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Abstract— In this paper we will introduce a new method of computing the dissimilarity between pixels based on a combination of
the forward difference, backward difference and central difference. We will compare this method against the Lp-norm dissimilarity
measure which is augmented using edge detector and ridge detector signals. We will also introduce an approximation of the area
score which will be used to determine the quality of the results. Based on the resulting training scores we can conclude that the newly
proposed method preforms slightly worse compared to the other methods. All methods provide robust solution when considering
the scores on similar input data. However, due to problems which most likely stem from the area score approximation we obtain
over-merged results from our training process which raises questions about the usability of the results.

Index Terms—Alpha-tree; Gabor filters; Difference filters; Horizontal cut; Optimal filters; Baysian optimisation

1 INTRODUCTION

Over the years the importance of satellite images has increased and as
the technology progresses we find ourselves with more and more data.
From this arises the need for automated solutions to segment these im-
ages that can cluster relevant data. It is however not well defined what
the relevant data in such an image might be. For example, some might
be interested in each specific house in a street while others might care
for the segmentation of districts within a city. Ideally we would like
to find a representation of our image such that we can easily segment
different levels of detail in our image. This is an example of hierarchi-
cal segmentation. In this paper we will look at one such hierarchical
segmentation method for satellite images, namely segmentation based
on α-trees [9, 12].

We will be augmenting the Lp-norm dissimilarity measure with ad-
ditional data such as the signals of edge and ridge detectors. This
data will be extracted using banks of Gabor filters [20, 21] and banks
of central difference derivative approximations and 1D Laplacian fil-
ters. We will also introduce a new dissimilarity measure based on
the forward difference, backward difference and the central difference
around a pixel. We will train these filters on single images with multi-
ple ground truths in order to find suitable parameters. This paper will
compare the performance of the resulting filters after training. We will
look at the robustness of the filters by applying them to similar data
and comparing the resulting performance. Lastly, we will perform a
visual comparison between the resulting segmentations.

2 PRELIMINARIES

This section will provide the reader with all the information needed to
understand the later sections of the paper. We will start by providing
an overview of α-trees, then we will consider all the filters that will
be applied on our images as well as the post-processing done on the
signals generated from the filters. Next we will go into more detail
on how we define an α-tree to have a good segmentation of a ground
truth image. Lastly we will look at the optimisation method used for
the training phase.

2.1 Alpha-trees
In order to construct an α-tree of an image we first need to define a
dissimilarity between pixels. One of the simplest dissimilarity mea-
sures is the Lp norm between neighbouring pixels. We define an α-
connected component to be a set of pixels in which any pixel in the set
can be connected to any other pixel in the set by a path between pixels
in which every edge in the path has a dissimilarity less than or equal
to α . An example of this is provided in figure 1.

We can represent the α-connected components in a tree. The leaves
are defined as the 0-connected components. As the value of α in-
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Fig. 1. An input image with its corresponding α-connected compo-
nents using the absolute difference as a dissimilarity measure with 4-
connectivity.

creases, the connected components merge into larger connected com-
ponents. The merged connected components are represented by new
nodes in the tree with the corresponding α value. The root node is
defined to be the node at which point there only consists a single con-
nected component. In our example this will be at an α of 5. The α-tree
corresponding to the example in figure 1 is represented in figure 2.
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Fig. 2. The α-tree corresponding to the connected components of fig-
ure 1

In order to retrieve information from the α-tree we can apply a hor-
izontal cut. A horizontal cut is computed by merging the leaves of
the α-tree to a given level α . If we consider the earlier example, then
the α-connected components in figure 1 define the horizontal cuts for
α ∈ {0,1,2,4,5}. Note that the horizontal cut with α = 3 is equiva-



lent to the horizontal cut of α = 2 due to there being no dissimilarities
with value 3. During this paper we will refer to the process of taking a
horizontal cut at level α of the α-tree as filtering the α-tree at level α .

There are some problems with using the Lp norm as a dissimilarity
measure. The main problem is chaining. Chaining occurs when we
have a gradient between two regions which should otherwise be sepa-
rate. Due to the small differences in dissimilarity within the gradient
the areas will be connected when they should not. An example of this
is given in figure 3.
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Fig. 3. An input image demonstrating chaining with its corresponding α-
connected components using the absolute difference as a dissimilarity
measure with 4-connectivity.

There have been multiple approaches on lessening the chaining ef-
fect. In this paper we will focus on the approach based on odd Ga-
bor filters[21] which detects edges and changes the dissimilarity score
based on the strength of the edge.

