the arm in this study. The three wrist joints will
be disabled since their functionality is unnecessary
for the tasks presented here.

The state st is described in equation 3.1, here
θ1, θ2, θ3 are the angles in radians of the three
operational joints respectively, and the xs, ys, zs
are the three-dimensional coordinates of the end-
effector location (denoted by the s). In equation
3.2, an action (at) is the change in angles for the
three joints, thus ∆θ1,∆θ2,∆θ3. Equation 3.3
shows the three-dimensional coordinates xg, yg, zg
of the goal location (denoted by the g). All the
values are illustrated in an image of the UR5e
robot in Figure D.2.

Equation 3.3 State and action spaces

st = {θ1, θ2, θ3, xs, ys, zs} (3.1)

at = {∆θ1,∆θ2,∆θ3} (3.2)

g = {xg, yg, zg} (3.3)

Figure 3.1: UR5e robot with illustration of the
values.

The study is separated into two modules. One
is designing a robotic reinforcement learning envi-
ronment to create different tasks with correspond-
ing reward signals and necessary observations. The
other includes the design of selecting consequential

actions in the Soft Actor-Critic algorithm.

3.2 Soft Actor-Critic

The implementation details of the Soft Actor-Critic
algorithm can be found in Appendix B. Note that
the actor uses two output layers so that a distribu-
tion with a mean (µ) and a standard deviation (σ)
can be used to sample actions stochastically.

3.3 Robotic tasks

In order to elaborately test any model on its per-
formance, we need to consider its applicability
throughout different tasks. Since learning applica-
tions demand high generalizability, different tasks
need to be designed to quantify this generalizabil-
ity. Traditionally, the reaching task is the most ap-
propriate benchmark for a robotic arm. The arm
is initialized in some random position and needs to
figure out the inverse kinematics to get to a given
randomly positioned goal. In this study, two addi-
tional benchmarks will be used. A via-point task
that requires the robot to coordinate a movement
to a goal from a specific direction and a velocity
task that requires the arm to move rapidly to the
single-point destination.

3.3.1 Task 1: Reaching

The reaching task is the most straightforward
robotics task. It will be referred to as the first
task or task 1. It illustrates the exact problem of
inverse kinematics by positioning the end effector
to a predefined target. The UR5e robot will
sample random joint angles within the predefined
workspace so that the robot’s initial pose differs
at the start of each epoch. The goal is generated
similarly, by sampling random joint angles possible
end effector locations can be calculated using
forward kinematics. A selected goal is declared
valid when the sampled joint angles adhere to
restrictions that manage the robot so that it does
not collide with itself. These angles can be found
in Appendix A.

In order to reward and punish desired and
undesired behaviour, the environment needs a
carefully hand-crafted reward signal. Note that
this process is prone to calibration errors that may

6

affect performance. Nonetheless, the reaching task
allowed for a simplistic reward signal approach.
A reward of one is obtained when the robot arm
reaches its goal within a defined criteria threshold,
depicted in the reward equations. At all other
times, the reward equals the negative Euclidean
distance between the goal and end effector. The
following is depicted in equation 3.4, 3.5, and 3.6.

Equation 3.4 Euclidean distance from one point
to another.

d(a, b) =
√
(xa − xb)2 + (ya − yb)2 + (za − zb)2

(3.4)

Equation 3.5 Error used to check whether goal is
reached.

e(st, g) = max(|xs − xg|, |ys − yg|, |zs − zg|) (3.5)

Equation 3.6 Reward signal task 1.

r(st, g) =

{
1 if e(st, g) < 0.1,

−d(st, g) otherwise
(3.6)

This punishment is designed to steer the arm
in the right direction effectively. The alternative
presents a sparse reward environment with pro-
longed sporadic learning experiences.

