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Abstract
Artificial intelligence models that achieve high performance in tasks such as natural language pro-
cessing and computer vision often require large and complex datasets. However, the use of these
datasets can be costly in terms of computational expense, training time, and energy consumption.
The carbon footprint of these models can also be significant. Data-efficient machine learning, which
aims to reduce the amount of data required to achieve good performance, is therefore an important
area of research. Dataset reduction methods aim to select or synthesize a smaller subset of the data
that still allows good performance to be achieved. These methods can be applied non-adaptively by
pruning the dataset in advance or adaptively by selecting a subset of the data every X epochs while
training.
In this thesis, we provide an in-depth analysis of 6 non-adaptive and 14 adaptive dataset reduction
methods. Several optimizations are presented that can further increase the speedup or that can in-
crease the performance while offering some speedup. In addition, we present a novel adaptive dataset
reduction method called Supervised Contrastive Learning (Super-CL), which is based on an existing
method called Contrastive Active Learning (CAL). We test these algorithms on biodiversity datasets,
which are complex datasets that make a good test case for operational machine learning settings as
they give a good representation of the imbalanced world. Our results show that some non-adaptive
methods can effectively prune datasets when redundancy is present. However, we also find that there
is no adaptive method that can effectively speed up training on all datasets, suggesting that more
research is needed to define a robust adaptive method. In addition, we explore the effect of com-
bining transfer learning with dataset reduction to further reduce energy consumption, which shows
promising results and can in some cases speed up training with transfer learning.
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1 Introduction

Recently, large complex models in Artificial Intelligence have shown remarkable results in areas such
as Natural Language Processing and Computer Vision [1, 2, 3, 4]. The increase in model performance
is said to be related to the exponential increase in the number of parameters [5]. The increase in model
complexity comes with the need for massive datasets. This results in heavy computational expense,
an increase in training time, and a large increase in memory and energy consumption. The hardware
to perform tensor operations requires large amounts of energy and can have a large carbon footprint
[6, 7]. The models are thus not only costly to train and evaluate financially but also environmentally.
Optimizing and researching these models requires many trials of training and validation runs over the
dataset for different hyperparameters. This can multiply these costs by thousands of times [8].
For example, the GPT-3 model [1] with 175×109 parameters needed around 28000 days of training
time on one V100 GPU or 90 days on 310 V100 GPUs. In [7] it is estimated that this results in
84748kgCO2eq which is equivalent to driving a new car for 703808km, almost as far as driving to
the moon and back. It is around the same amount of CO2 equivalent emissions as 12 US households
over 1 year. This is only for the final training cycle and does not include R&D such as hyperparameter
optimization or neural architecture search.
Therefore, data-efficient machine learning is a very important research field [9]. To reduce the amount
of computation needed, the size of the dataset should be reduced without losing significant perfor-
mance. Not only can a reduced dataset reduce the computing required by a large amount, in some
cases it can also increase the accuracy of the model by filtering out noisy data or mislabeled samples
[10].
Dataset reduction methods try to select a subset that contains the most informative samples or that
represents the dataset well. Dataset reduction methods have applicability in multiple areas such as
Incremental Learning in which input data is continuously used and where the number of tasks to be
learned (e.g. the classes in a classification task) are not static. Training in the continuous stream of
information can result in catastrophic forgetting where previously learned tasks are forgotten by the
model. Dataset reduction can be used as a method to construct a memory buffer which can alleviate
this problem.
Dataset reduction methods can also be used in an Active Learning setting. In this setting, there is
a small pool of labeled data and a large pool of unlabeled data. The learning algorithm queries an
expert (often a human annotator) to label a subset of unlabeled samples, resulting in a larger labeled
dataset. Labeling is often expensive and Active Learning tries to solve this problem by querying the
most informative samples. After each increase of the dataset size, a model is trained on the labeled
dataset. This differs from Incremental Learning, in which the model training continues by training
only on the new data subset. Reducing the size of the dataset could greatly reduce the computational
need when applying it after each run or on the initial labeled dataset at the start of the Active Learning
process. Furthermore, (unsupervised) dataset reduction techniques can often be used to efficiently
find the subset of unlabeled samples that the expert should label. Intelligent selection of the most
informative and diverse samples can result in higher model performance with fewer labeled data [11].
Thus, potentially decreasing labeling costs.
Dataset reduction techniques can be subdivided into two categories: selection- and synthesis-based
methods. With selection-based methods, such as classical coresets [12], a small amount of the most
relevant samples of the dataset is extracted. This can be done by simple uniform sampling or by
looking at samples that the model is most uncertain about.
With synthesis-based methods such as Dataset Condensation/Distillation the information of the orig-
inal dataset is condensed by synthesizing a new smaller dataset [13, 14, 15, 16, 17]. Synthesized
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Figure 1: CIFAR-10 dataset condensed into one image per class [18]

images do not come from the original data distribution, but do try to reflect this, as the goal is to
represent the underlying data distribution as closely as possible. For example, a class with 400 image
samples can be condensed into one image. This results in an image that is more abstract but also more
information dense.
This effect can be observed in Figure 1. Here, the image of the car class is an abstract representation of
a car where some characteristics such as the wheels are present. Synthesis-based selection methods
are still very novel and, although they show interesting results, they have not been shown to scale
up to large resolution images such as the ImageNet dataset without the need for a large amount of
computational resources [19].
In addition to reducing data sets to potentially save energy, there is another method that is widely used
in practical machine learning, called transfer learning. Transfer learning is the process of using a pre-
trained neural network as the starting point for a new task, rather than training a new network from
scratch. This can be particularly useful when the new task is similar to the original task for which
the pre-trained network was trained. Transfer learning can save energy in training neural networks
because the pre-trained network has already learned many of the features that are relevant to the new
task, so the new network does not have to learn these features from scratch. This can significantly
reduce the amount of computation and data required to train the new network, which can be especially
important when training large, complex neural networks. Since both dataset reduction and transfer
learning can potentially save energy, it would be interesting to see if the methods can be combined
to efficiently train neural networks. There has yet to be any research on the potential combination of
these methods.
Dataset reduction methods differ in complexity, performance, and in the amount of computational
resources needed to find a smaller set. Furthermore, some methods do not perform well with imbal-
anced datasets, and most methods have not been tested on fine-grained (e.g. biodiversity) datasets.
Biodiversity datasets often contain a hierarchical class structure, overlapping classes, and large class
imbalance. These complex datasets make a good test case for operational machine learning settings,
as they give a good representation of the imbalanced world. In this research, multiple dataset reduc-
tion methods are implemented to find their advantages, limitations, possible improvements, and their
trade-off between performance and computational resource need.
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1.1 Research Questions
This research is focused on one main research question: What are the optimal subset selection meth-
ods for dataset reduction?
This broad question can be answered by dividing it into multiple subquestions. These are needed to
look at the trade-off between energy efficiency and performance:

1. How do the methods compare in speedup and performance?

2. How applicable are the methods on complex and fine-grained (biodiversity) datasets?

3. Can the methods be applied in combination with transfer learning to increase the total energy
efficiency?

1.2 Thesis Outline
The thesis is organized into seven chapters. In the second chapter, we present a review of existing
dataset reduction techniques. We discuss both selection-based and synthesis-based methods, along
with their potential applications and combination with transfer learning.
Chapter three focuses on the biodiversity datasets used throughout the thesis. We provide details on
the characteristics and sources of these datasets, as well as the preprocessing steps applied to prepare
them for the experiments.
Chapter four presents the architectures, metrics, and optimization techniques used in our study. We
discuss how the dataset reduction methods can be applied adaptively and non-adaptively, and address
potential issues with the metrics used to evaluate their performance. We also introduce our novel
adaptive data subset selection technique SUPERVISED CONTRASTIVE LEARNING and present the
optimization of the existing method CONTRASTIVE ACTIVE LEARNING. The experimental setup is
described in detail in this chapter.
The results of the experiments are presented in chapter five. We provide comprehensive performance
comparisons of the different dataset reduction techniques and discuss the implications of the results
in chapter six. In addition to this, we try to answer the research questions as proposed earlier and
present potential future research directions.
Finally, in the last chapter, we highlight the main contributions of our work to the field of data and
energy efficient deep learning.
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2 Background Literature
Several methods exist for subset selection such as coresets. The term coresets was first coined in [12]
in which the authors discussed several (traditional) geometry based selection techniques that for a set
of points can select a small subset, the coreset, on which computations can be performed. This idea
was extended with data distribution approximation techniques for various geometric problems such
as σ-coresets using kernels for point sets [20]. For a complete overview of traditional methods see
[21].
With the large dimensionality of the data and high computational complexity of deep learning, these
traditional geometric methods are not always applicable and their performance is doubtful [22]. With
deep learning, coresets are viewed as finding a subset S ⊂ T with |S| < |T | and where T is the full
training set. Training a model on S should have close generalization power to that of a model trained
on T as measured by their inference performance on the test set. Dataset reduction methods can be
performed merely on the training data without a relation to deep learning models. Other methods
need interaction with the model to efficiently select the best subsets. In this section multiple methods
that are applicable to deep learning are described.

2.1 Selection techniques
Geometry based In a large dataset, T , there can be samples that show similar attributes (properties)
and thus are relatively close to each other in feature space. These samples are conjectured to be non-
informative for the model and will not give a significant increase in generalizational power. For image
data this can be seen as a case of Near-Duplicate Removal [23]. Multiple geometry based methods
exist that can find and remove these samples.
The K-Center Greedy method [24] views the coreset problem as a minimax facility location problem.
This comes down to choosing multiple center points in the dataset such that the largest distance
between a datapoint and the nearest center point is minimized. The original K-Center problem is NP-
hard. The authors present a robust greedy approximation to solve this. The algorithm iteratively adds
samples from T to S such that the largest distance between a datapoint from T to the closest point in
S is minimized. K-Center Greedy can be applied to image data by applying the distance metric on the
feature embedding of the images, for example by using a pre-trained network as feature extractor.
A simple geometric method is Herding in which samples from T are iteratively added to S to minimize
the distance, in feature space, between the centerpoints of S and T [25].
In [26] the authors present both a supervised and a self-supervised pruning metric that can be used
to reduce dataset size. For the self-supervised metric they first perform k-means clustering on the
embedding space of a ImageNet pre-trained self-supervised model (SWaV [27]). The difficulty of
each sample can then be expressed by its distance to the nearest prototype. A prototype can be seen
as a cluster center or class representation. The supervised metric of course uses the label definition.
For each class, the class prototype can be computed by taking the average of the feature vectors for
all samples within a class. In their research they show that when more than 70% of the data of the
ImageNet dataset is kept, the metrics show similar performance. For subsets with smaller size, the
supervised metric outperforms the unsupervised approach. Throughout this thesis we denote dataset
reduction with the supervised metric as the Protoypical data subset selection method.

Uncertainty based Uncertainty based methods try to find examples that are hard for the model to
make inferences on. The samples on which the model is not confident about the class membership,
should be selected to improve the discriminative ability of the model. This is often used in Active
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Learning as a baseline. Model dependent methods such as uncertainty sampling can be applied on
an unsupervised dataset to find samples that the model is not confident about. These samples are
then labeled by a human expert such that the model can be trained on them. A disadvantage of
uncertainty sampling is that it does not explicitly regard the diversity of the selected subset. It is
thus not guaranteed that all classes will be present in the subset and the subset is thus not always a
correct representation of the full dataset. These properties do not make it a good candidate for dataset
pruning.
Uncertainty can be measured with multiple metrics such as:

1. Least confidence can be quantified by the difference between the maximal possible confidence
and the predicted probability. Selection is based on samples with high least confidence values:
u = 1−max

i
pi

2. Margin of confidence is quantified by the difference of the top two predictions. Samples
with high margin of confidence are selected first. The uncertainty is then defined as: u =
1− (max

i
pi− max

j∈{C}−argmax
i

pi
p j), where C is the set of classes.

3. Entropy describes the average level of uncertainty inherent to the possible outcomes of a random
variable. If all outcomes are similar, entropy is low. If the difference between model predictions
is high, entropy is high. It is defined as: entropy(x) = ∑

C
i=1 P(ŷ = i|x)logP(ŷ = i|x). The

uncertainty then becomes: u =−entropy(x)

Another approach is Hard Negative Mining [28] in which we rank false positives based on the con-
fidence of the network on the wrongly predicted class or rank them (increasingly) by the probability
of the actual class. The model is thus confident about the class each sample belongs to but that it is
actually absolutely wrong about. This has overlap with least confidence sampling although with least
confidence sampling we do not necessarily need label information. Another difference is that Hard
Negative Mining is solely focused on the negative samples.
A potential problem with uncertainty based methods is that the selected samples that the model is
uncertain about might be similar in feature space. For example, when a model can discriminate
between classes A and B but is very uncertain about samples from class C. Uncertainty sampling will
then select a subset which mostly represents class C and as such the subset lacks diversity. Without
diversity, the problem is that models might be biased towards certain classes. One solution would be to
select a subset such that the samples are as diverse as possible, but this might result in non-informative
samples.
In [11] the method Batch Active learning by Diverse Gradient Embeddings (BADGE) is presented.
This unsupervised method tries to solve this problem by sampling a subset that the model is uncertain
about but in which the samples are diverse. Uncertainty is measured by looking at the loss gradients
of the hypothesized labels. The hypothesized label is the label with the highest activation in the output
layer, as the true label is unknown. Diversity is captured by using the k-Means++ algorithm on the
(hypothesized) gradient space of the samples and selecting samples from each cluster.