Another problem which often occurs is poor narrow object detec-
tion. This is due to the narrow object being easily broken up by noise.
One of the proposed solutions is the use of even Gabor filters[20]. The
even Gabor filters are used to detect the narrow objects and modify the
dissimilarity score if narrow objects are detected.

2.2 Gabor filters

In this study we will be augmenting the dissimilarity value based on
additional data. The additional edge [11, 21] and ridge [20] data will
be computed using a bank of Gabor filters [14]. For the computation
of the edge signal we will use the odd (imaginary) Gabor filter and for
the ridge signal we will use the even (real) Gabor filter. These filters
are defined as:
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with x′ = xcosθ + ysinθ , y′ = −xsinθ + ycosθ , λ represents the
wavelength, θ the orientation, ψ the phase offset, σ the standard devi-
ation of the Gaussian factor and γ the spatial aspect ratio.

The bank will consist of Gabor filters in the edge connectivity di-
rections, i.e. for 4-connectivity we will consider θ ∈ {0, π

2 } and for
8-connectivity we will consider θ ∈ {0, π

4 ,
π

2 ,
3π

4 }. Since we are inter-
ested in the edge signals and ridge signals in a specific direction, we
will not use the phase offset and we will consider it to be zero in the
rest of the study. In section 3 we will go into more depth on how we
pick our values for λ , σ and γ .

Using this bank of Gabor filters we will compute the edge signal and
the ridge signal in each channel of the image separately. The channels
are then combined by taking the Lp-norm over the channels C of the

image I.

eθ (x,y) =

(
C

∑
i=0

|(Ii ∗ godd)(x,y)|p
)1/p

rθ (x,y) =

(
C

∑
i=0

|(Ii ∗ geven)(x,y)|p
)1/p

These signals will be affected by noise and texture in the original im-
age. One way of solving this would be to threshold the obtained sig-
nals to remove the noise. However, we choose to use a logistic function
instead due to it providing a less harsh cut-off of the signals compared
to a threshold function.

sig(x) =
1

1+ exp
(
−a∗ x−b

2

) (1)

where a denotes the slope of the transition and b the offset of the tran-
sition slope. Note that the output of the logistic function is in the range
(0,1). The resulting signals are defined as:

êθ (x,y) = sig(eθ (x,y))
r̂θ (x,y) = sig(rθ (x,y)) (2)

We will have a weight corresponding to the edge signal (we) and a
weight corresponding to the ridge signal (wr). We will consider the
strongest response and multiply the original dissimilarity by the cor-
responding weight. This weight is determined by linear interpolation
between 1 and the edge/ridge weight based on the response of the lo-
gistic function.

δ̂ (p,q) =
{

δ (p,q)(1+((we −1)∗ êθ (p))) If êθ ≥ r̂θ

δ (p,q)(1+((wr −1)∗ r̂θ (p))) If êθ < r̂θ
(3)

where θ is in the direction from p to q.

2.3 CDL filters

Let us consider the odd and even Gabor filters in a single dimension, as
presented in figure 4 and 5, respectively. We can see that the odd Gabor
filter roughly corresponds to the central difference around a pixel. We
can also see that the even Gabor filter is similar to an inverted 1D
Laplacian filter. Hence one might wonder if it is necessary to add the
additional complexity of the Gabor filters. So rather than dealing with
the added complexity of the Gabor filters we will consider the crude
approximation of the Gabor filters given by the central difference of a
pixel and its 1D Laplacian filter in order to detect edges and ridges in
the desired directions.
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Fig. 4. Odd Gabor filter in 1D.
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Fig. 5. Even Gabor filter in 1D

We will use a bank of central difference and 1D Laplacian filter to
compute an approximation of the edge and ridge signal generated by
the Gabor filters. The bank of filters will be based on the connectivity
directions, similar to the Gabor filters. This means that in the case



of 4-connectivity we will consider θ ∈ {0, π

2 } and in the case of 8-
connectivity we will consider θ ∈ {0, π
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Using this bank of central difference (CDθ ) and 1D Laplacian (Lθ )
filters we will compute the edge signal and ridge signal in each channel
by convolving the input image with each kernel. We will combine the
resulting channels by computing the Lp-norm over the channels, as we
did for the Gabor filters.

eθ (x,y) =

(
C

∑
i=0

|(Ii ∗ CDθ )(x,y)|p
)1/p

rθ (x,y) =

(
C

∑
i=0

|(Ii ∗ Lθ )(x,y)|p
)1/p

From this point we will apply the same post-processing on the sig-
nals as we did for the Gabor filters. We will transform the signals using
a logistic function and add them to the original dissimilarity, as we did
in equation 1, 2 and 3.

