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Abstract 
Monoclonal antibodies are used as therapeutic drugs because of their predisposition for highly 

specific binding to macromolecular targets. Because of their therapeutic value, multiple 

physical approaches have been developed in the last decades for the production and isolation 

of strong binding antibodies. But, with the increasing computational power of the last years, 

the field of computational protein design has expanded greatly, and therefore questions must 

be asked whether these physical procedures will soon be replaced. This essay provides an 

overview of currently used physical and computational methods for the design of antibodies, 

as well as for the computational design of de novo binders. Firstly, it describes the hybridoma 

and display techniques and explains current methods of DNA library optimization. Secondly, 

state-of-the-art computational antibody and de novo protein design strategies are described. 

The trends and prospects of both sides will be discussed to answer the question of whether 

the experimental design of antibodies will become obsolete with the emergence of new 

computational methods. 

Introduction 
Since 1975, monoclonal antibodies (mAbs) have been developed as effective therapeutic 

drugs (Liu 2014). To put this in perspective, four out of the top ten sold pharmaceuticals were 

mAbs in 2021 (Urquhart 2022). Additionally, the 100th mAb was recently approved by the FDA 

(Mullard 2021).  

Antibodies are an essential part of various species' immune systems (Vadnais, Criscitiello, and 

Smider 2017). During an immune response, unique antibodies are produced to neutralize 

immunogenic particles (antigens). This neutralization is based on the binding between the 

paratope of the antibody and the epitope of the antigen, which can consequently signal to the 

immune system to remove the contamination (Vadnais et al. 2017). Most animals’ adaptive 

immune systems contain an enormous repertoire of different antibody isoforms of low to high 

affinity to these antigens (Sun et al. 2020). By harnessing this endogenous machinery, 

researchers have been able to generate extremely specific binders to interesting therapeutic 

targets, as well as biochemical assays (Iha et al. 2019). For instance, mAb trastuzumab has 

been developed against the extracellular HER-2 receptor that is upregulated in some forms of 

breast cancer (Lv et al. 2018). Other examples include rheumatic diseases (Norman 2017), 

and melanoma (Kwok et al. 2016).  

Antibodies are proteins that can bind with high specificity to molecular surfaces. An antibody, 

which is a covalently linked dimer consisting of two heavy chains and two light chains (as 

depicted in Fig. 1A), has a binding site called the complementary determining region (CDR). 

The genes encoding for this region are susceptible to recombination and, upon immunization, 

will undergo somatic hypermutation, resulting in an extremely diverse set of non to high-affinity 

binders against antigens (Wang et al. 2020). This region is therefore also named the variable 

fragment (Fv). The CDR of each chain is made up of three alpha-helices (as depicted in Fig. 

1B). These helices were long considered variable, however, recently canonical parts in CDR1 

and CDR2 were found, as well as a small set of canonical structures in CDR3 (Chiu and 

Gilliland 2016). Opposing the Fv region, the crystallizable (constant) fragment (Fc) is needed 

as a supportive structure and for its’ effector functions, such as activating the complement 

system, a complex cascade of immune reactions ultimately dismantling damaged or non-self 

objects (Goldberg and Ackerman 2020)(Bordron et al. 2020). The Fc-domain is also a 

contributor to other biophysical and pharmacokinetic properties such as plasma half-life, 

aggregation, and stability (Chiu and Gilliland 2016) (Alfaleh et al. 2020) (Khan et al. 2022).  
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Historically, mAbs were developed using hybridoma technology (Moraes et al. 2021). This 

technique is based on the immunization of a mouse with an antigen and the fusing of its 

effective B lymphocytes with an immortal myeloma cell line ultimately producing specific 

antibodies. Although still widely used today, there has been pressure to replace this technique 

due to ethical concerns, time consumption, technical expertise requirements, and low 

efficiency of the B lymphocyte-hybridoma fusion (Moraes et al. 2021). Now, decades later, 

high-throughput display methods have been developed to replace the need for hybridomas 

(Ledsgaard et al. 2018; Newton et al. 2020; Salema and Fernández 2017). In these techniques, 

the gene encoding an antibody fragment can be fused with a surface protein gene of a microbe 

or bacteriophage. The translated proteins are then presented on the surface of the respective 

membrane and can be selected against. Other types are ribosome and mRNA display 

methods, which are powerful alternatives to phage and cell-display methods and do not rely 

on phage or microbial systems (Newton et al. 2020). High throughput of this method is possible 

due to the use of large recombinant or synthetic DNA libraries and a relatively easy affinity 

selection procedure. 