Submodularity based A submodular function can be described as follows: Let n be the number of
data points in a ground set Ω and let f be the (power) set function f : 2Ω→ R. That translates a set
of random variables to a real value. This function can be used to measure how good a subset is, if
properly defined. The f function is submodular if for all S,T ⊆Ω it holds that f (S)+ f (T )≥ f (S∪
T )+ f (S∩T ) [29]. Submodular functions follow the diminishing marginal returns property which
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states that the difference in incremental value of f when adding an item to the input set decreases as
the set size increases. In other words, adding a sample x to a subset A results in more gain in terms of
f then when adding the x to A′, when A⊂ A′. A′ already contains more information than A since it is a
larger superset. Submodular functions can thus be used to measure the informativeness and diversity
of sets, which can be very useful for efficient data subset selection.
Equation 1 defines the data subset selection algorithm as a submodular optimization function with a
constraint that the subset size is no larger than b, the budget:

max{ f (X) such that |X | ≤ b} (1)

Submodular functions can be solved by greedy functions which iteratively add samples with the high-
est gain, according to f . It has been shown that this results in a lower-bound performance guarantee
of a factor of 1−1/e≈ 0.63 of the optimal of the problem defined in Equation 1 [30].
The previously mentioned entropy metric is such a submodular function. In [31] multiple submodular
information measures are discussed in terms of applicability on machine learning, such as Facility
Location and Graph Cut. These three functions can be successfully applied as metric for subset
selection and show good results with small subsets [22].
Facility Location functions are functions that, when maximized, select samples that represent the
dataset well. It thus can be seen as a greedy version of the k-medoids algorithm [32]. The facility
location function uses a pairwise similarity matrix of the dataset. It chooses samples for the subset that
maximize the pairwise similarities to samples in the ground set. The general definition of a facility
location problem is defined in Equation 2. This thus differs from the K-Center Greedy method in that
it uses pairwise similarity instead of distance.
A Graph Cut function is a function that selects samples from the ground set such that the similarity
matrix is split into subgraphs. The general definition of a graph cut function can be observed in
Equation 3.

f (S,T ) = ∑
t∈T

max
s∈S

φ(s, t) (2)

f (S,T ) = λ ∑
t∈T

∑
s∈S

φ(s, t)− ∑
s,y∈S

φ(s,y) (3)

where:

S = the subset
T = the ground set
φ = the similarity function
λ = edge connectivity

In [33] the authors connect submodularity to likelihood functions of the Naive Bayes and Nearest
Neighbour classifiers in a supervised setting. Additionally, they present filtered active submodular
selection (FASS) in which they combine the uncertainty sampling method with submodularity based
subset selection for an Active Learning setting. The uncertainty scores are used to get the hypothe-
sized labels for unlabeled samples. FASS outperforms both random and uncertainty sampling in an
digit recognition experiment in an Active Learning setting.
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Margin based Datapoints that lie close to the decision boundary are harder to discriminate and
thus likely more informative for the network. Selecting these samples can increase the discriminative
performance of the model. This can especially be useful when working with fine-grained datasets, in
which classes can be hard to distinguish as there can be overlap in feature space. In [34] these samples
are called contrastive as they are close in feature space but the model outputs different probability
distributions over the classes. The authors applied this method in an Active Learning setting where
not all data is labeled. The algorithm that selects samples based on their contrastive scores is called
Contrastive Active Learning (CAL). Query functions for Active Learning are often based on either
diversity or uncertainty sampling. With CAL, the authors try to leverage the best of both worlds
and try to combine these methods into a single query method. Their method was tested on seven
text datasets in multiple natural language tasks. It showed equal or better performance than a large
selection of baseline active learning query methods. Although they apply it on unlabeled data, it can
also be applied in a supervised setting such that label information is also used. Furthermore, CAL
was applied on text data but the algorithm could also be applied on image data by using the feature
space of the images. A single iteration of the CAL algorithm can be observed in Algorithm 1.
With complex data representations, the distance to the decision boundary for a sample cannot always
be computed. In [35] the authors propose Adversarial DeepFool to approximate this distance by
using adversarial examples. By adding perturbations in the labels, the predictive power of the model
is influenced. Samples that require the least adversarial perturbation to cross the decision boundary
are selected. This however requires a large amount of computational power.

Algorithm 1 A single iteration of CAL.

Require: labeled data Dlab, unlabeled data Dpool, acquisition size b, model M , number of neigh-
bours k, model representation (encoding) function Φ(.)

1: for xp in Dpool do
2:

{
(x(i)l ,y(i)l )

}
, i = 1, ...,k← KNN (Φ(xp),Φ(Dlab),k) ▷ find neighbours in Dlab

3: p(y|x(i)l )←M (x(i)l ), i = 1, ...,k ▷ compute probabilities
4: p(y|xp)←M (xp)

5: DKL(p(y|x(i)l )||p(y|xp)), i = 1, ...,k ▷ compute divergence
6: sxp =

1
k Σk

i=1DKL(p(y|xi
l)||p(y|xp) ▷ score

7: end for
8: Q = argmax

xp∈Dpool

sxp, |Q|= b

9: return Q

Loss based Not every sample has the same influence on the loss when training a network. The
influence on the loss can be used as a selection method for the coreset, since samples that have
large influence on the loss are informative. This approach is similar to uncertainty based methods but
instead uses metrics focused on the loss contribution or error value during training. In [36] the authors
present simple scoring metrics, Gradient Normed (GraNd) and Error L2-Norm (EL2N), which can be
used to prune the dataset very early in training. To compute the GraNd scores for a dataset, the authors
randomly initialize ten deep neural networks. The expected score for each sample can be computed
by Equation 4 using the model parameters θ at time t.

Xt(x,y) = Eθt ||∇θt l(x,y;θt)||2 (4)
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The final score for the sample is then the average sample score over all networks. The authors report
that the EL2N metric can provide even better information for pruning data. To compute the EL2N
scores for all samples, they again use ten deep neural networks but now they are first trained for 20
epochs on the training data. The expected EL2N score can then be computed by Equation 5 using the
model parameters θ at time t.

X ∗t (x,y) = Eθt ||p(θt ,x)− y||2 (5)

Larger scores represent more informative samples which should be selected. With their method the
authors are able to prune half of the CIFAR10 dataset after just a few epochs while slightly improving
test accuracy.
This differs from methods such as Forgetting Events [37] in which samples are pruned based on how
often they are forgotten during training. Forgetting is represented by measuring the number of times
that a sample was misclassified in a consecutive epoch of when it was correctly classified. They note
that a significant portion of the dataset can be removed from the dataset while still maintaining state-
of-the-art generalization performance. This method thus needs more resources as it cannot identify
these samples early on, but is simple to implement.

Gradient matching based Stochastic gradient descent (SGD) methods used for training deep learn-
ing models approximate the full gradient of the dataset by calculating it iteratively only on small
subsets or batches.
Methods such as CRAIG [38] select a weighted subset of which the gradient closely resembles the
gradient of the full dataset by maximizing a submodular function. The authors prove that the subset S
that minimizes an upper-bound on the error of estimating the full gradient, maximizes a submodular
facility location function. Hence, S can be efficiently found using a fast greedy algorithm which
iteratively selects a sample that reduces the upper bound on the estimation error the most. CRAIG is
said to deliver a 3x speedup for training deep neural networks without losing significant performance.
The authors also show that any incremental gradient method on the subset S, obtained by CRAIG,
converges in the same number of epochs as it would on the full dataset T . The speedup by CRAIG is
thus inversely proportional to the size of S.
A similar approach is that of [39] in which the authors present GRAD-MATCH. This gradient matching

Algorithm 2 GRAD-MATCH Algorithm, source: [39]

Require: Train set U, validation set V , initial subset X (0), subset size k, tolerance ε, initial param-
eters θ0, learning rate α, total epochs T , selection interval R, validation flag isValid, batch size
B

1: for epochs t in 1, ...,T do
2: if (t mod R == 0) and (isValid == 1) then
3: X t ,wt = OMP(LT ,LV ,θt ,k,ε)
4: else if (t mod R == 0) and (isValid == 0) then
5: X t ,wt = OMP(LT ,LT ,θt ,k,ε)
6: else
7: X t = X t−1

8: end if
9: θt+1 = BatchSGD(X t ,wt ,α,LT ,epochs = 1)

10: end for
11: return final model parameters θT
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method minimizes an error term on the gradient difference between the selected weighted subset and
the gradient of either the training or validation set. Thereby directly optimizing for the gradient
mismatch error and resulting in the state-of-the-art accuracy-efficiency trade-off for adaptive data
subset selection. The GRAD-MATCH algorithm, which can be found in Algorithm 2, has been shown
to provide better error bounds on the estimation of the gradient compared to CRAIG. The definition
for this error can be found in Equation 6.

Err(wt ,X t ,L,LT ,θt) =

∥∥∥∥∥∑
i∈X t

wt
i∇θLi

T (θt)−∇θL(θt)

∥∥∥∥∥
2

(6)

where:

θt = model parameters at iteration t
L = either the training or validation loss
X t = subset X at iteration t
wt

i = weight for sample i ∈ X t

Li
T (θ) = LT (xi,yi,θ), the training loss at epoch i of training

LT (X ,θ) = ∑i∈X LT (xi,yi,θ), the loss on the subset X ⊆U of the training samples

The adaptive subset selection algorithm results in subsets X t for t = 1,2, ...,T with corresponding
sample weights wt . So at iteration t, the model parameters are updated using the weighted loss of
the model on the subset X t that is weighted by wt . The authors show that minimizing the gradient
matching error can be seen as a weakly submodular maximization problem and they use a greedy
orthogonal matching pursuit (OMP) algorithm [40]. OMP is an iterative greedy algorithm that comes
from the field of signal processing and is used to find the sub-optimal solution to the problem of
sparse signal representation. It can be seen as a facility location problem with the addition that
besides samples, it also computes weights.
To prevent the algorithm from overfitting, the authors add a regularization term with coefficient λ and
an L2 loss regularizer over the weight vector w. Equation 6 then becomes Equation 7.

Errλ(w,X ,L,LT ,θt) = Err(w,X ,L,LT ,θt)+λ∥w∥2 (7)

By minimizing this error term, the GRAD-MATCH algorithm can find a good representation of the
gradient space of the training or validation set. The data selection optimization problem is then
defined by Equation 8 which is constrained by the size of the selected subset X .

wt ,X t = argmin
w,X :|X |≤k

Errλ(w,X ,L,LT ,θt) (8)

The GRAD-MATCH algorithm selects the weights and the subset by optimizing Equation 8. This
results in Equation 9:

Eλ(X ) = min
w

Errλ(w,X ,L,LT ,θt) (9)

Note that solving Equation 8 is the same as solving minX :|X |≤kEλ(X ). The OMP algorithm, which
can be found in Algorithm [40], can then be used to solve this equation.
The authors present several optimizations to speed up the GRAD-MATCH algorithm. For example,
they propose to apply the algorithm on individual mini-batches instead of individual samples. This
could greatly decrease the computations needed to solve Equation 9 by a factor of the batch size. The
mini-batch optimization problem then becomes:
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EB
λ
(X ) = minw

∥∥∥∥∥∑
i∈X

wi
t∇θLBi

T (θt)−∇θL(θt)

∥∥∥∥∥+λ∥w∥2 (10)

where:

B = batch size
bn = the number of mini-batches
bk = k/B, the number of mini-batches to be selected
∇θLB1

T (θt), ...,∇θLBbn
T (θt) = the mini-batch gradients

Algorithm 3 Orthogonal Matching Persuit (OMP),
source: [39]
Require: Training loss LT , target loss L, current pa-

rameters θ, regularization coefficient λ, subset size
k, tolerance ε

1: X ← /0

2: r← ∇wErrλ(X ,w,L,LT ,θ)|w=0
3: while |X | ≤ k and Eλ ≥ ε do
4: e = argmax

j
|r j|

5: X ← X ∪{e}
6: w← argmin

w
Errλ(X ,w,L,LT ,θ)

7: r← ∇wErrλ(X ,w,L,LT ,θ)
8: end while
9: return X ,w

When the algorithm is applied per mini-
batch instead of per sample, the GRAD-
MATCH algorithm is then referenced as
GRAD-MATCHPB. In addition to this, they
do not use all layer gradients, as this be-
comes intractable for large neural networks.
Instead, they use the last-layer gradients.
All gradients, however, still need to be
saved to memory to be able to solve the
optimization problem, which can result in
out-of-memory errors for large datasets.
To circumvent this, the authors propose
per-class and per-gradient approximations.
With a per-class approximation the gradient
matching problem is solved per class and
as such requires much less memory. Com-
bining this with the per-gradient and last-
layer approximations, the authors were able
to speed up the GRAD-MATCH algorithm
while reducing memory consumption. Note that the optimizations per class and per gradient do not
have to be applied to the GRAD-MATCHPB algorithm.
Both methods work well with (artificially) imbalanced data when the validation set is kept balanced,
but the methods are not tested on fine-grained (biodiversity) datasets. It would thus be interesting to
see how they compare with other selection methods when the full dataset is unbalanced and there is
class overlap present.

Bi-level optimization based In [41] the coreset selection problem is expressed as a discrete-continuous
bi-level optimization problem. Bi-level, as it has two optimization objectives. The outer objective is
to select a subset S that is a good representation of the full set, while the inner objective is to optimize
the model parameters θ with respect to S. They present GLISTER, a method in which coresets are
selected that maximize the log-likelihood of the validation set. The data subset selection optimization
is defined by the following:

S = argmax
S⊂T

∑
(x,y)∈V

ll

(
x,y; argmax

θ

∑
(x,y)∈S

ll(x,y;θ)

)
(11)

where:
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S = the subset
T = the training set
V = the validation set
ll = the log-likelihood

To save computational resource needs, greedy data subset selection is not run every epoch. The algo-
rithm can be applied both in a supervised and unsupervised setting as it does not label information.
GLISTER can get higher performance early in training than CRAIG and random uniform sampling.
However, the final performance is very comparable and the question remains if the extra computa-
tional need is justifiable.