3.3.2 Task 2: reaching, via point

The second task, the so-called via-point task,
describes a more defined movement of the end
effector. This task is referred to as the second
task (task 2). It imposes more constraints on
the arm by requiring it to move in the vicinity
of a second point, the via-point. This method
inherently requires the movement of the arm
to come from a predefined angle. The via-point
needs to be reached before the final goal can be
reached. This task requires a more complicated
reward signal. The reward is similarly constructed

as depicted in the original reaching task. The
punishment equals the negative Euclidean distance
between the via-point and the end effector as
long as the via-point is not reached. A threshold
determines when the via point is reached, and
a reward of 1 is obtained when this threshold is
crossed. The reward signal switches so that the
distance between the final goal and the end effector
becomes the penalty after the via-point is reached.
A new more stringent threshold determines when
the final goal is reached. A reward of 10 is awarded
upon completion. The reward for the final goal is
increased drastically to indicate that reaching the
final goal is the highest priority.

The distance criteria for the via-point, e.g.,
the threshold that considers the end effector close
enough, is half as strict as the threshold of the
final goal. As can be observed in equation 3.7
and 3.8. The via-point is determined as follows,
random joint angles are sampled until a possible
end-effector location (determined using forward
kinematics) falls within the Euclidean distance of
[0.2, 0.4] from the original goal. The original goal
is created as discussed in the reaching task.

Equations 3.7 and 3.8 describe the reward
landscape behaviour as follows, where g1 is the
final goal and g2 is the via-point. Equation 3.7
is used until the via-point reward is obtained,
and the environment switches to the new signal
described in equation 3.8.

Equation 3.7 Reward signal task 2 via point.

r(st, g2) =

{
1 if e(st, g2) < 0.2,

−d(st, g2) otherwise
(3.7)

Equation 3.8 Reward signal task 2 final goal.

r(st, g1) =

{
10 if e(st, g1) < 0.1,

−d(st, g1) otherwise
(3.8)

Due to the addition of a second goal, the goal
space increases by three dimensions as follows

7

(equation 3.9). As the goal space is part of the full
state representation in the algorithm, the dimen-
sionality of the problem increases by three.

Equation 3.9 Goal space for task 2, as a part of
the state space

g = {xg1 , yg1 , zg1 , xg2 , yg2 , zg2} (3.9)

The rest of the state, and action space remain
the same throughout this specific task.

3.3.3 Task 3: Reaching with desired veloc-
ity

The velocity task is effectively a reaching task with
the addition of a velocity requirement when the end
effector reaches the final goal. This is the third task
(task 3). Simulation constraints make it difficult to
determine the velocity of the end-point of the arm
accurately. Analyses of the simulation showed that
observations were mostly made with equal time in-
tervals allowing a simplified representation of ve-
locity, namely the distance travelled per action. As
illustrated in equation 3.10, where v is velocity in
m/s, ∆s is delta distance in metres, ∆t is delta
time in seconds. It becomes apparent that when ∆t
stays constant, the only variable that influences the
velocity is the distance travelled per observation.

Equation 3.10 Traditional formula for calculating
velocity.

v =
∆s

∆t
(3.10)

In simulations, it is often challenging to estimate
the simulation time elapsed due to speed-up cal-
culations and varying computational load on the
simulation, causing lag or other unforeseen time
effects. Therefore, a more simplistic approach that
considers the distance travelled per action taken
in the environment instead of actually measuring
system time is the best alternative.

Consequently, the distance travelled, which
will now be referred to as the velocity, will be
the constraint to be checked in the reward signal
for this task. The reward signal is described in
equation 3.11. In which we can see that if the goal

is reached with enough velocity, a reward of ten is
obtained, and if the goal is reached without enough
velocity, a reward of one is obtained instead. The
punishment remained unchanged. Furthermore,
the state space increased with one dimension to
allow for a velocity parameter, as depicted in
equation 3.12.

Equation 3.11 Reward signal task 3 final goal.

