
Kube-on-OS
by David Visscher

The following is an extract from the wiki of the kube-on-openstack
repository. Some diagrams and section layouts will not appear
very nicely. This document is better when viewed live at:
https://gitlab.com/ecida/kube-on-openstack

This wiki documents the kube-on-os deployment environment.

Index

Home

Getting Started

Architecture

• Deployment Architecture
• Network Architecture
• CI

Terraform

• Deployment Parameters
• Initial Provisioning
• Full Resource Graph

Salt

• State Reference
• The Microk8s Module
• The Pillar
• The Mine

Notable Limitations

Future Opportunities

Getting Started
This section will guide you through setting up Kube-on-Openstack from scratch.

1

Home

Prerequisites
• An Openstack project with sufficient quota to run the workload needed.

Notably, make sure that enough floating IP’s are available.
• An Ubuntu 20.04 Focal image should be available in the Openstack

cluster. These are usually provided by the Openstack cluster’s
maintainer. Such images can also be acquired from https://cloud-
images.ubuntu.com/focal/current/

• One of either:
– If running in Gitlab CI :

∗ Set up Terraform state backend for Gitlab CI. Other than that,
the provided .gitlab-ci.yaml should work for you.

∗ Access to the Openstack API from the Gitlab runner you’re using.
When using public runners, that usually means the API needs to
be accessible from the internet.

– If running locally:
∗ A local clone of the repository
∗ A local installation of terraform
∗ Access to an Openstack cluster from your workstation.
∗ If you want to keep state locally, make sure to comment out the

lines indicating the http backend in terraform/terraform.tf.

Setting Environment Variables
Configuration of Kubernetes-on-Openstack happens primary by setting the
variables for Terraform to use. Here’s an example of how to set these examples:

Connecting to Openstack
For connecting to Openstack we use the default environment variables that are
provided via an openrc file. Such a file can be downloaded via the “API Access”
page on the dashboard. The file can simply be sourced using the same method
as when using the Openstack CLI.

Example:

$ source openrc.sh

As an alternative, an Application Credential can be created. This is usually the
more secure method, especially when the credentials have to live outside your
own workstation.

Terraform will read the environment variables set by the openstack rc file, and
use those to connect to the API.

2

https://docs.gitlab.com/ee/user/infrastructure/iac/terraform_state.html
https://www.terraform.io/downloads
https://gitlab.com/ecida/kube-on-openstack/-/blob/main/terraform/terraform.tf#L71

Variables that must be set
While most variables have (sane) defaults set, we do need to specify some of
them to fit our specific case. We can do this in multiple ways, in this example
we’ll use environment variables, as those will work in Gitlab and locally.

We will override the defaults that are defined in terraform/terraform.tf using
environment variables. Doing this every time you open your shell can be very
tedious, so writing these to a file you can later source is recommended.

Make sure to check that you’ve enough available quota in the openstack project
for the default instances. If Not, override kube_node_flavor to select a smaller
instance size or lower num_kube_nodes.

For all possible variables that can be set, see Deployment Parameters.

The external network

Our cluster needs to be connected to the internet somehow. Openstack has
provider networks for this. We can connect routers to them and allocate floating
ips.

export TF_VAR_external_network_name=[...] # FIll in your provider network's name here

The base image

The default value here is set to the ubuntu focal image’s ID in merlin cloud. If
we’re using a different image or a different cluster the ID will also differ, so we
need to set the corresponding variable.

export TF_VAR_base_image=[SOME ID] # FIll in the id of your image here

Users

We want to be able to log into our cluster once its deployed. To do so, we set
the variable for it. This needs to be set as a terraform map.

Here’s an example for defining two users:

export TF_VAR_users='[{ username = "waldorf", ssh_public_key = "[...]"},{ username = "statler", ssh_public_key = "[...]"}]'

A root password

Just for debugging it’s very useful to be able to be able to log in as root via the
console. So, especially for this first deploy, we’ll set a root password.

For this we use the following two variables:

export TF_VAR_set_root_password="true"
export TF_VAR_root_password="VerySecurePassword"

3

https://www.terraform.io/language/functions/map

For the rest we’ll just accept the defaults. These are documented at Deployment
Parameters, and can be found in the code in the file terraform/terraform.tf.