All current FDA-approved mAbs have been developed experimentally, mostly with the use of 

hybridoma technology (Parray et al. 2020). However, since the increased computing power 

over the years, in silico efforts of protein design have emerged. With the recent developments 

of software such as RosettaFold and the highly praised AlphaFold2, very accurate protein 

structures can be predicted, comparable to the structures determined by biophysical 

approaches (Jumper et al. 2021). This prediction relies partly on multiple sequence alignments, 

which is problematic for predicting CDR structures as they are hypervariable, particularly CDR-

H3 (Abanades et al. 2022). Also considering the advancements in de novo protein design 

(Boyken et al. 2016; Cao et al. 2022; Huang, Boyken, and Baker 2016), the resource-intensive 

and laborious physical methods might soon come to an end. A milestone in this field is the 

recent anti-interleukin-2 mAb AU-007, which is the first computationally designed antibody to 

enter clinical trials in humans (Vasselli et al. 2022). 

A B 

Figure 1 - A: schematic overview of an IgG1 antibody. The following structures are depicted: heavy chain 
(green), light chain (blue), Fc-region, Fab-region, Fv-region, CDR. B: top view of the mAb trastuzumab Fab 
region depicting the CDR. The following structures are visualized: light chain (light orange), heavy chain 

(gray), CDR-L1(red), CDR-L2 (green), CDR-L3 (blue), CDR-H1 (yellow), CDR-H2 (magenta), CDR-H3 (cyan). 
PDB structure is 4HKZ (Donaldson et al. 2013). CDRs were colored according to identified CDR sequences as 

described by Hermanto et al. (Hermanto et al. 2017). 
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This essay discusses these state-of-the-art computational methods for de novo protein binders 

and antibodies and will reflect upon the course of both experimental (i.e. physical) and 

computational methods of design. It will try to answer the question of whether the physical 

methods will become obsolete with the emergence of computational methods to design protein 

binders. A subquestion is asked as to whether small de novo protein binders will replace future 

antibodies themselves. 

Experimental approaches to antibody design 
The preclinical stage of modern drug discovery initially comprises target selection, lead 

generation, and lead optimization (Zhou and Zhong 2017). The same is true for antibody 

development. First, a cellular macromolecular target, the antigen, with potential therapeutic 

value is selected. Next, a lead generation strategy is employed. These strategies can rely on 

hybridoma and transgenic mouse models, but high-throughput combinatorial approaches such 

as display techniques are also used. The lead binders are consequently optimized to increase 

binding affinity and specificity to the antigen, using affinity maturation-like techniques. 

Ultimately, biophysical properties such as solubility and thermostability are improved (Chiu and 

Gilliland 2016). Protein aggregation can especially be detrimental, as it can enhance 

immunogenicity (Ratanji et al. 2014). 

Hybridoma technology 
The hybridoma technique relies on fusing antibody-producing B lymphocytes into myeloma 

cells (Moraes et al. 2021)(Parray et al. 2020). In principle, this makes the cell immortal, 

resulting in high antibody production. B lymphocytes were initially harvested from mice, which 

was problematic since murine antibodies cause an immune response in humans, leading to 

the invention of murine antibody humanization. In short, this process entails the grafting of 

mouse CDRs onto a human antibody scaffold, ultimately bypassing the anti-mouse immune 

response (Kim and Hong 2012). Additionally, transgenic mice have been developed to produce 

human antibodies. The need to replace this technology is still high, and there have been lots 

of efforts to do this. The reasons are multifold. For example, the need to immunize and harvest 

animal cells has great ethical concerns. There is also a low efficiency rate of cell fusion, and 

the screening process for hybridomas can be time-consuming and challenging (Moraes et al. 

2021).  

Display techniques 
In search of alternatives, different display methods have been developed. In short, phage and 

cellular display methods exploit the natural machinery of translocation of surface proteins by 

fusing antibody fragments into the encoding gene. The protein of interest can be displayed on 

its respective membrane. Other display methods used include ribosome display and mRNA 

display. These techniques do not rely on cell-based systems, thus making them an attractive 

option for protein expression since no gene fusion is necessary. High throughput can be 

achieved using enormous libraries of antibody DNA, resulting in a diverse collection of protein 

expression.  