2.4 Difference filters
Lastly we will define the difference filters. The difference filters works
differently compared to the previously mentioned detectors since it
does not augment the normal dissimilarity score, but instead computes
it in a different way. It is based on the forward difference (FD), back-
ward difference (BD) and the central difference (CD) of a pixel in the
directions of the connectivity and is computed for each channel sep-
arately. The signals of each channel are then combined using an Lp-
norm. Each signal has a corresponding weight and they are combined
as follows:

δ (p) = |wFD ∗FD(p)+wBD ∗BD(p)+wCD ∗CD(p)|

2.5 Fitness function
In order to train the model we will need a method of scoring how well
our current model performs. For this we will be using the method
discussed in [19]. The quality of a horizontal cut is defined using four
scores. The area score (AS), the node index (NI), the depth index (DI)
and the plateau length index (PLI).

2.5.1 Area Score
The area score is used to estimate how well a specific segmentation or
ground truth is represented in the alpha tree. We will compute this us-
ing the over-merging error and the under-merging error defined below.

Assume that the ground truth has n segments denoted by Gi with
i ∈ {1,2, . . . ,n}. Now consider the image obtained after filtering the
α-tree with a value α̂ and assume this image has m segments denoted
by S j with j ∈ {1,2, . . . ,m}. Given a segment S j , let us define the

segment Gi which has the largest intersection with S j as Ĝi. Similarly,
given a segment Gi, let Ŝ j be the segment in the original image with the
largest intersection with Gi. Let |S j ∩ Ĝi| and |Gi ∩ Ŝ j| be the size of
the corresponding intersections. Using this we will define the under-
merging error (UM) and the over-merging error (OM):

UM =
1
|I|

m

∑
j=1

(|Ĝi|− |S j ∩ Ĝi|)(|S j ∩ Ĝi|)
|Ĝi|

OM =
1
|I|

n

∑
i=1

(|Ŝ j|− |Gi ∩ Ŝ j|)(|Gi ∩ Ŝ j|)
|Ŝ j|

where |I| denotes the area covered in the ground truth. Using the
under-merging error and over-merging error we can compute the area
score as follows:

AS = 1−
√

UM2 +OM2

2.5.2 Node index
The node index represents the complexity of building the α-tree. This
is represented by the number of nodes present in the tree. The number
of nodes in an α-tree is bound by two times the number of pixels in
the image. Thus the node index is defined as:

NI = 1− |Nτ |
2|I|

where |Nτ | is the number of nodes in the α-tree and |I| the size of the
image. Note that the node index is not dependent on a specific filtering
of the α-tree. Also note that the node index is in the range [0,1] and is
higher for α-trees with less nodes.

2.5.3 Depth index
The depth index represents the complexity in filtering the α-tree. The
lower the desired alpha value, the less steps are necessary to perform
a filter operation. The depth index for a given alpha value α̂ is defined
as:

DI = 1− α̂

ατ

where ατ is the largest alpha value in the α-tree. Note that the depth
index is in the range [0,1] and is higher for low values of alpha.

2.5.4 Plateau length index
The plateau length index represents the robustness of the segmenta-
tion. We compute the area score over all alphas and consider the seg-
ment of alpha values around the optimal alpha value αH where the
area score is at least 90% of the optimal area score. The length of
this segment is denoted as the plateau length (PL). This can be used to
compute the plateau length index as follows:

PLI =
PL
ατ

where ατ is the largest alpha value in the α-tree. Note that the plateau
length index is in the range [0,1] and is higher if there is a larger inter-
val of alpha values providing a good solution.

2.5.5 Computing the quality
In order to compute the quality score we will start by computing the
area score for all alpha values. Then we will define αH to be the alpha
with the highest area score. We define the corresponding area score
ASH . Based on αH we will compute the depth index, denoted by DIH ,
and the plateau length index, denoted by PLIH . Lastly we will com-
pute the node index of the α-tree. The quality score can be computed
as follows:

QH = w1ASH +w2NI +w3DIH +w4PLIH

The choice of weights w1,w2,w3 and w4 depend on the properties de-
sired.