Running the deployment
Now that we’ve set up our environment, we can start deploying. If you’re using
gitlab CI, the pipeline will start running and you can manually trigger the deploy
step if a pipeline succeeds.

Deploying from the local machine
To do so, follow these steps from the root of the local git clone:

cd terraform
terraform plan # This will show what terraform will do.
terraform apply # If you're happy with the plan.

Kube-on-OS should now start deploying, and make your cluster ready for you.
The standard network layout it deploys can be found at Network Architecture

The rest of the process is fully automated.

Further Reading: Useful pages to understand
what’s happening

• To learn about how the automated deployment process works, see Deploy-
ment Architecture and CI.

• To learn about what salt configures, see the State Reference
• To learn about how salt and microk8s interact, see The Microk8s Module
• To learn about how salt is parameterized to adapt to different deployment

environments, see The Pillar.

Project Architecture
This section describes the architecture for the kube-on-os deployment.

For information on how the deployment as a whole is designed, see Deployment
Architecture

For information about the network, and how it is designed, see Network Archi-
tecture

For information on continuous integration and corresponding pipelines, see CI

4

Deployment Architecture
Deployment steps:
In broad terms, the steps of the deployment are as follows:

flowchart TD
subgraph Terraform

create_net[Create Network Layout]
deploy_bastion[Deploy Bastion Machine]
deploy_salt[Deploy Salt Master]
deploy_others[Deploy other instances]

create_net -- when network configuration is done --> deploy_bastion
deploy_bastion -- when bastion is ready to forward connections --> deploy_salt
deploy_salt -- after salt master is configured --> deploy_others

end

subgraph Salt
highstate_salt[Ensure salt master is in desired state]
highstate_others[Ensure other machines are in desired state one-at-a-time]

highstate_salt --> highstate_others
end

subgraph Microk8s
init[Initialise local node]
enable_addons[Ensure addons are enabled or disabled as desired]
subgraph connect_ha

generate_token[K8s Master: Generate token for HA connection]
mine_publish[K8s master: Publish token to salt mine]
join_ha[Others: join cluster using token]

generate_token --> mine_publish
mine_publish --> join_ha

end
end

deploy_others -- apply desired state --> Salt

highstate_others -- as part of highstate --> init
highstate_others -- as part of highstate --> enable_addons
highstate_others -- as part of highstate --> connect_ha

Terraform

Terraform creates and manages the resources in Openstack, and does the necce-

5

sary basic provisioning such that salt can take over. These resources are things
like networks, subnets, ports, routers, machines etc.

The provisioning in this stage (via cloud-init and ssh) is considered as a one-off,
and thus not persistent.

More on how terraform is employed can be found here

Salt

Salt then does the full configuration of the machines based on their roles and
the parameters passed via the pillar. This configuration is persistent and the
final result should be fully configured machines, as specified in the state tree.

Read more about how salt works here

Microk8s

Microk8s is used to deploy and manage the Kubernetes cluster running on the
machines that salt has configured. It manages the kubernetes services and which
features should be enabled for the cluster.

This happens via the microk8s module which was written for salt. The module
allows salt to talk to microk8s, and as such pass along what it wants the
Kubernetes cluster to look like.

Network Architecture
This section describes how the network was designed for kube-on-openstack. In
the diagram below you can see the layout of the network:

flowchart TD
internet{{Internet}}
rtr((Router))
pubnet[[Public-facing network \n 10.0.0.0/16]]
prvnet[[Private network \n 10.1.0.0/16]]
salt(Salt Master \n Salt States:\n core, salt-master \n IP: 10.1.0.5)
bastion(Bastion Machine \n Salt States:\n core, bastion\n IP: 10.0.0.10/10.1.0.1)
k8smaster(Kubernetes Master \n Salt States:\n core, microk8s, microk8s.master\n IP: 10.0.0.20/10.1.0.20)
k8sworker0(Kubernetes Worker 0 \n Salt States:\n core, microk8s\n IP 10.1.0.100)
k8sworker1(Kubernetes Worker 1 \n Salt States:\n core, microk8s\n IP 10.1.0.101)
k8sworker2(Kubernetes Worker 2 \n Salt States:\n core, microk8s\n IP 10.1.0.102)
k8sworkerN(Kubernetes Worker n \n Salt States:\n core, microk8s\n IP 10.1.0.100 +n)

internet --- rtr
rtr --- pubnet
pubnet --- bastion --- prvnet
pubnet --- k8smaster --- prvnet