DNA libraries 
A DNA library containing antibody sequences must first be generated to perform display 

methods in high throughput. In principle, there are two classes of libraries that overarch 

numerous subtypes (Adams and Sidhu 2014). The first class tries to mimic naturally occurring 

antibodies by recombining light and heavy chain V, D, and J gene segments into a large 

repertoire of fragments, employing the same paradigm responsible for CDR variety among 

endogenous antibodies. The gene segments can be isolated from a collection of naive B cells. 

Cells that were previously exposed to the antigen may improve initial affinity towards the target 
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of interest. More recent advancements in the development of this type of system include CDR-

H3 diversification while maintaining canonical regions in the Hv and Lv. This reduces the 

diversity of constant structures, therefore increasing the positive folding properties of the 

protein (Prassler et al. 2011). Minimalistic libraries focus on reducing sequence complexity, 

but rationally designing CDR structures. For example, it has been shown that naturally 

occurring CDRs contain amino acid sequences that are inclined to contain tyrosine and serine. 

Constructing a library with CDRs biased toward these two amino acids can create highly 

specific antibodies while reducing the sequence possibilities (Fellouse et al. 2005). 

Furthermore, the CDR-H3 is found to be the most variable CDR (Adams and Sidhu 2014). 

Knowing this, a set of constraints arises that can be used in designing antibody libraries. More 

complete explanations of approaches to introducing genetic diversity have been described 

comprehensively (Beerli and Rader 2010)(Ledsgaard et al. 2018). 

Cell-based display methods 
A commonly used bacteriophage for the phage display of antibodies is the filamentous M13 

phage. This simple bacteriophage consists of 9 genes, one of which is the pIII gene, 

transcribing for the major surface protein. Fusing an antibody fragment to the pIII gene of a 

plasmid containing the M13 phage genome (also called phagemid) and infecting an E. coli 

bacterium will cause the bacteriophage to replicate and present on the surface of the outer 

virion membrane (Ledsgaard et al. 2018). Often, a helper phage offers utility by providing the 

genes encoding for proteins used in replication, resulting in libraries that are two orders of 

magnitude larger than without the use of a helper phage (Rondot et al. 2001).  

The need to work with antigens can inherently be a limiting factor, as the antigens must first 

be purified and immobilized to a surface, such as a microtiter plate or magnetic bead. This can 

be problematic as the structural modification needed for immobilization can alter antigen 

conformation and will thus misdirect the antibodies (Alfaleh et al. 2020). After generating the 

library, the cloned phages are precipitated and concentrated and, in a process called 

biopanning, the large variety of these clones is affinity captured with the beforementioned 

antigen (Salema and Fernández 2017). This process is often repeated to capture the highest 

affinity binders, that are subsequently subjected to affinity maturation processes. 

Drawbacks include the need to fuse an antibody fragment gene with the G3P gene of the 

phage. Naturally, the transformation of the phage into E. coli is not completely efficient, as not 

all E. coli take up the phage DNA, resulting in an incomplete display of the library. With the 

indirect transformation of a phagemid, higher display rates are observed. Additionally, due to 

difficulties in the expression and folding of complete immunoglobulins (Xiao et al. 2017), often 

only heavy chain Fv fragments are expressed. More recently, camelid fragments, called 

nanobodies, consisting of the variable part of both heavy and light chains were expressed. 

Nanobodies have distinctive qualities that make them attractive pharmaceuticals, such as their 

small size and high specificity, which simultaneously amend complete expression and 

biopanning during the display process (Muyldermans 2021). Moreover, complete Fab regions 

were also expressed (Alfaleh et al. 2020). Furthermore, a comparative study found that phage-

derived antibodies are more likely to exhibit developmental risks compared to antibodies 

derived from immunized mice. Antibodies extracted from mice show favorable biophysical 

properties since an immune system will inherently produce antibodies tolerable for the mouse 

(Alfaleh et al. 2020). For example, phage-derived antibodies are more susceptible to self-

interaction and polyreactivity likely as an effect of higher aliphatic content in the CDRs (Kaleli, 

Karadag, and Kalyoncu 2019). 