R(st, g) =



10 if e(st, g1) < 0.1 and

v(st, st−1) > 0.07

1 if e(st, g1) < 0.1 and

v(st, st−1) < 0.07

−d(st, g1) otherwise

(3.11)

Equation 3.12 State space for task 3.

st = {θ1, θ2, θ3, xs, ys, zs, v} (3.12)

3.4 Consequential action selection

Consequential actions are by definition actions
that lead to quicker and better reward jumps in
the utility landscape, especially in initial training
phases when the environment remains undiscov-
ered. Therefore, the actions should result in bet-
ter information regarding the environment of the
agent, this means they will result in more effec-
tive exploration in the early phases of training.
Selecting only consequential actions is difficult, as
it requires a formal definition that can be calcu-
lated, e.g., leading to something that can categorize
actions into consequential and non-consequential.
Note that predicting consequential actions will al-
ways remain an approximation and can not yet
be determined as easily as described. Different ap-
proaches have been studied to see how we can an-
alyze the actions leading to better exploration and
rewards. As a means to quantify the meaningfulness
of actions, we consider the difference in reward ∆r
and the difference in state ∆s. Different approaches
to formalizing consequential actions have been used
in action selection, and their methods are described
below.

8

3.4.1 Definitions

Different definitions have been examined to de-
termine what fits a consequential action best in
order to select them later during training. The
main goal of this study is to get rid of Brow-
nian motion. Brownian motion is defined as ac-
tions resulting in small state differences, e.g., small
(∆x,∆y,∆z) which can be measured in Euclidean
distance. Therefore, one approach is to define a con-
sequential action as a non-Brownian action, mean-
ing that the requirement is to determine the dis-
tance travelled as a result of taking an action and
using a threshold to categorise it as Brownian and
non-Brownian. Nonetheless, state differences only
realise a better method for exploration, but not nec-
essarily for higher rewards. Therefore, the distance
between the goal and the end effector can also be
utilised to determine the meaningfulness of an ac-
tion. Equation 3.13 illustrates an approach where
only the state differences are considered for classifi-
cation. Note that in this non-Brownian definition of
a consequential action, the threshold remains con-
stant. Let C(st, at) be a boolean value that shows
if an action is consequential or not. Assume that
f(st, at) is a state approximator that can determine
the next state (st+1) from the current state (st) and
the action (at).

Equation 3.13 Definition 1: non-Brownian ac-
tions.

C(st, at) =

{
1 if d(st, f(st, at)) > 0.05

0 otherwise
(3.13)

The second definition also considers the dif-
ference in reward as a result of a given action.
The reward mostly resembles the distance from
the end effector to the goal, so the delta reward
(∆r) effectively models if the end effector moves
in the goal’s direction. Note that this delta reward
is different from the actual reward as it does not
provide rewards of 1 or 10 when a task has been
completed successfully, it remains the distance
from the end effector to the goal. The absolute
value of the delta reward was taken so that
actions moving further away from the goal are
also considered consequential since moving farther

away from the goal gives meaningful information
about the goal’s location too. This is described in
equation 3.14, here it is also assumed that f(st, at)
is a state approximator that can determine the
next state (st+1) from the current state (st) and
the action (at).

Equation 3.14 Calculating the delta reward of a
given action.

|∆r| = |d(st, g)− d(f(st, at), g)| (3.14)

From the equation that describes the delta re-
ward, we can derive a new definition for a conse-
quential action, depicted in equation 3.15. Whereas
ω is a linearly decreasing threshold dependent on
the number of epochs, as illustrated in equation
3.16, where n is the current epoch. This threshold
is constructed this way because the constraint is
too big for the model to converge, so it is only used
to stimulate exploration in the early phases.

Equation 3.15 Definition 2: consequential actions
based on goal location

C(st, at) =

{
1 if d(st, f(st, at)) + |∆r| > ω

0 otherwise

(3.15)

Equation 3.16 Omega threshold linear decay, de-
pendent on epoch.

ω = 0.15− (
0.15

1000
∗ n) (3.16)

The goal of this study is to select the consequen-
tial actions during training, to examine whether
a heuristic that prioritizes bigger movements aids
learning. Nonetheless, for using any of these defi-
nitions, we need to be able to predict the conse-
quences of an action on the state. In other words,
predicting the exact next state from a given state
and action. Thus, a form of state approximation
is necessary, e.g., a function for f(st, at). This is
described in the next subsection.