6

prvnet --- salt
prvnet --- k8sworker0
prvnet --- k8sworker1
prvnet --- k8sworker2
prvnet --- k8sworkerN

Components

Component Description
Router This is the main router that provides

access the to the network. This is also
where floating IPs get translated to
internally used IPs.

Public-Facing Network Any machine with a port in this
network can directly access the
internet via the router. Inbound
traffic is only possible with a floating
IP assigned to a port in this network.

Bastion This machines serves as a bridge
between the inner and outer network
layers. Administrators can connect to
this machine from outside, and can
then hop through to the private
network. The machines also performs
NAT for the private network machines
that need to retrieve information, like
updates, from the internet.

Kubernetes Master This is the primary master node for
the kubernetes cluster. It is connected
to the public network so it can
perform ingress for the cluster.

Kubernetes Worker Worker node for the kubernetes
cluster. Can also be part of the
control plane for HA purposes.

Salt Master Central node for configuration
management using salt

Terraform
This chapter covers how terraform is used to deploy the environment.

It contains the following sections: - Deployment Parameters - Initial Provisioning
- Full Resource Graph

Initial provisioning is performed by terraform via cloud-init.

7

The operations performed by cloud-init are documented here (in case you
want to do it yourself, or are just curious). The cloud-init files are stored
in terraform/cloud-init and are templated by terraform.

It is worth noting that all the settings we do here are assumed not to be persistent.
Most of these settings here are repeated or overwritten by the core salt state. If
you want to do something that lasts, do it via salt.

For the salt master
(terraform/cloud-init/salt.tftpl)

In order to get the machine ready for our salt master, the following things are
set: - Set the timezone. - Set its hostname, both the short one, and the FQDN -
Change the root password (if requested) - Set up the disks, as the salt master
has two disks by default: * One ephemeral root disk. This requires no further
configuration as it is handled by Openstack. This disk gets deleted each time
the salt master is recreated by Terraform. * A disk to contain salt’s stateful
components. This ensures continuity between rollouts. If we hadn’t had this
disk, we’d need to refresh the trust for all keys every time we replace the salt
master.

By default, this disk is contains two partitions: one for `/srv/salt` covering 80% of the disk, and one for `/etc/salt` covering 20%.

• Write files needed to get up-and-running:
– /etc/resolv.conf to get DNS working
– /tmp/install_script.sh to contain the script for installing salt and

its dependencies.
– /tmp/wait-for-it.sh, a useful script that lets us wait for a certain

connection to exits. Can be found here.3
– /etc/salt/minion_id, we set the minion_id to be equal to the fqdn.

This makes life easier, as it avoids any naming confusion in larger
environments.

– /etc/hosts, so the machine knows its own name
• Run a full system update (so we know we’re current)
• Print a helpful recognizable message to the logs so we know when cloud-init

has finished.

For salt minions
(terraform/cloud-init/salt-minion.tftpl)

In order to get the machine ready to be a salt minion, the following things are set: -
Set the timezone. - Set its hostname, both the short one, and the FQDN - Change
the root password (if requested) - Write files needed to get up-and-running: *
/etc/resolv.conf to get DNS working * /tmp/install_script.sh to contain
the script for installing salt and its dependencies. * /etc/salt/minion_id, we

8

https://github.com/vishnubob/wait-for-it

set the minion_id to be equal to the fqdn. This makes life easier, as it avoids
any naming confusion in larger environments. * /etc/hosts, so the machine
knows its own name and that of the salt master. - Run a full system update (so
we know we’re current) - Print a helpful recognizable message to the logs so we
know when cloud-init has finished.

