
MEASURING INTER-BRAIN SYNCHRONY: METHODS AND PITFALLS 1

Measuring Inter-Brain Synchrony: Methods and Pitfalls

Marten de Vries

Graduation Project

Computational Cognitive Science

University of Groningen

Supervisors: Dr. Marieke van Vugt & Lionel Newman MSc



MEASURING INTER-BRAIN SYNCHRONY: METHODS AND PITFALLS 2

Abstract

Collecting EEG data for two participants simultaneously during a task (i.e.,

hyperscanning) allows us to study their social interaction. Of particular interest is their

inter-brain synchrony (IBS), i.e. how functionally similar their neural oscillations are.

Using a full IBS analysis of a tacit coordination experiment and simulations, we study

the effect of different methodological choices in an IBS measurement pipeline. Three

ways to quantify IBS are studied: the phase-locking value (PLV), the circular

correlation (CCorr) and the imaginary part of coherency (ImagCoh). Each measures

functional similarity in its own way and has its advantages and disadvantages. We find

the CCorr measure to be less stable than the others, but still recommend its use along

with the PLV measure because of its natural interpretation and good performance on

simulated data. We present a robust version of the circular correlation measure and

make recommendations for how to best perform an IBS analysis.

Keywords: Hyperscanning, Inter-Brain Synchrony, methodology, simulation,

Tacit Coordination, Theory of Mind, phase locking value, circular correlation,

imaginary part of coherency
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General Introduction

What happens in the brain when we work together? It is a worthwhile question,

as social coordination plays a central role in our everyday lives. A better understanding

of it could help us compete and cooperate more efficiently, e.g. during negotiations, pair

programming or construction projects. Social coordination is also key in more mundane

joint actions. For example, carrying a heavy object together (Sebanz et al., 2006). If we

can model what happens in the brain during social interaction mathematically, as

proposed by Koike et al. (2015), it could even help us build Human-Computer

Interaction systems that better anticipate the user’s needs (Zander et al., 2010).

The classical way of researching social coordination is to study a single

participant in a lab environment (Babiloni & Astolfi, 2014; Hasson et al., 2012). A good

example of this is the false belief task, in which the participant is told a story in which

the environment changes without the knowledge of an observer (Postle, 2020, p. 458).

Afterwards, the participant is asked about the observer’s beliefs on the current state of

the environment. It is commonly used to study theory of mind1, i.e. the ability to

anticipate other people’s behaviour (Postle, 2020, p. 457). Within this research

approach, brain imaging is often used to find the cerebral regions that are involved in

performing the task (Babiloni & Astolfi, 2014).

While this classical approach has been very succesful, it has its limits too.

Humans are known to behave differently when not interacting with an actual person

(Babiloni & Astolfi, 2014; Rilling & Sanfey, 2011; Rilling et al., 2004). The approach

also cannot be used to study reactions that arise dynamically, i.e. spontaneously, as a

result of information exchanged during the social interaction of interest (Babiloni &

Astolfi, 2014; Czeszumski, 2020).

Hyperscanning

More recently, an alternate approach has become popular that solves these

issues. Montague (2002) named it ‘hyperscanning’. As of May 2022, there are over 3530

1 See Appendix A for more information on theory of mind.
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publications on hyperscanning2. Most of those were written very recently: 2040 of them

were published in 2018 or later. Hyperscanning is defined as recording brain imaging

data for two (or more) participants simultaneously. These two participants are also

called a dyad. This allows us to treat the dyad’s brains as a single entity ‘coupled’

through their respective perceptual and motor systems (Hasson et al., 2012).

Social interaction is studied with hyperscanning in a large variety of ways

(Czeszumski, 2020). Often, studies are performed in the lab where conditions can be

precisely controlled. Some of those only allow interaction through a computer interface,

as in the prisoner’s dilemma studies of De Vico Fallani et al. (2010) and Hu et al.

(2018). Other studies strictly control the task but allow participants to see each other

either through video links (Dumas et al., 2010; Schippers et al., 2010) or directly while

interacting using gestures (Yun et al., 2012). On the other hand, some studies record

participants in a more naturalistic setting for the activities they perform, like in the

classroom (Dikker et al., 2017) or the monastery (van Vugt et al., 2020). While having

complete control allows for more precise conclusions, Konvalinka and Roepstorff (2012)

argue that emergent patterns could arise in the brain as a result of social interaction,

leading to a difference in experiments where participants are to some extent observers

(Schippers et al., 2010, is a good example, it is difficult to avoid in fMRI studies)

compared to where they actively interact. The same can be said about being able to

interact in person or through a computer (Konvalinka & Roepstorff, 2012). T. Liu and

Pelowski (2014) categorize hyperscanning tasks along three dimensions: whether they

require concurrent body movement or the participants interact only in a turn-based

fashion, whether participants compete or cooperate and whether the participants can

influence each other while the task is ongoing or not. If they can influence each other

the task is called interdependent, otherwise it is independent.

Inter-brain synchrony

When analysing brain data acquired using hyperscanning, the most common

strategy is to look for inter-brain synchrony (IBS; Ayrolles et al., 2021). IBS occurs

2 As determined by a Google Scholar search for the term ‘hyperscanning’.
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when there are functional similarities in the brain activity of individuals. IBS is often

found in the brain data of such individuals when they socially interact (Konvalinka &

Roepstorff, 2012). While the hyperscanning approach is most often used to collect brain

data, synchrony has also been found in other physiological signals including “heart

rate3, pupil size, gaze position and saccade rate” (Madsen & Parra, 2022). Novembre

and Iannetti (2021) argue hyperscanning alone cannot tell us whether IBS is required

for social interaction or if it just co-occurs with it, but extending the paradigm to

include multi-brain stimulation could make that possible.

What exactly causes IBS has not yet been firmly established (D. Liu et al.,

2018), but suggested causes include common cognitive processing (Hamilton, 2021;

Madsen & Parra, 2022), shared observations (Hamilton, 2021), and more generally

shared attention (Dikker et al., 2017; Sebanz et al., 2006). How these processes in turn

result in synchronized oscillations is also still mostly unknown (D. Liu et al., 2018), but

this too is an area of active research (Hamilton, 2021; Koike et al., 2015).

We measure IBS using different functional connectivity measures, all of which

calculate the similarity between the brain signals recorded for both (or more)

participants in a specific way (Czeszumski, 2020). These measures were originally

developed to study connectivity within a single system or brain (Babiloni & Astolfi,

2014). A nice overview of them from that perspective is given by M. X. Cohen (2014,

section 5). As inter-brain data has different properties than intra-brain data, their

interpretation when used to calculate IBS instead of intra-brain synchrony is different

and complex (Ayrolles et al., 2021). For example, when interpreting intra-brain

synchrony, you need to be careful to not interpret a single signal measured at multiple

points due to volume conduction as synchrony (Czeszumski, 2020). That is not an issue

when the signals are coming from different participants. On the other hand, while

intra-brain synchrony is driven by the anatomical structure of the brain (Ayrolles et al.,

2021; Dumas et al., 2012), IBS can only occur through “an indirect chain of events”

(Babiloni & Astolfi, 2014), as (of course) no direct communication can occur between

3 See also McCraty (2017).
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brains as opposed to brain regions (Babiloni & Astolfi, 2014). IBS is driven by

sensorimotor coupling instead, which is a less reliable mechanism (Dumas et al., 2012).

Different measures focus on different kinds of similarities (i.e. different aspects of

oscillations) in the brain signals. We will see examples of this in the simulation section.

Because of that, Czeszumski (2020) argues that it is misleading to refer to them all with

the umbrella term ‘inter-brain synchrony’.

It is important to keep in mind that many factors can influence IBS before

interpreting its results. Cheng et al. (2015) found an effect of gender: more synchrony

was found in male-male dyads than female-male dyads, which in turn had higher IBS

than female-female ones. The relationship between the participants is also important.

Dikker et al. (2021) found a positive correlation between relationship duration and IBS,

and Pan et al. (2017) found more IBS between lovers than friends or strangers. Less

IBS has been found in individuals with autism spectrum disorder (ASD; Salmi et al.,

2013; Valencia & Froese, 2020).

Due to the properties of the signals of different brain imaging methods, they

each have their own classes of IBS measures that are often used alongside them

(Babiloni & Astolfi, 2014). For example, when working with EEG hyperscanning data

frequency domain-based measures are often used, while temporal correlations are more

suited to functional magnetic resonance imaging (fMRI) data (Babiloni & Astolfi,

2014). This is due to the lower temporal resolution of the latter (Czeszumski, 2020).

IBS is often found in interacting partners in “prefrontal and centro-parietal brain

areas [...] across a wide range of frequencies, including delta, theta, alpha, beta and

gamma” (Konvalinka & Roepstorff, 2012). In prisoner’s dilemma studies, less

synchrony is found in the alpha and theta bands when participants defect than when

they cooperate (De Vico Fallani et al., 2010; Hu et al., 2018; Valencia & Froese, 2020).

De Vico Fallani et al. additionally found the same effect in the beta and gamma bands,

and were able to succesfully predict whether a user will defect in an iterated prisoner

dilemma task based on IBS data.
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Analysis methodologies

Little research has gone into which methodology to adopt when researching IBS.

Simple connectivity measures like the phase locking value (PLV; Lachaux et al., 1999)

have been most popular (Burgess, 2013; Czeszumski, 2020). The first systematical

comparison of the performance of a number of measures in a hyperscanning context was

done by Burgess (2013). Burgess found that a number of measures, including PLV,

suffered from detecting spurious connections in simulations. Instead, Burgess

recommends using the more robust circular correlation (CCorr) and Kraskov mutual

information measures.

Burgess (2013) concludes that “different people presented with the same

conditions will produce similar EEG responses”, regardless of whether they were

interacting. This can be somewhat mitigated by using measures like the imaginary part

of coherency (ImagCoh; Nolte et al., 2004; Yoshinaga et al., 2020), which will ignore

signals that are in phase (or anti-phase) with each other (M. X. Cohen, 2014, p. 346).

An example of such a signal would be brain activity in the sensory cortex caused by a

(strong) stimulus (Dikker et al., 2021). The ImagCoh measure was originally developed

to counteract volume conduction, but as this is not an issue with hyperscanning it is

useless in that respect (Ayrolles et al., 2021).

Ayrolles et al. (2021) recently made a push for standardization in IBS calculation

by making a complete hyperscanning analysis pipeline available. Ayrolles et al. also

advise to use amplitude based measures like power correlation when interested in neural

states and phase-based measures when studying more fine-grained cognitive processes.