3 EXPERIMENTAL SETUP

In this section we will provide an overview of the experimental setup
we used, as well as some implementation-related optimisations and
approximations used.

3.1 Defining a score for multiple ground truths
The fitness function introduced in section 2.5 provides a method of
determining how well a single given ground truth is represented in an
alpha tree. However, we want to train our model in such a way that it is
able to segment the image on multiple levels, providing a good result
for each. We need to define how we combine the individual scores of
each ground truth to an overall score. We choose the geometric mean
of the quality scores of the individual ground truths. Since the quality
scores are in the range [0,1] we will have that the geometric mean
is only close to one if all scores are close to one. Conversely, if we
have a single score not close to one, then it will drastically reduce the
overall quality score. Hence we need a good segmentation of each of
the ground truths in order to have a good overall quality score.

3.2 Fitness weights
For our experiments we chose to prioritise the area score component
of the quality score by giving it a weight of 0.7. We chose this since
this should result in better visual segmentations. For each of the other
scoring components we picked a weight of 0.1.

3.3 Fitness function optimisation
In order to compute the optimal score we need to find the highest area
score. A naive way of finding the optimal alpha would be to compute
the area score for each alpha. However, if we consider a multi spectral
image, the chance of having two dissimilarity scores which are exactly
the same is very small, since even a small variation in one of the chan-
nels will result in a slightly different dissimilarity value. By design,
the area score should not differ significantly for small changes in the
dissimilarity. Thus, computing the area score for all values of alpha
present in the α-tree would result in a lot of redundant computation.
Therefore we will be computing a rougher estimation of the area score.
For this we will consider m dissimilarity values. In order to make no
assumption about the distribution of the alpha values, we will consider
the array of sorted alpha values and let there be a total of #al pha alpha
values. Then we can compute the indices of the elements considered
in the sorted array as follows:

idx =
(#al pha−1)∗ i

m−1
i ∈ {0,1,2, . . . ,m}

For our experiments we considered m = 400. This was chosen experi-
mentally in order for each run of the experiment to take about an hour
on our AMD Opteron 6276 machine.

3.4 Testing and training data
We will consider a small data set of satellite images from the cam-
pus of the University of Groningen. The data set consists of four
1000x1000 rgb images and three ground truth images of different lev-
els of segmentation for each of them. These images can be found in
figure 9, 10, 11 and 12 in the appendix. We will use each of the images
to train the filters in order to find optimal parameters for each method.
Note that each of the filters is trained on every single satellite image
and its corresponding ground truths, so no batch learning is applied.

3.5 Parameter optimisation
In order to train our method in finding the optimal parameters for seg-
mentation on the training data we will use Basian optimisation. We
chose this method due to its efficiency for optimising black box func-
tions with a relatively low number of evaluations. For our implementa-
tion we chose Metric Optimisation Engine[18] (MOE) due to its easy-
to-use Python interface.

In order to apply MOE we need to bound the parameters that we
want to optimise. Note that we want to increase the dissimilarity value
in case we find an edge. However, we want to decrease the value in

the ridge direction. Based on this we choose the parameters depicted
in table 1, 2 and 3. Note that we fixed the p value of our Lp norms to
2, this was done because we encountered unexpected artefacts in the
output if we did not use a multiple of 2.

Parameter Min Max
Lp-norm used as initial dissimilarity 2 2
λ parameter of the odd Gabor filter 0.5 5
σ parameter of the odd Gabor filter 0.5 2
γ parameter of the odd Gabor filter 0 2
Lp-norm used to reduce the edge signals 2 2
Slope of the sigmoid used for the edge signal 0.1 5
Center of the sigmoid used for the edge signal 0 40
Weight of the sigmoid used for the edge signal 1 10
λ parameter of the even Gabor filter 0.5 5
σ parameter of the even Gabor filter 0.5 2
γ parameter of the even Gabor filter 0 2
Lp-norm used to reduce the ridge signals 2 2
Slope of the sigmoid used for the ridge signal 0.1 5
Center of the sigmoid used for the ridge signal 0 40
Weight of the sigmoid used for the ridge signal 0 1

Table 1. Parameter bounds used in the Gabor filter optimisation

Parameter Min Max
Lp-norm used as initial dissimilarity 2 2
Lp-norm used to reduce the edge signals 2 2
Slope of the sigmoid used for the edge signal 0.1 5
Center of the sigmoid used for the edge signal 0 40
Weight of the sigmoid used for the edge signal 1 10
Lp-norm used to reduce the ridge signals 2 2
Slope of the sigmoid used for the ridge signal 0.1 5
Center of the sigmoid used for the ridge signal 0 40
Weight of the sigmoid used for the ridge signal 0 1