2.2 Synthesis techniques (Dataset Condensation)

Figure 2: An overview of the dataset distillation pro-
cess. Source: [18]

With the synthesis-based dataset reduction
techniques, the goal is not to select the most
informative samples, but instead to learn
how to synthesize new samples that can be
more informative than the original images.
These methods are often called Dataset
Distillation or Condensation (DC) as they
show properties similar to that of Model
(or Knowledge) Distillation in which large
trained models are compressed into smaller
ones while maintaining good performance
[42]. A general overview of Dataset Distil-
lation can be found in Figure 2.
In [13] instead of optimizing the model
parameters for an inference objective, the
pixel values of the distilled images were
optimized. The MNIST dataset of 60000
images was compressed into 10 synthetic
images with one image per class. Mod-
els trained on this extremely small dataset
reached 94% accuracy instead of 99% when
training on the whole data set. Using
AlexNet [43] pre-trained on ImageNet they
were able to distill the PASCAL-VOC and CUB-200 datasets into one image per class. Fine-tuning
a new pre-trained AlexNet on the synthetic set showed similar performance as when training on the
whole sets containing thousands of images. Fine-tuning was done with only one gradient step re-
peated for three epochs. While this shows that it might be possible to synthesize datasets, the authors
also note that there are problems when the initialization of the synthesizing model is different from
that of the latter classification model. Data sets synthesized by one architecture could not be used
successfully to train a model with a different architecture.
These problems were solved by reformulating the DC problem as a gradient matching problem [15].
The idea is that the difference in gradients of two sets of network parameters, one trained on the
synthetic set and one on the original set, should be minimized. Condensed sets created using one
architecture can also be used to train different architectures, showing that the original initialization
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Figure 3: The trajectory matching between training on the synthetic and real data. The synthetic data
Dsyn is trained such that N training steps on this dataset will match the same result in parameter space
as training M steps on the real data. (Source: [18]).

problems are solved. Although this method does outperform the original DC method and is more
energy efficient when training from scratch, it is not tested with a pre-trained network. Additionally,
it was not tested with more complex and higher resolution datasets as in [13].
In [44] the authors showed several limitations of the gradient matching approach. In the gradient
matching method, images are condensed with a per-class strategy. This results in dominating task-
irrelevant class-common features, and the method fails to pay attention to class-discriminative or
contrastive features. This is especially a problem with fine-grained datasets. This is solved by using a
Data Condensation method that sums up the gradients over all classes before measuring the gradient
distance instead of doing this per class. The method shows much better performance on fine-grained
datasets than the original DC and gradient matching methods. However, it was not tested on more
complex and higher-resolution datasets, and the effect on pre-trained networks was not discussed.
The CAFE method proposed in [17] outperforms previous DC methods by using three different mod-
ules: (i) a feature alignment module that tries to preserve the original features in the synthetic set, (ii)
a modified loss function that focuses on contrastive or discriminative features between classes, and
(iii) a bi-level optimization technique to prevent over- and under-fitting. However, the method does
not scale to high-resolution images such as ImageNet.
A recent method, called Dataset Distillation by Matching Training Trajectories, as proposed in [18],
outperforms all previously mentioned DC methods and is the first method to scale up to large-scale
datasets such as ImageNet. First, a large amount (around 200) of expert networks are trained on the
full dataset and their parameter update trajectories are saved. Student networks are trained on the
synthetic dataset, and the dataset is optimized by the difference of the student and expert training
trajectories. This process can be observed in Figure 3 and the synthesized images from some of the
classes of the ImageNet dataset can be observed in Figure 4. While this method is now state-of-the-
art in Dataset Condensation and is able to scale up to large datasets, it does need a large amount of
computing power and memory storage to construct the expert model training trajectories.
The overall problem with these synthesis-based techniques is their large demand of computational
resources. The advantage of these methods is that they do construct a very small synthetic dataset,
which is much smaller than coresets, as the samples are condensed with more informative information.
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However, the number of GPU hours needed to synthesize a dataset is several magnitudes larger than
the most demanding selection-based methods.

2.3 Applications

Figure 4: The distilled class images of ten classes from
the ImageNet dataset. Source: [18]

Dataset reduction methods can be used in
multiple applications. The most basic ap-
plication is to enable efficient training of
machine learning models. This is especially
useful for tasks such as Neural Architec-
ture Search (NAS) or Hyperparameter Op-
timization (HPO) in which a large number
of models have to be trained [45].
In NAS, the key objective is to replace hu-
mans who design artificial neural networks.
A search space can be defined with, for ex-
ample, the possible types, number and res-
olution of layers. An algorithm can search
through this space and find the best combi-
nation of architectural settings. The model has to be trained very often on the same dataset to see the
performance of each architecture.
With HPO, the goal is to optimize the performance of a given architecture by optimizing the training
hyperparameters such as the learning rate or batch size.
If the dataset could be safely reduced such that the model test performance is comparable when
training on all data, this could save enormous amounts of energy and time for both NAS and HPO.
Even if the reduced dataset results in a decreased performance, it could still be used as a proxy for
NAS and HPO after which the model can be trained on the full dataset.

Figure 5: An overview of the Active Learning loop.
Source.

Active Learning Deep learning requires
large amounts of labeled data. How-
ever, this can be a problem because many
datasets do not have label information.
Manually labeling the data can take a long
time and results in large labeling costs. An
overview of an active learning cycle can be
found in Figure 5. An acquisition or query
function selects samples from the unlabeled
set. An expert then labels these samples,
adds them to the labeled set, and then a
new model is trained on the extended la-
beled set. Intelligently selecting the un-
labeled samples based on their informa-
tiveness can greatly speed up this process.
Good query methods could potentially save
labeling costs and reduce the required computations. In addition to that, active learning can even im-
prove model performance in some cases as the querying technique can filter out noisy data. Some of
the dataset reduction methods can work with unlabeled data and could thus be used as active learning

https://blogs.nvidia.com/blog/2020/01/16/what-is-active-learning/


20 Chapter 2 BACKGROUND LITERATURE

querying methods. Some of the methods are actually active learning query methods, but can also be
used as a dataset reduction technique. Dataset reduction methods could also be used next to the active
learning querying technique. Most acquisition functions use the current model parameters to select
samples that the model is uncertain about. However, this model is changed after each train step. Its
confidence over the samples in the labeled set can have changed, and thus there can now be redundant
samples in the labeled set. Here dataset reduction methods could potentially reduce this set.

Continual Learning In some cases not all data on which a model is trained are always available.
This is called Continual Learning in which model training has to be continued when new data be-
comes available. A problem with continual learning is that the network can be subject to catastrophic
forgetting. This is the tendency of the network to abruptly forget previously learned information. A
common solution to this problem is to keep a memory buffer in which some (or all) of the previous
samples are saved. With the arrival of new data, the model can be trained on some of the previous
samples in the memory buffer. Thus, a memory buffer has to be a good representation of the dataset
in order to be able to avoid catastrophic forgetting. Dataset reduction techniques could be a viable
approach to constructing these memory buffers.

Foundation Datasets Recently, the term Foundation Models has been coined for large artificial
neural networks that are trained on huge unlabeled datasets and can be individually fine-tuned for
many applications. These models are often used by many people as the models are often open-
source, but they require a great deal of data and energy to train. Examples of these models are BERT
[46], GPT-3 [1], DALL-E [3] and now more recently Stable Diffusion [47]. Reducing the size of the
datasets used to train these models could drastically reduce costs and could also benefit the innovation
of these models. The costs of reducing the datasets can be repaid by the increase in efficiency in
training these models.

2.4 Transfer Learning
Transfer learning refers to a situation where what has been learned in one setting (i.e., from data
distribution P1) is exploited to improve generalization in another setting (i.e., from data distribution
P2). The assumption is that many of the factors that explain the variations in P1 are also relevant for
the variations in P2. For example, a model can be trained to discriminate between images of cats and
dogs. This same model could then be used to discriminate between two new visual categories such as
bees and wasps. In this case, if there are significantly more data, which are sampled from P1, in the
first setting, then this can help to quickly discriminate between samples in P2. If the sample size and
diversity (e.g. number of classes) from P1 is large enough, this could allow for training a model that
can then serve as a generic model of the visual word. This is because many visual categories share
low-level features such as edges, shapes, and lighting effects. Therefore, it is important that there is
some overlap of features in the low-level notions of the samples of P1 and P2.
Transfer learning has been shown to work in multiple domains and in different tasks such as image
classification, text translation, sentiment analysis, object detection, and several others [48]. It could
potentially solve the problem where there is not enough data in P2 to effectively train a model. In
addition to this, transfer learning can greatly decrease the time required to get a good generalization
on P2 because lower-level features are already learned. In practice, the model pre-trained on samples
of P1 does not have to be completely re-trained on the data of P2. The lower-level layers of the model
can already detect basic features that are useful for classifying samples. These layers can be kept
frozen, which basically means that no training (for example, by backpropagation) will take place. The
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other layers are then fine-tuned on the samples of P2. In practice, this often means that several of the
top-level layers are unfrozen, and the classification layer is adapted such that the number of nodes is
equal to the number of classes.
Because of the potential speed-up, performance increase, and dependence on less data, it will be
interesting to see if transfer learning could be combined with dataset reduction methods. Assuming
that both dataset reduction methods and transfer learning can result in energy savings. Some research
has shown that data set reduction can improve transfer learning performance in certain settings [26].
However, most of the methods discussed in this chapter have not been tested to see whether they can
be applied in combination with transfer learning.
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3 Datasets
The dataset reduction methods presented earlier have been tested on typical research datasets such as
CIFAR10 [49], SVHN [50] and ImageNet [19]. These sets are designed for research purposes, and the
research around the datasets is changing, not the dataset itself. However, in applied machine learning
we often have to deal with more complex datasets where not every class has the same amount of
samples and the class distribution is heavily imbalanced. Models trained on these datasets are often
biased towards the dominant classes and do not perform well on tail classes. Biodiversity datasets
are characterised by being long-tailed, having fine-grained classes, a hierarchical class structure, and
having partially overlapping classes.
Class overlap can imply two things: Semantic overlap or overlap in feature space. Fine-grained class
prediction can be seen as distinguishing subordinate categories within entry-level categories. For
example not only recognizing if the animal is a bird but also which type of bird it is. This is thus a
form of semantic overlap as the birds share the same super class. However, in practice this will also
result in overlap in the feature representation of the two birds. Class overlap can become a serious
problem for classification when class imbalance is also present in the dataset and vice versa [51]. The
imbalance of each dataset can be defined by the Shannon entropy. A completely balanced dataset has
a balance score of 1, where unbalanced datasets tend to 0. The balance score is defined as:

H =−
k

∑
i=1

ci

n
log

ci

n

Balance =
H

logk

(12)

where:

H = Shannon entropy
k = number of classes in the dataset
ci = number of samples in class i
n = total number of samples in the dataset

(a) Hooded Warbler (b) Western Gull (c) Acadian Flycatcher

Figure 6: Three samples of the CUB200 dataset with their class name. Note that these are the pre-
processed images.
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CUB200 Biodiversity datasets make for a perfect test bed for finding out if selection techniques are
applicable in a realistic applied setting. The Caltech-UCSD Birds-200-2011 [52] is one of the most
widely used datasets for fine-grained image classification. It is an extension of the original CUB-
200 dataset [53] and contains approximately 12000 images of 200 bird subcategories, mostly North
American bird species. There can be varying backgrounds and noise such as tree branches or leaves in
front of the bird, which could could make it harder for the model to identify the bird. The images can
vary in size and aspect ratio. When resizing and cropping this can have a negative effect when a part
of the bird is outside the crop region. However, these augmentations are needed to reduce the memory
consumption and to reduce training time, as the goal of this thesis is not to get the best performing
model. See Figure 6 for some examples that show these difficulties. Each class has approximately
30 samples. Each image is accompanied by multiple annotations such as the bounding box and 312
binary attributes. As we want to compare the selection techniques over multiple vision datasets, we do
not use these annotations except for the class label. Throughout this thesis, the Caltech-UCSD Birds-
200-2011 dataset will be denoted as CUB200. The dataset has a predefined test set with 5,794 images
out of the 11,788 images. A random stratified split is used for the validation set such that the class
distribution in the training and the validation set remains equal. We make sure that there is at least one
sample per class in the validation set. All images are first resized to 256×256 then center cropped to
a resolution of 224×224 and then are normalized. During training, a random horizontal flip is used
as augmentation with a probability of 0.5. CUB200 is a balanced fine-grained dataset which means
that although each class has (almost) the same number of samples there is a lot of class-overlap. This
results in a fairly complex dataset. The balance score is 0.96.

(a) Papilionidae Papilio demod-
ocus demodocus (b) Papilionidae Papilio lormieri

(c) Papilionidae Graphium an-
tiphates itamputi

Figure 7: Three samples of the Papilionidae dataset with their class name to visualize the common
properties of the images. Butterflies a and b are both from the Papilio species which shows the
finegrainedness of this dataset. Note that these are the resized images.

Papilionidae The Papilionidae [54] dataset is a collection of butterflies of the family Papilionidae
from the museum collection of Naturalis Biodiversity Center. The dataset contains 8243 images of
butterflies where the classes have three hierarchical levels: Genus (11 classes), Species (79 classes)
and Subspecies (112 classes). As we want to see how well the dataset reduction algorithms perform
on biodiversity datasets, classification is based on the most fine-grained subspecies category. This has
relatively more class overlap than the other categories and has the largest set of individual classes,
increasing the complexity of the dataset. The images have a resolution of around 600× 600 and are
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resized to 224×224. During training, a random horizontal flip augmentation with a probability of 0.5
is used. The Papilionidae dataset is a heavy long tailed dataset as can be observed in the distribution
plot in Figure 40. The largest class contains 1318 images, the smallest three images, and the long tail
contains on average five samples per class. The balance score of the dataset is 0.69. No predefined
train/test split is provided. 33% of the dataset will be used as test set. This is divided by using a
stratified split, making sure that the class distribution remains equal and that there is at least one
image per class in the test set. 10% of the train set is used as validation using the same splitting
process.
The dataset images share several common properties. Images have comparable sizes such that resizing
does not give large differences in aspect ratio, images are cropped correctly such that butterflies are
always centered and all images have the same background with very little noise. This might help the
model learn class features more easily, but it can also result in a model that has low generalisation
power on butterflies in a realistic environment. See Figure 7 for three example images that visualize
these properties.

iNaturalist The iNaturalist dataset [55] is a large biodiversity dataset containing 859,000 color
images from more than 5,000 species of plants and animals. Datasets are often produced by scraping
images from public websites which can result in selection bias. This dataset is instead produced by a
crowd based effort. All labels were verified by multiple scientists. The classes are heavily imbalanced
and very fine-grained. The images have a much higher resolution than, for example, the CIFAR10
dataset. The large size of the dataset in combination with the high resolution results in a need for
much more computational power and memory.

CIFAR10 The CIFAR10 dataset [49] mentioned earlier contains 60,000 3-channel images with
a resolution of 32× 32. The dataset contains 10 classes that have no overlap and are completely
mutually exclusive. The dataset is completely balanced, which means that all classes have the same
number of samples. This is a fairly easy dataset to learn to classify with large models. It is used to
test if the results of the papers of some of the selection methods [22, 38, 41, 39] can be replicated and
it is used as a baseline. As the image size is small, we can train models and test selection methods
rather quickly. The CIFAR10 dataset has a predefined test set with 10,000 samples. A validation split
is produced using a stratified split of 10% of the training set. During training, a random horizontal
flip augmentation with probability 0.5 is used. All images are normalized.