Yeast or mammalian cell display methods are other techniques where a DNA library is directly 

introduced into a cell, as contrasted to using E. coli as a host for phage proliferation. An 
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advantage of these types of cell systems is that they can produce proteins with eukaryotic 

post-translational modifications. For example, antibodies can be glycosylated, giving them 

biophysical properties similar to mass-produced antibodies. Other advantages include ease of 

cell culture modification and compatibility with flow cytometric analysis (Teymennet-Ramírez, 

Martínez-Morales, and Trejo-Hernández 2022). Of note should be that transfection efficiency 

is lower in these types of systems than phage-display, resulting in smaller and less diverse 

libraries. 

Cell-free display methods 
mRNA display is based on the fusion of the translated protein to the encoding mRNA, with a 

puromycin linker (Newton et al. 2020). This in vitro technique does not rely on the context of a 

cell system and is therefore not limited by the efficiency of plasmid fusion and incorporation 

into the cell or phage, resulting in libraries of 1014 variants. Other advantages include the ability 

to incorporate unnatural amino acids into the sequence, as well as the robustness of the 

system, allowing precise control over experimental conditions such as pH and ionic strength 

(Newton et al. 2020). Even though larger libraries can be constructed, it should be noted that 

due to the loss of the cell context, it is currently not possible to incorporate PTMs into the 

proteins. Additionally, mRNA display is usually limited to monomeric proteins, since a link to 

the mRNA is required. However, there have been successful attempts to display Fab regions 

with mRNA display (Sumida, Yanagawa, and Doi 2012).  

Ribosome display is similar to mRNA display in the sense that it couples the phenotype 

(protein) directly to a genotype (mRNA)(Li et al. 2019).  

In this case, a DNA library is set up for which each sequence often contains a T7 promotor, 

stem-loops at 5’ and 3’ ends, the gene of interest, and a spacer. The stop codon is not 

incorporated into the segment, thereby stalling the ribosome, resulting in an mRNA-ribosome-

protein complex. Subsequent selections of protein fragments are performed using the same 

techniques as other display methods. Ribosome display has been extensively reviewed by Li 

and colleagues (Li et al. 2019). 

The fundamental bottleneck in display technology is the transfection and transformation 

efficiency (Hoogenboom et al. 1998). To illustrate this, consider that prokaryotic display 

methods have a typical library size of 108 to 1010 variants. Phage display libraries are typically 

made of 109 variants but can be up to 1012 variants (Newton et al. 2020). The severity of the 

bottleneck can be demonstrated based on the work of Keefe and Szostak, who screened for 

an ATP-binder using mRNA display (Keefe and Szostak 2001). With the use of a random 

synthetic library, they calculated that only 1 in 1011 variants showed high affinity to ATP, 

indicating that big and highly diverse libraries are a must that cannot be achieved by cell-

surface and phage display. In principle, a second affinity maturation step can be performed to 

gain better binders from a set of lower-affinity antibody fragments, however, the DNA space 

might not be completely utilized which could lead to a reduced amount of high-affinity binders.  

Next-generation sequencing in display methods 
Normally, screening for high-affinity binders using display techniques involves subsequent 

biopanning cycles and sequence determination of clones. However, this step is often 

overshadowed by the high expression or display rate of a small number of proteins, instead of 

providing sequences for lower abundant proteins (Nannini et al. 2021; Rouet et al. 2018). 

Traditionally, Sanger sequencing was used to sequence the most abundant clones, and 

although highly accurate, considering average display libraries contain 108-1010 variants, this 

method has become insufficient (He et al. 2018). There is a need for high-throughput, full-

length sequencing methods that can be used during the biopanning process of highly diverse 

libraries. A current solution of this problem is PacBio® HiFi sequencing, which allows high-



8 

 

throughput sequencing with read lengths of up to 25000 base pairs and 99.5% accuracy (Hon 

et al. 2020).  

Computational design of proteins 
Affinity reagents, such as antibodies, are needed to bind highly specific to therapeutic targets. 

Such binders are, however, not limited be structured like antibodies. Interactions between 

proteins and macromolecules are based on the binding of intricate positioned polar and apolar 

residues between the two entities. With the great advancements in computation power of the 

last decades, in silico techniques have been developed that simulate these interfaces, making 

the computational design of protein binders amendable. In practice, two problems must be 

addressed in the computational design of proteins. The first one is the problem of accurately 

predicting protein folding, and the second one is the prediction of binding to a molecular 

surface.  