9

3.4.2 State approximation

Here we describe two methods for approximating
the next state given the current state and an
action. The first method uses a Multilayer Per-
ceptron (MLP) that learns to predict the next
state from past experiences. The MLP consists of
5 layers, one input layer, three hidden layers, and
an output layer. A dropout is used between the
hidden layers. The Adam algorithm was used to
backpropagate the loss (Kingma & Ba, 2014) and
all hidden layers used the ReLu activation. More
information regarding the details of this network
is described in Appendix C.

The second model uses forward kinematics,
which is essentially a mathematical formula for
calculating the position of the end-effector using
the angles of the joints and arm lengths. Forward
kinematics is the opposite of inverse kinematics, in
which we need to calculate the angles of the joints
in order to achieve a given end effector position.
In forward kinematics, we do the opposite; we
calculate the position of the end effector with the
given joint angles and arm lengths.

4 Results

4.1 Brownian motion

Learning trajectories of the traditional Soft Actor-
Critic algorithm have been extensively analysed
with the aim of defining the Brownian motion that
can be observed during learning phases. The dis-
tance observed between states presents a method
to investigate actions and their effects on the state
space. Figure 4.1 shows the Euclidean distance
measured between end-effector positions at each
time step of the first task with the traditional
SAC algorithm. A clear jump in the distance in
the rolling average of 300 can be observed when
we look at the time when the model starts to
converge (from epoch 1000). Additionally, the
lower bound of the distance seems to be elevated,
meaning that a functioning model does not prefer
actions that lead to minimal state distances. It is
suggested that these actions result in the Brownian
motion present in the early learning phases. Figure
4.2 shows the same graph but is illustrated as a
density plot. The first 500 epochs of training (blue)

Figure 4.1: Euclidean distance of consecutive
end effector states in a line plot. Trend is deter-
mined by a rolling average of 300. Red dotted
line is exact moment of model convergence.

and the last 500 epochs of training (green) are
compared. Figure 4.2 shows a clear difference in the
distance the end effector travels per action taken.
The Brownian motion, state deltas measured in
the distance, can be observed by the presence of
actions resulting in distances smaller than 0.5.

Figure 4.2: Euclidean distance of consecutive
end effector states in a density plot. Green
equals distribution of distances in the last 500
epochs of training. Blue equals distribution of
distances in the first 500 epochs of training.

10

Figure 4.3: MSE loss of MLP for state estima-
tion for 400 batches of size 256. The red dotted
line shows the time of SAC convergence for com-
parison.

4.2 Multilayer perceptron

The Multilayer Perceptron (MLP) used to estimate
the next state performed as depicted in the figures
below. The mean squared error (MSE) loss is
plotted in Figure 4.3.

Notice that the state approximator is still learning
when the SAC model converges (1000 epochs).
The testing performance measured in Euclidean
distance is presented in Figure 4.4. This shows
a mean of 0.0564 in terms of distance between
the actual location of the end effector and the
prediction provided current location and action. A
few outliers, mostly wildly inaccurate predictions,
cause the mean to be a bit higher than the peak
of density. One can see from the density plot that
most distances are within a range of 0.01 and 0.06.
In order to compare the order of magnitude of this
result, Brownian motion is considered to result in
state differences smaller than 0.05.

4.3 Model performance

The traditional Soft Actor-Critic algorithm was
not as successful as anticipated. The success rate
can be observed in Figure 4.5 and Table 4.1 for
all of the three tasks. The first task (reaching
task) is one of the easiest problems within the

Figure 4.4: Density plot of Euclidean distance
between the prediction of the MLP and the ac-
tual next state. The red dotted line shows the
distance mean.

reinforcement learning environment, as suggested
by its quick convergence (1000 epochs) to a 100%
success rate. Nonetheless, the performance on the
other tasks is not as high as expected for a current
state-of-the-art algorithm such as SAC. The second
task (via-point task) converged to a success rate of
97% after approximately 1000 epochs. The third
task (velocity task) was the most difficult for the
algorithm. It converged to a 93% success rate after
about 4000 epochs.