Table 2. Parameter bounds used in the CDL filter optimisation

Parameter Min Max
Lp-norm used to reduce the FD signals 2 2
Weight of the FD signal -1 1
Lp-norm used to reduce the BD signals 2 2
Weight of the BD signal -1 1
Lp-norm used to reduce the CD signals 2 2
Weight of the CD signal -1 1

Table 3. Parameter bounds used in the difference filter optimisation

3.6 Experimental setup
We have implemented the α-tree algorithm and scoring procedure in
C++[10]. This program is called through a Python script which over-
sees the generation of new parameters via MOE. We run multiple in-
stances of the program in order to attain pseudo parallelism, i.e. when
a process is finished, we update our known results to obtain new pa-
rameters. We do not wait for all processes to finish. In our experiments
we run four processes for each of the four satellite images and each of
the three methods. During the execution we store the parameters used,
the final score, the scores for each ground truth and the optimal alpha
value of each ground truth corresponding to that score. Note that we
only consider 4-connectivity in our experiments. We ran the training
code for 3 days.

3.7 Processing experiment output
For our experiments we obtain data for each set of parameters con-
sidered. We will only consider the best performing sets of parameters
of each satellite image and method combination for further analysis.



These parameters will be tested on the other satellite images in order
to observe the robustness of the filter for other similar input data.

4 RESULTS AND DISCUSSION

In this section we will present the results obtained for the experiments.
We only consider the overall quality score of each filter, which is based
on the combination of the three quality scores corresponding to the
ground truth images.

4.1 Optimal filters
Table 4 contains the best 4 scores obtained from the experiments for
each combination of method and satellite image. Table 9, 10 and 11
contain the parameters of the best performing runs.

In table 4 we can observe that the Gabor method scores consistently
higher than its simplified counterpart CDL and the difference based
method. However, we can also see that the difference in the scores is
only a few percent. We can also observe that the top 4 results have
very similar score values. This would imply that we have encountered
a plateau while training. Due to the non-linearity of the parameter
space this does not have to imply that we found the optimal solution.
It might be possible to find a better solution if we run the optimisation
for a longer period of time.

Image Gabor CDL Difference
1 0.884655 0.878461 0.863846

0.884124 0.877768 0.863846
0.882817 0.876612 0.863846
0.880114 0.874687 0.863846

2 0.882537 0.874265 0.867338
0.881505 0.87406 0.867338
0.881462 0.87405 0.867338
0.880935 0.873971 0.867338

3 0.918579 0.910538 0.88335
0.918332 0.910059 0.88335
0.917029 0.908741 0.88335
0.913546 0.90849 0.88335

4 0.849467 0.849291 0.831299
0.849245 0.847714 0.831299
0.849187 0.847617 0.831299
0.849054 0.84654 0.831299

Table 4. Top 4 best scores observed for each method on each image.

4.2 Robustness
Tables 5, 6, 7 and 8 show the application of the highest scoring filter
for a given image on the other images. The filter considered is marked
in bold.

Image Gabor CDL Difference
1 0.884655 0.878461 0.863846
2 0.869684 0.879297 0.867338
3 0.88327 0.915907 0.874438
4 0.84334 0.84704 0.831299

Table 5. The resulting scores of using the optimal filter for image 1 on
the other images.

Image Gabor CDL Difference
1 0.883873 0.874295 0.863846
2 0.882537 0.874265 0.867338
3 0.882946 0.912175 0.874438
4 0.850335 0.844834 0.831299

Table 6. The resulting scores of using the optimal filter for image 2 on
the other images.

Image Gabor CDL Difference
1 0.884095 0.8755 0.841331
2 0.88162 0.876179 0.852374
3 0.918579 0.910538 0.88335
4 0.848634 0.841887 0.827155

Table 7. The resulting scores of using the optimal filter for image 3 on
the other images.

Image Gabor CDL Difference
1 0.875769 0.875633 0.863846
3 0.883069 0.880293 0.867338
3 0.919213 0.914186 0.874438
4 0.849467 0.849291 0.831299

Table 8. The resulting scores of using the optimal filter for image 4 on
the other images.