For the bastion
(terraform/cloud-init/bastion.tftpl)

In order to get the bastion ready, the following things are set: - Set the timezone.
- Set its hostname, both the short one, and the FQDN - Change the root password
(if requested) - Write files needed to get up-and-running: * /etc/resolv.conf to
get DNS working * /tmp/install_script.sh to contain the script for installing
salt and its dependencies. * /etc/salt/minion_id, we set the minion_id to
be equal to the fqdn. This makes life easier, as it avoids any naming confu-
sion in larger environments. * /etc/sysctl.conf, to allow ipv4 forwarding *
/etc/hosts, so the machine knows its own name and that of the salt master. -
Run a full system update (so we know we’re current) - Configure the network
routes using netplan, so the machine knows where to find certain hosts - Run
commands to configure IPv4 forwarding and masquerading. - Print a helpful
recognizable message to the logs so we know when cloud-init has finished.

This page lists and explains all the relevant deployment parameters for terraform.
These can all be found in the terraform.tf file.

The variables listed have all have sane defaults set to work with Merlin. This is
to minimize the required setup for that environment. However, if you’re running
in a different Openstack cluster, then you may need to override these variables.

See the following pages on methods for overriding these default variables:
- https://www.terraform.io/language/values/variables#variables-on-the-
command-line - https://www.terraform.io/language/values/variables#variable-
definitions-tfvars-files - https://www.terraform.io/language/values/variables#environment-
variables

For running in gitlab CI, using environment variables is recommended. These
can be set in Settings -> CI/CD -> Variables.

num_kube_nodes

default: 3

This variable determines the number of nodes should be spawned in the kuber-
netes cluster. This number includes the master. So a value of 3 will create 1
master + 2 workers.

9

kube_node_flavor

default: m1.large

This variable determines which openstack flavor to use for the kubernetes nodes.
Make sure that the combination of flavor and the number of kube nodes does
not exceed your project quota. A list of available flavors can be retrieved using
the openstack flavor list command, with an openrc file activated.

external_network_name

default: vlan1066

This variable determines which external network the cluster is to be connected
to. The main router for the cluster is attached to this network, and this network
is expected to provide the required floating ip’s. Please make sure at least 3 are
available.

base_image

default: ad156007-77bb-4e32-ac97-7f8340cab73d (this corresponds to the
Ubuntu focal cloud image as it exists in Merlin)

This variable determines which image to use when spawning instances in open-
stack. Kube-on-OS is designed to work on top of Ubuntu 20.04 focal.

When running in a different openstack cluster than Merlin: Upload an ubuntu
20.04 cloud image, if there isn’t one available, and place its ID in this variable.

deploy_domain_name

default: kube-on-os

This determines which domain to append to the machine names. As such, the
salt master will be named salt.kube-on-os

Example: setting this to example.local will cause any machines to have an
fqdn ending with that domain.

deploy_user

default: ubuntu

The default user to use when provisioning. Must be changed when using a
different OS with a different default username.

set_root_password

default: false

If set to true, will set the root password to whatever’s in the root_password
variable. If set to false, no root password will be configured by terraform.

10

Only use this for debugging, access normally happens by logging in with your
own user. SSH root login is always disabled, this is for console use only.

root_password

default: none

Will set all machines’ root passwords to be set to this value, when
set_root_password is set to true.

kubernetes_formula_url

Deprecated since migration to microk8s.

kubernetes_formula_version

Deprecated since migration to microk8s.

users

default: none

Contains a map of users that should be configured to have SSH access. Terraform
passes this information to salt via the pillar. So these users are created at a later
of the rollout process, via the core state.

Example value:

[
{ username = "waldorf", ssh_public_key = "[...]"},
{ username = "statler", ssh_public_key = "[...]"}

]

Below you can find the full resource dependency graph of all terraform resources.
(it’s probably easiest to view when downloaded and opened in an image viewer)

State Tree
This section lists all salt states in the tree and their purpose.

Core
The core state is applied to all machines in order to create a common base to
work from for other states. It ensures the OS is configured correctly, providing a
solid foundation for other states.