Consequential action-selection within the Soft
Actor-Critic algorithm provided the results de-
picted in Figure 4.6 and Table 4.2. Forward
kinematics was used to determine the effect of an
action on the current state. The first definition
was used to select consequential actions (equation
3.13). Results show that a 100% success rate is
still reached, however, after 1250 epochs. A 250
epoch difference (25%) for the altered action

Table 4.1: Success rate and epochs before model
convergence of all three tasks with traditional
SAC algorithm.

Task 1 Task 2 Task 3
Success rate 100% 97% 93%
Epochs converge 1.000 1.000 4.000

11

Figure 4.5: Success rate of all three tasks using
the Soft Actor-Critic algorithm. Green is the
first task, blue the second task, and red the third
task.

Conseq. model Normal model
Success rate 100% 100%
Epochs 1.250 1.000

Table 4.2: Success rate and epochs before model
convergence of consequential action selection
and normal action selection, using the SAC al-
gorithm.

selection. This difference is better illustrated in the
difference graph in Figure 4.7. This clearly shows
advantages for consequential action selection in
the early training phases. Nonetheless, a clear
disadvantage in the later stages of training. The
results of definition 2 are shown in Appendix D.

5 Discussion

5.1 State approximation

The method in which this study tested state ap-
proximation using a traditional Multilayer Percep-
tron (MLP) was not accurate enough to be used
in consequential action selection. Figure 4.4 illus-
trates that the distance between the prediction and
the actual state had a mean of 0.056. For compar-
ison, Brownian actions are defined as actions re-
sulting in state differences smaller than 0.05. The
accuracy of the MLP is just an order of magni-

Figure 4.6: Success rate of traditional SAC ver-
sus consequential action-selection model (defi-
nition 1). Blue is consequential action selection,
red is traditional action selection.

Figure 4.7: Success rate difference of traditional
SAC versus consequential action-selection (def-
inition 1).

12

tude too large. This means that the MLP state
approximator is not precise enough to distinguish
between Brownian, non-Brownian actions, but also
consequential and non-consequential actions. Ex-
planations for the under-performing MLP solution
might be a non-complete state representation, from
which it is difficult to estimate the exact next state.
Such as not including rotations and arm lengths
of the robot. However, the MLP was trained on
10.000 epochs which equals around 100.000 train-
ing examples for predicting the next state. Unfortu-
nately, traditional machine learning could not pre-
cisely recognise the patterns in that data. This em-
phasises the unforgivably complex robotics environ-
ment once again.
Predicting states is a bit more straightforward
when they can be calculated. Given an action (at)
and a state (st), we can apply the change in an-
gles on the joints and using the arm lengths we can
calculate the location of the end-effector quite eas-
ily. This process is referred to as forward kinemat-
ics. Nonetheless, this will increase computational
load if performed often and repeatedly, especially
in a sped-up simulation. Note that this approach
will lead to 100% accuracy in approximating the
next state. This approach offers no generalisable
solution that can be used throughout multiple re-
inforcement learning problems since it utilises the
specific methods of this strict environment in or-
der to determine the next state. Imagine a differ-
ent robot with more joints, different arm lengths,
or even a different reinforcement learning problem,
and the whole heuristic becomes useless. Therefore,
a manually hand-crafted solution is far from ideal,
but in this study, it is merely used to analyse its ef-
fect when utilised in consequential action selection.
A learning solution is desired when it comes to solv-
ing problems in the field of reinforcement learning
and not just in a specific environment. The mo-
tivation behind using machine learning solutions is
often the ability to adapt to different environments,
and offering unique solutions is, therefore, counter-
intuitive. Nonetheless, in this paradigm, it is chal-
lenging to create a well-functioning machine learn-
ing solution as we are talking about an instance of
simultaneous learning, whereas the state approx-
imator should outperform the SAC algorithm to
improve its decision-making to select meaningful
actions. Since the SAC algorithm is relatively so-
phisticated, it becomes difficult to construct a bet-

ter learning solution in a part of the task, e.g., ap-
proximating the next state. Since the accuracy of
the MLP was insufficient and learning required ten
times as much data as the SAC required to solve
the whole task, it was decided that constructing an
acceptable machine learning solution was not real-
istic within the scope of this study.