Research questions

The hard work of Ayrolles et al. (2021) and Burgess (2013) notwithstanding, it is

clear that only a little is known about the consequences of varying parts of an IBS

analysis. The same is true for the interpretation of IBS measures in a hyperscanning

context. Because of this gap in the literature, the aim of this graduation project is to

investigate the sensitivity of IBS calculations in a social coordination task to different

connectivity measures and other methodological choices.
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To clarify the interpretation of different IBS measures, we calculate and compare

their values on (simple) artificial data. This allows us to see what kind of patterns in

the data they respond to. Additionally, we develop a method that generates synthetic

data for a given IBS value. This method can be used to perform power analyses for IBS

experiments. We focus on the PLV, ImagCoh and CCorr measures.

To investigate the sensitivity to methodological choices under realistic

conditions, we perform a number of IBS analyses on a cooperative, turn-based and

interdependent task. First, we analyse the effect of different time windows of interest

and frequency analysis calculation methods on these values. Second, we analyse whether

significant IBS is present in the emperical data using different permutation tests. Third,

we inspect IBS values over time. Finally, we attempt to predict peformance in the task

based on the IBS values. We vary the prediction scenarios and classification methods.

As most of the variations we make should still lead to the same result, we

hypothesize that the analysis is robust to such changes in methodology. Based on

Burgess (2013)’s previous work, we expect PLV to perhaps return more spurious results

than the CCorr measure. Our expectations regarding the ImagCoh measure are more

nuanced. It is both a phase- and amplitude based measure, allowing it to potentially

pick up on effects that the other phase-based measures might miss. But it might also

miss in-phase IBS detected by the other measures.

General Methods

Data set

The EEG hyperscanning data used for this study was collected by Newman et al.

(2021) using two daisy-chained BioSemi ActiveTwo EEG systems. Electrodes were

placed according to the international 10–20 system. Additionally, four electrodes were

placed surrounding the eyes to monitor eye movements and two were placed on the

mastoids to serve as linked reference electrodes. The technical details of the EEG

hyperscanning setup were as described by Barraza et al. (2019). Data was collected for

42 sessions, but 38 of those are analyzed here as during four sessions recording issues

were encountered.
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EEG pre-processing

For each of the participants in the dyads, data was re-referenced to the average

of the mastoid electrodes and band-pass filtered to remove parts of the signals with a

frequency lower than 0.1 Hz and higher than 50 Hz. To prevent edge artifacts one

minute of padding consisting of mirrored data was added for the duration of the

filtering process. Next, the recorded data was split up into trials which start one second

before and end 1.5 seconds after stimulus presentation. The pre-stimulus period was

used for baseline correction. At this stage, any linear trends were also removed for each

trial. This removed slow low-frequency drifts from the data, which can otherwise show

up as artifacts during frequency analysis (Schoffelen, 2010).

Table 1

Trial counts after pre-processing and how often they occur. For most sessions, a

maximum of 10 trials were removed. The outlier of 84 trials is session 25.

trial count (1) 84 144 152 157 163 164 165 166 169 170

frequency (1) 1 1 1 1 1 1 1 1 1 2

trial count (2) 171 172 173 174 175 177 178 179 180

frequency (2) 1 3 1 4 4 1 2 3 8

Each recorded trial was manually inspected. When electrodes did not make a

good connection to the skin or otherwise regularly produced unusable data, they were

removed from the data set and reconstructed using spline interpolation from

neighbouring electrodes. If an electrode drifted or was very noisy for only one or a few

trials, it was interpolated in these trials only. If too many neighbouring electrodes were

affected, interpolation became impossible and instead the whole trial was rejected.

Trials were also rejected when they contained more than four electrode signals that

required interpolation. See for how many trials remained Table 1. Eye blinks, muscle

activity and other localized artifacts were left alone at this stage. Instead, they were

handled by subtracting highly localized and artifactual components from the data as

obtained using independent component analysis (ICA).
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Figure 1

Time-frequency plot showing (B) amplitude and (C) phase values. Example frequency

domain representation of session 2, participant 1, trial 1, Pz electrode, alpha band (9–14

Hz). The raw data used for the frequency analysis of this trial is shown in (A).
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Time-frequency analysis

The first step to calculating the phase locking value (PLV), circular correlation

(CCorr) and imaginary part of coherency (ImagCoh) measures consists of transforming

the data into the frequency domain. We do so once every 10 milliseconds for both the

alpha band (9–14 Hz) and theta band (4–7 Hz). For most of the analysis, we use a

Hann taper with a frequency dependent window length of four cycles per window. At

least four cycles are recommended by Ayrolles et al. (2021). For the lowest frequency of

interest (4 Hz), this results in a window of exactly one second. As a result, the

amplitude and phase of a signal can only be estimated for moments during the trial

where half a second of extra data is available before and after. Because of that, we

narrow the duration of a trial for the purposes of inter-brain synchrony (IBS)

calculation from zero to one second after stimulus presentation exactly.

The result of the frequency analysis is a complex valued Fourier spectrum xi for

each combination of participant, electrode and frequency in the frequency band. From

this spectrum, the amplitudes ri and phases ϕi of the input signal can be extracted by

representing the complex values in polar coordinates. See Figure 1 for a visualization of

ri and ϕi of an example signal.

Measure definitions

We compare the signals of homologous electrodes between participants, e.g. we

only compare the signal of the Fz electrode of participant 1 with participant 2’s Fz

electrode, not with other electrodes. While it is technically possible to do otherwise, we

would lose the ability to conveniently interpret high IBS as suggestive of similar mental

processes in both participants.

The PLV measures whether the difference in the phase of two signals is kept

constant. The PLV measure is defined by Lachaux et al. (1999) as

PLV =
1
T

∣∣∣∣∣
T∑

t=1
ei(ϕi−ϕj

∣∣∣∣∣ , (1)

where ϕi and ϕj are the phases of input frequency spectra xi and xj of the different

participants. As you can see, the PLV measure is calculated by averaging along a
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dimension of size T . For this analysis, we will be averaging over time resulting in one

measurement per trial and frequency. It is also possible to calculate PLV and the other

measures discussed in the current study over trials instead, resulting in a measure of

within-trial IBS. But within the context of Newman et al. (2021)’s experiment, how IBS

develops over trials is much more interesting. (See Appendix B for more information

about Newman et al. (2021)’s task.)

While we calculate measures (including PLV) for each whole number frequency

within the frequency band of interest, we are not interested in their differences within

the same band. Instead, we average these values resulting in a single measure per trial

and frequency band. This should contribute to a more stable estimate. Our PLV

implementation was validated against Fieldtrip’s implementation.

Figure 2

A torus. Bivariate circular data can be thought of as points on a torus. Rendered using

Blender (Blender Online Community, 2022).

CCorr is an analogue of Pearson correlation for angular values like a phase. It

seems to have been first derived by N. I. Fisher and Lee (1983), but most recent

implementations are based on the definition by S. Jammalamadaka and Sarma (1988)

which has more recently been republished in a book (S. R. Jammalamadaka &
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Sengupta, 2001):

CCorr =
∑T

t=1 sin
(
ϕi − ϕ̄i

)
sin

(
ϕj − ϕ̄j

)
√∑T

t=1 sin2
(
ϕi − ϕ̄i

)
sin2

(
ϕj − ϕ̄j

). (2)

Within this equation, ϕ̄i is the circular mean which can be defined as

ϕ̄i = arg
T∑

t=1
eϕti, (3)

where ‘arg’ gives us the angle we get when converting the sum to polar form. When

interpreting normal Pearson correlation coefficients, I often imagine plotting the two

variables of interest against each other. The coefficient then tells us how close the data

points are to lying on a line. With CCorr values, it is possible to do the same, but

instead of a normal plot you should imagine the data points existing on a torus (Lee,

2010, see also Figure 2). Our implementation of the CCorr measure was inspired by and

validated against the implementation in the CircStat MATLAB toolbox (Berens, 2009).

Finally, the ImagCoh measure looks not just at the phase of signals but also

takes into account the amplitude. It is defined by Nolte et al. (2004) as

ImagCoh = Im

 Sij√
SiiSjj

 , (4)

where Sij is the crossspectral density of the signals and Sii and Sjj are the autospectral

densities of each of the signals. These spectral densities are estimated directly from the

Fourier transformed data xi and xj.

Sij =
1
T

T∑
t=1

xixj
∗ (Schoffelen, 2011), (5)

where xj
∗ is the complex conjugate of xj. Our implementation of the ImagCoh measure

was validated against Fieldtrip’s.

Statistics

We use linear mixed effect models with random intercepts over sessions and

electrodes. More complex random effect structures are not supported by the data, and

in some cases including a random intercept for electrodes is not either when the data is

too homogeneous across electrodes. In that case, said random intercept is left out. Next
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to any fixed effects of interest, fixed effects of working memory load, trial and stimulus

type were included if they significantly contributed to the model to account for possibly

confounding effects of those. The models underlying the model comparisons referred to

in the text are reproduced in Appendix C.

Software

All manipulations of the EEG data were performed with Fieldtrip version

20211102 (Oostenveld et al., 2011) running on MATLAB R2020b. All IBS measures

were implemented from scratch in both MATLAB for use in the empirical study and R

4.2.0 (R Core Team, 2022) for use in the simulation study. Graphs were generated in R

using tidyverse 1.3.2 (Wickham et al., 2019), eegUtils 0.7.0 (Craddock, 2022),

gganimate 1.0.7 (Pedersen & Robinson, 2020), ggh4x 0.2.3 (van den Brand, 2022),

ggpubr 0.4.0 (Kassambara, 2020), ggvoronoi 0.8.5 (Garrett et al., 2022) and pals 1.7

(Wright, 2021). All statistical tests were performed using R as well, using lme4 1.1.29

(Bates et al., 2015) for the linear mixed effect models. For the generalized additive

mixed effect models mgcv 1.8.41 (Wood, 2006) was used alongside itsadug 2.4 (van Rij

et al., 2020) for plotting those models. To generate simulated correlated data, faux 1.1.0

(DeBruine, 2021) was used. Finally, Python 3.10.8 (Python Software Foundation, 2021)

was used to train and evaluate classifiers, along with imbalanced-learn 0.1.9 (Lemaître

et al., 2017), NumPy 1.23.3 (Harris et al., 2020), pandas 1.5.0 (McKinney, 2010),

scikit-learn 1.1.2 (Pedregosa et al., 2011) and SciPy 1.9.1 (Virtanen et al., 2020).