It contains several submodules, all linked in via salt/salt/core/init.sls.

11

data
openstack_networking_network_v2

external

provider["registry
terraform

io/terraform-provider-openstack/openstack"]

var
external_network_name

null_resource
bastion_install_salt_minion

openstack_compute_instance_v2
salt

provider["registry
terraform

io/hashicorp/null"]

null_resource
sync_salt_states

var
kubernetes_formula_url

var
kubernetes_formula_version

var
users

openstack_blockstorage_volume_v3
salt-persistence

openstack_compute_instance_v2
bastion

openstack_compute_keypair_v2
deploy_key

openstack_networking_floatingip_associate_v2
bastion_float

openstack_networking_port_v2
bastion_private

openstack_networking_secgroup_v2
ssh_all

var
base_image

var
deploy_domain_name

var
deploy_user

var
root_password

var
set_root_password

openstack_compute_instance_v2
k8s_master

openstack_compute_servergroup_v2
kubernetes_group

openstack_networking_port_v2
k8s_master_private

openstack_networking_port_v2
k8s_master_public

openstack_networking_secgroup_v2
all_traffic

var
kube_node_flavor

openstack_compute_instance_v2
k8s_worker

var
num_kube_nodes

openstack_networking_port_v2
salt_private

openstack_networking_floatingip_v2
reserved

openstack_networking_port_v2
bastion_public

openstack_networking_floatingip_associate_v2
k8s_master_float

openstack_networking_network_v2
private

openstack_networking_network_v2
public

openstack_networking_subnet_v2
private

openstack_networking_subnet_v2
public

openstack_networking_router_interface_v2
public_subnet_interface

openstack_networking_router_v2
public

openstack_networking_secgroup_rule_v2
all_tcp_ingress_rule

openstack_networking_secgroup_rule_v2
all_udp_ingress_rule

openstack_networking_secgroup_rule_v2
ssh_all_ingress_rule

[root] provider["registry
terraform

io/hashicorp/null"] (close)

[root] provider["registry
terraform

io/terraform-provider-openstack/openstack"] (close)

[root] root

Figure 1: tfgraph.svg

Core.Sysctl
The sysctl state manages system configuration flags, usually set in
/etc/sysctl.conf. It sets the following things: - It increases the maxi-
mum number of open files - Disables IPv6 networking (as openstack doesn’t
support it anyway)

Core.Locale
This sets the system locale to C.UTF-8.

Core.MOTD
This state sets the message of the day for when users log in. It is split into
the issue and the full motd, one for before login, and one after. This way, no
information is leaked, but a message can still be shown that unauthorised access
is prohibited.

This state also disables Ubuntu’s default motd generator, as we’re setting our
own MOTD.

Templates for the /etc/motd, and /etc/issue files live in the salt/salt/core/files
directory.

The state assumes that other states will later configure other services like sshd
to actually use these files. It only manages the default files for the MOTD.

12

Core.SSHD
This state ensures that the /etc/ssh/sshd_config file is in the state according
to the template in the salt/salt/core/files directory. It also ensures the
sshd service is running, and is reloaded whenever a configfile changes.

Core.Resolv
The resolv state ensures the correct nameservers are set in the /etc/resolv.conf
to make sure DNS is predictable. By default, we use the following nameservers:
1.1.1.1, 1.0.0.1.

Core.Hosts
A python-based state that manages the hostsfile of every minion. It ensures that
each minion’s hostname is known to every other minion. The salt mine is used
for this.

Core.Packages
This state ensures that the system is up-to-date and certain core packages are
installed.

Core.Minion
This state ensures the salt-minion is running

Core.Users
This state creates users on the minion based on the users pillar value.

The value for this is usually inherited from the terraform variable of the same
name. Terraform sets this pillar value as part of the salt master config.

File Transfer
Allows arbitrary files to be transferred to minions via the salt file server, config-
ured via the pillar. Currently unused.

Bastion
This state configures the required services for the bastion machine. It contains a
few submodules:

13

Bastion.Sysctl
Sets net.ipv4.ip_forward and net.ipv4.conf.all.forwarding sysconfig
flags to allow ip forwarding.