Protein folding 
Protein folding is primarily driven by hydrophobic forces, hydrogen bonding, van der Waals 

interactions, and Coulombic interactions among others (Huang et al. 2016)(Newberry and 

Raines 2019), which drive the hydrophobic core away from the solvent, resulting in a 

thermodynamically stable structure. For example, the polar carbonyl and amide groups in a 

protein backbone can form hydrogen bonds, resulting in secondary structures such as alpha-

helices and beta-sheets (Huang et al. 2016). Accurate protein fold prediction is, in principle, a 

search through chemical space for the beforementioned energetically stable conformations. 

However, two problems arise from this, namely the accurate calculation of the free energy and 

the efficient sampling of the search space. The search space can be envisioned as a 

multidimensional array containing all theoretical protein conformations and its size depends 

among other things on polypeptide sequence length, backbone degrees of freedom, and side 

chain rotation. In the early days of the field of structure prediction, Cyrus Levinthal postulated 

that a polypeptide chain of 150 amino acids has 10300 different conformations (Levinthal 1969), 

therefore, finding low-energy conformational states in this landscape is very challenging as it 

is computationally impossible to sample all conformations. Accurate energy calculations are 

crucial to determine these energy states, however, obvious caveats are the trade-off between 

accurate predictions and time (Huang et al. 2016).  

To tackle the problem of chemical space, efficient sampling algorithms have been developed, 

as well as ways to reduce the chemical space. For example, structural data of evolutionary 

similar homologs can be used as a basis for a prediction model. Homology modeling can 

effectively be applied when a sequence shares at least 25% similarity (Jisna and Jayaraj 2021). 

However, if this data is not available, for example in de novo design, it becomes very 

challenging to accurately predict protein structure. Other approaches to guide search space 

sampling are model accuracy scoring functions. These functions try to estimate the probability 

of error of protein folds, e.g., based on residue-residue distance, and can give information 

about how the model should be altered to improve the structure (Hiranuma et al. 2021).   

As the physical interaction models require extensive computing power for energy calculations 

and search space sampling, it has been proven to be very challenging to predict protein 

structures with these methods. Therefore, machine learning (ML) solutions have been 

intensively investigated, having resulted in highly accurate protein fold predictions with the 

development of AlphaFold2 (Jumper et al. 2021). AlphaFold2 uses a neural network approach 

that incorporates both biophysical structural knowledge and multiple sequence alignment 

algorithms. The median (n = 87) backbone Cα RMSD of AlphaFold2 is 0.96Å, compared to 

2.8Å of the next best computational approach in the CASP14 competition, making AlphaFold2 

significantly better than the other prediction methods. Other accurate neural network 
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approaches are RosseTTAFold, which employs a “three-track” neural network, and the very 

recent ESM Metagenomic Atlas (Lin et al. 2021) which is based on a language model. 

Computational protein binder design 
To design a protein solely using computational methods, the protein structure prediction must 

be accurate, as well as the prediction of binding. Recently, developments in the field of de novo 

protein design have increased our understanding of this process (Huang et al. 2016; Pan and 

Kortemme 2021), as well as developments in de field of computational antibody design 

(Norman et al. 2020). 

De novo protein design 
Design without any prior information about protein shape is a huge challenge, because, firstly, 

a binding site on the target must be identified, and secondly, there is no protein to base the 

design on, as would be with the design using homologs. For example, generating random 

protein sequences and testing all proteins for function is not feasible as the sequence space 

is enormous. To illustrate this, consider that there are 20 naturally occurring amino acids, 

meaning for a randomly designed de novo protein of 100 amino acids there would be 20100 

different sequence possibilities (Huang et al. 2016). Between the 1980s and early 2000s, de 

novo design mostly made use of mathematical equations to define backbone conformations, 

and sidechain repacking algorithms design the final sequence. (Korendovych and DeGrado 

2020). With the emergence of online protein structure repositories, a milestone in the field 

occurred in 2003. Here, Top7 was designed based on residue fragments from the protein 

databank, having a backbone RMSD of a mere 1.2Å compared to the experimentally 

determined structure (Kuhlman et al. 2003). Interestingly, the Top7 protein was observed to 

exhibit topology otherwise not found in nature. This finding paved the way to explore other 

unnatural protein folds, with new ways of binding and function. 