5.2 Brownian motion

Brownian motion can be observed in the robotics
environment using reinforcement learning. It is
visually apparent from the small movements that
the robot often coordinates in the early phases
of learning. Figure 4.2 and 4.1 show that small
effect actions are indeed present up until episode
1000 (time of convergence). These actions result in
state differences, measured in Euclidean distance,
smaller than 0.05. The notion of Brownian motion
can thus be confirmed in a robotics reinforcement
learning paradigm. It is hypothesized that more
reinforcement learning problems will show similar
behaviour, which can be confirmed with further
research.

Using forward kinematics for approximating
the next state, we can use a form of consequential
action selection to prevent Brownian motion
from happening, using definition one illustrated
in equation 3.13. Figure 4.6 shows the success
rate over the episodes of the SAC algorithm with
and without consequential action selection. The
algorithm still converges a bit later; however, this
illustrates that Brownian motion is not necessary
for learning a task successfully.

5.3 Consequential actions

Consequential actions are ultimately actions that
encourage exploration and obtain higher rewards
as a result. One might argue that an optimal
policy would only pick consequential actions
instead of actions that would, for example, lead
to the Brownian motion. This is true. However,
an optimal policy might only arise after a while of
training, and consequential actions might be just
very informative in the early phases of training.
So, selecting consequential actions in early phases
is hypothesised to increase training efficiency. Note
that a consequential action can have different

13

definitions, as illustrated in Section 3.4.1. This
study aims to provide a heuristic that can define
consequential actions properly as a means to
investigate whether or not selecting them improves
early performance.

In Figure 4.7, we can see a reliable difference
in the early training phases by selecting actions
that will result in more considerable state differ-
ences. The consequential action selection model
has a higher success rate in the initial learning
phase. However, it drops drastically when the
model starts converging to a 100% success rate.
As a result, the standard action selection model
converges quicker. Note that the form of action
selection considered in this unique example only
utilises the state differences (definition 1). This
means that the type of consequential action is
non-Brownian, as described in equation 3.13.

Results from definition 2 (equation 3.15) can
be found in Appendix D. This definition showed
similar behaviour, concluding that a delta reward
does not contribute to a more efficient method of
defining the meaningfulness of an action. Better
definitions for consequential actions might still
exist, ones that also improve the convergence
times. Nonetheless, this study has not encountered
these definitions, but this proposal incentivises
further research.

5.4 Problems with RL

In reinforcement learning for robotics, many prob-
lems remain. States often consist of inaccurate rep-
resentations, training takes too long (even in sped-
up simulations), and the current state-of-the-art al-
gorithm (SAC) is not even able to thoroughly learn
tasks that extend from the traditional reaching
task. Literature in RL is primarily optimistic about
its ability to solve many tasks. However, in practice,
these solutions often require time-consuming fine-
tuning of reward signals, hyperparameters, obser-
vation settings, and other environmental changes.
This hand-crafting until the reinforcement learning
algorithm performs well does not offer a general-
izable learning solution that is required to replace
industrial and service robots to learn new types of
movement. A solution that is able to do more than
one task is necessary without making any changes

to the algorithm every time. To summarize, rein-
forcement learning does not perform well enough
yet to be effectively used in real-world applications,
such as in the field of robotics, which could reap the
benefits.

5.5 Future research

The problems with RL result in the incentive
for many future research opportunities. This
study concluded that Brownian motion within a
reinforcement learning robotics paradigm exists
and prevents the current state-of-the-art algorithm
from achieving better exploration in the early
phases of training. Nonetheless, the constraint
of not selecting actions that result in Brownian
motion is a disadvantage for later stages of train-
ing resulting in later convergence. As mentioned
earlier, the definition of a consequential action
selection is open for further research. There might
be methods to achieve even better performance
by picking actions with different properties not
presented in this study.