Parts of the R and MATLAB code used in this study are available at

https://doi.org/10.5281/zenodo.7469929.

Simulation study

Introduction

While the phase locking value (PLV), circular correlation (CCorr) and imaginary

part of coherency (ImagCoh) measures have been introduced mathematically, it can be

difficult to understand what a certain inter-brain synchrony (IBS) measure value says

about the underlying data. We attempt to shine some light on the matter using a

simulation study.

https://doi.org/10.5281/zenodo.7469929
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We introduce a visualization that shows the relation between the phase

components of two EEG signals. For our purposes, one signal from each participant in

the dyad. We then apply this visualization method to simulated phase data examples.

The examples have been chosen such that they result in a large range of IBS values.

This allows us to see what patterns in the phase data the IBS measures detect, and as a

result what relations between the two signals they are sensitive to (or not).

In these simulations we ignore the amplitude component. This has two reasons:

it is only actually used by the ImagCoh measure, and it would make it harder to draw

any conclusions as it would require more complex visualizations. Finally, we explain

how our approach can be used to perform a power analysis for IBS experiments.

Methods

As discussed in the general introduction, comparing the relation between two

phase signals requires a space that wraps around in two dimensions. One solution to

this problem is to plot data on a torus (see Figure 2), but that is not practical for a

two-dimensional medium like this report. It would also result in deformed distances.

Instead, we use normal plots, but visualize the data for 1.5 periods, resulting in a

repeated (and differently shaded) area at the visualization’s edges. This makes it easier

to imagine the circular repetition of the data and to spot patterns that would otherwise

span the edges of the plotting area.

We focus on a single session, trial, electrode and frequency at a time. As we have

previusly seen in Figure 1C, this results in a one-dimensional phase signal over time for

each participant (ϕ and ψ respectively). We reproduce these signals in Figure 3A, using

the y-axis instead of colour to show their values. If we then get rid of the time

dimension, as all discussed IBS measures do, we can give each phase signal its own axis

in Figure 3B to make it easier to see the relation between the two. The resulting plot

demonstrates the primary visualization method used in this study.

The easiest way to simulate this (empirical) phase data is to sample 100 points

from a two-dimensional uniform random distribution with a range of [−π, π). We can

then calculate the IBS measures on each of these samples. For the imaginary part of
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Figure 3

Phase values of both participants in session 2, trial 1 for the Pz electrode at 11Hz. (The

trial from Figure 1.) For this trial, circular correlation = -0.01, phase locking value =

0.033 and imaginary part of coherency = 0.012 (ignoring amplitude values). Shaded

areas contain repetitions of the (circular) values. (A): Phase values over time. (B): The

same two signals plotted against each other, without time, to show the relation between

them. This type of visualization is used throughout this simulation study.

coherency measure, we use a fixed amplitude of one. When we repeat this process

10 000 times, it results in a distribution of values for each IBS measure created under

the assumption that there is no relation between the two signals.

While that is useful, completely random signals are unlikely to elicit the full

range of IBS values. To be able to generate signals for any measure value, we created

Algorithm 1.

Algorithm 1 finds example signals that minimize an evaluation function f(ϕ, ψ).

It uses a combination of global and local search. The global search part of the process

generates multiple random signals and picks the ones that minimizes the evaluation
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Algorithm 1 Generates random phase data examples that minimize an evaluation func-

tion f using a combination of global and local search.
Require: f(ϕ, ψ)→ R ▷ the evaluation function to minimize

repetitions ← the amount of global search iterations

start ← the initial amount of data points in the sample (should be ≥ end)

end ← the amount of data points in the sample after local search finishes

best ←∞

result ← [ ]

for ’repetitions’ amount of iterations do ▷ the global search part

ϕ, ψ ← a 2D uniform random sample of length ‘start’ and range [−π, π)

while cur > end do ▷ the local search part

for i ∈ 1 . . . length of ϕ do

ϕ′
i, ψi ← ϕ, ψ without the ith values

ei ← f(ϕ′
i, ψ

′
i)

end for

i← argmin(ei)

ϕ, ψ ← ϕ′
i, ψ

′
i

end while

if f(ϕ, ψ) < best then

best ← f(ϕ, ψ)

result ← [ϕ ψ]

end if

end for

return result
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function. The local search part of the process optimizes each candidate before

evaluation by removing a number of ‘outliers’ (as determined by the evaluation

function), one at a time. By varying the input parameters, it is possible to trade-off

between the (unbiased, but unlikely to cover the whole range) global search process and

the (biased, but more flexible) local search process.

We apply Algorithm 1 in two tasks.

First, we use it to generate examples that have CCorr and ImagCoh values close

to −1,−0.75, . . . , 0.75 and 1. And the same for the PLV values 0, 0.125, . . . , 0.875 and 1.

To approximate values, we use an L2 loss function as the evaluation function. E.g. to

get a CCorr value of −0.75 the evaluation function is

f(ϕ, ψ) = (CCorr(ϕ, ψ)− (−0.75))2 , (6)

where CCorr is as defined in Equation 2.

Secondly, to further contrain the examples and to see where the IBS measures

differ, we use evaluation functions that constrain the measures in different ways

simultaneously. For example, when minimizing the evaluation function

f(ϕ, ψ) = 1− CCorr(ϕ, ψ) + |ImagCoh(ϕ, ψ)|+ PLV (ϕ, ψ), (7)

we obtain example signals with a positive CCorr value, a (close to) zero ImagCoh value

and a low PLV value. We generate example signals for all possible constraint

permutations. The PLV and ImaghCoh definitions are given in Equations 1 and 4.

Results

In Figure 4, we see the distribution of IBS values when the underlying signals are

completely random. We see that the distributions for the CCorr and ImagCoh values

are symmetric and centered around their middle value of zero. We observe a skewed

distribution for the PLV measure values, most likely because the values are all close to

the minimum value the measure can take (i.e. zero). It will be virtually impossible to

distinguish an effect that has an IBS value in the high density part of the shown

distributions from noise.
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Figure 4

A histogram of inter-brain synchrony values calculated on 10 000 pairs of uniform

random signals. It shows inter-brain synchrony values typical for when the underlying

signals are unrelated. The central 95% of the data is shown in blue.

In Figure 5, we see the phase components of example signals for the whole range

of CCorr, ImagCoh and PLV measure values. Finding ImagCoh examples was harder

than finding examples for the other measures, resulting in different input parameters for

Algorithm 1 being required to cover the whole range. These parameters can be found in

Table 2.
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Figure 5

Simulated examples for the whole range of inter-brain synchrony measure values. As in Figure 3, shaded areas contain repetitions of the

(circular) values. A high phase locking value requires a positive linear relation between signals. For a high circular correlation or

imaginary part of coherency, multiple clumps suffice. But interestingly, while the simulation finds random noise examples for PLV and

CCorr values of zero, the ImagCoh is assigned a clumped example instead.
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Table 2

Parameter values of Algorithm 1 used to generate Figure 5.

Parameter circular correlation & phase locking value imaginary part of coherency

repetitions 1000 20

start 40 200

end (/2 =) 20 (/10 =) 20

The examples show a few clear trends. First of all, an increase in PLV seems to

lead to a more positive and linear relation between the phase components of the

example signals. For the other measures, higher (and lower) IBS values seem to lead to

the formation of clumps, i.e. patterns where a lot of the phase components are

approximately constant. Surprisingly, while the other measures seem to converge on a

(at first glance) random noise example for IBS values of zero, which is in line with our

findings in Figure 4, this is not the case for the ImagCoh measure. There, the central

example is clumped just like the examples at the tails.

To see whether these examples are typical or just the first configuration

Algorithm 1 finds, we further constrain the examples by forcing them into

configurations that contrast the IBS measure values. Figure 6 shows these examples. As

this optimization problem is harder, an optimal solution is not always found. Because of

that, the size of the error is shown as well, which is at the same scale as the IBS values

themselves. While the total error occasionally surpasses 0.5, the error is in practise

divided up among measures. So while the examples might not match the target IBS

values exactly, they are never so far off as to become misleading.

To generate Figure 6, 100 global search repetitions were used. The local search

started with 100 samples, and reduced that to 20 samples.
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Figure 6

Simulated examples that minimize (low phase locking value, negative imaginary part of coherency, negative circular correlation),

maximize (high PLV, positive ImagCoh, positive CCorr) or zero out (no CCorr, no ImagCoh) IBS values simultaneuously. Light blue

dots indicate the example is not perfect (fulfilling the ImagCoh requirement is often most difficult), while black dots indicate all

constraints were met perfectly.
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We see that PLV is not sensitive to negative linear trends (as opposed to positive

ones) at all. This is exploited in the right side of Figure 6, as depending on the exact

configuration the CCorr and ImagCoh measures are sensitive to negative trends. We

further see confirmation that the imaginary part of coherency can reach a value of zero

just fine with an (apparently) random example (the ‘low PLV, no ImagCoh, no CCorr’

condition). Also, it is interesting to point out that the ImagCoh is sensitive to the

phase components of signals being constant in one dimension but not in the other,

contrary to the CCorr. (See e.g. the ‘low PLV, no CCorr’ conditions with negative or

positive ImagCoh values). Next, it is worth noting that a configuration with a

seemingly negative trend (‘low PLV, no ImagCoh, pos CCorr’) results in a positive

CCorr value. Finally, to the eye immediately apparent trends are not always picked up

on by the ImagCoh measure. (E.g. the two ‘pos CCorr, no ImagCoh’ conditions.)

Discussion

The lack of response of the PLV measure to a clear negative relation between the

phase components of the input signals is not unexpected, as it only reports whether the

phases are directly coupled, not if one of them can be used to predict the other

(Burgess, 2013). But it is a downside, as you would most likely want to detect such

effects in IBS experiments.

Similarly, we saw that the ImagCoh measure failed to sometimes detect trends.

That might be because it is designed not to detect signals that are perfectly in phase, as

a way to (originally) prevent spurious effects due to volume conduction (Nolte et al.,

2004). But these simulations suggest that the cost of that might be too high. On the

other hand, it is important to keep in mind that these simulations are not a level

playing field for the ImagCoh measure: amplitude components of the signal on which it

is normally dependent are held constant.