Dataset Total
size

Train size Test size No. of
classes

Fine-
grained

No. of fea-
tures

Balance
score

CIFAR10 60,000 50,000 10,000 10 ✗ 32×32×3 1
CUB200 11,788 5,794 5,994 200 ✓ 224×224×3 0.96
Papilionidae 8,243 5,440 2,803 112 ✓ 224×224×3 0.69

Table 1: Overview of datasets. Note: No. of features after pre-processing.
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4 Methods
This chapter will first cover the architectures and training parameters that will be used to compare
the performance of the data subset selection algorithms. Then, a description of the metrics used to
evaluate this performance is given. It then continues with discussing how subset selection-based train-
ing differs from full training and what effect the selection frequency and fraction size have on this.
Several possible optimizations are discussed such as the warm-up strategy, extended training, and
combining data subset selection-based training with transfer learning. Furthermore, a new method,
Supervised Contrastive Learning, is presented. The differences and possible shortcomings of the
Supervised Contrastive Learning algorithm and that of Contrastive Active Learning (CAL) are dis-
cussed. An optimization technique for CAL is presented. Finally, the chapter ends with an overview
of the experimental setup. All code relevant to this thesis can be found in this GitHub repository
(https://github.com/Daankrol/Dataset-Reduction-IL).

4.1 Architectures and training parameters

Figure 8: Learning rate graph when using Cosine
Annealing over 300 epochs

All methods and models are implemented us-
ing the PyTorch Machine Learning framework
[56]. The models in this research are optimized
using the SGD optimizer with a learning rate
of 0.01, a momentum of 0.9 and a weight de-
cay of 5e-4. For the CIFAR10 dataset, we use
the ResNet-18 model [57] with a custom in-
put layer to accept the input resolution of the
CIFAR10 dataset. Since some of the methods
listed above also used this model, we can repli-
cate and validate their results [39, 38, 41].
Standard convolutional neural networks are of-
ten simply arbitrarily scaled in depth, width, or
input resolution to obtain better generalization
power. This can be a tedious process, where the end result can still be a suboptimal solution. The
authors of [58] studied the effect of three scaling parameters on the depth, width, and input resolution.
They presented a novel model-scaling method that is very efficient in scaling and can produce mod-
els that outperform the current state-of-the-art. Since the EfficientNet family models are small and
perform well, they are perfect in a research that is focused on energy efficient training. Thus, for the
Papilionidae and the CUB200 dataset, the EfficientNet-B0 model is used. This is the smallest of the
EfficientNet family of models in terms of the number of parameters and it is more than twice as small
as the ResNet-18 model. There are eight different models in the EfficientNet family. Starting from
the smallest EfficientNet-B0, with 11M trainable parameters, to EfficientNet-B7, with 66M trainable
parameters.
A batch size of 32 is used for each dataset. We train each model for 300 epochs unless otherwise
specified. To avoid overfitting and to reduce model error, the cosine annealing learning rate scheduler
is used [59]. An example trace of the learning rate over time can be observed in Figure 8. The TMAX
is set to the total number of epochs such that we do not have restarts. For all experiments, the average
over five runs is reported with their standard deviation. All experiments were executed using one
NVIDIA GeForce RTX 3090 GPU and 6 cores of one Intel Xeon Gold 6330 CPU with a total of 12
threads. To avoid the data loading bottleneck, we optimize the number of subprocesses used by the

https://github.com/Daankrol/Dataset-Reduction-IL
https://github.com/Daankrol/Dataset-Reduction-IL
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Figure 9: Overview of training with adaptive subset selection. Selection is performed every R epochs
and the model parameters are updated by Stochastic Gradient Descent (SGD) on the selected subset.
Source: [39]

data loader. The num_workers parameter of the PyTorch data loader instance is set to 8 in all cases.
The goal of this thesis is not to optimize deep learning models to achieve the best possible inference
performance. Instead, we try to find the optimal selection techniques. These hyperparameters are thus
not optimized but are kept fixed to allow for relative comparisons between selection methods and to
save time and energy.

4.2 Adaptive and non-adaptive subset selection

The selection methods described above can be applied in two different ways; adaptively and non-
adaptively. With adaptive data subset selection (DSS), the query method is applied every R epochs.
The idea is that the subset of data is refined as the model parameters are updated. An overview of
the adaptive subset selection process can be found in Figure 9. This differs from full normal training,
in which a model is trained on all training data for T epochs. The update step for an adaptive DSS
framework is defined in Equation 13. The selection technique produces both a subset X t and weights
wt . Therefore, the parameters are updated with a weighted loss per sample. Note that not all methods
compute loss weights. In these cases, the weights are set to 1.
With non-adaptive subset selection, the selection process is only performed once, before training.
This could thus be seen as a dataset pruning mechanism or as offline dataset reduction. This means
that in Equation 13 the same subset will be used for all t ∈ T thus X t = X . For some non-adaptive
methods, this can be done model-agnostic by using only the properties of the dataset itself. Adaptive
DSS methods can also be applied non-adaptively. However, adaptive DSS methods are applied in
conjunction with model training. Since without training the model parameters are random variables,
the model inference power could be too low to select a subset that correctly represents the dataset. For
example, with Contrastive Active Learning (CAL), the contrastive scores of the samples are based on
the divergence of the predictive likelihoods. If used in combination with an untrained network, this
would result in contrastive scores of zero for all samples. This behavior can also be observed when
Least Confidence selection is used non-adaptively. The output of the model will be the same for all
samples, which does not give any information about which samples the model is uncertain about.

θt+1 = θt−α ∑
i∈X t

wt
i∇θLT (xi,yi,θt) (13)

where:
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θt = Model parameters in iteration t
α = Learning rate
wt

i = The weight value for sample i at iteration t
∇θ = Gradient with respect to the model parameters θ

LT = Loss function

4.3 Metrics

Figure 10: A t-SNE plot of the CIFAR10 dataset

Dataset reduction methods can be compared in
several ways. Their performance is often com-
pared by the accuracy of the model and the frac-
tion of data used. There are several problems
with these metrics. While this can be a viable
measure for non-adaptive selection, this does
not work for adaptive selection. In non-adaptive
selection the selected subset does not change,
but with adaptive selection the subset is contin-
uously changing. Another problem is that this
does not take into account the sampling dura-
tion of the method, and thus we cannot com-
pare the energy efficiency and practicality of the
method. A good adaptive selection technique is
one that results in comparable or better perfor-
mance in less time and energy than when train-
ing on all data. As it needs to sample every R
epochs, the sampling duration should be low to
reduce the total time taken.
Performance is often measured in model ac-
curacy, even in situations where the dataset is
made imbalanced by removing samples from classes. For example, in [39] the authors report the
performance of several DSS methods using imbalanced data. They create an imbalance by remov-
ing 90% of the samples of 30% of the classes in a balanced dataset. However, they only do this on
the train split. The validation and test set are kept balanced. Performance is reported by the accu-
racy on the test set. However, their approach is questionable, as we are now dealing with a dataset
that is composed of splits that have different data distributions. The GRAD-MATCH, GLISTER and
CRAIG methods try to find a subset that closely resembles the validation set. Thus, when the test set
is balanced but the train set is imbalanced, they need to keep the validation set balanced to get good
accuracy on the test set. This is not a correct representation of a real-world imbalanced dataset, and
metrics that are often used with imbalanced datasets are missing.
Accuracy is not a good metric when using imbalanced data. As an example, let us say we have a
model that is trained to detect if a person has disease X. This model is trained with a dataset that
contains data on 100 people, 90 people who are healthy, and 10 people who have the disease. The
model is trained and is reported to have an accuracy of 90% to detect if a person has disease X or
not. But in reality, the model performs very poorly and always predicts that a person does not have
disease X. Although the accuracy of the model is high, the model cannot discriminate between the
two classes, and thus it has low predictive power. This phenomenon is called Accuracy Paradox [60].
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The model simply always predicts that a person does not have disease X as it favors the dominant
class.
For a better view of the performance of the multiclass classification model on imbalanced data, the
metric precision and recall should be used. Precision quantifies the number of correct positive pre-
dictions made. For the disease example, precision thus focuses on the accuracy on the minority class
since this class is the positive class, i.e. having disease X. See Equation 14 for the definition of pre-
cision. Precision can already be more useful than accuracy in some situations, but it does not tell the
full story. It does not give information on the number of false negatives. Here, recall comes in. It
quantifies the number of true positives out of all true positive predictions that could have been made.
Its definition can be observed in Equation 15.
Individually, the metrics do not tell the entire story of the model performance. We want a metric that
covers both the dominant and minority class. This is why often the F1 score is used as a metric for
imbalanced multiclass classification problems. It is the harmonic mean of precision and recall and its
definition is presented in Equation 16. Note that we use macro averaging for the precision, recall and
F1 scores because we are dealing with multi-class classification. Macro averaging is performed by
first calculating the metric for each class separately, and average the metrics across classes.

Precision =
True Positives

True Positives+False Positives
(14)

Recall =
True Positives

True Positives+False Negatives
(15)

F1 = 2∗ Precision∗Recall
Precision+Recall

=
2∗True Positives

2∗True Positive+False Positive+False Negative
(16)

In addition to the final performance of the model, we also need to know how much time and how much
energy it took to reach this performance. GPU energy consumption is tracked using the pyJoules1

Python package. The time is used as a proxy to measure the energy consumption of the CPU.
To measure how good selection techniques are at sampling informative samples, we can measure
the performance per computational load. The computational load can be described as the number of
individual samples on which the model has been trained through backpropagation. To find out which
samples are being selected by a technique and why it samples those, we can visualize the dataset
manifold by using the t-Distributed Stochastic Neighbor Embedding (t-SNE) [61]. This is a technique
for dimensionality reduction that is very useful for visualizing high-dimensional data. An example
of a t-SNE visualization can be found in Figure 10. t-SNE is applied on the features of all samples
in the dataset which are extracted using the EfficientNet network that is pre-trained on ImageNet.
The data for t-SNE is first transformed to two-dimensional data using Principal Component Analysis
(PCA) to speed up the slow t-SNE computation. Normally, model performance can be compared after
each epoch of training. However, using dataset reduction techniques means that the amount of data
on which the model is trained in an epoch depends on the fraction size of the selection technique.
Therefore, the performance per epoch cannot be compared between experiments, and thus we track
the performance per elapsed time and consumed energy.

4.4 Selection frequency and fraction size
With non-adaptive DSS, a fraction of the full dataset is selected as subset before training. This hap-
pens only once, and thus, the samples that are not part of the subset will never be seen by the model.

1https://pypi.org/project/pyJoules/
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This assumes that there is some form of redundancy in the dataset. When there are multiple near-
duplicates, these could be removed to reduce redundancy. This would then increase the average
informativeness per sample across the entire subset and could effectively decrease training time and
energy consumption. The general problem with non-adaptive DSS is that we do not know if the as-
sumption holds for a dataset beforehand. In addition to that, if the assumption holds, we do not know
which fraction of the data can be removed. To be able to compare the non-adaptive DSS methods, we
follow the method of [22] and use a fixed set of fractions for comparison: 50%, 70% and 90%.
With adaptive DSS a fraction of the dataset is selected as subset every R epochs. These subsets can
have overlap, which could potentially solve the general problem in non-adaptive selection where the
fraction of to be removed data is unknown. Even if there is no redundancy in the dataset, the adaptive
selection method could theoretically query all samples so that no sample would be disregarded. The
goal of the methods is to be data efficient and save time per epoch. This can only be done by using
fewer data than the full dataset in each epoch. But how small should this subset be? And for how many
epochs should the model be trained on this subset, e.g., what should the value for R be? Selecting a
small set infrequently can result in training too long on the same images, and thus not being able to
select all informative samples before we reach the final training epoch. Selecting a large subset very
often can result in the model not having enough parameter updates to correctly learn the underlying
data properties. Selecting larger subsets generally increases the total training time as each training
epoch takes longer. Smaller subsets give higher speed-up and energy gains but also have a larger
accuracy drop than when using larger subsets. The fraction size and frequency can thus be fine-tuned
depending on the goal of the user: high performance, small training duration, or a balance between
both. Note that, with some methods, increasing the subset size also increases the sampling time.
For example, with methods that use submodular optimization functions where samples are added
iteratively in a greedy process. Other methods, such as CAL, Super-CL, or Uncertainty sampling,
need to first compute scores for all samples before they can select the subset. With these methods,
the sampling time remains the same with different subset sizes. To keep a fair comparison, we use
the same fraction and frequency for all methods. For the frequency we set R = 10, and as a fraction,
we use a default of 20% except when otherwise specified. Each selection method could be optimized
per dataset and depending on the goal of the user. Due to time constraints, this was not done for
all methods. The choice of fraction size and sampling frequency is based on a balance between
performance and speed in all selection methods and datasets.

4.5 Warm-up strategy

As mentioned above, adaptive methods are based on the assumption that while the model is being
refined, the subset is refined accordingly. Thus, subsets in early stages of the training cycle can be
less informative than subsets in later stages, as the model does not yet have enough inference power
to select a subset that is a good representation of the dataset. Following the results of [39] we find
that training the model on the complete dataset for Tf epochs can result in good warm-start models
and better convergence. This could allow the DSS method to select informative subsets early on. The
definition of warm-up epochs can be observed in Equation 17. Throughout this thesis, methods that
use a warm-up strategy will be denoted with the suffix ’-warm’, e.g. GRAD-MATCH with warm-up is
called GRAD-MATCH-WARM.

T = Ts +Tf

Tf = κT
(17)
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where:

T = total number of training epochs
Ts = number of epochs with subset selection based training
Tf = number of epochs with full training
κ = warm-up epochs as a fraction of total epochs

For example, an experiment with 120 epochs and κ = 0.3 will first have 40 full training epochs. After
that, the first subset will be sampled and data subset selection-based training starts. From this epoch
on, every R epochs a new subset will be sampled. Note that using a value of κ of 1 will result in
normal full training without data and energy-efficient training. Thus, the value of κ also has a direct
influence on the total running time. The increase in κ results in an increase in the number of longer
epochs. Because of time constraints no ablation study for each dataset could be performed. The value
for κ is based on the ablation study in [39] and is set to 0.5.