Bastion.IPTables
Ensures iptables is installed, along with iptables-persistent. It also sets the rules
and loads them into iptables.

Changing the order of the network interfaces in openstack/terraform will break
this state.

Bastion.Fail2ban
Ensures fail2ban is installed and configured on the machine.

As this machine is addressable from the internet, we want to block repeated
auth attempts.

Kubernetes-config
Deprecated by the microk8s state

Microk8s
Uses the custom microk8s module to set the desired state for microk8s on the
machine.

The base state always does the following: - Make sure the microk8s snap is
installed - Make sure microk8s is running - Add an extra IP to the CSR template
to allow the using a floating IP. - Make sure the certificates are regenerated
when the certificates are regenerated. - Enable the following addons: - dns -
hostpath_storage - helm3 - ha_cluster - prometheus - Disable the following
addons (in case they were activated previously): - registry

This state also has two submodules: - joined, for connecting nodes to a cluster
- master, for master-specific configuration

Salt_Master
This state configures to salt master to ensure the service is running and the
correct file_roots are set.

14

The Microk8s Module
This section documents the design of the custom microk8s module for salt.

All paths denoted here are relative to the repository root. Bear in mind that on
the salt master, salt/salt is mapped to /srv/salt.

Architecture
The microk8s module follows the standard architecture for salt modules.

flowchart TD
state[The state at\n salt/salt/microk8s]
state_module[State Module at \n salt/salt/_states/salt]
execution_module[Execution Module at \n salt/salt/_modules/salt]

state -- uses to declare desired configuration for our specific situation --> state_module
state_module -- uses to gather information and perform operations --> execution_module

It consists of three parts: - An execution module, which contains the
atomic operations that can be performed and gather information. Can be
found at salt/salt/_modules/microk8s. - A state module, which uses
the execution module to attain a certain desired end-state. Can be found at
salt/salt/_states/microk8s. - A state in the state tree at salt/salt
which uses the state module to perform the specific configuration we want.
We use the microk8s state here just like any other standard state module salt
provides. The documentation for this lives with the other states in the tree.

The Execution Module
This python module provides atomic operations for information-gathering and
manipulation of microk8s. It can be found at salt/salt/_modules/microk8s,
or at /srv/salt/microk8s on the salt-master.

It provides the following (sub)modules: - status, which provides commands
for gathering information on the running cluster. - addons, which allows for
gathering information on the status of addons. It also provides functions for
enabling/disabling addons. - constants, which provides some module-wide
constants. - crosscall, which provides entrypoints for calling other modules
outside this one. - ha, for joining/leaving clusters and issuing tokens used to
join.

For information on specific functions in these (sub)module look in the source
files. Each function is as small as possible and has extensive doc-strings.

15

The State Module
This python module uses the execution module to attain a certain
state on the minion. It lives at salt/salt/_states/microk8s, or
/srv/salt/_states/microk8s on the salt-master.

It exposes the following states for the user: - microk8s.running, which
ensures that microk8s is running on the minion. - microk8s.addon_enabled,
which ensures that a certain module is enable on the minion. - mi-
crok8s.addon_disabled, the mirror image of the previous. - mi-
crok8s.cluster_joined, which ensures the minion is joined to a certain
cluster.

Distribution
Salt automatically synchronizes the modules to all the minions whenever required.
It can be done manually by running the following command as root on the salt
master salt * saltutil.sync_all. In our case, terraform does this manually,
just so the synchronization is logged.Kube-on-Openstack uses the salt mine to
exchange information between master and minion that (potentially) periodically
changes.

Mine functions are enabled via the pillar.

It is used for the following things in our case: - Tracking the IP address of
all minions. This is so we can use it in the core/hosts state. An easy way
to let minions know each other’s names without configuring a DNS server. -
Publising short-lasting microk8s tokens. Minions need these tokens to be
able to join a cluster. The pillar is the way salt parameterizes states. It stores
and exchanges data with minions securely.

All the yaml files in the pillar get flattened to a single python dict, which is then
accessible to the minions. The top.sls file in the pillar directory determines
which minions get to see which data.