In the end, the CCorr values seem the least surprising given the studied

examples, although the direction of any relations (i.e. whether the correlation coefficient

is positive or negative) should probably not be relied on.
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Power analysis for inter-brain synchrony experiments

Taking a step back, it is worth pointing out that Algorithm 1 is a very flexible

method to generate phase component data for a target IBS value. It could potentially

be used to perform an up-front power analysis for a test in an IBS experiment. The

steps would be as follows:

1. Choose a target effect size. That is, what IBS value would you expect your

experiment to find? The simulations in this section give you some guidance on

what would be reasonable values, but ideally the target value would be decided

based on what other similar studies found.

2. For a range of sample sizes, repeatedly simulate the outcome of your test using

the Monte Carlo method (P. R. Cohen, 1995, p. 150 gives a nice introduction) as

follows:

(a) Use Algorithm 1 to generate fake trials for your IBS value of choice. By

varying the trade-off between global- and local search part of the algorithm,

you have some control over the variation around your target IBS value.

Ideally, you would again use this to match the variation found in other

similar studies.

(b) Perform your test on the simulated data, recording the outcome.

3. Use the collected outcomes to estimate the power of your test for each sample size.

A downside of this method, and in fact of this simulation study in general, is

that the local search part of Algorithm 1 introduces a bias due to the way it removes

outliers. After all, removing them one at a time is just one of many possible approaches.

While the results seem reasonable looking at the graphs, it could be that some examples

we observe are in fact not typical but artifacts of the process used to generate them.

This could for example perhaps explain the clumps in the ImagCoh plot in the very

middle of Figure 5.
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Varying time-frequency analysis methods

Introduction

Inter-brain synchrony (IBS) values are calculated on a frequency domain

representation of the original signals. Obtaining this frequency domain representation

requires making some methodological choices: you need to choose a window of interest,

a calculation method and a resolution. We assess how these choices affect the final IBS

values.

Ideally, the IBS values should be robust to slight changes in these parameters.

For the window of interest case, IBS values could presumably vary a bit as the window

could include or exclude cognitive processes that take a while to start after the stimulus.

But the other parameters are just technical details of the time-frequency analysis

process and should not have a big effect on the IBS values when reasonably chosen.

Methods

To assess the effect of different windows of interest on the results, we repeat the

main frequency analysis using a window of half a second before to one second after

stimulus presentation, making full use of each available pre-processed data point. To

determine the effect of different frequency analysis methods on the final results, we also

repeat the (alpha band) analysis using multitapers instead of a Hann taper. To find

whether there is an effect of resolution, we perform the frequency analysis both more

often (for each original data point, i.e. 512 times per second or approximately every 2

ms) and less often (once every 20 ms). None of these variations are extreme, and all

could have been reasonably chosen for the main experiment instead.

For each of these variations, we first compare the averaged IBS values by

plotting the data and assess the significance using a linear mixed effect model. If those

do not show a difference at first glance, we further assess possible differences in the

underlying data structure by calculating correlations between the values for different

conditions and (where necessary) by plotting the data. Correlations are calculated for

each session, Fisher transformed (R. A. Fisher, 1915), averaged and transformed back.
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Results
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(Mean) alpha band inter-brain synchrony values are sensitive to different time windows

of interest within a trial. The 1s window starts at the presentation of the stimuli, while

the 1.5s window starts half a second earlier during fixation. Working memory load has

no effect. Finally, the (mean) circular correlation and imaginary part of coherency

values are both very close to zero considering they are on a scale from -1 to 1. The

phase locking value is on a 0-1 scale.

We tested the effect of window size on IBS values by calculating the IBS

measures on overlapping windows of 1s and 1.5s respectively. Contrary to our initial

expectations, we found IBS values to be sensitive to changes in frequency analysis

window size. See Figure 7. The phase locking value (PLV) significantly decreased when

the larger window was used (χ2(1) = 29984, p < 0.001, ∆AIC = 29982, ∆BIC = 29971)

and so did the circular correlation (CCorr; χ2(1) = 1071, p < 0.001, ∆AIC = 1069,
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∆BIC = 1058), but no significant effect was found for the imaginary part of coherency

values (ImagCoh; χ2(1) = 2.27, n.s., ∆AIC = 0.27, ∆BIC = 10.66).

Frequency analysis taper
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Figure 8

Choice of taper matters when calculating (mean) ‘phase locking value’, ‘circular

correlation’ and ‘imaginary part of coherency’ inter-brain synchrony values for the alpha

band. Working memory load has no influence.

To see the effect of taper choice on the frequency analysis, we compared the IBS

values obtained from spectra generated using a Hann taper and a multitaper. As you

can see in Figure 8, there is an effect of taper choice on PLV synchrony values (χ2(1) =

626, p < 0.001, ∆AIC = 624, ∆BIC = 614) and CCorr synchony values. (χ2(1) = 452,

p < 0.001, ∆AIC = 450, ∆BIC = 440). In both cases, the IBS value decreases a bit

when multitapers are used. Again, there is no significant effect on ImagCoh synchrony

values (χ2(1) = 0.51, n.s., ∆AIC = 1.49, ∆BIC = 12.4). When we compare how values

calculated using the different methods correlate (Figure 9), we again see that IBS value

calculation is sensitive to choice of taper contrary to our hypothesis. The CCorr measure
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When calculating phase locking value and circular correlation measures, the choice of

taper alone can lead to inter-brain synchrony values different enough that they do not

perfectly correlate with each other. Imaginary part of coherency values are less affected

than circular correlations and phase locking values.

is especially affected with a mean correlation of 0.42 across sessions and electrodes.

Frequency analysis resolution

We now turn to a less discussed parameter of the frequency analysis: the

resolution of the resulting spectrum. At first sight, there does not appear to be an effect

of resolution on IBS values (Figure 10). When using the resolution as a continuous

parameter (1000
512 ms, 10 ms or 20 ms), statistics confirm this for the PLV (χ2(1) = 0.145,

n.s., ∆AIC = 1.85, ∆BIC = 13.2) and ImagCoh (χ2(1) = 0, n.s., ∆AIC = 2.0, ∆BIC =

13.3) measures, but report a significant positive (though small) effect of resolution on

CCorr synchrony values (χ2(1) = 7.4, p < 0.01, ∆AIC = 5.4, ∆BIC = -5.9).

Looking into it further, we see that CCorr values in fact correlate much worse

across resolutions than the other measures (see Figure 11). This is unexpected when

varying such a ‘boring’ parameter as resolution, which you normally do not think twice

about when choosing it.

Discussion

An effect of window size was found for the CCorr and PLV measures, but not for

the ImagCoh measure. In hindsight, the effect of window size is not that surprising, as
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Figure 10

Mean inter-brain synchrony values do not appear to vary much with resolution, with the

exception of a slight effect on circular correlation values.

all measure definitions weigh each data point equally and one third of the data is new

for the 1.5s window of interest. Still, as all IBS present in the short window is also

present in the longer window, we would not expect any effects to change direction,

especially as the extra half second is time in which the participants are ‘only’ watching

the fixation point. This indeed seems to be the case.

The lack of an effect on the ImagCoh measure could mean that the underlying

functional (dis)similarities that the other measures now pick up on are in phase in both

signals. But it could also just indicate a lack of sensitivity of the ImagCoh measure.

Using multitapers also changed CCorr and PLV values. This could be because

multitapers are ill suited to performing a frequency analysis of low-frequency data

(M. X. Cohen, 2014, p. 203). (Which the alpha band (9–14 Hz) data used for this

experiment is.) But that does not explain why the CCorr and PLV measures are again

more affected than the ImagCoh measure. Especially the CCorr value with a mean



MEASURING INTER-BRAIN SYNCHRONY: METHODS AND PITFALLS 32

1 1

11 1

1

1 1

11 1

1

1 0.92

0.851 0.77

1

imagcoh

plv ccorr

fu
ll 

(~
2 

m
s)

de
fa

ul
t (

10
 m

s)

ha
lf 

(2
0 

m
s)

fu
ll 

(~
2 

m
s)

de
fa

ul
t (

10
 m

s)

ha
lf 

(2
0 

m
s)

half (20 ms)

default (10 ms)

full (~2 ms)

half (20 ms)

default (10 ms)

full (~2 ms)

−1.0 −0.5 0.0 0.5 1.0

Figure 11

The phase locking value and imaginary part of coherency measures are robust to being

calculated on frequency spectra of different resolutions. Circular correlation values, in

contrast, will not correlate perfectly when comparing values across resolutions.

Figure D1 shows the full underlying data for the CCorr case where r = 0.77.

correlation when comparing tapers of only 0.42 across sessions and electrodes (Figure 9).

As expected, no effect of resolution was found for the PLV and ImagCoh

measures. In contrast, the CCorr values are not stable when calculated for different

resolutions. While you could still argue that the variance was reasonable for the

multitaper case, it seems conceptually bad for a change in sampling rate to have a big

effect on an IBS value when the underlying data has not changed. So it is worth

discussing the big variance introduced by the CCorr measure in more detail.

Stability of circular correlation synchrony values

We found the CCorr values to change quite a bit when only small changes to the

frequency analysis process where made. Apparently, contrary to PLV and ImagCoh, the

values do not converge to a single stable value. This is surpising, because Burgess
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(2013) previously found CCorr to be more robust than other measures. Pauen and

Ivanova (2013) also found it to at least not perform worse than PLV.

Algorithm 2 Calculates a robust circular correlation coefficient. Based on Mahmood

(2022)’s work, using the (univariate) dispersion measure from Pewsey et al. (2013, p. 28).
Require: ϕ, ψ ▷ The input signals (phases).

n← length of ϕ

n′ ← n · 0.95 ▷ How many data points to keep?

while n > n′ do

for i ∈ 1 . . . n do

di ←
n∑

j=0
dist(ϕi, ϕj) + dist(ψi, ψj)

end for

i← argmax(d) ▷ The point that maximizes the distances.

remove ϕi and ψi from ϕ and ψ respectively

n← n− 1

end while

return CCorr(ϕ, ψ) ▷ As defined in Equation 2.

When investigating why the CCorr varies this much, we hypothesised it could be

overly influenced by outliers. Mahmood (2022) proposes a robust version of the CCorr

measure which removes values that “lie far away from the majority of the circular data

based on the circular geometry theory”. Mahmood shows using simulations that his

‘trimmed robust circular correlation’ measure succesfully reduces the influence of

outliers. That makes it ideal to test our hypothesis. But sadly, not enough information

is provided to unambiguously reproduce Mahmood’s method. While ‘lying far away’ is

well-defined for univariate circular data using the dispersion measure (Pewsey et al.,

2013, p. 26), robust correlations need to have a way of detecting bivariate outliers

(Maronna, 2019, p. 12) as points can be outliers while not being extreme in any

dimension by itself. To the best of my knowledge, such methods have only been

published for normal correlations (Bebbington, 1978; Maronna, 2019; Shevlyakov &

Smirnov, 2010, chapter 6), not circular ones. As a result, it is likely that Mahmood
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instead only considered outliers that are isolated in a single dimension. Working with

this assumption, we defined the robust circular correlation as given in Algorithm 2.