4.6 Extended Training
With adaptive DSS, an epoch will take less time when the subset size is smaller than the data set, e.g.
|S|< |D|. This should thus decrease the total run time. Following the results of previous research, the
performance of models trained with adaptive DSS is often lower than or comparable to full training
[39, 38, 41]. As mentioned previously, the hyperparameters such as fraction size and sampling fre-
quency can be optimized depending on the goal of the user; high performance, short training time, or
a balance of both. With adaptive DSS methods, models are trained on less data per epoch and thus
training on the same number of epochs as FULL training can be quicker, assuming that the sampling
duration is small. At the cost of some efficiency, we can do extended training to see if it might be
possible to maximize performance and possibly get even better performance than with full training
while still being faster. Several experiments will be performed in which the total number of epochs
is increased from 300 to 350 unless otherwise specified. We set the TMAX value of the cosine an-
nealing learning rate scheduler to the same number of epochs. If TMAX is not changed accordingly,
the extended training would use a learning rate of zero. To limit the number of experiments, these
experiments will be performed only on a selection of the best methods.

4.7 Transfer Learning
As described in subsection 2.4, transfer learning in general decreases the amount of energy and time
needed to achieve good convergence. Furthermore, it can drastically increase the inference perfor-
mance. To see if we can further reduce energy consumption, we study the effect of combining transfer
learning with DSS and their application on biodiversity datasets. To the best of my knowledge, there
has been no research on the application of DSS methods with transfer learning. The EfficientNet-B0
model is used, which is pre-trained on the ImageNet dataset. The total number of training epochs is
reduced to 150 as the model can converge much faster when using transfer learning. We study the
effect of using transfer learning with DSS methods on the Papilionidae and CUB200 datasets. The
CIFAR10 dataset overlaps with the ImageNet dataset. This results in a very short training cycle, as
the model already has very good inference power on this dataset. This does not allow for good com-
parisons between the DSS methods, and thus this dataset is not used. The size of the model output
layer is changed based on the number of classes in each dataset. All layers are unfrozen and fine-
tuned while training. The learning rate is lowered to 0.005 as we are not training from scratch, and
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the cosine learning rate scheduler is used to regularize training. All images are normalized based on
the mean and variance of the image color channels of the ImageNet dataset.

4.8 Supervised Contrastive Learning

In this subsection, we present Supervised Contrastive Learning (Super-CL). Super-CL is an adaptive
data subset selection method based on the algorithms and properties of Contrastive Active Learning
(CAL) and the Prototypical DSS methods.
In Prototypical DSS, samples are selected on the basis of their distance from the class prototype.
The general idea is that samples with the largest distance are hypothesized to be close to the decision
boundary or form sub clusters. Note that outliers have a large distance to the prototype but do not
necessarily be close to the decision boundary. Samples with large distance to the prototype may
be more difficult to classify than samples that are very similar to the prototype. Therefore, it is
hypothesized that the samples are more informative. Note that samples with large distance to the
prototype can also be outliers. This method is best used in a non-adaptive way, as it is not model
dependent and uses a pre-trained network to construct the feature space. Note that it can be made
model-dependent by using the training model as a feature extractor. However, when the training
model has not been trained or pre-trained it might not be able to correctly represent the feature space
of the dataset.
CAL is used in Active Learning and is thus used to sample unlabeled samples to be labeled by an
expert. The sampling is based on the contrastive score of a sample. Samples that are similar in feature
space but have maximally different predictive likelihoods have high contrastive scores. In other words,
data points with similar feature representations and dissimilar model outputs are contrastive. They
probably lie close to the decision boundary and could therefore increase the inference performance
of the model. A pre-trained network is used as a feature extractor. Probabilities are computed by the
training model. As the training model continues to change, contrastive scores are a reflection of the
currently most informative samples.
A disadvantage of Prototypical DSS is that it is focused only on the feature space and not on the model
uncertainty. CAL does make use of this model uncertainty, but it does not use any label information
since it is used in an unsupervised matter. Since it does not use label information, it also cannot
sample per class. Per-class sampling can counteract the effects of an imbalanced dataset. Another
disadvantage is that CAL needs a lot of memory since it has to store the entire feature space, all
pairwise distances and the nearest neighbors for each sample in the entire dataset. In addition to that,
sampling can take a long time because of the computation of the pairwise distance matrix over the
whole dataset. CAL thus only works with small datasets or with small feature vectors and could not
be used with the Papilionidae and CUB200 datasets due to out of memory errors.
We present Supervised Contrastive Learning (Super-CL). Super-CL uses both model information and
label information to find contrastive samples within a class. It does so by first computing the feature
space of a single class. Then we calculate the pairwise distance within the class. The contrastive
scores are then calculated for each sample within the class. As it samples per class, its memory foot-
print is much smaller, as we do not need to keep the feature vectors, distances, and nearest neighbors
of all samples in memory. Because it uses label information, it is more aimed at the hardest samples
within a class than at the hardest samples in the full dataset. With CAL there can be subsets that do
not contain each class. It is hypothesized that this will give Super-CL an advantage when applied to
biodiversity or long-tailed datasets, as it can do per-class sampling where the data distribution in the
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Algorithm 4 A single iteration of the Supervised Contrastive Learning data subset selection algo-
rithm.
Require: training set U, number of samples to be selected (budget) b, number of neighbours k, model

M , representation (encoding) function Φ(.)
1: X ← /0

2: for each class c ∈U do
3: Uc← (x,y) ∈U where y = c ▷ subset of U of class c
4: bc← b |Uc|

|U| ▷ compute class budget
5: for each sample xp ∈Uc do
6:

{
(x(i)l ,y(i)l )

}
, i = 1, ...,k← KNN(Φ(xp),Φ(Uc),k) ▷ find neighbours in Uc

7: p(y|x(i)l )←M (x(i)l ), i = 1, ...,k ▷ compute probabilities
8: p(y|xp)←M (xp)

9: DKL

(
p(y|x(i)l )||p(y|xp)

)
, i = 1, ...,k ▷ compute divergence

10: sxp =
1
k Σk

i=1DKL

(
p(y|x(i)l )||p(y|xp)

)
▷ compute score

11: end for
12: Q = argmax

xp∈Uc

sxp, |Q|= bc ▷ selection

13: X ← X ∪Q
14: end for
15: return X

subset remains the same as in the full dataset.

DKL(p(x)||q(x)) = ∑
x∈X

p(x) log
p(x)
q(x)

(18)

A single iteration of the Super-CL selection algorithm can be observed in Algorithm 4. The main
difference between CAL and Super-CL is that Super-CL uses within-class nearest-neighbor and di-
vergence estimation. Note that the nearest-neighbor calculation only has to be performed once. After
the first iteration, the KNN result can be reused, and only the divergence calculation has to be per-
formed. Super-CL uses the same divergence calculation as CAL. The definition of the divergence
can be observed in Equation 18. Note that the pairwise distance calculation for the nearest-neighbor
search still takes some time which heavily impacts the total sampling duration. There may be some
edge cases in the Super-CL selection algorithm. For example, when a class has a limited number of
samples such that the number of neighbors per sample is smaller than k, we then take all samples as
neighbors. Furthermore, we make sure that for all classes at least one sample is present in the subset.
If a sample has no neighbors, we set the divergence to a maximal value such that the sample is always
picked. In addition to this, a division by zero error can occur in the divergence calculation. This is
solved by replacing the zero values in the probability vectors with a small value of 10−6.
It is hypothesized that Super-CL can work well with the warm-up technique. Super-CL picks hard
and informative samples, and thus the subsets can miss a degree of diversity as there can be overlap
in subsets. This potential problem could be solved by injecting diversity before or after the Super-CL
DSS is performed. With warm-up, the model is trained on the full dataset and thus is injected with
diversity early on in training. After that, Super-CL can target the more complex samples to get better
model convergence.
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In this thesis, the effect of diversity injection is studied by looking at the effect of warm-up and post-
training on Super-CL. Post-training can be seen as a novel inverted warm-up where the model is first
trained using the DSS method and diversity is injected by training with the full dataset. When post-
training is applied, the κ value determines the number of epochs of DSS training. Thus, Equation 17
changes to Ts = κT .

4.9 Contrastive Active Learning optimizations

One of the reasons that Super-CL was devised, was to solve the out-of-memory errors of CAL. CAL
needs to compute the pairwise distance matrix for the nearest neighbor calculation over the complete
dataset. This becomes intractable for medium to large dataset sizes. To solve this, CAL can be
integrated with Facebook AI Similarity Search (Faiss) or similar libraries [62]. Faiss is a library
for efficient similarity search and clustering of dense vectors. Faiss is based on years of research.
It implements several techniques that result in great speed optimizations such as computing on the
GPU, lossy compression for high-dimensional vectors, and product quantization. Besides this, it also
enables to search in sets of vectors that are so large that they would normally not fit in RAM memory.
To avoid out-of-memory errors and to reduce the sampling duration, the kNN calculation in the CAL
algorithm can be performed by Faiss. CAL can now be used on the CIFAR10, Papilionidae, and
CUB200 datasets. In the results and discussion section, the term CAL is used to denote CAL with
Faiss optimizations. Although Super-CL solves the out-of-memory issues of CAL by performing per-
class sampling, this could still fail for datasets with very large class sizes. Super-CL could thus also
be optimized with Faiss. However, because of time constraints, this was not performed.

4.10 Experimental setup

Several experiments will be carried out to test the performance of dataset reduction methods. The
non-adaptive methods that will be evaluated are: GRAND, EL2N, PROTOTYPICAL, GRAPH-CUT and
GRAD-MATCH. The fraction sizes that are used are 50%, 70% and 90%. They will be evaluated on
the CIFAR10, Papilionidae, and CUB200 datasets. As a baseline, RANDOM and FULL training will
be performed. With RANDOM non-adaptive DSS, a fraction of the data is selected as a subset with
random uniform probability. For GRAND 10 models are used to average the GRAND scores. With
EL2N the same number of models are used but are now trained for 20 epochs before calculating
scores. This follows the implementation of [36].
The adaptive methods that will be evaluated are: ENTROPY, LEAST-CONFIDENCE, GLISTER, CRAIG,
CRAIGPB, GRAD-MATCH, GRAD-MATCHPB, CAL, SUPER-CL, GRAPH-CUT and FACILITY-LOCATION.
These methods will be compared with RANDOM, FULL and FULL-ES which is full training with an
early stopping mechanism with patience of 20 and a minimum delta of the validation loss of zero. All
methods will be evaluated on the CIFAR10, Papilionidae, and CUB200 datasets. A selection of the
best methods will be made after comparing the performance on these datasets. These methods will
be tested with the warm-up strategy and extended training. All methods will be tested in combination
with transfer learning. A selection of the best methods will be tested in combination with a warm-up
strategy, extended training, and transfer learning.
Note that when both a warm-up strategy and extended training are used we make sure that the amount
of warm-up epochs stays equal. E.g. when RANDOM-WARM is trained for 300 epochs with κ = 0.5,
there is a total of 150 warm-up epochs. When both extended training and warm-up are used, we have
a total of 350 epoch of which 150 should be warmup. Thus the κ value is set to 0.42857.
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Uncertainty-based methods ENTROPY and LEAST-CONFIDENCE both use per-class sampling so that
the same fraction of each class is present in the subset. The submodular based methods, GRAPH-CUT

and FACILITY-LOCATION, are applied on the last layer gradients following the implementation of
[41, 38, 39]. For GLISTER the same learning rate that is used for the training model is also used
for the one-step gradient update. CRAIG is applied per-class where CRAIGPB is applied per-batch.
GRAD-MATCH uses per-class-per-gradient computation. This is the same as per-class sampling, but
now the OMP algorithm is applied on the gradients corresponding to the classification layer of that
class only. With GRAD-MATCHPB the OMP algorithm is applied on each mini-batch of datapoints.
For both versions of GRAD-MATCH the regularization constant λ for the OMP solver is set to 0.5 and
the parameter ε is set to 10−100 after the ablation study in [39]. CAL uses the optimization discussed
in subsection 4.9. Both CAL and SUPER-CL use k = 10 for the nearest-neighbor calculation. The
submodular methods FACILITY-LOCATION and GRAPH-CUT are applied to the full training dataset.
Both methods are implemented using the Apricot Python package [63] and use the two-stage opti-
mizer, first naive greedy and then lazy optimization, to solve the submodular function.
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5 Results

5.1 Non-adaptive Data Subset Selection
The test performance of models trained on subsets selected by the non-adaptive DSS methods is
shown in Table 2, Table 3 and Table 4.
In Table 2 the performance of the methods on the CIFAR10 dataset can be observed. FULL training
is able to reach a performance of 91.8% for both F1 and accuracy. Most methods are able to prune
the dataset and show similar performance. The GRAND method showed decreased performance
compared to the other methods. With a fraction size of 50% the GRAND method loses 58.6 F1 score
points compared to FULL. Other methods do not show this behavior and can prune 50% of the dataset,
while losing only eight relative F1 score points at maximum in the case of GRAD-MATCH.
In Table 3 the results for the methods applied on the Papilionidae dataset can be found. Training on
the full dataset results in an accuracy 92.8% and an F1 score of of 70.0%. We observe that EL2N
is able to reduce the dataset to 50% of its size while maintaining good performance. Furthermore,
RANDOM sampling results in comparable accuracy with the EL2N method but the F1 score is lower
for all fraction sizes.

Table 2: The results for the non-adaptive methods on the CIFAR10 dataset averaged over five runs.
Full training accuracy and F1 score are 91.1±0.8 and 91.1±0.8 respectively. For each fraction and
metric, the best performing method is marked in bold. Note that for the 50% columns there is no best
method as there is overlap in the standard error.

Fraction
50% 70% 90%

acc. F1 acc. F1 acc. F1
RANDOM 86.7±0.3 86.7±0.3 89.7±0.1 89.7±0.1 91.5±0.1 91.5±0.1
PROTOTYPICAL 86.9±0.2 86.9±0.2 89.1±0.2 89.1±0.2 91.7±0.0 91.7±0.0
GRAD-MATCH 83.1±0.1 83.1±0.1 86.5±0.3 86.4±0.3 88.5±0.1 88.5±0.1
GRAPH-CUT 84.8±0.2 84.8±0.3 88.9±0.1 88.9±0.1 91.3±0.1 91.3±0.0
GRAND 46.8±0.7 32.5±0.8 66.0±0.5 56.1±0.2 83.2±0.1 79.1±0.1
EL2N 86.6±1.5 86.6±1.5 91.1±0.1 91.2±0.1 92.1±0.3 92.1±0.2

In Table 4 the results for the non-adaptive methods on the CUB200 dataset can be found. Training
on the full dataset results in an average accuracy of 48.3% and an F1 score of 48.1%. The GRAD-
MATCH method shows the best performance, in terms of accuracy and F1, for each fraction size. The
performance of EL2N is lower for smaller subsets than for the other methods.
The energy it took to sample the smaller subset together with model training can be observed in
Figure 11. The energy needed to prune the dataset can be observed by looking at the beginning
of each graph. For example, pruning the Papilionidae dataset to 50% of its original size with EL2N
takes around the same energy as pruning the same dataset with PROTOTYPICAL together with training
a model on this data. The non-adaptive methods can be compared with FULL training where no
pruning is performed. For example, RANDOM needs almost no energy to prune the dataset as its
starting point is almost the same as that of FULL. Although it has lower accuracy than FULL, the
energy required for training is much lower because the dataset is smaller.
In Figure 12 and Figure 13 the performance and energy consumption of the non-adaptive methods
EL2N, GRAD-MATCH and RANDOM are shown for three different fraction sizes on two datasets.