Viewing the pillar
Each minion has its own view on the pillar, which can be retrieved with the
pillar.items function.

Example (on any minion as root):

root@bastion:~# salt-call pillar.items
local:

microk8s:

allowed_csr_ip:

16

https://docs.saltproject.io/en/latest/topics/mine/
https://docs.saltproject.io/en/getstarted/config/pillar.html

194.171.203.19
master:

k8s_master.test.kube-on-os.ecida.org
mine_functions:

network.ip_addrs:

cidr:

10.1.0.0/16
network:

external_gateway:

10.0.0.1
external_interface:

ens3
[...and so on...]

How the pillar is configured
Our pillar setup is a bit more complicated that the standard way, but not
enormously so. It is set up in such a way, that allows for a little more flexibility
while keeping the file tree simple.

How the pillar is structured
The top file looks for the following files (in order from general to spe-
cific): 1. _from_terraform.sls 2. environments/defaults.sls 3.
environments/{domainname}.sls 4. minions/defaults/{hostname}.sls 5.
minions/{domainname}/{hostname}.sls

The pillar will go through these files in this order to construct the final dictionary.
Later files override earlier files.

Every minion’s id in our setup corresponds to its fully qualified domain name.
This gets split into two parts at the first .: the hostname and the domainname.

For example box.example.com would get split into box and example.com.

The way this ordering of files is designed, we could define pillar values as globally
or locally as we wanted: - Setting a value in environments/defaults.sls would
set it for every minion - Setting a value in environments/ecida.org.sls would
set it for all minions in that domain, overriding the default. - Setting a value in
environments/defaults/box.sls would set it for all minions with the name
box in any domain, overriding the default and the domain. - Setting a value in
environments/ecida.org/box.sls would set it just for a minion called box in
the ecida.org domain. This overrides all others.

17

If a file in this list doesn’t exists, its absence is ignored. (salt doesn’t do this by
default)

This allows for maximum flexibility for configuration, while still being able to
keep everything in the same repo and branch.

Future Improvements
This section documents the ways Kube-on-Openstack could be improved in the
future.

Master-of-Masters
Right now, multiple environments are managed entirely separately. To reduce
future operational load when managing multiple environments, a master-of-
masters could be added using salt-syndic.

This would allow for greater redundancy and less inconsistency between clusters

External loadbalancing with Octavia
Using Openstack’s Octavia module, the successor of neutron_lbaasv2, we could
add external loadbalancing to the kubernetes clusters. This would solve any
connection bottlenecks.

This module is however somewhat complex to configure initially.

18

https://docs.saltproject.io/en/master/topics/topology/syndic.html
https://docs.openstack.org/octavia/latest/

	Kube-on-OS
	Index

	Getting Started
	Prerequisites
	Setting Environment Variables
	Connecting to Openstack
	Variables that must be set
	The external network
	The base image
	Users
	A root password

	Running the deployment
	Deploying from the local machine

	Further Reading: Useful pages to understand what’s happening
	Project Architecture
	Deployment Architecture
	Deployment steps:
	Terraform
	Salt
	Microk8s

	Network Architecture
	Components

	Terraform
	For the salt master
	For salt minions
	For the bastion
	num_kube_nodes
	kube_node_flavor
	external_network_name
	base_image
	deploy_domain_name
	deploy_user
	set_root_password
	root_password
	kubernetes_formula_url
	kubernetes_formula_version
	users

	State Tree
	Core
	Core.Sysctl
	Core.Locale
	Core.MOTD
	Core.SSHD
	Core.Resolv
	Core.Hosts
	Core.Packages
	Core.Minion
	Core.Users

	File Transfer
	Bastion
	Bastion.Sysctl
	Bastion.IPTables
	Bastion.Fail2ban

	Kubernetes-config
	Microk8s
	Salt_Master
	The Microk8s Module
	Architecture
	The Execution Module
	The State Module
	Distribution
	Viewing the pillar
	How the pillar is configured
	How the pillar is structured

	Future Improvements
	Master-of-Masters
	External loadbalancing with Octavia