The resulting algorithm is slow, so it was only applied to the data sets obtained

using the standard frequency analysis resolution (10 ms) and half the resolution (20

ms). It results in circular correlation values higher (around 0.11) than those found

previously (around 0.03; Figure 10). When correlating the IBS values for the different

resolutions, we get a (mean) correlation of 0.87, which is close to the value of 0.92 we

got for normal CCorr (Figure 11). But as it is still not ‘1’, our robust circular

correlation measure clearly did nothing to resolve the circular correlation stability issue.

Apparently, outliers are not the problem.

As sampling at half the resolution is equivalent to just leaving out every second

data point, the issue is also unlikely to be caused by more sophisticated frequency

analysis issues like spectral leakage. Instead, after further investigation, the problem

seems to be inherent to correlation measures. This is most easily demonstrated with a

simulation. We replace the CCorr measure with a Pearson correlation, and the

underlying phase signals by data drawn from a multi-variate normal distribution while

making sure the signals are somewhat correlated. We also calculate correlations after

downsampling our ‘signals’ by half. The result can be seen in Figure 12. Clearly, the

correlation (r = 0.72) between CCorrs of different resolutions is not perfect when using

normal correlations to simulate them either.

On the one hand, this is good news. Normal correlations are not fundamentally

flawed, so there is no reason not to use the CCorr measure either. On the other hand, it

cannot be denied that CCorr values are less stable than PLV or ImagCoh values. As

such, more care is required when interpreting raw values, as we will do in the time

course analysis section. Permutation tests are an elegant solution to the problem: as

they encounter the variation issue also during null distribution construction, it is

automatically taken into account when determining the final p-value.
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Figure 12

The correlation of simulated (correlated) normal data before and after downsampling.

Simulates a single session with 32 electrodes (each represented by a different color) for

180 trials. The result matches the emperical data in Figure D1 quite well. This

illustrates that the circular correlation stability issue also exists for normal correlations.
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Permutation test analysis

Introduction

At this point it is clear how we calculate the raw inter-brain synchrony (IBS)

values, and we have some ideas on how to interprete them. But to explore how they

integrate in a full analysis, we need some task-related analysis goals to cut our teeth on.

Task-related research questions

We decided to determine whether there is an effect of cooperation in Newman

et al. (2021)’s coordination task on IBS. Assuming there is an effect, we want to know:

1. Is the effect of cooperation merely task-dependent (e.g. due to stimuli or

motor responses), or due to actual interaction within the dyad?

2. Is there also an effect of the study’s manipulation (i.e. varying working

memory load) on IBS, and how does it develop over time?

3. Is it possible to predict for new EEG data whether cooperation was succesful

using just the IBS values?

Based on the hyperscanning studies discussed in the introduction, we

hypothesize regarding our task-related research questions that more cooperation will

lead to higher synchrony. We also expect such an effect to not just be caused by the

task but also by the interaction itself. And as a consequence, we expect prediction of

accuracy (i.e. succesful cooperation) on the basis of newly collected EEG data to also

be possible. We expect IBS to vary over time, as at some point we expect participants

to stumble upon a cooperation strategy. Finally, we hypothesize high working memory

load to be detrimental to IBS because of Maehara and Saito (2011) and Newman et al.

(2021)’s behavioural results.

While most of the task-related questions we plan to answer have an exploratory

nature, we also have one directly testable hypothesis: we expect IBS in frontal and

temperoparietal areas in the alpha band (Newman et al., 2021). This hypothesis is

based on the findings of van Vugt et al. (2020). They found “frontal alpha oscillations”

during “moments of agreement” in monastic debate. And also on the findings of Hu

et al. (2018), who found higher (phase locking value) synchrony in the alpha band in
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centro-parietal regions during high cooperation than low cooperation.

Methods

The task-dependent and dyad-dependent effects on IBS are tested separately, the

former by running a permutation test against shuffled samples and the latter by

running a permutation test against virtual dyads assembled from random participants

that never performed the task together.

By shuffling samples, we force the recording of one participant to be independent

from the recording of the other participant as they no longer match up in time

(Lachaux et al., 1999). This also destroys any effects of (temporal) task structure.

There is a problem though: there are multiple ways to shuffle samples. We can shuffle

the original signal or the frequency spectrum. If we could convert between the time and

frequency domain at any resolution, both approaches would be equivalent. But as we

have previously seen in this study, phase and amplitude information is in practice

estimated over time windows of up to a second. We run both tests to determine the

differences in practise. The permutation tests use 200 repetitions.

By shuffling dyads, we can determine whether there is something that makes the

IBS values of actual dyads different compared to randomly assembled dyads that were

never actually cooperating. As each participant saw the same stimuli in Newman et al.

(2021)’s experiment (albeit in a different order), it is possible to construct virtual dyads

such that they still saw the same stimuli. This prevents the permutation test from

detecting effects that are actually due to the stimuli instead of the participants

themselves. For this permutation test, all possible combinations of virtual dyads are

generated. As the amount of participants is limited, this is computationally feasible.

The result of a permutation test is a large data set that has an IBS value for

each IBS measure, session, electrode, trial and permutation test repetition. We first

average out trial, then session resulting in a distribution for each measure and electrode.

Using the same averaging on the actually observed data, we get a single value to

compare each distribution against. We calculate a p-value from this by looking how

extreme this value is compared to the distribution (see Phipson & Smyth, 2010, for a
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Figure 13

Is there an effect of the task (A, B) or the within-dyad interaction (C) on IBS in the

alpha (9–14 Hz) band? After FDR correction, most values in (B) meet the significance

threshold, which in that case lies at 2.58. But (B), which shuffles the spectrum instead

of the original data (A), does not visualize a valid permutation test (see text). Other

tests do not meet the significance threshold.
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Figure 14

Is there an effect of the task (A, B) or the within-dyad interaction (C) on IBS in the

theta (4–7 Hz) band? After FDR correction, most values in (B) meet the significance

threshold, which in that case lies at 2.58. But (B), which shuffles the spectrum instead

of the original data (A), does not visualize a valid permutation test (see text). Other

tests do not meet the significance threshold.
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robust method). We convert these p-values to z-scores when visualizing the results, to

make any colour transitions more gradual.

Because we perform comparisons for each measure and electrode, we control the

false discovery rate (FDR) using a Benjamini and Hochberg (1995) procedure and

report the resulting threshold.

Results

To assess whether there is an effect of the task, we perform a permutation test

where we shuffle the EEG timeseries data within trials before calculating IBS. When we

shuffle in the time domain (panel (A) in Figures 13 & 14), we find no significant effect.

When we instead shuffle in the frequency domain, we appear to find a significant effect

almost everywhere on the scalp for all the measures (panel (B) in Figures 13 & 14). The

only exceptions are for the imaginary part of coherency measure, which is not

significant after FDR correction for the Oz electrode in the theta band and the F3,

FC5, T7, C3, P3, Pz, O1 and Oz electrodes in the alpha band.

Considering we could not find a task-related effect on IBS when shuffling the

time series data, it is not surprising that the tests for a within-dyad interaction effect

are also insignificant for all electrodes and measures (panel (C) in Figures 13 & 14).

After all, it tests a more specific claim: whether there is an effect of working together.

Discussion

The difference in significance in panels (A) and (B) of Figures 13 & 14) is

because the permutation test null distributions differ depending on the shuffling method

(see Figure 15). Shuffling the spectrum results in a less conservative test. When we look

at the difference between the spectra (Figure 16), it becomes clear that the frequency

analysis process normally results in a smoothed spectrum. But also, that this is not the

case when the spectrum is shuffled. As a result, this method of generating a

permutation test null distribution should not be used. It results in an invalid test.

Contrary to our expectations, we found neither a task-dependent nor a

dyad-dependent effect of on IBS. As a result, testing whether this effect varies by level

of cooperation (i.e. presumably accuracy), working memory load or over time does not
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Shuffling the frequency spectrum is not equivalent to shuffling the underlying time series

and then estimating the spectrum. Clearly, the shortcut of shuffling the spectrum results

in a less conservative test.

make much sense. For the purpose of exploring the full IBS pipeline, the next two

sections will make an attempt regardless by analysing the time course and trying to

predict accuracy from the IBS values.

We also expected IBS in frontal and temperoparietal areas for the alpha band.

No such effect was found.

Inter-brain synchrony over time

Introduction

In Newman et al. (2021)’s experiment, participants need to converge on a

strategy to pick the same image or shape. As the task consists of two blocks, they need

to do so twice. We hypothesize more inter-brain synchrony (IBS) at the start of a block,

when participants need to figure out what the other is doing, and less IBS towards the
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An example of an original spectrum (identical to Figure 1B & C), the same spectrum

but shuffled, and a spectrum generated from the same data but shuffled before frequency

analysis. Spectrum amplitudes (A) and phases (B) are shown.
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Development of inter-brain synchrony during the task. Variance is high, and there are

no clear trends. (First 4 sessions only; alpha band; Pz electrode.)

end, when participants will have switched to exploiting a by then fixed strategy.

Methods

We first visualize IBS for a couple of representative sessions. Because we are

interested in effects over time that are potentially non-linear, we assess their significance

by comparing Generalized Additive Mixed Effect Models (Wood, 2006, GAMMs) for

each IBS measure. These models contain two random effects: a factor smooth of trial

by subject, and a factor smooth of trial by electrode. This allows the model to

generalize over session- and electrode-specific trends in IBS values. GAMMs can deal

with the structure in the data caused by having multiple data points per dyad without

requiring averaging. To determine whether a given effect is significant, we add it as a

(smooth) fixed effect to one model, then compare both models.

Because it is potentially possible for effects to only show up in a couple

electrodes of interest, we additionally fit a (simpler) linear mixed effect model with a
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One inter-brain synchrony value is calculated per trial in the alpha band. (A) shows

their (average) slope when we fit a line through them. (B) shows none of these slopes

are significantly different from zero after FDR correction by comparing a linear mixed

effect model that includes the slope to one that does not for each electrode.

random intercept per session on a subset of the data for each combination of a measure

and electrode. This allows us to see if there is a linear effect of time within a session for

each electrode and measure.