As we can see in tables 5-8, in almost all cases the score on image 3
is higher than on the image it was trained on. Similarly, in all cases the
scores for image 4 are the lowest. We can also observe that the Gabor
score is consistently higher than the CDL score, if only by a small
amount. Similarly, both Gabor and CDL score consistently higher than
the difference method. All parameters perform within a few percent
margin of the parameters for a given image which would indicate that
the parameters define robust filters.

4.3 Visual results
This section will discuss the visual results from figures 13-24 in the
appendix. These figures contain the ground truths and the segmenta-
tions corresponding to the highest scoring parameters according to the
experiment.

We will start by noting that we expect the alpha values to be increas-
ing for decreasing level of detail in the ground truths. However, if we
look at the optimal alpha values found for the Gabor method for the
second image we can see that the alpha value decreases between the
first and the second ground truth. This is also the case for the the first
and the second image when considering the difference based method.
Due to the nature of the ground truths this should not happen, so this
would imply that there might be a problem with the score computation.

Next we will note that there are 2 cases in which we observe the
same alpha value for different ground truths. More specifically, the
solution of image 1 for ground truth 2 and 3 for the Gabor method,
image 1 with ground truth 2 and 3 for the difference method and im-
age 2 with ground truth 1 and 2 for the difference method. The lack
of different alpha values indicates that the approximation of the area
score was not fine enough.

Lastly, most of the results look to be over-merged, i.e. we have that
most of the image consist of one very large region. An example of
this is shown in figure 6. We expect this segmentation to be present
for larger alpha values (higher in the tree). Thus, it seems that the
optimisation method consistently cuts the tree too high.

If we consider the first non-zero alpha value used by the area score
approximation then we obtain the result in figure 7. As we can see, the
resulting segmentation is visually significantly better than the one pro-
posed by the experiment for both the Gabor method and CDL method.
For the difference method we observe under-merging. This would in-
dicate that there is a better solution present between these alpha values.
Thus, we have that either the area score is not a good indicator for vi-
sual similarity or that there is a problem with its implementation for
our experiment.

If we were to hand pick alpha values, we can obtain the segmen-
tation from figure 8. We picked a smaller alpha value for the alpha
Gabor method in order to find a solution with more detail. For the
difference method we pick an alpha value between the under-merged
result and the over-merged result. For the Gabor method we can see
that we obtain more segmentations in regions such as roads. Hence
one could argue that it provides a more detailed segmentation and that



(a) Ground truth 1 of Image 1. (b) Gabor α = 0.326793. (c) CDL α = 3.000000. (d) Difference α = 0.548409.

Fig. 6. Example of over-merging for the optimal segmentation of image 1 corresponding to the first ground truth.

(a) Ground truth 1 of Image 1. (b) Gabor α = 0.128882. (c) CDL α = 0.554141. (d) Difference α = 8.9987e−5.

Fig. 7. First non-zero alpha value considered by the area function approximation.

(a) Gabor α = 0.03. (b) Difference α = 0.09.

Fig. 8. Example of better segmentation being present in the α-tree.

our approach in reducing the number of alpha values considered in the
area score is not optimal. For the difference method we can see that
the result has a lot of noise and irregular regions compared to the re-
sults of the Gabor and CDL results. Even though the scores are very
similar, the resulting segmentation is visually worse.

5 CONCLUSION

From the observations made in section 4 we can conclude that even
though the theoretical scores are similar for all the methods, the vi-
sual results of the difference method are worse than those of the other
methods. We have also seen that the parameters obtained from train-
ing on a single image can be used on the other images in the data set
in order to obtain similar scores as a result. We can also conclude that
our approximation of the area score is too coarse which results in less
than ideal segmentations. This could also be caused due to a problem

in the area score computation, since we found other results which pro-
vided a better visual result but did not produce the highest area score.
This would imply that either the area score is not a sufficient measure
to determine the dissimilarity of the segmentation and the ground truth
or that we made an error in its implementation. Determining which of
these is the case could be determined in further research. We can con-
clude that the results of the Gabor method and the CDL method are
very similar, both in score and visual results. Since the CDL method
only has 6 degrees of freedom in the choice of parameters compared to
the 12 degrees of freedom for the Gabor case, it might be an interesting
alternative due to the lower complexity. From our results we observe
that even though the difference method provides similar scores, it does
not provide a good visual segmentation. This could indicate that the
method itself is flawed or that the parameter optimisation was insuf-
ficient. Due to the limited time we were able to run the experiments
and the aforementioned problems with the area score, we suspect that
the parameter optimisation was insufficient. Hence the method might
need further testing to determine its feasibility.