Furthermore, it might be exciting to see what
an entirely different kind of action selection in
reinforcement learning would lead to. For example,
in a robotics environment, representing the actions
by parameters of an inverse kinematics solver
such as MoveIT—shifting the whole reinforcement
learning paradigm to higher-level aspects. This
is likely another viable alternative to preventing
Brownian motion that is now proven to slow
learning in initial phases.

References

Ajaykumar, G., Steele, M., & Huang, C.-M. (2021).
A survey on end-user robot programming. ACM
Computing Surveys (CSUR), 54 (8), 1–36.

Andrychowicz, M., Wolski, F., Ray, A., Schnei-
der, J., Fong, R., Welinder, P., . . . Zaremba, W.
(2017). Hindsight experience replay. Advances in
neural information processing systems, 30 .

Ballestar, M. T., Dı́az-Chao, Á., Sainz, J., &
Torrent-Sellens, J. (2021). Impact of robotics on
manufacturing: A longitudinal machine learning

14

perspective. Technological Forecasting and Social
Change, 162 , 120348.

Chitta, S. (2016). Moveit!: an introduction.
In Robot operating system (ros) (pp. 3–27).
Springer.

Dankwa, S., & Zheng, W. (2019). Twin-delayed
ddpg: A deep reinforcement learning technique
to model a continuous movement of an intelli-
gent robot agent. In Proceedings of the 3rd inter-
national conference on vision, image and signal
processing (pp. 1–5).

Haarnoja, T., Zhou, A., Abbeel, P., & Levine, S.
(2018). Soft actor-critic: Off-policy maximum en-
tropy deep reinforcement learning with a stochas-
tic actor. In International conference on machine
learning (pp. 1861–1870).

Karatzas, I., & Shreve, S. E. (1998). Brownian mo-
tion. In Brownian motion and stochastic calculus
(pp. 47–127). Springer.

Kase, K., Matsumoto, N., , & Ogata, T. (2021).
Leveraging motor babbling for efficient robot
learning. Journal of Robotics and Mechatronics,
33 (5), 1063-1074. doi: 10.20965/jrm.2021.p1063

Kingma, D. P., & Ba, J. (2014). Adam: A method
for stochastic optimization. arXiv preprint
arXiv:1412.6980 .

Kober, J., Bagnell, J. A., & Peters, J. (2013).
Reinforcement learning in robotics: A survey.
The International Journal of Robotics Research,
32 (11), 1238–1274.

Luo, S., Kasaei, H., & Schomaker, L. (2020). Ac-
celerating reinforcement learning for reaching us-
ing continuous curriculum learning. In 2020 in-
ternational joint conference on neural networks
(IJCNN) (pp. 1–8).

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lilli-
crap, T., Harley, T., . . . Kavukcuoglu, K. (2016).
Asynchronous methods for deep reinforcement
learning. In International conference on machine
learning (pp. 1928–1937).

Mussa-Ivaldi, F. A. (1999). Modular features of
motor control and learning. Current opinion in
neurobiology , 9 (6), 713–717.

Nachum, O., Norouzi, M., & Schuurmans, D.
(2016). Improving policy gradient by explor-
ing under-appreciated rewards. arXiv preprint
arXiv:1611.09321 .

Pedersen, M. R., Nalpantidis, L., Andersen, R. S.,
Schou, C., Bøgh, S., Krüger, V., & Madsen, O.
(2016). Robot skills for manufacturing: From
concept to industrial deployment. Robotics and
Computer-Integrated Manufacturing , 37 , 282–
291.

Qian, W., Xia, Z., Xiong, J., Gan, Y., Guo, Y.,
Weng, S., . . . Zhang, J. (2014). Manipula-
tion task simulation using ros and gazebo. In
2014 ieee international conference on robotics
and biomimetics (robio 2014) (pp. 2594–2598).

Quigley, M., Conley, K., Gerkey, B., Faust, J.,
Foote, T., Leibs, J., . . . others (2009). Ros:
an open-source robot operating system. In Icra
workshop on open source software (Vol. 3, p. 5).