36 Chapter 5 RESULTS

Table 3: The results for the non-adaptive methods on the Papilionidae dataset averaged over five runs.
Full training accuracy and F1 score are 92.8±0.1 and 70.0±1.1 respectively. For each fraction and
metric, the best performing method is marked in bold. Note that for the 70% acc. column, there is no
best method as there is overlap in the standard error.

Fraction
50% 70% 90%

acc. F1 acc. F1 acc. F1
Random 91.0±0.1 55.9±0.3 92.2±0.1 62.1±1.7 92.1±0.1 65.2±0.8
Prototypical 90.5±0.1 53.5±1.3 91.2±0.1 55.5±0.9 92.0±0.1 55.5±0.7
Grad-Match 91.5±0.1 62.5±1.4 92.2±0.1 67.1±1.4 92.7±0.1 68.5±1.1
Graph-Cut 90.7±0.2 55.5±1.2 90.5±0.2 54.0±0.9 90.0±0.2 52.1±0.9
GraNd 56.4±2.2 29.5±5.0 71.3±2.0 40.7±2.3 87.1±1.1 56.5±2.3
EL2N 90.2±0.5 67.2±2.2 92.0±0.5 69.1±1.5 92.9±0.1 70.4±0.9

Table 4: Results for the non-adaptive methods on the CUB200 dataset averaged over five runs. Full
training accuracy and F1 score are 48.3±0.8 and 48.1±0.7 respectively. For each fraction and metric,
the best performing method is marked in bold.

Fraction
50% 70% 90%

acc. F1 acc. F1 acc. F1
Random 29.2±0.2 28.7±0.2 38.2±0.4 37.8±0.5 45.7±0.5 45.3±0.6
Prototypical 20.9±0.4 20.2±0.3 32.9±0.5 32.2±0.6 43.6±0.3 43.5±0.3
Grad-Match 29.8±0.8 29.5±0.7 38.6±0.4 38.3±0.5 47.2±0.3 46.9±0.3
Graph-Cut 26.6±0.5 26.2±0.5 36.7±0.7 36.5±0.8 44.4±0.7 44.0±0.7
GraNd 25.6±0.6 17.7±0.4 34.4±0.4 28.8±0.5 43.9±0.7 41.8±0.7
EL2N 15.0±0.6 13.3±0.5 29.0±0.6 27.5±0.7 44.4±0.7 44.4±0.7

We observe that varying the fraction size does not have a large effect for the methods applied on the
Papilionidae dataset except for the RANDOM method. In addition to this, we observe that EL2N with
a fraction size of 70% has a higher final F1 score than FULL training. In Figure 13 we can observe
that for the CUB200 dataset, performance is heavily influenced by the fraction size. In addition to
this, RANDOM and GRAD-MATCH seem to behave on par. EL2N has a lower performance for all
fraction sizes. FULL out performs all methods independent of the fraction size.
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Figure 11: Test F1 score vs energy consumption for models trained on subsets provided by the non-
adaptive methods. Energy needed for the non-adaptive data subset selection is included. Each method
is averaged over five runs and the standard error is shown as error band. Full is a model that is trained
on all data.

Figure 12: Test F1 vs energy consumption for models trained on subsets of the Papilionidae dataset
provided by RANDOM, GRAD-MATCH and EL2N. FULL represents a model trained on all data. The
effect of varying the fraction value can be observed. Note that the energy consumption of the sampling
method is included and causes some methods to start shifted to the right.
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Figure 13: Test F1 vs energy consumption for models trained on subsets of the CUB200 dataset
provided by RANDOM, GRAD-MATCH and EL2N. FULL represents a model trained on all data. The
effect of varying the fraction value can be observed. Note that the energy consumption of the sampling
method is included.

5.2 Adaptive Data Subset Selection (ADSS)

The results of the adaptive DSS methods for the three datasets can be observed in Figure 14, Figure 15.
To show the performance of the methods and their optimizations in comparison to FULL training, we
calculated the relative speed and relative error. These calculations are performed using the final
performance reported and the total duration. The relative speed is calculated by dividing the total
duration of FULL by that of each ADSS method. Note that because of this, the relative speed can
never be lower than 0. For example, a relative speed of 2 means that the ADSS method is twice as fast
as FULL training and a relative speed of 1

2 means that the DSS method is twice as slow. The relative
error is computed by the difference in accuracy or F1 score. Thus, a relative error of 2% means that
the ADSS method performs 2 percentage points lower than the training of FULL.
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Figure 14: This plot shows the speed and error of several DSS methods relative to using FULL training
for the CIFAR10 dataset. Relative speed is computed by dividing the total run time of FULL by that of
each DSS method. Relative error is the difference in accuracy of the FULL and DSS methods. FULL-
ES is FULL training with early stopping. FULL has an accuracy of 91.1±0.8 and takes 3.35±0.37
hours.

The relative performance and speed of all methods on the CIFAR10 dataset can be observed in Fig-
ure 14. Methods such as GRAD-MATCHPB, SUPER-CL and RANDOM can greatly speed up training
while only losing around 2 percentage points of performance. ENTROPY and LEASTCONFIDENCE

showed the worst performance. Using warm-up decreases the speedup, but does improve the perfor-
mance. Early stopping results in the largest speedup, but also in dropping more than 5 performance
percentage points. The development of performance on the test set while training the networks can be
observed in Figure 17. Here, we see that all methods that use warm-up and the FULL method show
the same performance until the warm-up epochs are completed. CAL-WARM then quickly increase
performance while SUPER-CL-WARM and GRAD-MATCHPB-WARM reach this performance only
later on. Furthermore, we observe that the ADSS methods without warm-up start off with a lower
performance than FULL but get good performance early on.
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Figure 15: This plot shows the speed and error of several DSS methods relative to using FULL training
for the Papilionidae dataset. Relative speed is computed by dividing the total run time of FULL by
that of each DSS method. Relative error is the difference in F1 score of the FULL and DSS methods.
FULL-ES is FULL training with early stopping. FULL has an F1 score of 70±1.1 and takes 1.28±0.02
hours.

In Figure 15 the performance on the Papilionidae dataset of the adaptive DSS methods relative to that
of FULL training can be observed. The RANDOM and GRAD-MATCHPB methods are both capable
of speeding up training while losing limited performance. The CAL method not only can speed up
training, but also showed a higher performance than FULL training. Using warm-up decreased both
the speedup and the performance gain compared to normal CAL. Furthermore, the use of extended
training further increases speedup and performance gain. CAL with extended training results in a
performance increase of around five F1 score points while being more than twice as fast as FULL

training. In Figure 18 the performance on the test set can be observed while training the networks.
We see that warm-up does not have a large effect on the method performance. CAL even performs
much better when not using the warm-up optimization. The energy needed to sample the first subset
is much larger with SUPER-CL than for the other methods. This can be observed by looking at
the starting point of each method that does not use warm-up. When comparing CAL-WARM and
SUPER-CL-WARM we see that the former is faster than FULL and reaches higher accuracy. For
SUPER-CL-WARM we see that it requires more time than FULL and achieves lower performance.
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Figure 16: This plot shows the speed and error of several DSS methods relative to using FULL train-
ing for the CUB200 dataset. Relative speed is computed by dividing the total run time of FULL by
that of each DSS method. Relative error is the difference in F1 score of the FULL and DSS meth-
ods. FULL-ES is FULL training with early stopping. FULL has an F1 score of 48.8±0.2 and takes
1.34±0.01 hours.

The performance of adaptive DSS methods on the CUB200 dataset can be observed in Figure 16.
Without optimizations, none of the methods show significant speedups without losing too much per-
formance. Especially when considering that FULL only reaches a performance of 48.8 F1 score.
GLISTER, GRAD-MATCHPB and RANDOM can speed up training when warm-up is used or when
using both warm-up and extended training. GRAD-MATCHPB using these optimizations can even
increase performance and speed. The CAL method performs very poorly. However, the effect of
warm-up on the test performance of the DSS methods is the largest with this method with a difference
of around 27 F1 score points. SUPER-CL with and without extended training performs poorly. How-
ever, using warm-up results in comparable performance with FULL training but takes around twice as
long. In Figure 19 we can see the development of the test performance for a selection of methods with
or without warm-up. GRAD-MATCHPB-WARM shows the best performance per energy consumed.
CRAIGPB-WARM has a large performance drop after the warm-up epochs have been completed.
The energy consumption of the SUPER-CL and GRAD-MATCH methods is much higher than that of
FULL.
To see how quickly each method can sample a subset, we provide a visualization of the sampling
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Figure 17: Test performance on the CIFAR10 dataset while training with a selection of the best
adaptive DSS methods with and without the warm-up optimization. All methods are averaged over 5
runs and the standard error is shown as error band.

duration for the adaptive DSS methods. In Figure 20 we present the sampling duration for the Papil-

Figure 18: Test performance while training with a selection of the best adaptive DSS methods with
and without the warm-up optimization. All methods are averaged over 5 runs and the standard error
is shown as error band.
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Figure 19: Test performance while training with a selection of the best adaptive DSS methods with
and without the warm-up optimization. All methods are averaged over 5 runs and the standard error
is shown as error band.

ionidae dataset and in Figure 21 for the CUB200 dataset. Notice that for the SUPER-CL method, the
sampling time is larger at the first sampling, since it only needs to compute the nearest neighbor cal-
culation once. In general, we observed that methods that perform per-batch selection are much faster
in sampling than methods that do per-class selection. Furthermore, sampling duration for methods
that do not use per-batch sampling is larger for the CUB200 dataset than for the Papilionidae dataset.
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Figure 20: Resampling duration of adaptive DSS methods while training on the Papilionidae dataset.

Figure 21: Resampling duration of adaptive DSS methods while training on the CUB200 dataset.

5.3 Dataset Reduction with Transfer Learning
In this subsection, we present the results for combining the adaptive DSS methods with transfer
learning. All models are pre-trained on the ImageNet dataset and their final performance is compared
against that of FULL training. In Figure 22 the results of the methods on the Papilionidae dataset can
be found. We observe that FULL-ES, training on all data and using early stopping, results not only



Chapter 5 RESULTS 45

in a speedup but also in increased performance. CAL is the only method not using warm-up that is
able to speed up the training without losing significant performance. In all cases, warm-up is able
to decrease the relative error while losing some of the speedup for each method. GLISTER-WARM,
GRAD-MATCHPB-WARM, CAL-WARM and RANDOM-WARM are all able to speed up training with-
out losing significant performance.

Figure 22: This plot shows the speed and error of several DSS methods relative to using FULL training
for the Papilionidae dataset. All models are pre-trained on the ImageNet dataset. Relative speed is
computed by dividing the total run time of FULL by that of each DSS method. Relative error is the
difference in F1 score of the FULL and DSS methods. FULL-ES is FULL training with early stopping.
FULL has an F1 score of 80.4±1.1 and takes 0.62±0.02 hours.

In Figure 23 the results of adaptive DSS methods on the CUB200 dataset using transfer learning can
be found. Their performance is compared to that of FULL training. Transfer learning had a very
positive effect on FULL training on the CUB200 dataset. Using a pre-trained network with FULL

training increases the final F1 score from 48.8±0.2 to 79.8±0.1. FULL-ES is almost four times as
fast as FULL, while losing almost no performance. Most methods that do not use warm-up cannot
speed up training. Only GLISTER, GRAD-MATCHPB, RANDOM and CRAIGPB are able to, but at
the cost of performance. Using warm-up for these methods results in a performance that is almost
the same as FULL while sacrificing some of the speedup reached when not using warm-up. CAL
showed the worst performance, which is the same behavior as when not using transfer learning on the
CUB200 dataset; see Figure 16.
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Figure 23: This plot shows the speed and error of several DSS methods relative to using FULL training
for the CUB200 dataset. All models are pre-trained on the ImageNet dataset. Relative speed is
computed by dividing the total run time of FULL by that of each DSS method. Relative error is the
difference in F1 score of the FULL and DSS methods. FULL-ES is FULL training with early stopping.
FULL has an F1 score of 79.8±0.1 and takes 0.75±0.06 hours.

In Figure 24 the performance of the models on the Papilionidae data set can be found, while training.
CAL is the only method capable of getting a performance comparable to that of training with FULL.
FULL converges quickly which results in a long performance plateau. FULL-ES is able to save energy
by stopping early on. This also does not sacrifice performance, as a plateau in performance has already
been reached. SUPER-CL and GRAD-MATCH need more time than FULL training.

In Figure 25 the performance of the methods over time on the CUB200 dataset, while using pre-
trained networks, can be found. We observe that FULL and FULL-ES converge very quickly and then
reach a performance plateau. RANDOM, GRAD-MATCHPB and GLISTER are the only methods
capable of achieving a performance comparable to FULL, but require much more time. SUPER-CL
needs the most sampling time, as can be observed by looking at the starting point of each method
graph. CAL shows the worst final performance which is the same behavior as when not using pre-
trained networks; see Figure 19.

The effect of warm-up when using transfer learning can be observed in subsection D. We observe that
all methods show comparable performance. Possible reasons for why this happens will be discussed
in the next chapter.
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Figure 24: Test performance on the Papilionidae dataset while training with a selection of the best
adaptive DSS methods and using pre-trained networks. All methods are averaged over 5 runs and the
standard error is shown as error band.

Figure 25: Test performance on the CUB200 dataset while training with a selection of the best adap-
tive DSS methods and using pre-trained networks. All methods are averaged over 5 runs and the
standard error is shown as error band.
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5.4 Supervised Contrastive Learning

In Figure 26 the performance per data sample on which the model is trained is shown. This allows
us to view the performance of each method without taking the sampling duration into account. We
observe that CAL shows good performance early on. The warm-up optimization results in decreased
performance, and it takes longer for the model to converge. SUPER-CL shows the lowest perfor-
mance. Warm-up is able to increase the final performance, but the slope of the graph is lower than
without warm-up. To examine the effect of introducing diversity, we used post-training as explained
in subsection 4.8. The number of epochs to use SUPER-CL before training with all data was de-
termined by looking at the convergence point of normal SUPER-CL. Post-training results in higher
performance than normal SUPER-CL. SUPER-CL-WARM reaches a higher final performance than
SUPER-CL-POST-TRAINING, but post-training could be used to get good performance with fewer
data.