6 FUTURE RESEARCH

In this paper we have mainly looked at augmenting the α-tree algo-
rithm with data from an edge detector and a ridge detector. How-
ever, there are also other extensions made to alpha trees to improve
their segmentation performance, namely constrained connectivity α-
ω-trees [16] and contrast based α-trees [17]. These methods could be
combined with the methods discussed in this paper to possibly provide
better results.

In this paper we have proposed a method of combining the edge
signal and ridge signal with the dissimilarity score using a naive ap-
proach. However, it might be interesting to look at different ways
of combining the edge signal and ridge signal of each channel. One
method would be to have one vote per channel for either edge signal
or ridge signal and only consider the highest voted option for the ma-



nipulation of the dissimilarity. In our approach we used both the edge
signal and the ridge signal to change the dissimilarity, however one
might be able to conceive of a better approach.

Another related topic would be to consider the work done using
morphological (attribute) profiles [4, 13] on high resolution satellite
images for segmentation purposes, especially since it is currently in
use in the Orfeo ToolBox [8] which is actively used in the QGIS appli-
cation [15]. We did not consider morphological profiles in this paper
due to them being not well defined for multi spectral images. How-
ever, it might be interesting to compare these methods to the current
α-tree based methods which do work on multi spectral images.

Lastly, we propose to consider the Tsetlin machine [6]. It is a simple
automata that can be used to learn patterns in an efficient way. Origi-
nally it was mainly used on natural language problems, but it has since
been extended to convolution problems [7]. Since its original publica-
tion there have been multiple extensions adding continuous input [3],
continuous output [1, 5] and better efficiency [2]. Due to the simple
architecture it is easily implemented directly in hardware and hence it
might be interesting to see if it can be extended to be used in finding
optimal dissimilarity values for the α-tree construction.
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7 APPENDIX

Parameter Image 1 Image 2 Image 3 Image 4
Lp-norm used as initial dissimilarity 2 2 2 2
λ parameter of the odd Gabor filter 0.687754222739 3.30613630108 4.80444215263 0.53802506389
σ parameter of the odd Gabor filter 1.80754480804 1.9793400773 1.78400777427 1.41588492388
γ parameter of the odd Gabor filter 1.90965542569 0.16063958295 1.45830147376 1.92489663945
Lp-norm used to reduce the edge signals 2 2 2 2
Slope of the sigmoid used for the edge signal 4.71057580966 2.76742570862 0.980770298863 1.83707721632
Center of the sigmoid used for the edge signal 2.20726967437 35.447594255 31.6829283623 33.6939567704
Weight of the sigmoid used for the edge signal 9.64882600945 9.34930788421 7.55882350425 8.86248470095
λ parameter of the even Gabor filter 4.75626828672 1.11274977766 0.609726177153 4.51366488161
σ parameter of the even Gabor filter 1.67120103542 1.72843450503 0.532210464513 0.784892135836
γ parameter of the even Gabor filter 0.271139200934 1.52546115205 0.133567091554 0.733033050066
Lp-norm used to reduce the ridge signals 2 2 2 2
Slope of the sigmoid used for the ridge signal 4.86442763908 0.792703702507 1.19131510712 4.54046846262
Center of the sigmoid used for the ridge signal 31.9079901748 32.8320823182 22.4187424193 24.9752319999
Weight of the sigmoid used for the ridge signal 0.12888197051 0.0475527444329 0.432198771971 0.0198284052254

Table 9. Best parameters found for the Gabor method after training.

Parameter Image 1 Image 2 Image 3 Image 4
Lp-norm used as initial dissimilarity 2 2 2 2
Lp-norm used to reduce the edge signals 2 2 2 2
Slope of the sigmoid used for the edge signal 4.1311660112 4.61787562555 3.90094927812 4.20617431257
Center of the sigmoid used for the edge signal 39.2767050024 39.5710541573 39.5204182578 32.0911939161
Weight of the sigmoid used for the edge signal 9.95003579969 4.73134338354 2.21786765531 9.73334079885
Lp-norm used to reduce the ridge signals 2 2 2 2
Slope of the sigmoid used for the ridge signal 3.59072939661 4.25367866441 4.91274136593 4.8571271544
Center of the sigmoid used for the ridge signal 39.8789519468 36.8696638155 0.0300276284882 38.6294029714
Weight of the sigmoid used for the ridge signal 0.554141000734 0.57784612174 0.0659786532633 0.535444049565

Table 10. Best parameters found for the CDL method after training.