Results

Some representative timecourses of IBS data during the task are shown in

Figure 17. Just like with raw EEG data, there is high variance and it can be hard to

spot any trends without statistics or averaging.

No significant (smooth) effect of time (i.e. trial) was found for phase locking

value (PLV; χ2(2) = 5.199, n.s.), circular correlation (CCorr;χ2(2) = 5.862, n.s.) or

imaginary part of coherency (ImagCoh; χ2(2) = 3.734, n.s.) in the alpha band. The

same was true for the theta band in the case of PLV (χ2(2) = 4.982, n.s.) and CCorr
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(χ2(2) = 4.732, n.s.), but not in the case of ImagCoh: χ2(2) = 5.805, p = 0.003). This is

due to an increase in ImagCoh values towards the end of the second block. (A plot of

the predicted values can be found in the appendix, Figure D2.)

When looking at the electrode level in the alpha band, we see that the linear

effect of trial on IBS values is always close to zero (Figure 18A). Unsurprisingly, none of

these are significant after FDR correction (Figure 18B). It might appear as if that is not

the case for the bottom left of the ImagCoh plot, but this is an interpolation artifact:

z-values are only defined at the electrode positions. No effect of trial on IBS was found

at the electrode level in the theta band as well. (See Figure D3 in the appendix).

Discussion

We found that contrary to our hypothesis, most IBS values in Newman et al.

(2021)’s experiment do not change over time, with the possible exception of the

ImagCoh values in the theta band. Interestingly, in that case the effect was in a

different direction than expected, with IBS increasing towards the end of the block

instead of going down.

One possible explanation is that performing the chosen strategy results in similar

brain activity in both participants, even if having theory of mind is at that point no

longer necessary. This could be due to performing the same strategy, or simply due to

shared environmental stimuli, like the end of the experiment approaching.

Alternatively, the assumption that towards the end of a block participants will have

converged on a strategy could be incorrect. Finally, it is important to consider that the

effect is not that big, especially when taking into account only one out of six tests came

out significant. It could be a spurious result, especially as a robust result would

presumably be detectable by more than a single IBS measure. On the other hand,

ImagCoh is the only measure that includes amplitude information, so it could be that it

really found something the others are unable to. Ayrolles et al. (2021) argue that

amplitude information reflects cognitive states better than phase information because of

its larger timescale.
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Prediction of task performance

Introduction

We attempt to predict the performance of the dyads in Newman et al. (2021)’s

cooperation task based on inter-brain synchrony (IBS) values and the amplitude of the

P3 event-related potential (ERP) component. There are many potential mechanisms

that could cause IBS and simultaneously be predictive of task performance. For

example, functional similarities could arise in the neural oscillations as a result of

participants placing themselves in their partner’s shoes (i.e., theory of mind).

Alternatively, performing the same strategy could lead to similar brain activity, as could

focussing on the same (if chosen automatically correct) stimulus. In the end, while the

exact mechanism is interesting from a theoretical point of view, it does not matter when

the goal is to predict task performance. Instead, it would be a possible follow-up

question.

The P3 ERP component, also known as the P300 component (Luck, 2014, p. 5),

is a positive deflection in an EEG signal about 300ms after a stimulus is shown (Sutton

et al., 1965). It generally occurs as a response to infrequent but task-related stimuli

(Polich, 2011). The mechanism underlying the P3 is unclear, but the most popular

theory is the context updating model (Luck, 2014, p. 96). It explains the P3 as a

consequence of updating the neural representation of the environment when the

stimulus (unexpectedly) changes (Polich, 2011). The P3 decreases during

mind-wandering (Jin et al., 2019). In Newman et al. (2021)’s task the context is a bit

more complex than frequent or infrequent stimuli being shown: participants instead

need to reason about how the other participant is choosing one of the four stimuli. But

this still requires keeping track of choices, feedback and hypotheses. It is not out of the

question this also would evoke a context updating P3 ERP. Alternatively, negative

feedback could be surprising in itself when the participant believes to have hit upon a

‘shared rule’ on how to perform the task.

We consider a number of classification methods: logistic regression (Goodfellow

et al., 2016, p.137), support vector machines (Goodfellow et al., 2016, p.137–139),
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random decision forests (Tin Kam Ho, 1995) and multi-layer perceptrons (Rumelhart &

McClelland, 1987). We attempt both across-session and within-session prediction.

Methods
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Figure 19

When applying the continuous wavelet transform using the mexican hat template ψ(t) in

(A) to an example trial f(t) in (B) we obtain (C). The local maximum in (C) is shown

and is our single-trial ERP measure. (B) is identical to Figure 1A.

The methods of the prediction task are based on those of a study by Jin et al.

(2019).
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Because EEG data contains a lot of noise, ERP components are normally

identified by averaging over multiple trials (Luck, 2014, p. 259). This is not feasible

when predicting task performance, as we need to predict whether the dyad guessed

correctly for each trial. Instead, we use a method that attempts to match each trial’s

EEG signal with the shape of a template. The template ψ(t) takes the form of an

idealized ERP component (see Figure 19A). This function, sometimes called ‘mexican

hat’, is defined as follows (Bostanov & Kotchoubey, 2006):

ψ(t) = (1− 16t2)e−8t2
. (8)

The method we use, which is devised by Bostanov and Kotchoubey (2004), uses

a continuous wavelet transform (CWT) to calculate the covariance between the signal

and the template at different time points and for different template scales. The CWT is

defined as (Bostanov & Kotchoubey, 2006):

W (s, t) =
1
√
s

∞∫
−∞

f(τ) · ψ
(
τ − t
s

)
dτ (9)

where f(t) is the signal that is transformed, s scales the template ψ(t) and τ shifts the

template. See for an example signal Figure 19B, and for a corresponding example CWT

output Figure 19C.

The single-trial P3 ERP is defined as the local maximum in W (s, t) between

t = 250ms and t = 600ms (Jin et al., 2019).

Table 3

Thirty sessions were randomly assigned to the train set, eight to the test set.

assignment session numbers

train set 2, 3, 4, 6, 8, 9, 10, 11, 12, 13, 14, 16, 18, 19, 21, 22, 23, 24, 25, 27, 29, 31,

33, 35, 36, 37, 38, 39, 41, 42

test set 5, 7, 15, 17, 20, 28, 30, 40

The data set was randomly split into a train- and a test set (see Table 3). The

latter was not accessed during training and only used for final model evaluation. Such a

test set is sometimes also called a lock box (Hosseini et al., 2020).
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Because on average dyads are correct a bit more than they are incorrect, we use

random oversampling during training to account for this imbalance in the data set

(Chawla, 2005). Otherwise, a model that classifies every example as correct would

result in an accuracy higher than 50%, which is not helpful when determining whether

IBS measures and the P3 component can predict task performance.

For each trial, the three IBS measures where calculated in both the alpha and

theta band. Additionally, single-trial P3 ERP components were calculated for both

participants. These eight calculations were all repeated 32 times for each electrode,

resulting in a total of 256 features.

Phase locking value values were normalized using the inverse cumulative density

function of the normal distribution. Circular correlation and imaginary part of

coherency values were Fisher-transformed. All single-trial ERP trials were

log-transformed. This was impossible for (a trivial amount of) negative values, which

were capped at 0.05 before the transformation. All the resulting values were

additionally z-transformed.

We report sensitivity, specificity and balanced accuracy. Sensitivity looks at

correct trials. It tells us what proportion of those the classifier predicted to be correct

(Yerushalmy, 1947). Specificity looks at the incorrect trials. It tells us what proportion

of those the classifier predicted to be incorrect (Yerushalmy, 1947). Balanced accuracy

is the mean of the two. Classifiers were trained to maximize balanced accuracy.

During training, 10-fold cross validation was used. Folds were chosen such that

data of a single session did not leak into both a train and validation set, as this could

potentially lead to overoptimistic accuracy estimates.

Random hyperparameter search was used (Bergstra & Bengio, 2012) for 30

iterations, with hyperparameters sampled from log uniform distributions with the

exception of the random forest integer hyperparameter values, were a discrete uniform

distribution was used instead.

For the logistic regression classifier, which served as a baseline, the L1 norm was

used as it forces unused features to be dropped entirely. We optimized the regularization
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strength hyperparameter C (also known as capacity; Goodfellow et al., 2016, p. 117).

For the support vector machine, a radial basis function was used. We optimized

its radius (γ) and regularization (C) hyperparameters. As the SVM performed best in

earlier EEG prediction tasks (Jin et al., 2019; Lotte et al., 2007), we used it for two

variations on the experiment as well. An SVM was trained without P3 ERP component

data (i.e. taking 192 features as its input), and 256 SVMs were trained that only took a

single feature each to determine the relative importance of features. For these

variations, hyperparameter values of the main experiment were used.

Two hyperparameters were optimized for the random forest classifier. Amount of

trees (1–250) and maximum amount of features (1–30). For the multi-layer perceptron,

a fixed architecture consisting of a single hidden layer of 10 neurons was used. The

ReLU function, i.e.

f(x) = max(0, x) (10)

was used as activation function. The learning rate (alpha) was optimized.

Finally, some within-session and within-condition classification was attempted

using SVM classifiers. This results in small data sets of 90 rows, which were split in

train sets containing 75% of the rows and test sets containing 25%. Hyperparameter

optimization was the same as in the ‘main’ prediction experiment, except for the choice

of cross-validation folds. There were no groups to take into account, instead folds were

kept balanced such as to have both ‘correct’ and ‘incorrect’ examples. A dimension

reduction step using principal component analysis (PCA) was added to better cope

with the small amount of available data. The amount of components k was optimized

using cross-validation.

Results

The outcome of the cross-validation procedure used to determine the

hyperparameters was visualized in a number of parameter vs. test performance plots.

These plots can be found in Appendix D for logistic regression (Figure D4), for the
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SVMs (Figure D5), for the Random Forest classifier (Figure D6), for the multi-layer

perceptron (Figure D7) and finally for the within-session SVM (Figure D8).

Evaluation

Performance measure: specificity

Performance measure: sensitivity

Performance measure: balanced accuracy
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Figure 20

Mean classification performance on the test set for different performance metrics.