Figure 26: Test performance per amount of data samples that the model has been trained on for CAL,
SUPER-CL and FULL. For CAL and SUPER-CL we also show the performance of the warm-up
optimization. SUPER-CL-POST-TRAINING first uses the SUPER-CL method for κ epochs and then
continues training with all data. Note that because of time constraints these results are not averaged
over 5 runs but only show 1 run. This explains why CAL reaches a higher final performance than
FULL and why this is not the case in Figure 24

To be able to view the samples selected by both CAL and SUPER-CL, we provide t-SNE plots for
both the Papilionidae and CIFAR10 datasets in Figure 29 and Figure 32. For both methods, no transfer
learning is used since the t-SNE plots of the methods with and without transfer learning are similar.
We observe that SUPER-CL uses per-class sampling, and thus each class is present in the subset.
CAL is not constrained by the sampling per class and is therefore able to sample more samples from
the same class.
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Figure 27: CAL Figure 28: SUPER-CL

Figure 29: Two t-SNE plots of the Papilionidae dataset to visualize which samples are selected for the
CAL and SUPER-CL methods. Selected samples are marked with black points. Each class is denoted
by a unique color. These plots visualize the first subset that is sampled by the methods.

Figure 30: CAL Figure 31: SUPER-CL

Figure 32: Two t-SNE plots of the CIFAR10 dataset to visualize which samples are selected for the
CAL and SUPER-CL methods. Selected samples are marked with black points. Each class is denoted
by a unique color. These plots visualize the first subset that is sampled by the methods.



50 Chapter 6 DISCUSSION

6 Discussion
In this chapter, we will discuss the results of our study on optimal subset selection methods for dataset
reduction. We focused on three main research questions:

1. How do the methods compare in speedup and performance?

2. How applicable are the methods on complex and fine-grained datasets?

3. Can the methods be applied in combination with transfer learning to increase total energy
efficiency?

By answering these questions, we aim to provide insights into the trade-off between energy efficiency
and performance in the context of dataset reduction.
Throughout this chapter, we will provide an in-depth analysis of the various subset selection methods
that we evaluated, and compare their performance and energy efficiency. We will also discuss the
implications of our findings for the use of these methods in complex and fine-grained datasets, and
explore the potential for combining them with transfer learning to increase energy efficiency. By
addressing these research questions, we hope to contribute to the understanding of optimal subset
selection methods for dataset reduction and their potential for improving the energy efficiency of
deep learning.

6.1 Non-adaptive Dataset Reduction without Transfer Learning
All non-adaptive dataset reduction methods are applied without pre-trained networks except for the
PROTOTYPICAL method. This method uses a network pre-trained on ImageNet to extract the features
of the samples. The models that are trained on the selected subset are not pre-trained. This allows for
a fair comparison to the results of [22].
For both the CIFAR10 and Papilionidae datasets, all methods, except GRAND, are able to successfully
prune the datasets without losing a lot of performance.
The CIFAR10 dataset could be pruned to 50% of its original size, while only losing (at best) around
four performance percentage points. EL2N is even able to increase performance when pruning 10%
of the dataset. This confirms the findings of previous research in which non-adaptive methods can
increase performance [36]. However, in this paper the authors report that they can prune 50% of the
CIFAR10 dataset while gaining some test performance. This could not be replicated in this research,
but we confirm that EL2N can effectively prune the CIFAR10 dataset with a large fraction. The
increase in performance can be the result of the removal of outliers or noisy data.
The Papilionidae dataset can also be effectively pruned without losing much performance by all meth-
ods, except the GRAND method. Pruning 10% of the dataset with EL2N can even slightly increase
the performance. Although most methods can prune the dataset while maintaining high accuracy,
only the EL2N and GRAD-MATCH methods can also retain a high F1 score. This shows that these
methods also work well with imbalanced data.
In Figure 11 we observe the energy consumption of the non-adaptive methods. EL2N needs sub-
stantially more energy than the other methods to prune the dataset. This can be explained by the
way the EL2N scores are computed. Ten neural networks must be trained for 20 epochs before they
can be used to compute the scores for all samples. Although this requires much more energy, the
performance of EL2N is high. The costs of reducing the dataset can be repaid by the increase in
efficiency of training models on these datasets. Further research is needed to look at the effect of
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using pre-trained networks with the EL2N method. We hypothesize that because of the pre-training
the networks already have strong inference power and this could reduce the number of epochs the
networks in the EL2N need to be trained. Because of this inference power we also hypothesize that
it might lower the variance in EL2N scores and thus less networks are needed to average over. This
could potentially reduce the required energy to prune a dataset. Due to time constraints this was not
tested.
GRAND fails to find informative samples and is outperformed by RANDOM for the CIFAR10 and
Papilionidae datasets. This was not expected, as the authors of this method report that GRAND

could be used to select a subset of the CIFAR10 dataset, at initialization, that achieves test accuracy
significantly better than RANDOM. In all cases, RANDOM outperforms GRAND in this research.
We conclude that ranking samples based on gradient information over multiple random networks
at initialization time is not a viable metric for dataset reduction. GRAD-MATCH also uses gradient
information but uses this to match the gradients of the test set to that of a subset of the train set. The
performance of the non-adaptive GRAD-MATCH method shows that this is a much better approach.
Since GRAD-MATCH and GRAND require around the same amount of energy to prune a dataset, we
would not recommend using GRAND.
For both the CIFAR10 and the Papilionidae datasets, most of the methods can successfully decrease
the dataset with decreasing fraction sizes, while not losing a lot of performance. This shows that there
is still redundancy in the dataset after removing the first 10% and 30%. This is a completely different
story for the CUB200 dataset where for all methods the performance degrades with the amount of
pruning that is performed. One potential explanation is that after a while, removing redundancy will
transform into reducing diversity as there are almost no redundant samples left. The assumption is that
if there is redundancy and the methods can effectively prune this from a dataset, then the performance
should be comparable for the full and slightly pruned dataset. As this is not the case for the CUB200
dataset, our speculation is that there is not much redundancy present in the CUB200 dataset. This
could explain the large differences in performance between various fraction sizes, as visualized in
Figure 13.
The CUB200 dataset is a difficult dataset because of the finegrainedness, the large number of classes,
the presence of different domain sources (e.g. paintings and photographs), and the presence of noise
and overlap (e.g. leaves and tree branches in front of the birds).
Training with all data without transfer learning results in a model that is only able to correctly classify
about half of the data points correctly, which is a relatively low level of performance. The model thus
cannot fully understand the underlying data distribution. Therefore, it is questionable to use the
model information in EL2N to successfully prune the dataset. In EL2N the model error is used to
determine the difficulty of all samples. It is assumed that difficult samples are more informative and
thus the samples are ranked and chosen according to their EL2N score. However, what if the error
is high because the image is too difficult due to a lot of noise or because of the absence of class-
specific features? For example, an image of a bird that is almost completely covered by a branch. The
assumption that difficult images are informative does not hold in that case. Therefore, the complexity
of the dataset could potentially explain why EL2N performs worse than RANDOM.
We conclude that the performance of non-adaptive dataset reduction methods is heavily influenced by
the presence or absence of redundancy. If redundancy is present, methods such as EL2N or GRAD-
MATCH can be used to safely prune the dataset. If redundancy is not present, no dataset reduction
should be performed, as we need all the diversity that we can get. Therefore, it is important to know
the amount of redundancy before hand. However, to the best of my knowledge, there is no method
that can measure this in advance without doing substantial computation. A solution would be to
use a non-adaptive dataset reduction method with several different fraction sizes. By comparing the
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performance on each fraction of the dataset, we can determine if there is redundancy present and how
much. However, this results in a lot of computation and might not be efficient.
Another approach would be to devise an algorithm that can dynamically compute the redundancy by
using a submodular function. Submodular functions can be solved by an iterative greedy process and
follow the property of diminishing returns. Samples can be added iteratively to a subset until the gain
is below a certain threshold. When a sample has a very low gain, it can be discarded as redundant.
When the threshold is reached, we stop sampling and can determine that the remaining samples are
redundant. Further research is needed to devise a function that can measure the informativeness and
to devise the threshold. This greedy approach might fail to find the global optimum. A potential
solution would be to repeat the process and to select samples that are present in most of the subsets.
In addition to this, the robustness of the EL2N method should be investigated by testing it on more
datasets. Experiments with manual redundancy injection could be performed by replicating samples
and using augmentations on the copies.

6.2 Adaptive Dataset Reduction without Transfer Learning

CIFAR10 and Papilionidae The GRAD-MATCHPB, RANDOM and SUPER-CL methods are able
to speed up training on the CIFAR10 dataset while losing limited accuracy. Because of the non-
adaptive results, we know that there is a lot of redundancy in both the CIFAR10 and Papilionidae
datasets. For good performance, we thus need subsets that are diverse and represent the dataset well.
This explains why RANDOM performs so well on the CIFAR10 dataset, since every subset is random,
there is much less overlap between subsets, and thus there is a lot of diversity.

The uncertainty-based methods, ENTROPY and LEAST-CONFIDENCE, and the submodularity meth-
ods, FACILITY-LOCATION and GRAPH-CUT, do not perform well in general. For the uncertainty-
based methods, this could be explained by how they use model uncertainty to find informative sam-
ples. An untrained model does not have good inference power, the error of the model might thus
not reflect how informative samples are. In addition to that, because the uncertainty-based methods
are not applied per class, the subsets can be very imbalanced and thus not very diverse. For the sub-
modularity methods, the low performance could be because the submodular functions are applied on
the gradient space and not on the feature space. If applied to the feature space, the facility location
method could potentially select diverse subsets due to the coverage property of the facility location
function. The gradient space might not be a good representation, and more research is needed to
examine the effect of applying submodular functions to the feature space.

Observing the t-SNE plot of SUPER-CL and CAL in Figure 32, we see that SUPER-CL is capable
of selecting a very diverse and representative subset of the dataset as the selected samples are well
distributed across the classes. This is because SUPER-CL uses per-class sampling. This differs from
CAL which undersamples some classes while oversampling others. Since CIFAR10 is a balanced
dataset, this results in training on imbalanced data, which can explain the low performance.
For the Papilionidae dataset, SUPER-CL does not perform well, while CAL does. Papilionidae is
an imbalanced dataset. SUPER-CL uses per-class sampling, selecting the same fraction of samples
from each class. This keeps the imbalance in the subset and can explain the lower performance. It
thus seems that the class budget calculation is incorrect and should be changed. Instead of taking the
same fraction of each class, the method should balance the subset such that each class is represented
equally. However, this does not allow the method to focus on hard samples. Since it might not be
able to select more samples of that class if the budget already has been reached. Next to that, classes
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on which the model already performs really well are still selected and this might be inefficient. This
problem could potentially be solved by dividing the subset in two parts. One part can be used to select
hard samples within classes and that is balanced such that each class is represented equally. The other
part could be used to target samples that have not yet been selected but that have high contrastive
scores globally. This thus essentially combines SUPER-CL with CAL and balances diversity and
informativeness.
Observing Figure 29, we see that SUPER-CL indeed chooses a diverse subset, since all classes are
present in the subset. However, CAL is capable of selecting difficult samples. For example, the cluster
at the top of the t-SNE plots actually consists of two classes. The t-SNE algorithm has difficulties
in clustering the two classes, which could be explained by feature overlap. These samples are very
informative since they are close to the decision boundary of these classes. CAL samples these points
more effectively than SUPER-CL since it is not constrained by a per-class budget and calculates
contrastive scores over the entire dataset and not within classes. CAL is even able to reach a higher
performance on the Papilionidae dataset than normal training.

CUB200 No method is able to speed up training on the CUB200 data set without losing significant
performance. Based on the results of the non-adaptive methods, we speculate that there is little to
no redundancy in the dataset. If there is almost no redundancy, the adaptive method should visit
all samples over the whole training cycle such that there is as much diversity as possible. This also
means that selecting the same samples in every subset reduces the total diversity. This explains why
RANDOM performs so well, since the probability that a sample is selected is the same for all samples,
and thus all samples can be visited over the complete training run. This differs from SUPER-CL and
CAL. With these methods, it can happen that some samples with low contrastive scores might never
be selected. This could result in a lot of overlap in the subsets, e.g. a large number of the same samples
in every subset. This reduces diversity and can explain the low performance of both SUPER-CL and
CAL. By tracking the selected samples in each subset the overlap could be calculated. Future research
should be directed into the effect of overlap in subsets. GRAD-MATCHPB is able to select subsets and
loss weights that together make a good representation of the validation set. GRAD-MATCHPB seems
to be the most robust method as it performs well on all datasets. It is not able to speed up training on
CUB200 without losing performance. This might also be explained by the fact that not all samples
have been visited. A possible solution might be to always randomly select a part of the subset for all
methods. This might allow for a balance between diverse and informative subsets.

Sampling duration The number of classes has a large influence on the sampling speed of per-
class sampling methods. In Figure 20 and Figure 21 we observe the sampling duration of some
of the methods on the Papilionidae and CUB200 datasets. The datasets have 112 and 200 classes,
respectively. The sampling duration for the per-class sampling methods to sample 20% of the train
set is much higher with the CUB200 dataset. Methods that sample per-batch are not affected by
the increase in the number of classes and are only influenced by the dataset size and batch size.
This explains the large difference in sampling duration between Grad-Match and Grad-Match-PB.
SUPER-CL has a long time, which also explains the later start of the SUPER-CL method in Figure 18
and Figure 19. The long sampling duration for the first iteration of SUPER-CL is due to the kNN
computation. This could be optimized using the FAISS library, which was performed with CAL.
This was not done because of time constraints.
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Warm-up In general, warm-up is able to give most methods a good starting point where the model
already has some inference power. In some cases, the use of warm-up can even result in higher
performance than normal training. However, we do notice that too much warm-up has a negative
effect on the performance and energy trade-off. This is also expected, as training on all data in an
epoch takes longer than training on a subset. It might thus be possible to use fewer warm-up epochs
and get the same final performance early on. Thus saving even more energy.
Besides that, we notice that too much warm-up results in a performance plateau while training. Con-
tinuing with training on all data when already on a plateau is inefficient as this does not improve
performance. For example, in Figure 17 we see that the warm-up methods follow the same per-
formance as FULL, which is also expected. However, it is only when the warm-up is finished that
the methods show an increased performance. More research is needed to optimize the number of
warm-up epochs and to find a robust value for κ across datasets.