There are two paradigms in computational design of proteins. The first is a design that uses 

known structures such as homologous structures, PDB fragments, or predefined topology. For 

example, helical bundles can be designed with atomic accuracy, and allow easy backbone 

sampling, thus providing good starting models for protein design (Hill et al. 2000). The second 

paradigm is the design without the knowledge of similar structures. Below, several examples 

will be given demonstrating the different approaches and processes of the de novo design of 

proteins. 

To exemplify the first approach, recently, a de novo a-Helical protein was developed that 

stabilizes the adenosine A2A receptor (Mitsumoto et al. 2021). The authors selected a set of 

389 backbone structures from a collection of 1688 globular a-backbone structures and 

designed amino acid sequences that stabilize each backbone. Designs were selected based 

on core packing, compatibility between structure and sequence, and the ability to be 

superimposed onto two helical loops of the alpha subunit of the target protein. Energy 

landscape limitations were applied, and molecular dynamics simulations were used to identify 

proteins containing low fluctuating N- and C-terminal helices. This resulted in two highly stable 

de novo fusion proteins, one of which showed nanomolar affinity towards the adenosine A2A 

receptor in its inactive state. It should be noted that the binding mode between these two 

proteins does not proceed via the classical orthosteric binding route but rather proceeds 

allosterically. An advantage of this is that the binder does not compete with endogenous 

ligands for the orthosteric binding site, therefore being likely to inhibit the receptor disregarding 

the endogenous effect (Nussinov and Tsai 2012). Proteins like this can be more favorable than 

therapeutic antibodies, as they contain better stability and size properties. 

Another approach to de novo design has been described by Cao and colleagues (Cao et al. 

2022). Here, the authors attempted to create small protein binders to 12 protein targets that 



10 

 

do not have clearly defined sites that can mediate strong interactions. In short, the process 

was started by identifying weak interacting residues on the target surface. Using the rotamer 

interaction field (RIF), disembodied amino acids were first docked against the target surface, 

thereby identifying polar rotamer binding possibilities and binding energy. RIF docking is highly 

optimized for speed (algorithmic complexity of O(1)) and generates favorable rotamer 

placements out of a large collection of possibilities. It has been extensively explained by Dou 

and colleagues (Dou et al. 2018). By the ‘backward growing’ of multiple weak binding residues, 

a library of sequences with correct backbone conformation and positioning of binding residues 

was created. This miniprotein library was again docked against the target using PatchDock to 

establish crude positioning of the binder. Using RIF docking, a higher resolution of rigid body 

orientation was acquired for each protein. Recurrent backbone motifs were then identified and 

used as guiding structures for further design optimizations of the scaffold library. Further 

experimental validation resulted in 10 to 100 binders for each target. Even though this process 

resulted in high-affinity binders, obvious limitations are its resource intensiveness and complex 

workflow. Besides multiple high throughput docking methods and highly specific optimization 

conditions, experimental validation is also necessary. For example, only a small percentage 

out of millions of computed proteins binds to the target, but even after various library size 

limiting steps, it is still paramount to experimentally validate numerous proteins. In this case, 

DNA synthesis, multiple rounds of yeast display screening, solubility- and binding assays, as 

well as the need for generating a mutagenesis library are considerable bottlenecks. 

Other examples include the use of ML algorithms, such as the use of a Rossetta-based 

denoising diffusion model called RFdiffusion (Watson et al. n.d.). Here, the authors designed 

high-affinity binders (picomolar range) to apoptosis-related peptide Bim and parathyroid 

hormone. Using this approach, no topology or binding mode needs to be specified, which 

greatly enhances the de novo protein design process as it is not restricted to using sequence 

homologs or predefined scaffolds. Others used Bayesian optimization to make accurate 

predictions of possible peptide inhibitors (Yang, Milas, and White n.d.). A recurring problem is 

the lack of accuracy in the output of in silico high-throughput screens. By modifying existing 

pre-trained models, such as AlphaFold2, Bayesian optimization can be used to optimize 

sequences as error rates are also defined. The authors found likely hemolytic peptides as well 

as a binder of Ras GTPase. Although new machine-learning approaches like this can be useful 

in later research, the findings were not experimentally validated. 