Parameter Image 1 Image 2 Image 3 Image 4
Lp-norm used to reduce the FD signals 2 2 2 2
Weight of the FD signal 1 1 -1 -1
Lp-norm used to reduce the BD signals 2 2 2 2
Weight of the BD signal 1 1 1 -1
Lp-norm used to reduce the CD signals 2 2 2 2
Weight of the CD signal -1 -1 -1 1

Table 11. Best parameters found for the difference method after training.



(a) Image 1. (b) Fine ground truth image 1. (c) Medium ground truth image 1. (d) Coarse ground truth image 1.

Fig. 9. Image 1 and its corresponding ground truths of different segmentation levels.

(a) Image 2. (b) Fine ground truth image 2. (c) Medium ground truth image 2. (d) Coarse ground truth image 2.

Fig. 10. Image 2 and its corresponding ground truths of different segmentation levels.

(a) Image 3. (b) Fine ground truth image 3. (c) Medium ground truth image 3. (d) Coarse ground truth image 3.

Fig. 11. Image 3 and its corresponding ground truths of different segmentation levels.

(a) Image 4. (b) Fine ground truth image 4. (c) Medium ground truth image 4. (d) Coarse ground truth image 4.

Fig. 12. Image 4 and its corresponding ground truths of different segmentation levels.



(a) Ground truth 1 of Image 1. (b) Gabor α = 0.326793. (c) CDL α = 3.000000. (d) Difference α = 0.548409.

Fig. 13. Ground truth 1 of Image 1 and the corresponding segmentation using the best scoring filters.

(a) Ground truth 2 of Image 1. (b) Gabor α = 2.577640. (c) CDL α = 37.00020. (d) Difference α = 2.362970.

Fig. 14. Ground truth 2 of Image 1 and the corresponding segmentation using the best scoring filters.

(a) Ground truth 3 of Image 1. (b) Gabor α = 2.577640. (c) CDL α = 39.800100. (d) Difference α = 2.362970.

Fig. 15. Ground truth 3 of Image 1 and the corresponding segmentation using the best scoring filters.

(a) Ground truth 1 of Image 2. (b) Gabor α = 0.332869. (c) CDL α = 5.000000. (d) Difference α = 0.754669.

Fig. 16. Ground truth 1 of Image 2 and the corresponding segmentation using the best scoring filters.



(a) Ground truth 2 of Image 2. (b) Gabor α = 0.237764. (c) CDL α = 5.000020. (d) Difference α = 0.754669.

Fig. 17. Ground truth 2 of Image 2 and the corresponding segmentation using the best scoring filters.

(a) Ground truth 3 of Image 2. (b) Gabor α = 9.349310. (c) CDL α = 15.000000. (d) Difference α = 1.676260.

Fig. 18. Ground truth 3 of Image 2 and the corresponding segmentation using the best scoring filters.

(a) Ground truth 1 of Image 3. (b) Gabor α = 2.593190. (c) CDL α = 0.461851. (d) Difference α = 13.844400.

Fig. 19. Ground truth 1 of Image 3 and the corresponding segmentation using the best scoring filters.

(a) Ground truth 2 of Image 3. (b) Gabor α = 7.558820. (c) CDL α = 0.923701. (d) Difference α = 34.725000.

Fig. 20. Ground truth 2 of Image 3 and the corresponding segmentation using the best scoring filters.



(a) Ground truth 3 of Image 3. (b) Gabor α = 8.211780. (c) CDL α = 1.163190. (d) Difference α = 32.020900.

Fig. 21. Ground truth 3 of Image 3 and the corresponding segmentation using the best scoring filters.

(a) Ground truth 1 of Image 4. (b) Gabor α = 0.039657. (c) CDL α = 2.000000. (d) Difference α = 2.415470.

Fig. 22. Ground truth 1 of Image 4 and the corresponding segmentation using the best scoring filters.

(a) Ground truth 2 of Image 4. (b) Gabor α = 0.158627. (c) CDL α = 9.000000. (d) Difference α = 1.553070.

Fig. 23. Ground truth 2 of Image 4 and the corresponding segmentation using the best scoring filters.

(a) Ground truth 3 of Image 4. (b) Gabor α = 345.637000. (c) CDL α = 399.067000. (d) Difference α = 16.492400.

Fig. 24. Ground truth 3 of Image 4 and the corresponding segmentation using the best scoring filters.