Extended training In general, extended training can increase the performance of adaptive DSS
methods while sacrificing some speed-up. However, extended training can still be faster than FULL

training since the subsets are smaller. If the DSS method with the normal number of epochs has
already reached a performance plateau, then extended training will not give increased performance
and will only require more energy. The number of extra epochs that can be trained thus depends on
the speed-up of the DSS method. If this is known and a performance plateau has not been reached, it
is advised to use extended training to improve performance. Of course, this all depends on the goal,
i.e. the speed-performance trade-off.

Warm-up and extended training The combination of both warm-up and extended training does
not appear to be a good method. This is mostly affected by the large number of warm-up epochs that
are used. The model has already reached a performance plateau because of this. Extended training
will not increase performance and will only cost more energy. Thus, more research is first needed on
the effect on varying the κ values.

Subset size The fraction parameter determines the size of the subset that the DSS method should
select from the training set. In general, using smaller subsets means higher speed up but with higher
error. This could potentially be explained by the fact that the subsets have overlap in which samples
are selected. This not only decreases the total diversity over all subsets but it could also result in
overfitting on specific samples. Using larger subsets improves performance but since now more data
is used in each epoch, training will take longer. For some methods increasing the subset size does not
result in longer sampling duration. These methods have to first compute scores to rank the samples
before selection can be performed. Larger subsets also contain more diversity which can improve
the DSS method performance. More research is needed to find a fraction size that is a good balance
between performance and speed up.

6.3 Adaptive Dataset Reduction with Transfer Learning

Papilionidae The CAL and FULL-ES methods are the only methods able to accelerate training on
the Papilionidae dataset. In the relative performance plot in Figure 22 we observe that FULL-ES is
able to get a higher performance while being almost three times as fast as FULL. However, this is
a small increase in performance. FULL and FULL-ES both train on all data and the only difference
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in the methods is the early stopping mechanism. A potential explanation for the difference in per-
formance is the low number of runs on which the experiments are averaged. Increasing this number
will increase the variance and averaging these runs might result in the same performance in FULL

and FULL-ES. Transfer learning can be seen as a form of warm-up but then on a different data dis-
tribution than with normal warm-up. The network is assumed to have already learned to recognize
basic features. The network now has to be fine-tuned on the data distribution of the Papilionidae
and CUB200 datasets to learn to recognize high-level features and to be able to discriminate between
classes. Following the results of the non-adaptive methods on the Papilionidae dataset we assume
that there is redundancy in this dataset. With transfer learning, the network needs less data to reach
good performance. If there is redundancy in a dataset, we do not have to train on all data. We need
some diversity to be able to learn the underlying data distribution, and we need to target informative
samples to get discriminative power. Methods such as GRAD-MATCH, GRAD-MATCHPB, GLISTER,
CRAIGPB and FACILITY-LOCATION try to find a subset that represents the train set well. The perfor-
mance of these methods with pre-trained networks on the Papilionidae is comparable as to when not
using transfer learning. They do reach this performance faster, which could be explained by the fact
that the pre-trained networks already know how to recognize basic features. However, these methods
do not target informative samples, and their subsets can overlap, which results in not having selected
all samples, as viewed over the complete training run. This could explain why these methods have
lower performance than FULL. This is different for methods that use the current inferential power of
the model to determine hard samples. Methods such as CAL and SUPER-CL do target these samples
and thus get both diversity and higher performance. SUPER-CL has lower performance than CAL
since it is constrained by the per-class sampling class budgets. Because of this constraint, it can not
target specific classes and under sample less informative classes. This behavior can also be observed
in Figure 26. Here we see that both CAL and SUPER-CL are able to sample more informative sam-
ples and can get higher performance with less data than FULL. After a while, FULL catches up with
SUPER-CL and even surpasses its performance. Since SUPER-CL is constrained, we hypothesize
that it cannot visit all samples and thus misses some diversity. To confirm this hypothesis, we inject
diversity using post-training with SUPER-CL when it reaches the performance plateau. In Figure 26
we see that post-training indeed increases performance and allows the method to escape the plateau.

CUB200 For the CUB200 dataset we observe similar results when using transfer learning as when
not using transfer learning. The use of pre-trained networks results in higher final performance which
is to be expected since pre-trained models already have knowledge about features. As mentioned
before, based on the non-adaptive results we assume that there is almost no redundancy in the CUB200
dataset. This means that we need subsets that are very representative of the train set. We need as much
diversity as we can to learn the complete underlying data distribution of the CUB200 dataset. Without
redundancy, the difference in informativeness of samples is lower than when there is redundancy.
These properties explain why the methods that sample representative subsets perform so well. For
example, the RANDOM method. It samples diverse subsets and because of the uniform sampling,
every sample has the same probability to be selected. Thus, there is much less overlap in the subsets,
and there is a high probability that all samples will be visited. However, there can still be overlap, and
thus some samples might be selected more often than others, and it might still be possible that some
samples are never selected. This can explain why RANDOM gets a final performance lower than that
of FULL.
Targeted sampling with CAL does not work as there is much more overlap in subsets, less diversity,
and not all samples are visited. SUPER-CL works better than CAL, which might be surprising. This
can be explained by the per-class sampling it uses. It samples the same percentage of samples in a
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class for all classes. Since CUB200 is a relatively balanced dataset, this means that the subsets always
contain all classes and therefore are diverse.

Warm-up The performance of the methods while using both transfer learning and a warm-up strat-
egy can be found in Figure 38 and Figure 39. All methods can converge while training on the full
data in the warm-up epochs. For all methods, it seems that the number of warm-up epochs is too large
as this results in a performance plateau. The GRAD-MATCHPB-WARM method seems to be able to
even increase the performance after having completed the warm-up epochs. More research is needed
to look at the effect of using smaller values of κ when using pre-trained networks.

Extended training Extended training was not performed with methods that use transfer learning.
The reason for this is that all methods can converge and extended training would only decrease energy
efficiency without gaining performance.

6.4 Limitations
Eventually, the iNaturalist dataset was not used, as its size makes it impractical to compare all meth-
ods. Some methods need to compute metrics, such as the pairwise distance between all data samples.
This cannot be done batch-wise, so these metrics of the whole dataset have to be kept in memory,
which is not possible for large datasets. Although this does not allow for a practical and fair compar-
ison between methods, it does show the impracticality of some methods on large datasets.

One of the reasons the SUPER-CL method was devised was to solve the out-of-memory errors of the
CAL method. In a later stage of the research we were able to solve this with Faiss. Not only does this
solve the memory errors, it also greatly speeds up sampling. The sampling duration of SUPER-CL is
relatively large and this could be reduced by using Faiss. However, this library was found in a late
stage of the research and could not be used in SUPER-CL because of time constraints.

The fraction size of the dataset used in the subset, selection frequency and sampling duration have
large influence on training time and speed-up for adaptive data subset selection (ADSS) based train-
ing. When the fraction size is too large, ADSS-based training will be almost the same as training on
all data and no speedup is reached. If the selection frequency is high and a method has a relatively
long sample duration this will heavily influence the potential speedup and could even result in longer
training than FULL. We needed to do a generalization in terms of the subset size and frequency of
the methods in order to compare the performance. In this research the frequency and fraction size
of the ADSS methods is based on the ablation study in [39]. The assumption was that the selection
frequency and subset size would not be method dependent. However, this actually can be method
dependent since some methods need to calculate a metric for all samples in the dataset before being
able to rank and select based on these scores. Increasing the subset size thus does not influence sam-
pling duration. The frequency and subset size should be optimized to allow for a better performance
comparison.
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7 Conclusion
The recent increase in model performance for tasks in Natural Language Processing and Computer
Vision is said to be related to the exponential increase in the number of parameters. With the increase
in model size comes the need for for massive datasets. This is coupled with large financial and envi-
ronmental costs. In this research we focus on dataset reduction methods that potentially save energy
and time when training deep learning models. These methods aim to reduce training time by remov-
ing redundant samples, for instance, by cleverly selecting samples during training or by synthesizing
a new (smaller) distilled dataset. As synthesis techniques are still very energy inefficient, this research
mainly focused on selection techniques. Multiple non-adaptive methods were implemented to see if
they can effectively prune datasets. In addition to that, several methods were implemented that can
adaptively select subsets during training. We applied these algorithms on biodiversity datasets, which
are fine-grained and imbalanced datasets that make a good test case for operational machine learning
settings in real-world problems. Furthermore, the effect of combining transfer learning with dataset
reduction was studied as this could potentially further increase energy efficiency.

In this research we set out to answer the following research question: ”What are the optimal subset
selection methods for dataset reduction?”. The following three subquestions were defined:

1. How do the methods compare in speedup and performance?

The non-adaptive dataset reduction methods EL2N and GRAD-MATCH are able to prune datasets
when redundancy is present. EL2N was even able to increase the performance which might be
explained by the removal of noisy samples or outliers.
For adaptive dataset reduction methods, we hypothesize that the performance of the methods is highly
influenced by the presence or absence of redundancy. However, we do not yet have an objective
measure of redundancy to confirm this assumption. We do find a strong dependency on the dataset to
which the method is applied. When redundancy is present the results show that CAL not only speeds
up training but also increases performance. When there is little to no redundancy in a dataset the
results show that representative-based methods such as GRAD-MATCHPB perform the best. However,
while these methods do result in a speedup, they also result in lower performance. Future research in
objective measurements for redundancy are needed to confirm the assumption.

2. How applicable are the methods on complex and fine-grained (biodiversity) datasets?

Dataset properties, such as long-tail class distribution and fine-grainedness, can make dataset reduc-
tion difficult for some of the methods. The calculation of the class budget of SUPER-CL does not
work well with imbalanced datasets and should be adjusted to be a balance between diversity and
informativeness. For biodiversity datasets that do not contain much redundancy, such as the CUB200
dataset, we find that most adaptive dataset reduction methods fail to efficiently speed up training
while maintaining good accuracy. If there is almost no redundancy, the adaptive method should visit
all samples over the whole training cycle such that there is as much diversity as possible. This also
means that selecting the same samples in every subset reduces the total diversity.
Only GRAD-MATCHPB-WARM was able to speed up training while reaching higher performance.
This method selects subsets on which the gradient is similar to that of the test set and is the most
robust. RANDOM adaptive data subset selection also works with these datasets since it selects diverse
subsets that do not have much overlap.
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The CAL method is capable of speeding up training and improving performance by targeting in-
formative samples. This works well with datasets that contain redundancy such as the Papilionidae
dataset. It however fails with the CUB200 dataset. This can be explained by the absence of diversity,
as the method does not select samples with low contrastive scores.

3. Can the methods be applied in combination with Transfer Learning to increase the total energy
efficiency?

The results show that when using pre-trained networks, it is best to not use dataset reduction methods.
Normal training gives the best performance and gets there faster than when using dataset reduction.
Warm-up optimization could give the method a good starting point to increase the potential speedup
and performance. However, too much warmup was used in the experiments and the model has already
reached a performance plateau before doing data subset selection. More research is needed to look at
the effect of using very little warmup in combination with transfer learning.
When the sampling duration for each method is disregarded, the CAL and SUPER-CL methods result
in a higher performance while using less data early on in training. This shows that dataset reduction
could effectively be combined with transfer learning, provided that sampling can be done efficiently.
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Appendices

A Non-adaptive DSS performance over time on Papilionidae

Figure 33: Test F1 over time for models trained on the subsets provided by the non-adaptive methods.
Each method is averaged over five runs and the std. error is shown as error band. FULL represents the
performance of a model trained on all data. The sampling duration of each method is included in the
total time. Note the difference in sampling duration of each method by observing the start time.

B Relative energy consumption and performance for adaptive DSS methods

Only the energy consumption of the GPU could be correctly measured. CPU energy consumption is
unknown. Because of this, we use time as a proxy for comparing the methods. Although the time and
energy plots are very comparable, the energy plots are provided here for the sake of completeness.
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Figure 34: This plot shows the energy consumption and error of several DSS methods relative to
using FULL training for the Papilionidae dataset. The energy ratio is computed by dividing the total
energy consumption of FULL by that of each DSS method. Relative F1-score error is the difference
in F1 score of the FULL and DSS methods. FULL-ES is FULL training with early stopping. FULL

has an F1-score of 70±1.1
.
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Figure 35: This plot shows the energy consumption and error of several DSS methods relative to
using FULL training for the CUB200 dataset. The energy ratio is computed by dividing the total
energy consumption of FULL by that of each DSS method. Relative error is the difference in F1
score of the FULL and DSS methods. FULL-ES is FULL training with early stopping. FULL has an
F1-score of 48.8±0.2
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C Relative energy consumption and performance for adaptive DSS methods
with transfer learning

Figure 36: This plot shows the energy consumption and error of several DSS methods relative to
using FULL training for the Papilionidae dataset. All models are pre-trained on the ImageNet dataset.
The energy ratio is computed by dividing the total energy consumption of FULL by that of each DSS
method. Relative error is the difference in F1 score of the FULL and DSS methods. FULL-ES is
FULL training with early stopping. FULL has an F1-score of 80.4±1.1.
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Figure 37: This plot shows the energy consumption and error of several DSS methods relative to
using FULL training for the CUB200 dataset. All models are pre-trained on the ImageNet dataset.
The energy ratio is computed by dividing the total energy consumption of FULL by that of each DSS
method. Relative error is the difference in F1 score of the FULL and DSS methods. FULL-ES is
FULL training with early stopping. FULL has an F1-score of 79.8±0.1
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D The effect of warm-up and transfer learning on the adaptive DSS methods

Figure 38: Test performance on the Papilionidae dataset while training with a selection of adaptive
DSS methods, using pre-trained networks and warm-up. All methods are averaged over 5 runs and
the standard error is shown as error band.

Figure 39: Test performance on the CUB200 dataset while training with a selection of adaptive DSS
methods, using pre-trained networks and warm-up. All methods are averaged over 5 runs and the
standard error is shown as error band.
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E Papilionidae Dataset Class Distribution

Figure 40: Class distribution of the Papilionidae dataset, showing the long-tailed distribution property
of the dataset.
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