Computational antibody design 
Besides the de novo design of small protein binders, there have been many efforts to 

computationally design antibodies and CDRs directly. Previous ML approaches for antibody 

design were often limited by the low amount of training data (~10000), such as PyIgClassify 

(Robert et al. n.d.)(Adolf-Bryfogle et al. 2015), but recently Absolut! was developed, which is a 

massive (~108) dataset containing 6.9 million antibodies docked to 159 different antigens. 

These antibody-antigen binding pairs were scored by calculated binding energy. The dataset 

conforms to eight physical constraints, thereby preserving biological complexity, such as 

antigen topology, making it relevant for real-world applications (Khan et al. 2022). A dataset 

like this is crucial for benchmarking following antibody design ML initiatives and has been 

readily used in AntBO (Khan et al. 2022). AntBO was developed to design CDR-H3 sequences 

based on an antigen of interest and can suggest high-affinity antibodies while maintaining 

developability, based on a Bayesian optimization algorithm. As an example, the authors 

computed 200 antibodies against the S protein of SARS-CoV, each with multiple developability 

parameters. While sounding promising, no experimental validation has yet been performed. A 

myriad of other computational design approaches has been developed, some of which are 

OptCDR and its successor OptMAVEn (Li, Pantazes, and Maranas 2014; Pantazes and 

Maranas 2010), which are based on energy-function models. The recent review article by 
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Norman et al. provides an excellent overview of current trends in computational antibody 

design (Norman et al. 2020). 

Closing remarks 
This essay has thus far provided an overview of different trends in experimental and 

computational antibody and binder design. The question of whether experimentally developed 

antibodies will become obsolete due to the emergence of computational strategies is 

speculative in nature, therefore the answer should be regarded only as an opinion about 

possible future prospects. It should be noted that this piece is by no means an exhaustive 

outline of all trends within the field and will therefore be biased by its limited scope.  

Indeed, computational approaches have long remained dormant in the protein design field, but 

now, with computing power higher than ever and the possibility to produce synthetic DNA has 

made it possible to completely create proteins from scratch. However, to state that 

experimental methods will become completely outdated is currently unlikely, as all 

computational methods still need experimental validation. Computational methods are very 

promising, but often propose a large number of possible binders, out of which only a fraction 

will fold correctly, let alone bind to the target. It is also important to realize that in silico methods 

cannot provide definitive accurate binders, but only suggestions at best. It is therefore still 

crucial to screen most binders for the correct folding and binding, which can be resource and 

time-consuming. With the emergence of AlphaFold2, the ultimate fold of small and 

thermostable proteins is mostly solved, which are favorable developability qualities for 

therapeutics. The influence of the computational design field is and will be significant, based 

on the coming of age of the field. There has been a myriad of solutions to solve the problem 

of sequence space sampling, using machine learning algorithms among others, as well as 

different approaches to identify binding modes to undruggable targets, and we are now paving 

the way to very accurate structural predictions.  With regards to experimental approaches, the 

recent advancements in next-generation sequencing make it possible to elucidate in vitro 

library diversity in higher amounts than ever before and to sequence possible high-affinity 

binders with low expression, improving the quality of output of display methods substantially. 

Indeed, it is still impossible to bring complete antibodies to expression with display methods, 

but rather fragments of the proteins. Because the context of the entire antibody is lost, the 

output of these high-throughput methods does not necessarily translate to complete 

antibodies. To conclude, both approaches are not perfect by any means, are continuing to 

improve, and will likely keep complementing one another in the following years.  

To argue whether de novo binders will replace antibodies in the future, let us first look at the 

qualities of both binders. De novo binders are often small, very thermostable, and have very 

efficient binding to their target, which makes them attractive candidates as therapeutics. And 

however similar in specificity, antibodies are large macromolecules susceptible to aggregation 

which can influence immunogenicity. These improved biophysical properties alone are a great 

incentive for the development of small protein binders and a similar rationale led to the 

development of nanobodies. Regardless, antibodies can activate the immune system with its 

Fc-region, which can be the leading mode of action against a certain target. This is something 

that small protein binders cannot readily do, and it will likely be challenging to incorporate 

similar properties into small protein binders while retaining the aforementioned qualities. That 

being said, they show great potential as therapeutics and likely will be a substantial group of 

future pharmaceuticals. 
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