Schulman, J., Levine, S., Abbeel, P., Jordan, M.,
& Moritz, P. (2015). Trust region policy op-
timization. In International conference on ma-
chine learning (pp. 1889–1897).

Schulman, J., Wolski, F., Dhariwal, P., Radford,
A., & Klimov, O. (2017). Proximal pol-
icy optimization algorithms. arXiv preprint
arXiv:1707.06347 .

Sutton, R. S., & Barto, A. G. (2018). Reinforce-
ment learning: An introduction. MIT press.

Wolpert, D. M., & Kawato, M. (1998). Multiple
paired forward and inverse models for motor con-
trol. Neural networks, 11 (7-8), 1317–1329.

Zhu, Y., Wang, Z., Merel, J., Rusu, A., Erez, T.,
Cabi, S., . . . others (2018). Reinforcement and
imitation learning for diverse visuomotor skills.
arXiv preprint arXiv:1802.09564 .

15

A Appendix: Workspace con-
straints

End effector workspace UR5e

Coordinates of end effector Min Max

x 0.01 0.8

y -0.3 0.8

z 0.242 0.842

Table A.1: Minimum and maximum position of
end effector, tested so that the arm can reach
all points within this space.

Joints UR5e

Joints Min Max

1 -0.8 1.3

2 -2.5 -0.2

3 0 2.5

Table A.2: Minimum and maximum position of
joint angles in radians, tested so that the arm
can not collide with itself.

16

B Appendix: Soft Actior-
Critic implementation de-
tails

Hyper-parameters for both actor and critic

α 0.2

γ 0.99

τ 0.01

Table B.1: The hyper-parameter values for both
the actor and the critic.

Critic architecture

Layers Nr. of neurons Activation

Input layer

state + goal

Task 1: 9

Task 2: 12

Task3: 10

N/A

Hidden layer 1 512 ReLu

Hidden layer 2 256 ReLu

Hidden layer 3 64 ReLu

Output layer 1 (state value) N/A

Table B.2: Critic architecture, note that two
critics are made in the algorithm to mitigate
positive bias in the Q-value. The minimum of
both is taken and used in the loss function of
the actor network.

Critic details

Optimizer Adam

Batch size 256

Loss Equation 2.4

Table B.3: Critic further details.

17

Actor architecture

Layers Nr. of neurons Activation

Input layer

state + goal

Task 1: 9

Task 2: 12

Task3: 10

N/A

Hidden layer 1 512 ReLu

Hidden layer 2 256 ReLu

Hidden layer 3 64 ReLu

Output layer 1 3 (Mean: action size) N/A

Output layer 2 3 (Log std: action size) N/A

Table B.4: Actor architecture, note that hidden
layer 3 is connected to output layer 1 and out-
put layer 2, to get the mean separately from
the logarithm of the standard deviation. This is
done so that a distribution can be made from
which can be sampled as a means to increase
stochasticity.

Critic details

Optimizer Adam

Batch size 256

Loss Equation 2.6

Table B.5: Actor further details.

18

C Appendix: MLP implemen-
tation details

MLP architecture

Layers Nr. of neurons Activation Dropout

Input layer 9 (state+action) ReLu N/A

Hidden layer 1 50 ReLu N/A

Hidden layer 2 25 ReLu 0.1

Hidden layer 3 5 ReLu 0.1

Output layer 3 ReLu N/A

Table C.1: Architecture details of MLP state es-
timator

MLP details

Optimizer Adam

Batch size 256

Number of training batches 400

Number of test samples 10.000

Dropout layers 2

Loss MSE

Table C.2: Further details of MLP

19

D Appendix: Results of con-
sequential action selection
definition 2

Figure D.1: Success rate of traditional SAC ver-
sus consequential action-selection model (defi-
nition 2). Blue is consequential action selection,
red is traditional action selection.

Figure D.2: Success rate difference of traditional
SAC versus consequential action-selection (def-
inition 2).

20