Figure 20 shows that classification performance, as measured using the balanced

accuracy, is at chance level (i.e. 0.5) for all classifiers. Although it might seem like some

error bars do not overlap with 0.5, this would be the case if confidence intervals were

shown instead of standard errors, as those are almost two times as big. Figure 20 also

suggests that an SVM classifier that was not trained on P3 ERP component-based

features outperforms an SVM classifier that was.

We see that all classifiers have a higher sensitivity than specificity. In other

words, the classifiers are better at predicting correct trials as correct than incorrect

trials as incorrect. This would make sense if we had not corrected for the imbalance in

the data, but between the balanced accuracy performance measure and the random

oversampling process, that is not the case. Apparently, the classifiers converge on a
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Figure 21

Classification performance for each test set session. (Detailed version of Figure 20).

(slight) bias to predict trials to be correct regardless. This is not the case for all

sessions, as can be seen in Figure 21. Also, the logistic regression classifier seems to

show this phenomenon less strongly.

Important features

The final logistic regression model drops most predictors, and puts the highest

importance on P3 ERP component features (see Figure 22). This is likely to be a fluke,

as we would expect an actual pattern to be duplicated among P3 ERP components for

both subjects. Otherwise, no pattern is discernible, which is what we would expect for a

model that predicts at chance level.

Another way of assessing the importance of individual features in predicting task

performance is to look at the balanced accuracy of the SVMs that were trained on

single features (see Figure 23). In general, these classifiers also perform at around

chance level. There is a bit more variation in perfomance of the classifiers that were

trained on P3 ERP components of the first participant compared to the other classifiers
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Logistic regression (L1 norm): coefficients for each feature. Missing data (grey

background) means the feature was dropped by the classifier completely. Features with

coefficients further from zero have a greater influence on the final prediction. Synchrony

measures (ccorr = circular correlation, imagcoh = imaginary part of coherency, plv =

phase locking value) were calculated for both the alpha and theta band. Both subjects

contribute a P3 single-trial ERP value.

(see Figure 24). As this matches our findings using the logistic regression classifier with

L1 norm, it is likely to be caused by a pattern in the P3 ERP component data and not

just by a classifier induced artifact. But as the pattern is again not reproduced for the

second participant, it is unlikely it contributes to predicting task performance.

Within-session classification

When predicting task performance within sessions for both low and high working

memory load, we see the same pattern as for the between-session classifiers.

Performance is still at chance level, and classifiers have on average higher sensitivity

than specificity (see Figure 25).
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Figure 23

Balanced accuracy of SVMs trained on single features, averaged over sessions.

Synchrony measures (ccorr = circular correlation, imagcoh = imaginary part of

coherency, plv = phase locking value) were calculated for both the alpha and theta band.

Both subjects contribute a P3 single-trial ERP value. Outliers lie further than 1.5

inter-quartile ranges from the hinge.

When looking at the raw data in Figure 26, we see more variation (cf.

Figure 21). But this is to be expected as the test sets are much smaller.

Discussion

Prediction of task performance based on IBS values and single-trial P3 ERP

component values failed. There are two possible explanations for this. It could be that

another classification method would perform better. But as different classifiers,

classification scenarios and hyperparameters were tried, another method is unlikely to

yield wildly different results. The more likely explanation is that there is simply not

enough information in IBS values and single-trial P3 ERP components to be able to

predict task performance. That would also be in line with the null results found in the
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Figure 24

Balanced accuracy of SVMs trained on single features, averaged over electrodes and

sessions. A box plot summary of the data shown in Figure 23.

time course analysis and permutation test analysis described in this report.

While most classifiers had higher sensitivity than specificity, this was not the

case for the logistic regression classifier (see Figure 21). Possibly, this is because it is

one of the more constrained models from a theoretical point of view, having a smaller

representational capacity (Goodfellow et al., 2016, p. 110).

Interestingly, an SVM trained only on IBS values seems to perform slightly

better than one trained also on P3 ERP components. The difference is small, so it could

just be due to variation in the data. But an alternative explanation worth considering is

the curse of dimensionality: because the data set is relatively small compared to the

amount of features, models are not constrained all that much by the training examples

(Goodfellow et al., 2016, p. 151–152). Leaving out features that do not contribute much

is helpful as a result. But there are other ways to constrain classifiers. One is to force

them to model the underlying distribution smoothly, e.g. using regularization. This was
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Figure 25

Within-session classification performance on the test set (box plot, outliers lie further

than 1.5 inter-quartile ranges from the hinge).

the case for all discussed classifiers. Another is to pre-process the data using a

dimension reduction technique. This approach was used for the within-session

classifiers, which included a PCA step. But that did not yield better classifiers.

The attempt to identify the most influential values in the classification process

was largely stymied by the lack of classifiers performing above chance level. It suggests

the first participant’s P3 ERP component values might be more influential. One

possible explanation for that could be that the ERP component features stand out

because their distribution is the furthest from a normal distribution. This could lead

them to have an oversized effect on the models. Negative ERP values being set to a

fixed value, especially, introduces a few (rare) outliers. Negative single-trial ERP values

are rare and suggest errors in the data cleaning, but in practise they are hard to avoid

as getting rid of them all would also throw out a lot of good data of other electrodes.

It is unlikely the first participant’s P3 features are influential because they
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Figure 26

Within-session performance on the test set (raw metrics, see Figure 25) for summarized

numbers.

actually help classification. In that case, we would expect them to also show up in the

P3 features for the second participant. Also, we would expect features close to the

midline to be more influential, as that is where the P3 effect is strongest (Polich, 2011).

Neither is the case (see Figures 22 and 23).

Finally, a few notes. The use of balanced accuracy instead of normal accuracy is

important, as random oversampling is only used during training, not during testing.

Originally, I overlooked this, and in this case, it lead to models that only predict a

single outcome. This only became clear after looking at the sensitivity and specificity

measures. Random oversampling works well, but it can lead to overfitting (Chawla,

2005). Especially if the imbalance in the data is big, it is worth considering more

sophisticated methods to construct balanced samples (Chawla, 2005, e.g. SMOTE).

While performing within-session classification can profit from dyad-specific

signals that predict task performance in IBS and P3 values, it comes at a cost of having
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only very little data available. In some test sets, no examples of both correct and

incorrect trials were available. This made it impossible to train a classifier in a couple of

cross-validation folds, and is also a cause of the large variance in Figure 26. The lack of

data also means that we have no choice but to randomly sample cross-validation folds

from the train set instead of respecting their causal ordering in time. When the

underlying time series is autocorrelated, as is not unlikely in EEG-derived data, this

could lead to overoptimistic predictions.

General Discussion

We investigated the sensitivity of a hyperscanning data analysis to different

methodological choices by performing an analysis of inter-brain synchrony (IBS) data

recorded during Newman et al. (2021)’s tacit coordination task. We built a complete

analysis pipeline that tested three IBS measures: the phase locking value (PLV), the

circular correlation coefficient (CCorr) and the imaginary part of coherency (ImagCoh).

Contrary to our expectations, we found the analysis outcome to be sensitive to

relatively minor changes to this pipeline.

All studied measures of IBS rely on a frequency analysis step to transform the

raw EEG data into the frequency domain. We found that varying the resolution of the

output or the exact tapering method used to control spectral leakage resulted in

different IBS values. The CCorr measure was especially sensitive to such changes. As

long as you are comparing apples to apples, i.e. only values that have been calculated

with the same methodology, this variation should not be a problem. But it is a reason

to caution against comparing raw IBS values across experiments or analyses. Using

statistical methods that can take this into account, like permutation tests that will

make the same assumptions when generating a null distribution, is recommended.

Burgess (2013) found the CCorr measure to be less sensitive to detecting

spurious IBS than other measures. Our study did not encounter this issue, because the

permutation tests did not detect any IBS. On the other hand, our simulation study

clearly illustrates Kayhan et al. (2022)’s observation that PLV only measures the

consistency of the phase components of the EEG signals coming from each participant,
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not whether they co-vary. Most strikingly, we see it completely ignore a strong negative

linear relation between the two phase components (see Figure 6). The ImagCoh

measure is hardest to evaluate. It seems to be less sensitive in general to changes in the

data it is calculated upon. For example, in the simulation study, finding examples for

different ImagCoh values was harder than for the other measures. Also, it only

responded little to changes in the frequency analysis process. If it still picks up on ‘real’

effects, it would be the best measure tested. But the fact that it is so insensitive, makes

me doubtful about whether it would quantify such effects. In the end, weighing all the

evidence, I would prefer using the CCorr measure for measuring IBS. But the PLV

measure is also worth considering considering. While it has its flaws, its ubiquitousness

in the hyperscanning literature makes it more familiar to the average reader.

Contributions

Next to the research project’s results and pipeline description, we make available

validated implementations of the PLV, CCorr and ImagCoh measures for both

MATLAB and R. During the project, we also developed a MATLAB implementation of

Mahmood (2022)’s robust circular correlation measure (Algorithm 2), although the

implementation is slow and as discussed previously the measure itself is not well-defined

from a theoretical point of view. Finally, in the end of the simulation study section, we

describe a way to perform a power analysis for tests used in IBS studies. It reuses the

method the simulation study uses to generate fake data for a given IBS value

(Algorithm 1). As a consequence, the test will only have access to the phase component

of the signal, as the simulation study ignored amplitude components. But that can still

be useful for power analyses of tests that target phase-based measures only.

Limitations

This research project, especially the simulation study part, has been heavily

focused on phase-based IBS measures. The only exception is the ImagCoh measure.

Ayrolles et al. (2021) suggest phase-based measures are better at measuring “ongoing

cognitive processing”, while amplitude-based measures are better for measuring

“cognitive state”. It would be interesting to also consider other amplitude-based
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measures, like the ‘power envelope correlation between orthogonalized signals’ measure

described by Hipp et al. (2012). That measure is also used by Dikker et al. (2021), who

call it ‘projected power correlation’ instead. Another measure that was considered for

inclusion in this study is the Kraskov mutual information measure (Kraskov et al.,

2004). Burgess (2013) recommends it alongside the CCorr measure. But while Burgess’s

work seems to have single-handedly popularized the latter4, the former seems to be have

much less uptake. Perhaps it is due to the lack of implementations being available 5, or

the more complex (information-theoretic) definitions. At least, that is the reason why it

has not been included in the present project.

Figures 13, 14, 18 and D3 use topographical plots of the scalp that are a

common sight in EEG research. While actual values are only available for the electrode

sites, the visualization fits a surface to them to present a continuous image. While

interpreting some of these figures during this project, this lead me to the wrong

conclusions at times. For example, it is common to see extreme values around the edges

of the scalp because the surface continues on outside the data’s range for a bit. As a

result, I switched to drawing Voronoi cells around the electrodes instead when analysing

the prediction data (see Figures 22 and 23). Of course, this approach also has its

downsides. It will be less familiar to researchers in the field, and the discrete nature of

the visualization is unrealistic.

IBS permutation tests that generate their null hypothesis distribution by

shuffling dyads, as we did in the permutation test analysis section, are a nice way to

determine whether synchrony is just task-related, or due to cooperation within the

dyad. That said, if such a test yields a significant result, there are other possible

explanations. For example, if the two participants both have a faster response time

than other dyads, this could lead to the test finding synchrony between them that is

4 Most discussions of the CCorr measure I have seen can be traced back to Burgess (2013)’s work

(Chen et al., 2021; Farahzadi & Kekecs, 2021; Goldstein et al., 2018; Kingsbury & Hong, 2020;

Kurihara et al., 2022; Wikström et al., 2022, to name just a few).

5 https://github.com/otoolej/mutual_info_kNN/blob/master/mi_cont_cont.m comes the closest, but

it is does not match Burgess’s definition exactly. For one, it does not use an angular distance metric.

https://github.com/otoolej/mutual_info_kNN/blob/master/mi_cont_cont.m
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‘just’ due to their early motor response. Such a response would be solely task-related,

not due to the participants working together or interacting otherwise. It is something to

keep in mind when designing IBS experiments.

prediction

stimuli

feedbackparticipant 1 participant 2

response 1
response 2correct?

EEG data 1 EEG data 2

EEG frequency analysis

PLV CCorr ImagCoh

EEG preprocessing

P3: 1 P3: 2

Figure 27

A diagram of the causal structure of Newman et al. (2021)’s experimental setup, and its

interaction with the accuracy classifiers described in this thesis. Stimuli are shown in

yellow, while recorded measurements are shown in green. Calculated values are shown in

grey.

Finally, it is worth reflecting a bit on the prediction task. Considering that we



MEASURING INTER-BRAIN SYNCHRONY: METHODS AND PITFALLS 62

did not find significant IBS previously, it always was a long shot. But even if we had, it

is worth mapping out the causal path that would lead to a correct prediction in

Newman et al. (2021)’s task. See Appendix B for more information about the task.

Figure 27 does exactly that. When a stimulus comes in, both participants give a

response, and get feedback based on if they both picked the same image or shape. They

use that feedback to adjust their mental model of what the other is doing, which they

will use in future trials. We record their brain activity while that is going on, run it

through the IBS pipeline, and get out IBS values (PLV, CCorr & ImagCoh in the

diagram) and normal EEG values (P3 single trial ERP values). These are then in turn

used by the classifier to make a prediction of the accuracy in the current trial. Now,

what would be the mechanism that increases the odds of predicting whether the dyad

chose the same image or shape?

There are multiple possible ways. Theoretically, a group of images or shapes

dissimilar to previous examples could lead to a P3 ERP, and would most likely decrease

their chances of picking the same image or shape. But as the images are similar

switching only their colours, such an advantage would be unlikely to last long.

Alternatively, one of the participants could ‘simulate’ what the other is doing, thereby

mirroring the other’s brain activity. The IBS measures could then pick up on this,

which the classifier could use to predict a correct response. This is the ‘theory of mind’

explanation. Personally, I think it unlikely that the functional activity would (1) occur

simultaneously enough for the IBS measures to pick up on and (2) would result in a

strong, identifiable EEG signal considering that these seem to me relatively abstract,

high-level and complex thoughts. Yet another way combines the two. In this case, we

assume that integrating (unexpected) feedback causes a P3, or some other neural

activity that the IBS measures pick up on due to it presumably being shared across

participants. The problem with this explanation is that the activity would need to last

into the start of the next trial. There might be other hypotheses, but it is clear that it

is not a trivial exercise to find a mechanism that explains why predicting performance

would be possible in the first place. Considering our results, perhaps it is not possible.
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On the other hand, you could make similar arguments for De Vico Fallani et al. (2010)’s

prediction task, which did succeed. Still, considering the causal structure of the

problem is probably a worthwhile exercise when attempting prediction using IBS data.

Conclusion

While a lot has been written about the mathematical definitions of different IBS

measures, it would be very nice if more intuitive descriptions or visualizations became

available. Figure 6 is my own attempt at this, but it has its limitations. It is still my

favourite figure in this thesis, though!

It is my hope this research project can contribute to the design of future IBS

studies using EEG, by showing the consequences and pitfalls of different methodological

choices. As mentioned in the introduction, the standardization of IBS research methods

has only just started. But it is encouraging to see that early contributions, like Burgess

(2013)’s recommendation to use the CCorr measure, are being taken into account in a

lot of studies now appearing.
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Appendix A

Theory of Mind

A good introduction about Theory of Mind is given by Postle (2020, p. 455–467). It

defines the key process of mentalizing as “engaging in mentation about the thoughts,

motivations, and knowledge of another”. It also lists a number of brain regions

associated with theory of mind: the right posterior temporal sulcus, the temporal poles,

the anterior paracingulate cortex and/or the medial pre-frontal cortex, and finally (to a

lesser degree and with lots of caveats) the temperoparietal junction. Theory of Mind

co-occurs with the development of executive control, but the mechanism behind that is

still an active area of research (Bradford et al., 2015; Perner & Lang, 1999). A high

working memory load will disrupt Theory of Mind ability even in adults (Maehara &

Saito, 2011), causing them to (incorrectly) fall back on their own beliefs. Finally,

impairments in theory of mind may underlie ASD (Baron-Cohen et al., 1985; Frith &

Frith, 2005; Postle, 2020, p. 457).
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Appendix B

Newman et al.’s tacit coordination task

Tacit coordination tasks, i.e. tasks in which participants have to silently work together,

are widely studied: de Weerd et al. (2015) found in a simulation study that higher-order

theory of mind (‘I know that she knows that I know. . . ’) is only useful up to a certain

point in such tasks. De Kwaadsteniet and van Dijk (2012) review different coordination

rules people use in tacit coordination tasks.

To study the effect of working memory on theory of mind, Newman et al. (2021)

developed a tacit coordination experiment in which two participants need to look at

four images, and pick the same one. They get to see the other participant’s choice after

each trial. The underlying idea is that both participants need to apply theory of mind

to determine how the other participant makes their choice, so both can converge on a

shared strategy and perform at a better than chance level. Newman et al. (2021) tested

the effect of working memory load on theory of mind by alternating trials with either a

2-back task (Kirchner, 1958) or a 0-back task (i.e. even/odd classification). During the

experiment, EEG data was collected for both participants. That data is analysed in the

current project.

One trial in the experiment consists of a fixation cross screen shown between

1000–3000ms to prevent anticipation effects, a self-paced screen where the participant

sees the images and chooses one and a feedback screen which is shown for 4000ms.

Then, the working memory task takes over with three screens with the same purpose

but different timings: the answering screen in the n-back task is always shown 3000ms

and the feedback screen is shown for only 1500ms.

Two different abstract stimulus image types are used. One which varies colors,

and one which varies shapes. The stimuli were taken from a game-theoretic study by

Alberti et al. (2012). This study focuses on modeling why participants tend to prefer

certain (more ‘salient’) images. Luckily, Alberti et al. (2012) found that for the abstract

image set the experiment borrows, these preferences tend not to be structural across

participants (see also Figure B1).
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Figure B1

Each dyad’s favourite colors for the three parts of the stimulus images.

Finally, it is worth mentioning participants in a dyad were matched for gender

and all participants filled in three self-report questionnaires (Christodoulou, 2021): the

Interaction Anxiousness Scale, the Interpersonal Reactivity Index and the Autism

Spectrum Quotient. This made it possible to check for confounding effects of social

anxiety, empathy and ASD (Akcay, 2021).
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Appendix C

Linear mixed effect models
purpose repetition base model extra term

effect of window

size

by measure value ∼ trial + (1 |

session) + (1 | elec-

trode)

winsize

effect of taper on

PLV

none plv ∼ trial + (1 |

session) + (1 | elec-

trode)

taper

effect of taper on

CCorr

none ccorr∼ wm_load +

(1 | session)

taper

effect of taper on

ImagCoh

none imagcoh ∼ trial +

(1 | session) + (1 |

electrode)

taper

effect of resolution

on PLV

none plv ∼ trial +

wm_load + (1

| session) + (1 |

electrode)

resolution

effect of resolution

on CCorr

none ccorr∼ wm_load +

(1 | session) + (1 |

electrode)

resolution

effect of resolution

on ImagCoh

none imagcoh ∼ trial +

stim_type + (1 |

session) + (1 | elec-

trode)

resolution

effect of trial by measure, elec-

trode, band

value ∼ 1 + (1 | ses-

sion)

trial

Note that the random effect structure of the final model is not always supported

by the data, but we decided it better to sometimes have a ‘singular fit’ error than to

have a model that sometimes does not account for the structure within sessions.



MEASURING INTER-BRAIN SYNCHRONY: METHODS AND PITFALLS 68

Appendix D

Supplementary figures

Figure D1

Circular correlation values do not correlate perfectly across different frequency analysis

resolutions, contrary to phase locking values and imaginary part of coherency values

(not shown here). Each subplot represents a single session. Each dot represents the data

for a single timepoint. Colours are assigned based on electrode.
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Figure D2

Predicted imaginary part of coherency without random effects in the theta band.
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Figure D3

One inter-brain synhrony value is calculated per trial in the theta band. (A) shows their

(average) slope when we fit a line through them. (B) shows none of these slopes are

significantly different from zero after FDR correction by comparing a linear mixed effect

model that includes the slope to one that does not for each electrode.
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Figure D4

Logistic regression: performance on the train and test set during cross-validation for

different regularization parameters. The triangle shows the parameter used for final

evaluation.
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Figure D5

SVM: performance on the test set during cross-validation for different regularization

and radial basis function size parameters. The triangle shows the parameters used for

final evaluation.
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Random Forest: performance on the test set during cross-validation for different number

of estimators and maximum amounts of features. The triangle shows the parameters

used for final evaluation.
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Multi-layer perceptron: performance on the test set during cross-validation for different

learning rates. The triangle shows the rate used for final evaluation.
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Figure D8

Within-dyad SVM classifiers: performance on the test set during cross-validation for

different regularization and SVM RBF gamma parameters. A triangle shows the

parameters used for final evaluation. One plot for each session and WM manipulation.
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